Functional assessment of spermatogonial stem cell purity in experimental cell populations
Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population hav...
Saved in:
Published in | Stem cell research Vol. 29; pp. 129 - 133 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.05.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a ‘pure’ SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on ‘SSC’ populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology.
•Spermatogonial biology has been hindered by a lack of validated approaches to identify pure populations of the various spermatogonial subsets.•Outcomes of lineage tracing and standard spermatogonial transplantation techniques are subject to variable interpretation regarding SSC purity.•Limiting dilution spermatogonial transplantation provides a standardized tool for assessing SSC purity. |
---|---|
AbstractList | Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a 'pure' SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on 'SSC' populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology.Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a 'pure' SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on 'SSC' populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology. Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a 'pure' SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on 'SSC' populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology. Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a ‘pure’ SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on ‘SSC’ populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology. Keywords: Spermatogonial stem cell, Limiting dilution, Transplantation Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a ‘pure’ SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on ‘SSC’ populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology. •Spermatogonial biology has been hindered by a lack of validated approaches to identify pure populations of the various spermatogonial subsets.•Outcomes of lineage tracing and standard spermatogonial transplantation techniques are subject to variable interpretation regarding SSC purity.•Limiting dilution spermatogonial transplantation provides a standardized tool for assessing SSC purity. Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a ‘pure’ SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on ‘SSC’ populations. In the limiting dilution transplantation assay, a population of LacZ -expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology. |
Author | Oatley, Jon M. Lord, Tessa |
Author_xml | – sequence: 1 givenname: Tessa surname: Lord fullname: Lord, Tessa – sequence: 2 givenname: Jon M. surname: Oatley fullname: Oatley, Jon M. email: joatley@wsu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29660605$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi3Uil7gAdigLNkk-BbHERISqtpSqVI3sGBlOb4cfJTYwXYq-vY4Jy2iLLqyNfP_34zHcwaOfPAGgHcINggi9nHfJBUbDBFvIGlK5BU4Rbxjdde15OhwJ3ULGToBZyntIWx7zPFrcIJ7xiCD7Sn4cbV4lV3wcqxkSialyfhcBVul2cRJ5rAL3pVkymaqlBnHal6iyw-V85X5XTRuNRTBlgvzMsqVl96AYyvHZN4-nufg-9Xlt4uv9e3d9c3Fl9tatajLNTVaDbDlSFpGuO4hlRAPFA2IDEghSyTHgyQYUUU62jKmNZbaSEuotFYxcg5uNq4Oci_m0o-MDyJIJw6BEHdCxuzUaAQZNNGcS6q7llJqOcFQtZAPyPaUEV1YnzfWvAxTaay8LMrxGfR5xrufYhfuBSM9hmRt5sMjIIZfi0lZTC6tk5HehCUJDDGjmCLEi_T9v7X-Fnn6myLoNoGKIaVorFAuH2ZbSrtRICjWLRB7UbZArFsgIBElUpzoP-cT_CXPp81jyl_dOxOLwhmvjHbRqFyG6V5w_wEh7szE |
CitedBy_id | crossref_primary_10_1016_j_theriogenology_2022_02_028 crossref_primary_10_1038_s41585_024_00969_6 crossref_primary_10_1093_biolre_ioac048 crossref_primary_10_1002_mrd_23777 crossref_primary_10_3390_cells11081295 crossref_primary_10_1016_j_devcel_2020_01_014 crossref_primary_10_1016_j_stemcr_2021_01_015 crossref_primary_10_1111_andr_12713 crossref_primary_10_1016_j_isci_2022_105733 crossref_primary_10_1186_s12978_021_01242_4 crossref_primary_10_1096_fj_201802361R crossref_primary_10_1159_000523891 crossref_primary_10_7554_eLife_90747 |
