Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles
The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretica...
Saved in:
Published in | Advances in physics: X Vol. 6; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.01.2021
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects. |
---|---|
AbstractList | The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects. The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects. |
Author | Dholakia, Kishan Rodríguez-Sevilla, Paloma Bruce, Graham D. |
Author_xml | – sequence: 1 givenname: Graham D. orcidid: 0000-0003-3403-0614 surname: Bruce fullname: Bruce, Graham D. organization: University of St Andrews – sequence: 2 givenname: Paloma orcidid: 0000-0003-4743-6576 surname: Rodríguez-Sevilla fullname: Rodríguez-Sevilla, Paloma organization: University of St Andrews – sequence: 3 givenname: Kishan orcidid: 0000-0001-6534-9009 surname: Dholakia fullname: Dholakia, Kishan email: gdb2@st-andrews.ac.uk, kd1@st-andrews.ac.uk organization: College of Science, Yonsei University |
BookMark | eNqFUcuOFCEUJWZMHMf5BBMS1z3yLCjdaCY-OpnEja4JxaOlQ0MJtKb_XqqrNcaFhgXcc885wD1PwVXKyQHwHKM7jCR6SahgA2bjHUGkQ5JKSsgjcL3gm6Vx9cf5CbitdY8QwoPoYnoNTtsUWtAtpB0s7nuOxxZyqtDnAvPcgtERHnQK8zHqpfMKtq8O5hJ2obN0slDPc-y0VZY9LLmdiy60p6QPwZzhVjrRWTjr0l2jq8_AY69jdbeX_QZ8ef_u8_3HzcOnD9v7tw8bw7FoG2YlGbCbrMV-4IZzZwWz3jtsnOBSEo8MppZNxhg5DWaiwkyTlwMfnORU0BuwXX1t1ns1l3DQ5aSyDuoM5LJTlycpQTTj02icI55ZMk7j6PqSWhg_CMO614vVay7529HVpvb5WPpXqyJcYozGkfHO4ivLlFxrcf73rRipJTT1KzS1hKYuoXXd6790Jqyz7MML8b_qN6s6pB7eQf_IJVrV9Cnm4otOJlRF_23xE3K7tWw |
CitedBy_id | crossref_primary_10_1007_s10812_023_01550_6 crossref_primary_10_1021_acsphotonics_4c01847 crossref_primary_10_1360_SST_2023_0080 crossref_primary_10_1063_10_0025758 crossref_primary_10_1088_2040_8986_ac16b5 crossref_primary_10_1117_1_AP_5_3_034003 crossref_primary_10_1021_acsphotonics_3c00890 crossref_primary_10_1063_5_0155512 crossref_primary_10_1364_OE_439491 crossref_primary_10_1103_PhysRevLett_129_023602 crossref_primary_10_1063_5_0235507 crossref_primary_10_1063_5_0094665 crossref_primary_10_1088_2515_7647_adb360 crossref_primary_10_1364_PRJ_466396 crossref_primary_10_37251_sjpe_v5i1_902 crossref_primary_10_1021_acs_chemrev_2c00576 crossref_primary_10_1021_acsphotonics_4c01547 crossref_primary_10_1063_5_0166136 crossref_primary_10_1080_00107514_2021_1930707 crossref_primary_10_1364_AO_447246 |
Cites_doi | 10.1364/JOSAB.34.0000C8 10.1086/423023 10.1002/andp.19013111102 10.1126/science.3547653 10.1002/admt.201901091 10.1021/acsnano.5b03565 10.1103/PhysRevB.82.115441 10.1098/rstl.1798.0022 10.1063/1.4928154 10.1016/S0030-4018(00)00989-5 10.1103/PhysRevLett.105.101101 10.1103/PhysRevLett.117.143003 10.1103/PhysRevLett.101.128301 10.1103/PhysRevA.99.041802 10.1186/s11671-018-2739-3 10.1146/annurev.bb.23.060194.001335 10.1103/PhysRevA.94.053821 10.1364/OPTICA.2.000812 10.1021/nn404765w 10.1103/PhysRevResearch.2.022030 10.1038/s41586-018-0036-z 10.1103/PhysRevE.79.026301 10.1103/PhysRevLett.99.073901 10.1103/PhysRevB.99.165402 10.1038/nphoton.2011.287 10.1103/PhysRevLett.97.210603 10.1088/1367-2630/16/8/083037 10.1243/09544062JMES760 10.1038/s41377-019-0194-2 10.1103/PhysRevA.98.043415 10.1088/1367-2630/aa99bf 10.1038/nnano.2014.82 10.1126/science.1069571 10.1021/acsphotonics.8b00822 10.1103/PhysRevLett.121.033603 10.1038/s41467-018-08090-0 10.1364/OE.17.023316 10.1039/b600157m 10.1063/1.4993555 10.1364/OE.16.004991 10.1021/acsnano.6b07290 10.1117/1.OE.57.3.036103 10.1364/OL.31.001675 10.1063/1.111675 10.1088/1367-2630/aaece4 10.1038/nphoton.2010.266 10.1364/OE.16.016984 10.1364/OE.10.000984 10.1103/PhysRevLett.63.1233 10.1002/smll.201904154 10.1515/nanoph-2019-0055 10.1126/science.1189403 10.1515/nanoph-2018-0072 10.1039/c0sm00854k 10.1088/1367-2630/11/3/033035 10.1103/PhysRevLett.96.163905 10.1364/OE.23.008365 10.1103/PhysRevE.68.051404 10.1038/ncomms5788 10.1038/nphoton.2009.269 10.1063/1.89335 10.1364/OE.22.016322 10.1103/PhysRevLett.88.053601 10.1038/ncomms13165 10.1038/srep08058 10.1103/PhysRevA.95.053421 10.1021/acsnano.5b06311 10.1038/srep16926 10.1103/PhysRevA.94.032108 10.1039/C7TB01921A 10.1088/1464-4266/4/2/373 10.1088/2040-8978/19/1/013001 10.1038/s41565-019-0605-9 10.3390/e20050326 10.1103/PhysRevLett.121.063602 10.1088/1367-2630/17/1/013046 10.1038/365721a0 10.1103/PhysRevA.45.8185 10.1103/RevModPhys.89.035002 10.1088/1464-4258/10/11/115005 10.1002/adfm.201905568 10.1021/ac2024365 10.1038/nphys3518 10.1103/PhysRevA.89.033610 10.1103/PhysRevLett.107.020405 10.1364/OPTICA.4.000330 10.14440/jbm.2015.79 10.1038/nphys2798 10.1103/PhysRevA.97.051802 10.1073/pnas.1706985114 10.1103/PhysRevB.96.035402 10.1002/adom.201800161 10.1080/00107514.2019.1631555 10.1073/pnas.86.20.7914 10.1103/PhysRevA.96.013837 10.1103/PhysRevA.84.052121 10.1021/acs.nanolett.8b03978 10.1080/09500340.2013.778341 10.1038/nphoton.2011.80 10.1080/09500340108230922 10.1103/PhysRevE.72.031507 10.1038/nature08967 10.1109/JPHOT.2016.2517131 10.1103/PhysRevA.102.013505 10.1103/PhysRevB.73.085417 10.1038/nature01935 10.1002/adom.201901481 10.1007/978-3-319-99046-0_35 10.1016/j.bpj.2013.08.007 10.1017/S0022112090003007 10.1103/PhysRevA.82.063827 10.1088/1361-6463/ab16b5 10.1103/PhysRevLett.113.251801 10.1021/nl4010817 10.1007/s11433-015-5651-1 10.1021/acs.nanolett.9b00332 10.1364/JOSAB.34.002514 10.1103/PhysRevA.100.032111 10.1103/PhysRevA.96.033843 10.1063/1.2260823 10.1364/OL.40.004751 10.1038/s41467-017-01902-9 10.1038/nphys1952 10.1103/PhysRevLett.110.160403 10.1103/PhysRevE.76.041507 10.1021/nl403608a 10.1038/ncomms10974 10.1364/JOSAB.34.000C14 10.1103/PhysRevLett.89.108303 10.1103/PhysRevLett.122.223602 10.1103/PhysRevLett.118.133605 10.1103/PhysRevLett.75.826 10.1063/1.1480885 10.1038/ncomms1480 10.1103/PhysRevLett.109.103603 10.1088/1367-2630/aa99d1 10.1016/j.physrep.2003.11.002 10.1038/nnano.2010.128 10.1103/PhysRevA.94.033828 10.1016/j.optcom.2019.124864 10.1126/sciadv.1602738 