Cites_doi | 10.1016/j.jpedsurg.2015.08.031 10.1095/biolreprod.106.051193 10.1126/science.1182868 10.1186/1471-213X-9-38 10.1371/journal.pone.0053976 10.1038/srep06175 10.1016/j.stemcr.2018.01.003 10.1634/stemcells.2008-0134 10.1095/biolreprod.103.019273 10.1111/j.1365-2184.1971.tb01544.x 10.1016/j.devcel.2007.01.002 10.1016/j.ydbio.2004.01.036 10.1172/JCI75943 10.1242/dev.146928 10.1073/pnas.91.24.11298 10.1002/stem.206 10.1016/j.stem.2012.02.004 10.1095/biolreprod60.6.1429 10.1016/j.stem.2014.01.019 10.1152/physrev.00025.2011 10.1016/j.stemcr.2016.07.005 10.1016/j.stemcr.2017.01.006 10.1095/biolreprod.104.029207 10.1101/gad.240465.114 10.1002/(SICI)1098-2795(199906)53:2<142::AID-MRD3>3.0.CO;2-O 10.1002/jcb.24431 10.1002/mrd.20324 10.1530/REP-17-0034 10.1095/biolreprod.106.053181 10.1038/ng1367 10.1073/pnas.91.24.11303 10.1073/pnas.96.10.5504 10.1002/ar.1091690305 10.1242/dev.146571 10.1095/biolreprod.102.004549 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.scr.2018.03.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1876-7753 |
EndPage | 133 |
ExternalDocumentID | oai_doaj_org_article_3bd3d88a4d75444f8320c508b1f9463d PMC6392036 29660605 10_1016_j_scr_2018_03_016 S1873506118300941 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD061665 |
GroupedDBID | --- --K .~1 0R~ 0SF 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABBQC ABCQJ ABGSF ABMAC ACGFS ADBBV ADEZE ADMUD ADUVX AEKER AENEX AEXQZ AFTJW AGHFR AGWIK AGYEJ AITUG AJRQY ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CS3 DU5 EBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU GBLVA GROUPED_DOAJ HVGLF HZ~ IHE IPNFZ IXB J1W KQ8 M41 M48 MO0 N9A NCXOZ O-L O9- OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c517t-4edcb0581af638d904a02b41b13b1c1f3a82ba3214c374566dd2adeaf34affc63 |
IEDL.DBID | M48 |
ISSN | 1873-5061 1876-7753 |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Thu Aug 21 14:12:22 EDT 2025 Fri Jul 11 11:44:35 EDT 2025 Mon Jul 21 05:50:52 EDT 2025 Tue Jul 01 00:52:16 EDT 2025 Thu Apr 24 23:05:06 EDT 2025 Fri Feb 23 02:26:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Limiting dilution Spermatogonial stem cell Transplantation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-4edcb0581af638d904a02b41b13b1c1f3a82ba3214c374566dd2adeaf34affc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/3bd3d88a4d75444f8320c508b1f9463d |
PMID | 29660605 |
PQID | 2026424118 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bd3d88a4d75444f8320c508b1f9463d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6392036 proquest_miscellaneous_2026424118 pubmed_primary_29660605 crossref_citationtrail_10_1016_j_scr_2018_03_016 crossref_primary_10_1016_j_scr_2018_03_016 elsevier_sciencedirect_doi_10_1016_j_scr_2018_03_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Stem cell research |
PublicationTitleAlternate | Stem Cell Res |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Aloisio, Nakada, Saatcioglu, Pena, Baker, Tarnawa, Mukherjee, Manjunath, Bugde, Sengupta (bb0005) 2014; 124 Shinohara, Avarbock, Brinster (bb0150) 1999; 96 Zheng, Wu, Kaestner, Wang (bb0200) 2009; 9 Tanaka, Kanatsu-Shinohara, Lei, Rao, Shinohara (bb0165) 2016; 7 Brinster, Avarbock (bb0010) 1994; 91 Verma (bb0180) 2001; 3 Dobrinski, Ogawa, Avarbock, Brinster (bb0035) 1999; 53 de Rooij (bb0145) 2017; 144 Costoya, Hobbs, Barna, Cattoretti, Manova, Sukhwani, Orwig, Wolgemuth, Pandolfi (bb0025) 2004; 36 Dann, Alvarado, Molyneux, Denard, Garbers, Porteus (bb0030) 2008; 26 Lord, Oatley (bb0100) 2017 Nakagawa, Nabeshima, Yoshida (bb0120) 2007; 12 Sun, Xu, Zhao, Degui Chen (bb0155) 2015; 5 Illa-Bochaca, Fernandez-Gonzalez, Shelton, Welm, Ortiz-de-Solorzano, Barcellos-Hoff (bb0075) 2010 Kanatsu-Shinohara, Inoue, Miki, Ogonuki, Takehashi, Morimoto, Ogura, Shinohara (bb0080) 2006; 75 Zhang, Ebata, Nagano (bb0195) 2003; 69 Brinster, Zimmermann (bb0015) 1994; 91 Tokue, Ikami, Mizuno, Takagi, Miyagi, Takada, Noda, Kitadate, Hara, Mizuguchi (bb0175) 2017; 8 Ebata, Zhang, Nagano (bb0040) 2005; 72 Huckins (bb0070) 1971; 4 Tana (bb0160) 2013 Tokuda, Kadokawa, Kurahashi, Marunouchi (bb0170) 2007; 76 Grisanti, Falciatori, Grasso, Dovere, Fera, Muciaccia, Fuso, Berno, Boitani, Stefanini (bb0050) 2009; 27 Nakagawa, Sharma, Nabeshima, Braun, Yoshida (bb0125) 2010; 328 Komai, Tanaka, Tokuyama, Yanai, Ohe, Omachi, Atsumi, Yoshida, Kumano, Hisha (bb0085) 2014; 4 Kubota, Avarbock, Brinster (bb0090) 2004; 71 Youn, Kim, Choi, Kim (bb0190) 2013; 114 Hobbs, Fagoonee, Papa, Webster, Altruda, Nishinakamura, Chai, Pandolfi (bb0065) 2012; 10 Oatley, Brinster (bb0135) 2012; 92 Nagano, Avarbock, Brinster (bb0115) 1999; 60 Hara, Nakagawa, Enomoto, Suzuki, Yamamoto, Simons, Yoshida (bb0055) 2014; 14 Yoshida, Takakura, Ohbo, Abe, Wakabayashi, Yamamoto, Suda, Nabeshima (bb0185) 2004; 269 Lord, Oatley (bb0105) 2017; 154 Lord, Oatley, Oatley (bb0110) 2018; 10 Gassei, Orwig (bb0045) 2013; 8 Ogawa, Ohmura, Yumura, Sawada, Kubota (bb0140) 2003; 68 Helsel, Yang, Oatley, Lord, Sablitzky, Oatley (bb0060) 2017; 144 Oakberg (bb0130) 1971; 169 Li, Vannitamby, Zhang, Fehmel, Southwell, Hutson (bb0095) 2015; 50 Chan, Oatley, Kaucher, Yang, Bieberich, Shashikant, Oatley (bb0020) 2014; 28 Lord (10.1016/j.scr.2018.03.016_bb0105) 2017; 154 Kubota (10.1016/j.scr.2018.03.016_bb0090) 2004; 71 Yoshida (10.1016/j.scr.2018.03.016_bb0185) 2004; 269 Nakagawa (10.1016/j.scr.2018.03.016_bb0120) 2007; 12 Helsel (10.1016/j.scr.2018.03.016_bb0060) 2017; 144 Huckins (10.1016/j.scr.2018.03.016_bb0070) 1971; 4 Zhang (10.1016/j.scr.2018.03.016_bb0195) 2003; 69 Costoya (10.1016/j.scr.2018.03.016_bb0025) 2004; 36 Nagano (10.1016/j.scr.2018.03.016_bb0115) 1999; 60 Kanatsu-Shinohara (10.1016/j.scr.2018.03.016_bb0080) 2006; 75 Nakagawa (10.1016/j.scr.2018.03.016_bb0125) 2010; 328 Oatley (10.1016/j.scr.2018.03.016_bb0135) 2012; 92 Oakberg (10.1016/j.scr.2018.03.016_bb0130) 1971; 169 Li (10.1016/j.scr.2018.03.016_bb0095) 2015; 50 Dann (10.1016/j.scr.2018.03.016_bb0030) 2008; 26 Zheng (10.1016/j.scr.2018.03.016_bb0200) 2009; 9 Tana (10.1016/j.scr.2018.03.016_bb0160) Ebata (10.1016/j.scr.2018.03.016_bb0040) 2005; 72 Lord (10.1016/j.scr.2018.03.016_bb0110) 2018; 10 Lord (10.1016/j.scr.2018.03.016_bb0100) 2017 Grisanti (10.1016/j.scr.2018.03.016_bb0050) 2009; 27 de Rooij (10.1016/j.scr.2018.03.016_bb0145) 2017; 144 Sun (10.1016/j.scr.2018.03.016_bb0155) 2015; 5 Hobbs (10.1016/j.scr.2018.03.016_bb0065) 2012; 10 Ogawa (10.1016/j.scr.2018.03.016_bb0140) 2003; 68 Aloisio (10.1016/j.scr.2018.03.016_bb0005) 2014; 124 Verma (10.1016/j.scr.2018.03.016_bb0180) 2001; 3 Youn (10.1016/j.scr.2018.03.016_bb0190) 2013; 114 Komai (10.1016/j.scr.2018.03.016_bb0085) 2014; 4 Illa-Bochaca (10.1016/j.scr.2018.03.016_bb0075) 2010 Dobrinski (10.1016/j.scr.2018.03.016_bb0035) 1999; 53 Tanaka (10.1016/j.scr.2018.03.016_bb0165) 2016; 7 Brinster (10.1016/j.scr.2018.03.016_bb0010) 1994; 91 Chan (10.1016/j.scr.2018.03.016_bb0020) 2014; 28 Tokuda (10.1016/j.scr.2018.03.016_bb0170) 2007; 76 Brinster (10.1016/j.scr.2018.03.016_bb0015) 1994; 91 Shinohara (10.1016/j.scr.2018.03.016_bb0150) 1999; 96 Gassei (10.1016/j.scr.2018.03.016_bb0045) 2013; 8 Tokue (10.1016/j.scr.2018.03.016_bb0175) 2017; 8 Hara (10.1016/j.scr.2018.03.016_bb0055) 2014; 14 |