10.1126/science.1057984 10.1088/0953-4075/49/15/153001 10.1038/s41467-018-07866-8 10.1103/PhysRevLett.125.090501 10.1364/JOSAB.20.000887 10.1088/1361-648X/ab76ac 10.1088/1367-2630/14/5/053012 10.1103/PhysRev.50.115 10.1103/PhysRevLett.121.033602 10.1146/annurev.biophys.050708.133724 10.1038/nature01810 10.1038/45492 10.1364/OPTICA.4.000356 10.1103/PhysRevA.68.033802 10.1103/PhysRevLett.92.190801 10.1039/C4NR00708E 10.1038/nphys2863 10.1038/nature16155 10.1038/28566 10.1103/PhysRevA.54.1593 10.1364/BOE.3.001891 10.1103/PhysRevLett.121.040401 10.1364/OPTICA.5.000910 10.1103/PhysRevE.59.3676 10.1039/C5NR06419H 10.1038/nature10461 10.1126/science.1163861 10.1002/lpor.201900140 10.1038/s41567-019-0663-9 10.1126/sciadv.1701519 10.1103/PhysRevE.95.062131 10.1007/978-1-4939-6421-5 10.1364/AO.47.006428 10.1103/PhysRevLett.109.123604 10.1038/nnano.2013.97 10.1103/PhysRevLett.119.240401 10.1021/acs.nanolett.6b01059 10.1103/PhysRevE.99.042202 10.1103/PhysRevLett.121.253601 10.1364/OE.18.016005 10.1364/OE.20.003563 10.1038/ncomms4300 10.1038/lsa.2016.158 10.1364/OE.22.004349 10.1088/1367-2630/aad1ea 10.1103/PhysRevA.93.053801 10.1021/acsphotonics.9b00220 10.1098/rstl.1866.0013 10.1126/science.aba3993 10.1103/PhysRevLett.92.198104 10.1021/acs.chemrev.9b00401 10.1016/j.biomaterials.2015.12.019 10.1117/1.3332850 10.1103/PhysRevLett.103.173602 10.1103/PhysRevLett.100.013602 10.1103/PhysRevE.88.050301 10.1088/0953-8984/9/47/001 10.1140/epjd/e2019-90702-3 10.1364/OL.38.004919 10.1088/2040-8978/18/6/064004 10.1073/pnas.1510418112 10.1038/ncomms10254 10.1038/s41566-017-0005-3 10.1038/nmeth1013 10.1016/j.jqsrt.2014.04.012 10.1088/1361-6463/aadccb 10.1016/S0030-4018(02)01524-9 10.1038/s41467-020-15280-2 10.1063/1.4971981 10.1126/science.1235441 10.1038/nmat1411 10.1116/1.5139638 10.1038/s41566-019-0395-5 10.1103/PhysRevA.91.013416 10.1063/1.1339258 10.1103/PhysRevLett.124.020401 10.1038/s41567-018-0199-4 10.1103/PhysRevA.97.053842 10.1103/PhysRevLett.97.058301 10.1103/PhysRevA.98.013851 10.1038/srep20380 10.1103/PhysRevLett.117.101101 10.1038/s41467-018-07376-7 10.1088/1367-2630/11/9/093021 10.1103/PhysRevLett.91.093602 10.1038/s41586-020-2133-z 10.1364/OE.25.011265 10.1103/PhysRevA.97.043803 10.1201/b17140 10.1039/c1lc20272c 10.1103/PhysRevE.73.021911 10.1021/acsphotonics.9b01433 10.1021/acs.nanolett.5b02302 10.1002/adma.200401462 10.1063/1.5025762 10.1103/PhysRevA.94.052109 10.1021/nl9034434 10.1103/PhysRevResearch.2.033437 10.1002/adfm.202002081 10.1364/OE.11.000446 10.1364/OE.25.011692 10.1038/s41586-018-0038-x 10.1088/1367-2630/12/3/033015 10.1016/j.physleta.2003.12.022 10.1039/b805318a 10.1103/PhysRevLett.110.071105 10.1088/1681-7575/aadbe4 10.1103/PhysRevA.99.013821 10.1209/0295-5075/100/48005 10.1021/nl2008218 10.1103/PhysRevLett.122.110601 10.1103/RevModPhys.75.281 10.1364/OE.18.006988 10.1021/acs.nanolett.7b02196 10.1103/PhysRevE.97.052112 10.1364/OPTICA.374441 10.1073/pnas.0912969107 10.1103/PhysRevA.101.063819 