References_xml | – volume: 9 start-page: 1 year: 2009 end-page: 11 ident: bb0200 article-title: The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse publication-title: BMC Dev. Biol. – volume: 328 start-page: 62 year: 2010 end-page: 67 ident: bb0125 article-title: Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment publication-title: Science – volume: 14 start-page: 658 year: 2014 end-page: 672 ident: bb0055 article-title: Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states publication-title: Cell Stem Cell – volume: 144 start-page: 3022 year: 2017 end-page: 3030 ident: bb0145 article-title: The nature and dynamics of spermatogonial stem cells publication-title: Development – volume: 69 start-page: 1872 year: 2003 end-page: 1878 ident: bb0195 article-title: Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation publication-title: Biol. Reprod. – volume: 10 start-page: 284 year: 2012 end-page: 298 ident: bb0065 article-title: Functional antagonism between Sall4 and Plzf defines germline progenitors publication-title: Cell Stem Cell – volume: 75 start-page: 68 year: 2006 end-page: 74 ident: bb0080 article-title: Clonal origin of germ cell colonies after spermatogonial transplantation in mice publication-title: Biol. Reprod. – volume: 4 start-page: 6175 year: 2014 ident: bb0085 article-title: Bmi1 expression in long-term germ stem cells publication-title: Sci. Rep. – volume: 8 start-page: 561 year: 2017 end-page: 575 ident: bb0175 article-title: SHISA6 confers resistance to differentiation-promoting Wnt/β-catenin signaling in mouse spermatogenic stem cells publication-title: Stem Cell Rep. – volume: 28 start-page: 1351 year: 2014 end-page: 1362 ident: bb0020 article-title: Functional and molecular features of the Id4+ germline stem cell population in mouse testes publication-title: Genes Dev. – volume: 36 year: 2004 ident: bb0025 article-title: Essential role of Plzf in maintenance of spermatogonial stem cells publication-title: Nat. Genet. – start-page: 91 year: 2017 end-page: 129 ident: bb0100 article-title: Regulation of spermatogonial stem cell maintenance and self-renewal publication-title: The Biology of Mammalian Spermatogonia – volume: 10 start-page: 538 year: 2018 end-page: 552 ident: bb0110 article-title: Testicular architecture is critical for mediation of retinoic acid responsiveness by undifferentiated spermatogonial subtypes in the mouse publication-title: Stem Cell Rep. – volume: 68 start-page: 316 year: 2003 end-page: 322 ident: bb0140 article-title: Expansion of murine spermatogonial stem cells through serial transplantation publication-title: Biol. Reprod. – volume: 5 year: 2015 ident: bb0155 article-title: Id4 marks spermatogonial stem cells in the mouse testis publication-title: Nat. Sci. Rep. – volume: 76 start-page: 561 year: 2007 end-page: 575 ident: bb0170 article-title: CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes publication-title: Biol. Reprod. – volume: 169 start-page: 515 year: 1971 end-page: 531 ident: bb0130 article-title: Spermatogonial stem-cell renewal in the mouse publication-title: Anat. Rec. – volume: 7 start-page: 279 year: 2016 end-page: 291 ident: bb0165 article-title: The luteinizing hormone-testosterone pathway regulates mouse spermatogonial stem cell self-renewal by suppressing WNT5A expression in sertoli cells publication-title: Stem Cell Rep. – volume: 50 start-page: 2084 year: 2015 end-page: 2089 ident: bb0095 article-title: Oct4-GFP expression during transformation of gonocytes into spermatogonial stem cells in the perinatal mouse testis publication-title: J. Pediatr. Surg. – volume: 269 start-page: 447 year: 2004 end-page: 458 ident: bb0185 article-title: Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis publication-title: Dev. Biol. – volume: 3 start-page: 181 year: 2001 end-page: 183 ident: bb0180 article-title: Sperm quiescence in cauda epididymis: a mini-review publication-title: Asian J. Androl. – volume: 72 start-page: 171 year: 2005 end-page: 181 ident: bb0040 article-title: Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development publication-title: Mol. Reprod. Dev. – volume: 92 start-page: 577 year: 2012 end-page: 595 ident: bb0135 article-title: The germline stem cell niche unit in mammalian testes publication-title: Physiol. Rev. – volume: 96 start-page: 5504 year: 1999 end-page: 5509 ident: bb0150 article-title: β1- and α6-integrin are surface markers on mouse spermatogonial stem cells publication-title: PNAS – volume: 124 start-page: 3929 year: 2014 end-page: 3944 ident: bb0005 article-title: PAX7 expression defines germline stem cells in the adult testis publication-title: J. Clin. Invest. – volume: 91 start-page: 11298 year: 1994 end-page: 11302 ident: bb0015 article-title: Spermatogenesis following male germ-cell transplantation publication-title: PNAS – volume: 4 start-page: 335 year: 1971 end-page: 349 ident: bb0070 article-title: The spermatogonial stem cell population in adult rats publication-title: Cell Prolif. – start-page: 53 year: 2013 ident: bb0160 article-title: Oct4 Lineage Tracing of Spermatogonial Stem Cells in the Adult Mouse Testes – volume: 144 start-page: 624 year: 2017 end-page: 634 ident: bb0060 article-title: ID4 levels dictate the stem cell state in mouse spermatogonia publication-title: Development – volume: 53 start-page: 142 year: 1999 end-page: 148 ident: bb0035 article-title: Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice publication-title: Mol. Reprod. Dev. – volume: 27 start-page: 3043 year: 2009 end-page: 3052 ident: bb0050 article-title: Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation publication-title: Stem Cells – volume: 91 start-page: 11303 year: 1994 end-page: 11307 ident: bb0010 article-title: Germline transmission of donor haplotype following spermatogonial transplantation publication-title: PNAS – volume: 8 year: 2013 ident: bb0045 article-title: SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes publication-title: PLoS One – volume: 154 start-page: R55 year: 2017 end-page: R64 ident: bb0105 article-title: A revised A publication-title: Reproduction – volume: 60 start-page: 1429 year: 1999 end-page: 1436 ident: bb0115 article-title: Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes publication-title: Biol. Reprod. – volume: 26 start-page: 2928 year: 2008 end-page: 2937 ident: bb0030 article-title: Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation publication-title: Stem Cells – volume: 12 year: 2007 ident: bb0120 article-title: Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis publication-title: Dev. Cell – start-page: 29 year: 2010 end-page: 47 ident: bb0075 article-title: Limiting-dilution transplantation assays in mammary stem cell studies publication-title: Protocols for Adult Stem Cells – volume: 114 start-page: 920 year: 2013 end-page: 928 ident: bb0190 article-title: Characterization of Oct4-GFP spermatogonial stem cell line and its application in the reprogramming studies publication-title: J. Cell. Biochem. – volume: 71 start-page: 722 year: 2004 end-page: 731 ident: bb0090 article-title: Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells publication-title: Biol. Reprod. – volume: 50 start-page: 2084 year: 2015 ident: 10.1016/j.scr.2018.03.016_bb0095 article-title: Oct4-GFP expression during transformation of gonocytes into spermatogonial stem cells in the perinatal mouse testis publication-title: J. Pediatr. Surg. doi: 10.1016/j.jpedsurg.2015.08.031 – volume: 75 start-page: 68 year: 2006 ident: 10.1016/j.scr.2018.03.016_bb0080 article-title: Clonal origin of germ cell colonies after spermatogonial transplantation in mice publication-title: Biol. Reprod. doi: 10.1095/biolreprod.106.051193 – volume: 328 start-page: 62 year: 2010 ident: 10.1016/j.scr.2018.03.016_bb0125 article-title: Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment publication-title: Science doi: 10.1126/science.1182868 – volume: 9 start-page: 1 year: 2009 ident: 10.1016/j.scr.2018.03.016_bb0200 article-title: The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-9-38 – volume: 8 year: 2013 