10.1103/PhysRevLett.111.180403 10.1364/OE.22.016207 10.1088/1367-2630/12/3/033028 10.1002/adbi.201900082 10.1209/epl/i2005-10022-6 10.1103/RevModPhys.85.471 10.1103/RevModPhys.71.1233 10.1088/2040-8978/13/4/044024 10.1063/1.1753067 10.1088/1367-2630/14/10/103047 10.1364/JOSAB.20.001003 10.1016/0030-4018(94)90638-6 10.1021/acs.nanolett.6b04583 10.1103/PhysRevA.101.053835 10.1038/nphoton.2011.81 10.1002/lapl.201010100 10.1103/PhysRevA.30.2508 10.1103/PhysRevLett.105.113601 10.1017/CBO9781107279711 10.1038/nature15750 10.1364/OE.15.008619 10.1364/JOSAB.34.0000C1 10.1364/OE.23.007273 10.1023/A:1026048530567 10.1103/PhysRevA.96.063810 10.1038/348348a0 10.1016/S0030-4018(99)00619-7 10.1103/PhysRevA.96.063842 10.1103/PhysRevLett.117.123604 10.1364/OL.22.000052 10.1103/PhysRevB.101.134415 10.1039/b601886f 10.1073/pnas.1309167110 10.1103/PhysRevA.94.033818 10.1038/ncomms3374 10.1103/PhysRevB.101.205416 10.1103/PhysRevLett.122.223601 10.1021/acs.cgd.7b01328 10.1103/PhysRevA.96.023827 10.1103/PhysRevB.95.235306 10.1364/OPTICA.4.000746 10.1088/1361-6633/ab6100 10.1364/JOSAB.389394 10.1038/s41427-018-0026-5 10.1021/acsmacrolett.8b00498 10.1126/science.1058591 10.1038/s41598-019-40475-z 10.1126/sciadv.aaz9858 10.1038/s41467-017-00713-2 10.1039/b901646e 10.1103/PhysRevLett.122.123602 10.1103/PhysRevLett.122.123601 10.1103/RevModPhys.86.1391 10.1038/s42005-019-0163-3 10.1038/srep07664 10.1038/s41586-018-0450-2 10.1088/1367-2630/aad863 10.1364/OE.17.006230 10.1364/OL.18.001867 10.1021/acsphotonics.6b00023 10.1038/s41467-019-08968-7 |
ContentType | Journal Article |
Copyright | 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D L7M M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/23746149.2020.1838322 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library Aerospace Database Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2374-6149 |
ExternalDocumentID | oai_doaj_org_article_72a45b9cee2f4d29b99e9e98a7cf67c4 10_1080_23746149_2020_1838322 1838322 |
Genre | Review |
GroupedDBID | 0YH 8G5 ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 M2O M4Z M~E OK1 PIMPY PROAC TDBHL TFW AAFWJ AAYXX ADMLS AFPKN CITATION PHGZM PHGZT 3V. 7XB 8FD 8FK H8D L7M MBDVC PKEHL PQEST PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c517t-4d8261ebdd1f65c55ed74dffe1ce75882f0c13d4bccc8b6cb37cbbf8656e85373 |
IEDL.DBID | BENPR |
ISSN | 2374-6149 |
IngestDate | Wed Aug 27 01:22:36 EDT 2025 Sun Jun 29 12:41:56 EDT 2025 Tue Jul 01 01:13:49 EDT 2025 Thu Apr 24 22:54:10 EDT 2025 Wed Dec 25 09:06:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-4d8261ebdd1f65c55ed74dffe1ce75882f0c13d4bccc8b6cb37cbbf8656e85373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3403-0614 0000-0003-4743-6576 0000-0001-6534-9009 |
OpenAccessLink | https://www.proquest.com/docview/2581109945?pq-origsite=%requestingapplication% |
PQID | 2581109945 |
PQPubID | 3933228 |