ident: 10.1016/j.scr.2018.03.016_bb0045 article-title: SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes publication-title: PLoS One doi: 10.1371/journal.pone.0053976 – volume: 4 start-page: 6175 year: 2014 ident: 10.1016/j.scr.2018.03.016_bb0085 article-title: Bmi1 expression in long-term germ stem cells publication-title: Sci. Rep. doi: 10.1038/srep06175 – volume: 10 start-page: 538 year: 2018 ident: 10.1016/j.scr.2018.03.016_bb0110 article-title: Testicular architecture is critical for mediation of retinoic acid responsiveness by undifferentiated spermatogonial subtypes in the mouse publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2018.01.003 – volume: 26 start-page: 2928 year: 2008 ident: 10.1016/j.scr.2018.03.016_bb0030 article-title: Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation publication-title: Stem Cells doi: 10.1634/stemcells.2008-0134 – volume: 69 start-page: 1872 year: 2003 ident: 10.1016/j.scr.2018.03.016_bb0195 article-title: Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation publication-title: Biol. Reprod. doi: 10.1095/biolreprod.103.019273 – volume: 4 start-page: 335 year: 1971 ident: 10.1016/j.scr.2018.03.016_bb0070 article-title: The spermatogonial stem cell population in adult rats publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1971.tb01544.x – volume: 12 year: 2007 ident: 10.1016/j.scr.2018.03.016_bb0120 article-title: Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.01.002 – volume: 269 start-page: 447 year: 2004 ident: 10.1016/j.scr.2018.03.016_bb0185 article-title: Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.01.036 – volume: 124 start-page: 3929 year: 2014 ident: 10.1016/j.scr.2018.03.016_bb0005 article-title: PAX7 expression defines germline stem cells in the adult testis publication-title: J. Clin. Invest. doi: 10.1172/JCI75943 – volume: 144 start-page: 624 year: 2017 ident: 10.1016/j.scr.2018.03.016_bb0060 article-title: ID4 levels dictate the stem cell state in mouse spermatogonia publication-title: Development doi: 10.1242/dev.146928 – volume: 91 start-page: 11298 year: 1994 ident: 10.1016/j.scr.2018.03.016_bb0015 article-title: Spermatogenesis following male germ-cell transplantation publication-title: PNAS doi: 10.1073/pnas.91.24.11298 – start-page: 91 year: 2017 ident: 10.1016/j.scr.2018.03.016_bb0100 article-title: Regulation of spermatogonial stem cell maintenance and self-renewal – volume: 27 start-page: 3043 year: 2009 ident: 10.1016/j.scr.2018.03.016_bb0050 article-title: Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation publication-title: Stem Cells doi: 10.1002/stem.206 – volume: 10 start-page: 284 year: 2012 ident: 10.1016/j.scr.2018.03.016_bb0065 article-title: Functional antagonism between Sall4 and Plzf defines germline progenitors publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.02.004 – volume: 60 start-page: 1429 year: 1999 ident: 10.1016/j.scr.2018.03.016_bb0115 article-title: Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes publication-title: Biol. Reprod. doi: 10.1095/biolreprod60.6.1429 – volume: 14 start-page: 658 year: 2014 ident: 10.1016/j.scr.2018.03.016_bb0055 article-title: Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.019 – volume: 92 start-page: 577 year: 2012 ident: 10.1016/j.scr.2018.03.016_bb0135 article-title: The germline stem cell niche unit in mammalian testes publication-title: Physiol. Rev. doi: 10.1152/physrev.00025.2011 – volume: 7 start-page: 279 year: 2016 ident: 10.1016/j.scr.2018.03.016_bb0165 article-title: The luteinizing hormone-testosterone pathway regulates mouse spermatogonial stem cell self-renewal by suppressing WNT5A expression in sertoli cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.07.005 – volume: 8 start-page: 561 issue: 3 year: 2017 ident: 10.1016/j.scr.2018.03.016_bb0175 article-title: SHISA6 confers resistance to differentiation-promoting Wnt/β-catenin signaling in mouse spermatogenic stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.01.006 – volume: 3 start-page: 181 year: 2001 ident: 10.1016/j.scr.2018.03.016_bb0180 article-title: Sperm quiescence in cauda epididymis: a mini-review publication-title: Asian J. Androl. – volume: 71 start-page: 722 year: 2004 ident: 10.1016/j.scr.2018.03.016_bb0090 article-title: Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells publication-title: Biol. Reprod. doi: 10.1095/biolreprod.104.029207 – volume: 28 start-page: 1351 year: 2014 ident: 10.1016/j.scr.2018.03.016_bb0020 article-title: Functional and molecular features of the Id4+ germline stem cell population in mouse testes publication-title: Genes Dev. doi: 10.1101/gad.240465.114 – volume: 5 year: 2015 ident: 10.1016/j.scr.2018.03.016_bb0155 article-title: Id4 marks spermatogonial stem cells in the mouse testis publication-title: Nat. Sci. Rep. – volume: 53 start-page: 142 year: 1999 ident: 10.1016/j.scr.2018.03.016_bb0035 article-title: Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice publication-title: Mol. Reprod. Dev. doi: 10.1002/(SICI)1098-2795(199906)53:2<142::AID-MRD3>3.0.CO;2-O – volume: 114 start-page: 920 year: 2013 ident: 10.1016/j.scr.2018.03.016_bb0190 article-title: Characterization of Oct4-GFP spermatogonial stem cell line and its application in the reprogramming studies publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24431 – volume: 72 start-page: 171 year: 2005 ident: 10.1016/j.scr.2018.03.016_bb0040 article-title: Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.20324 – start-page: 29 year: 2010 ident: 10.1016/j.scr.2018.03.016_bb0075 article-title: Limiting-dilution transplantation assays in mammary stem cell studies – volume: 154 start-page: R55 year: 2017 ident: 10.1016/j.scr.2018.03.016_bb0105 article-title: A revised Asingle model to explain stem cell dynamics in the mouse male germline publication-title: Reproduction doi: 10.1530/REP-17-0034 – ident: 10.1016/j.scr.2018.03.016_bb0160 – volume: 76 start-page: 561 year: 2007 ident: 10.1016/j.scr.2018.03.016_bb0170 article-title: CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes publication-title: Biol. Reprod. doi: 10.1095/biolreprod.106.053181 – volume: 36 year: 2004 ident: 10.1016/j.scr.2018.03.016_bb0025 article-title: Essential role of Plzf in maintenance of spermatogonial stem cells publication-title: Nat. Genet. doi: 10.1038/ng1367 – volume: 91 start-page: 11303 year: 1994 ident: 10.1016/j.scr.2018.03.016_bb0010 article-title: Germline transmission of donor haplotype following spermatogonial transplantation publication-title: PNAS doi: 10.1073/pnas.91.24.11303 – volume: 96 start-page: 5504 issue: 10 year: 1999 ident: 10.1016/j.scr.2018.03.016_bb0150 article-title: β1- and α6-integrin are surface markers on mouse spermatogonial stem cells publication-title: PNAS doi: 10.1073/pnas.96.10.5504 – volume: 169 start-page: 515 year: 1971 ident: 10.1016/j.scr.2018.03.016_bb0130 article-title: Spermatogonial stem-cell renewal in the mouse publication-title: Anat. Rec. doi: 10.1002/ar.1091690305 – volume: 144 start-page: 3022 year: 2017 ident: 10.1016/j.scr.2018.03.016_bb0145 article-title: The nature and dynamics of spermatogonial stem cells publication-title: Development doi: 10.1242/dev.146571 – volume: 68 start-page: 316 year: 2003 ident: 10.1016/j.scr.2018.03.016_bb0140 article-title: Expansion of murine spermatogonial stem cells through serial transplantation publication-title: Biol. Reprod. doi: 10.1095/biolreprod.102.004549 |
SSID | ssj0059282 |
Score | 2.2354414 |
SecondaryResourceType | review_article |
Snippet | Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129 |