ParticipantIDs | crossref_citationtrail_10_1080_23746149_2020_1838322 proquest_journals_2581109945 informaworld_taylorfrancis_310_1080_23746149_2020_1838322 crossref_primary_10_1080_23746149_2020_1838322 doaj_primary_oai_doaj_org_article_72a45b9cee2f4d29b99e9e98a7cf67c4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Advances in physics: X |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | cit0077 cit0078 cit0199 cit0075 cit0076 cit0197 cit0073 cit0194 cit0074 cit0195 cit0071 cit0192 cit0072 cit0193 cit0190 cit0070 cit0191 cit0079 cit0066 cit0067 cit0188 cit0064 cit0185 Hopper A (cit0236) 2020; 2005 cit0065 cit0186 cit0062 cit0183 cit0063 cit0184 cit0060 cit0181 cit0061 cit0182 cit0180 Arita Y (cit0198) 2020; 6 cit0068 cit0189 cit0069 cit0099 Seberson T (cit0235) 2019; 1910 cit0097 cit0098 cit0095 cit0096 cit0093 cit0094 cit0091 cit0092 Gieseler J (cit0196) 2018; 20 cit0090 cit0088 cit0089 cit0086 cit0087 cit0084 cit0085 cit0082 cit0083 cit0080 cit0081 cit0033 cit0154 cit0275 cit0034 cit0155 cit0276 cit0031 cit0152 cit0273 cit0032 cit0153 cit0274 cit0150 cit0271 cit0030 cit0151 cit0272 cit0270 cit0039 Casimir HB (cit0262) 1948; 100 cit0037 cit0158 cit0279 cit0038 cit0159 cit0035 cit0156 cit0277 cit0036 cit0157 cit0278 cit0022 cit0143 cit0264 cit0023 cit0144 cit0265 cit0020 cit0141 cit0021 cit0142 cit0263 cit0260 cit0140 Carlesso M (cit0302) 2019; 1912 cit0028 cit0149 cit0029 cit0026 cit0147 cit0268 Carlesso M (cit0296) 2017; 1710 cit0027 cit0148 cit0269 cit0024 cit0145 cit0266 cit0025 cit0146 cit0267 cit0055 cit0176 cit0297 cit0056 cit0177 cit0298 cit0053 cit0174 cit0295 cit0054 cit0175 cit0051 cit0172 cit0293 cit0052 cit0173 cit0294 cit0170 cit0291 cit0050 cit0171 cit0292 cit0290 cit0059 cit0057 cit0178 cit0299 cit0058 cit0179 cit0044 cit0165 cit0286 cit0045 cit0166 cit0287 cit0042 cit0163 cit0284 cit0043 cit0164 cit0285 cit0040 cit0161 cit0282 cit0041 cit0162 cit0283 cit0280 cit0160 cit0281 cit0048 cit0169 cit0049 cit0046 cit0167 cit0288 cit0047 cit0168 cit0289 cit0110 cit0231 cit0111 cit0232 cit0230 cit0118 cit0239 cit0119 cit0116 cit0237 cit0117 cit0238 cit0114 cit0115 cit0112 cit0113 cit0220 cit0100 cit0221 Schäfer J (cit0261) 2020; 2006 cit0109 cit0107 cit0228 cit0108 cit0229 cit0105 cit0226 cit0106 cit0227 cit0103 cit0224 cit0104 cit0225 cit0101 cit0222 cit0102 cit0223 cit0011 cit0132 cit0253 cit0012 cit0133 cit0254 cit0130 cit0251 cit0010 cit0131 cit0252 cit0250 Braidotti MC (cit0187) 2020; 2005 cit0019 cit0017 cit0138 cit0259 cit0018 cit0139 cit0015 cit0136 cit0257 cit0016 cit0137 cit0258 cit0013 cit0134 cit0255 cit0014 cit0135 cit0256 cit0121 cit0242 cit0001 cit0122 cit0243 de Coulomb CA (cit0247) 1785 cit0240 cit0120 cit0241 cit0008 cit0129 cit0009 cit0006 cit0127 cit0248 cit0007 cit0128 cit0249 cit0004 cit0125 cit0246 cit0005 cit0126 cit0002 cit0123 cit0244 cit0003 cit0124 cit0245 cit0319 cit0318 cit0317 cit0316 cit0315 cit0314 cit0313 cit0312 cit0311 cit0310 cit0309 cit0308 cit0307 Bang J (cit0233) 2020; 2004 cit0306 cit0305 cit0304 cit0303 cit0301 cit0300 cit0210 cit0330 Pan D (cit0234) 2019; 1908 cit0219 cit0217 cit0218 cit0215 cit0216 cit0213 cit0214 cit0211 cit0212 cit0320 cit0208 cit0209 cit0329 cit0206 cit0328 cit0207 cit0327 cit0204 cit0326 cit0205 cit0325 cit0202 cit0324 cit0203 cit0323 cit0200 cit0322 cit0201 cit0321 |