SubjectTerms | Animals Limiting dilution Male Mice Spermatogonia - metabolism Spermatogonial stem cell Stem Cell Transplantation - methods Stem Cells - metabolism Transplantation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlEOilJGnTuF-o0FPBRLJkSz6mJctSaE8NpCchWVK7IXiX7O6h_74zlm3sFjaX3owlf2g043myx-8R8qGoXFmAY-RM1y6XNvLcVqHOnQseMowKXOPfyF-_Vcsb-eW2vJ1IfWFNWKIHToa7FM4Lr7WVHqnaZAQPZA2gCsdjLSvh8ekLOW9YTKVncFkXnUwU10rkJaSs4XtmV9kF8Yg1XbpjN0Wh80lG6oj7Z4npX-D5d_3kJCEtTsizHknSqzSCU_IktGfkOGlL_n5OfiwgY6UXfdSO9Jt0HSlygwNOXf-EcIZGZHKm-P6ebjolO7pq6ZT3v28bhb62L8jN4vr752Xe6yjkTcnVLpdwp46VmtsI0eZrJi0rnOSOC8cbHoXVhbOoWNQIBYCq8r6wPtgoYO5iU4lzctSu23BBaOGqoJUTMsZSCtboxnuuNItSCdiOGWGDLU3Tk4yj1sW9GarJ7gyY36D5DRMG9mTk43jIJjFsHOr8CSdo7Ijk2N0OcBnTu4x5zGUyIofpNT3OSPgBTrU6dO33gysYiEE0vm3Der-FTgArAQpxnZGXyTXGOyyQ_hTWjBlRM6eZDWHe0q5-dTzfAB7xM_Gr_zHm1-QpDiWVar4hR7uHfXgLcGrn3nWR8wfJhh2t priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOgl9JG2TtOgQk4Fs5Il2_IxCVlCoL20ge1JSJaUuBR7STaH_PvMyA_WDeSQ2640u6sdzeOzPfqGkJOssHkGhpEyVdlUmsBTU_gqtdY7yDCl5wpPI__4WVxey6tVvtoh5-NZGCyrHGJ_H9NjtB5GFoM2F-umWfziqhQ5pCMwSqyPw0sgIVU8xLc6G6NxXmWxYRQKpyg9PtmMNV7gmVjdpSLPKbY838pNkcJ_lqKeQ9D_Kym3UtPyLdkfMCU97Zf9juz49j3Z67tMPn4gf5aQu_pbftRMRJy0CxRZwgGxdjfg2DCJnM4U7-TTdexpR5uWbncAGOamll_3B-R6efH7_DIdOiqkdc7LTSphpZblipsAfucqJg3LrOSWC8trHoRRmTXYu6gWJUCrwrnMOG-CgF0MdSE-kt22a_1nQjNbeFVaIUPIpWC1qp3jpWJBlgJeh4SwUZe6HujGsevFPz3Wlf3VoH6N6tdMaBhJyPfpI-uea-Ml4TPcoEkQabLjQHd3owc70cI64ZQy0iHPnwwQvlgNkNTyUMlCuITIcXv1zOrgq5qXfvvbaAoavBGVb1rfPdyDEABMAEVcJeRTbxrTCjMkQoWrx4SUM6OZ_YX5TNvcRsZvgJH4wPjwdcv9Qt7gu75M84jsbu4e_FeAUht7HH3lCbEcHk4 priority: 102 providerName: Elsevier |
Title | Functional assessment of spermatogonial stem cell purity in experimental cell populations |
URI | https://dx.doi.org/10.1016/j.scr.2018.03.016 https://www.ncbi.nlm.nih.gov/pubmed/29660605 https://www.proquest.com/docview/2026424118 https://pubmed.ncbi.nlm.nih.gov/PMC6392036 https://doaj.org/article/3bd3d88a4d75444f8320c508b1f9463d |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SlEIvJf120y4q9FRwkCzZlg8lNKVLkpJCoQvbk5AsKdkS7HR3A82lvz0jfyVuQ8jFLJbW1o5mPM_S7HsA75PMpAk6RkxlYWKhPYt15orYGGcxw-SOyfBv5ONv2cFMHM3T-Qb08ladAVe3vtoFPanZ8mz3z-_LPQz4j9e1WhhhoUpLNnylLNuEB5iY8hCnx2LYVEiLpNGOYvgAQFCZ8n6T87ZLjNJUw-Y_ylb_o9F_iypvZKnpNjzu4CX51PrDE9hw1VN42ApOXj6Dn1NMY-3qH9EDJyepPQmE4Qhe6xOMcWwM9M4kLOqT80bejiwqclMMoGsb1L9Wz2E2_fLj80HciSvEZcrydSxwpIamkmmPIWgLKjRNjGCGccNK5rmWidFBxqjkOaKszNpEW6c9xwn1ZcZfwFZVV-4VkMRkTuaGC-9TwWkpS2tZLqkXOcfPPgLa21KVHfN4EMA4U32J2S-F5lfB_IpyhWci-DB85byl3bir836YoKFjYMxuTtTLE9UFoOLGciulFjZQ_gmPTzJaIjo1zBci4zYC0U-v6sBHCyrwUou77v2udwWFgRmMrytXX6ywE2JNdEMmI3jZusYwwiRwouKLZAT5yGlGP2HcUi1OG_JvRJRh7_j1Pe67A4_CSNvyzDewtV5euLcIodZmApu7f9mkWYDA4-F8H49fv8tJEzBX1GMfTA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgSXijcpLyNxQorWjp3YOdKK1RbaXmil5WTZcVyCULJqtwf-PTPOQxuQeuC2sidZZzyvJJPvI-RDVrg8A8NImS5dKm3gqS3qMnWu9pBhVM01fo18dl6sLuWXdb7eI8fjtzDYVjnE_j6mx2g9jCwGbS42TbP4xrUSOaQjMErsj4NboHtQDSjkbzhZH43hOC-zyBiF0imKj682Y5MXuCa2d-kIdIqc5zvJKWL4z3LUvzXo362UO7lp-YgcDEUl_dSv-zHZq9sn5H5PM_n7Kfm-hOTVP_OjdkLipF2gCBMOJWt3BZ4NkwjqTPFRPt1EUjvatHSXAmCYmzi_bp6Ry-Xni-NVOlAqpFXO1TaVsFLHcs1tAMfzJZOWZU5yx4XjFQ_C6sxZJC-qhAJtFt5n1tc2CNjGUBXiOdlvu7Z-SWjmilorJ2QIuRSs0pX3XGkWpBLwOySEjbo01YA3jrQXv8zYWPbTgPoNqt8wYWAkIR-nQzY92MZdwke4QZMg4mTHge76ygyGYoTzwmttpUegPxkgfrEKalLHQykL4RMix-01M7ODUzV3_ff70RQMuCMq37Z1d3sDQlBhQlXEdUJe9KYxrTBDJFS4fUyImhnN7BLmM23zI0J-Qx2Jb4wP_2-578iD1cXZqTk9Of_6ijzEmb5n8zXZ317f1m-grtq6t9Fv_gANeiFt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+assessment+of+spermatogonial+stem+cell+purity+in+experimental+cell+populations&rft.jtitle=Stem+cell+research&rft.au=Lord%2C+Tessa&rft.au=Oatley%2C+Jon+M&rft.date=2018-05-01&rft.issn=1876-7753&rft.eissn=1876-7753&rft.volume=29&rft.spage=129&rft_id=info:doi/10.1016%2Fj.scr.2018.03.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1873-5061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1873-5061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1873-5061&client=summon |