References_xml | – ident: cit0228 doi: 10.1364/JOSAB.34.0000C8 – ident: cit0155 doi: 10.1086/423023 – ident: cit0249 doi: 10.1002/andp.19013111102 – ident: cit0004 doi: 10.1126/science.3547653 – ident: cit0093 doi: 10.1002/admt.201901091 – ident: cit0169 doi: 10.1021/acsnano.5b03565 – ident: cit0315 doi: 10.1103/PhysRevB.82.115441 – ident: cit0248 doi: 10.1098/rstl.1798.0022 – ident: cit0215 doi: 10.1063/1.4928154 – ident: cit0098 doi: 10.1016/S0030-4018(00)00989-5 – ident: cit0028 doi: 10.1103/PhysRevLett.105.101101 – ident: cit0034 doi: 10.1103/PhysRevLett.117.143003 – ident: cit0069 doi: 10.1103/PhysRevLett.101.128301 – ident: cit0214 doi: 10.1103/PhysRevA.99.041802 – start-page: 569 year: 1785 ident: cit0247 publication-title: Histoire de l’Académie Royale des Sciences – ident: cit0136 doi: 10.1186/s11671-018-2739-3 – ident: cit0006 doi: 10.1146/annurev.bb.23.060194.001335 – ident: cit0176 doi: 10.1103/PhysRevA.94.053821 – ident: cit0130 doi: 10.1364/OPTICA.2.000812 – ident: cit0166 doi: 10.1021/nn404765w – ident: cit0304 doi: 10.1103/PhysRevResearch.2.022030 – ident: cit0280 doi: 10.1038/s41586-018-0036-z – ident: cit0073 doi: 10.1103/PhysRevE.79.026301 – ident: cit0099 doi: 10.1103/PhysRevLett.99.073901 – ident: cit0269 doi: 10.1103/PhysRevB.99.165402 – ident: cit0046 doi: 10.1038/nphoton.2011.287 – ident: cit0181 doi: 10.1103/PhysRevLett.97.210603 – ident: cit0184 doi: 10.1088/1367-2630/16/8/083037 – ident: cit0188 doi: 10.1243/09544062JMES760 – ident: cit0112 doi: 10.1038/s41377-019-0194-2 – volume: 1908 start-page: 07973 year: 2019 ident: cit0234 publication-title: arXiv. – ident: cit0240 doi: 10.1103/PhysRevA.98.043415 – ident: cit0035 doi: 10.1088/1367-2630/aa99bf – ident: cit0221 doi: 10.1038/nnano.2014.82 – ident: cit0066 doi: 10.1126/science.1069571 – ident: cit0152 doi: 10.1021/acsphotonics.8b00822 – volume: 1710 start-page: 08695 year: 2017 ident: cit0296 publication-title: arXiv. – ident: cit0081 doi: 10.1103/PhysRevLett.121.033603 – ident: cit0194 doi: 10.1038/s41467-018-08090-0 – ident: cit0117 doi: 10.1364/OE.17.023316 – ident: cit0003 doi: 10.1039/b600157m – ident: cit0255 doi: 10.1063/1.4993555 – ident: cit0104 doi: 10.1364/OE.16.004991 – ident: cit0147 doi: 10.1021/acsnano.6b07290 – ident: cit0179 doi: 10.1117/1.OE.57.3.036103 – ident: cit0322 doi: 10.1364/OL.31.001675 – ident: cit0160 doi: 10.1063/1.111675 – ident: cit0292 doi: 10.1088/1367-2630/aaece4 – ident: cit0162 doi: 10.1038/nphoton.2010.266 – ident: cit0125 doi: 10.1364/OE.16.016984 – ident: cit0085 doi: 10.1364/OE.10.000984 – ident: cit0134 doi: 10.1103/PhysRevLett.63.1233 – ident: cit0328 doi: 10.1002/smll.201904154 – ident: cit0009 doi: 10.1515/nanoph-2019-0055 – ident: cit0023 doi: 10.1126/science.1189403 – volume: 2004 start-page: 02384 year: 2020 ident: cit0233 publication-title: arXiv. – ident: cit0108 doi: 10.1515/nanoph-2018-0072 – ident: cit0217 doi: 10.1039/c0sm00854k – ident: cit0263 doi: 10.1088/1367-2630/11/3/033035 – ident: cit0114 doi: 10.1103/PhysRevLett.96.163905 – ident: cit0307 doi: 10.1364/OE.23.008365 – ident: cit0071 doi: 10.1103/PhysRevE.68.051404 – ident: cit0032 doi: 10.1038/ncomms5788 – ident: cit0223 doi: 10.1038/nphoton.2009.269 – ident: cit0021 doi: 10.1063/1.89335 – ident: cit0121 doi: 10.1364/OE.22.016322 – ident: cit0097 doi: 10.1103/PhysRevLett.88.053601 – ident: cit0258 doi: 10.1038/ncomms13165 – ident: cit0033 doi: 10.1038/srep08058 – ident: cit0084 doi: 10.1103/PhysRevA.95.053421 – ident: cit0092 doi: 10.1021/acsnano.5b06311 – ident: cit0170 doi: 10.1038/srep16926 – ident: cit0229 doi: 10.1103/PhysRevA.94.032108 – ident: cit0008 doi: 10.1039/C7TB01921A – ident: cit0100 doi: 10.1088/1464-4266/4/2/373 – ident: cit0111 doi: 10.1088/2040-8978/19/1/013001 – ident: cit0049 doi: 10.1038/s41565-019-0605-9 – volume: 20 year: 2018 ident: cit0196 publication-title: Entropy. doi: 10.3390/e20050326 – ident: cit0288 doi: 10.1103/PhysRevLett.121.063602 – ident: cit0308 doi: 10.1088/1367-2630/17/1/013046 – ident: cit0011 doi: 10.1038/365721a0 – ident: cit0096 doi: 10.1103/PhysRevA.45.8185 – ident: cit0282 doi: 10.1103/RevModPhys.89.035002 – ident: cit0115 doi: 10.1088/1464-4258/10/11/115005 – ident: cit0190 doi: 10.1002/adfm.201905568 – ident: cit0144 doi: 10.1021/ac2024365 – ident: cit0019 doi: 10.1038/nphys3518 – ident: cit0306 doi: 10.1103/PhysRevA.89.033610 – ident: cit0030 doi: 10.1103/PhysRevLett.107.020405 – ident: cit0321 doi: 10.1364/OPTICA.4.000330 – ident: cit0012 doi: 10.14440/jbm.2015.79 – ident: cit0254 doi: 10.1038/nphys2798 – ident: cit0146 doi: 10.1103/PhysRevA.97.051802 – ident: cit0047 doi: 10.1073/pnas.1706985114 – ident: cit0173 doi: 10.1103/PhysRevB.96.035402 – ident: cit0151 doi: 10.1002/adom.201800161 – ident: cit0195 doi: 10.1080/00107514.2019.1631555 – ident: cit0013 doi: 10.1073/pnas.86.20.7914 – ident: cit0309 doi: 10.1103/PhysRevA.96.013837 – ident: cit0029 doi: 10.1103/PhysRevA.84.052121 – ident: cit0113 doi: 10.1021/acs.nanolett.8b03978 – ident: cit0291 doi: 10.1080/09500340.2013.778341 – ident: cit0106 doi: 10.1038/nphoton.2011.80 – ident: cit0078 doi: 10.1080/09500340108230922 – ident: cit0142 doi: 10.1103/PhysRevE.72.031507 – ident: cit0284 doi: 10.1038/nature08967 – ident: cit0123 doi: 10.1109/JPHOT.2016.2517131 – ident: cit0225 doi: 10.1103/PhysRevA.102.013505 – ident: cit0326 doi: 10.1103/PhysRevB.73.085417 – ident: cit0105 doi: 10.1038/nature01935 – ident: cit0119 doi: 10.1002/adom.201901481 – ident: cit0287 doi: 10.1007/978-3-319-99046-0_35 – ident: cit0007 doi: 10.1016/j.bpj.2013.08.007 – ident: cit0054 doi: 10.1017/S0022112090003007 – ident: cit0052 doi: 10.1103/PhysRevA.82.063827 – ident: cit0316 doi: 10.1088/1361-6463/ab16b5 – ident: cit0256 doi: 10.1103/PhysRevLett.113.251801 – ident: cit0090 doi: 10.1021/nl4010817 – ident: cit0311 doi: 10.1007/s11433-015-5651-1 – ident: cit0139 doi: 10.1021/acs.nanolett.9b00332 – ident: cit0270 doi: 10.1364/JOSAB.34.002514 – ident: cit0274 doi: 10.1103/PhysRevA.100.032111 – ident: cit0231 doi: 10.1103/PhysRevA.96.033843 – volume: 100 start-page: 61 year: 1948 ident: cit0262 publication-title: Front Phys – ident: cit0133 doi: 10.1063/1.2260823 – ident: cit0201 doi: 10.1364/OL.40.004751 – ident: cit0213 doi: 10.1038/s41467-017-01902-9 – ident: cit0037 doi: 10.1038/nphys1952 – ident: cit0272 doi: 10.1103/PhysRevLett.110.160403 – ident: cit0016 doi: 10.1103/PhysRevE.76.041507 – ident: cit0129 doi: 10.1021/nl403608a – ident: cit0014 doi: 10.1038/ncomms10974 – ident: cit0178 doi: 10.1364/JOSAB.34.000C14 – ident: cit0070 doi: 10.1103/PhysRevLett.89.108303 – ident: cit0042 doi: 10.1103/PhysRevLett.122.223602 – ident: cit0268 doi: 10.1103/PhysRevLett.118.133605 – ident: cit0102 doi: 10.1103/PhysRevLett.75.826 – ident: cit0161 doi: 10.1063/1.1480885 – ident: cit0056 doi: 10.1038/ncomms1480 – ident: cit0038 doi: 10.1103/PhysRevLett.109.103603 – ident: cit0293 doi: 10.1088/1367-2630/aa99d1 – volume: 1910 start-page: 05371 year: 2019 ident: cit0235 publication-title: arXiv. – ident: cit0295 doi: 10.1016/j.physrep.2003.11.002 – ident: cit0128 doi: 10.1038/nnano.2010.128 – ident: cit0301 doi: 10.1103/PhysRevA.94.033828 – ident: cit0062 doi: 10.1016/j.optcom.2019.124864 – ident: cit0168 doi: 10.1126/sciadv.1602738 – ident: cit0260 doi: 10.1126/science.1057984 – ident: cit0227 doi: 10.1088/0953-4075/49/15/153001 – ident: cit0177 doi: 10.1038/s41467-018-07866-8 – ident: cit0303 doi: 10.1103/PhysRevLett.125.090501 – ident: cit0242 doi: 10.1364/JOSAB.20.000887 – ident: cit0206 doi: 10.1088/1361-648X/ab76ac – ident: cit0218 doi: 10.1088/1367-2630/14/5/053012 – ident: cit0088 doi: 10.1103/PhysRev.50.115 – ident: cit0172 doi: 10.1103/PhysRevLett.121.033602 – ident: cit0204 doi: 10.1146/annurev.biophys.050708.133724 – ident: cit0246 doi: 10.1038/nature01810 – ident: cit0020 doi: 10.1038/45492 – ident: cit0082 doi: 10.1364/OPTICA.4.000356 – ident: cit0180 doi: 10.1103/PhysRevA.68.033802 – ident: cit0076 doi: 10.1103/PhysRevLett.92.190801 – ident: cit0154 doi: 10.1039/C4NR00708E – ident: cit0273 doi: 10.1038/nphys2863 – ident: cit0275 doi: 10.1038/nature16155 – ident: cit0077 doi: 10.1038/28566 – ident: cit0089 doi: 10.1103/PhysRevA.54.1593 – ident: cit0065 doi: 10.1364/BOE.3.001891 – ident: cit0294 doi: 10.1103/PhysRevLett.121.040401 – ident: cit0202 doi: 10.1364/OPTICA.5.000910 – ident: cit0080 doi: 10.1103/PhysRevE.59.3676 – ident: cit0061 doi: 10.1039/C5NR06419H – ident: cit0285 doi: 10.1038/nature10461 – ident: cit0290 doi: 10.1126/science.1163861 – ident: cit0110 doi: 10.1002/lpor.201900140 – ident: cit0277 doi: 10.1038/s41567-019-0663-9 – ident: cit0174 doi: 10.1126/sciadv.1701519 – ident: cit0197 doi: 10.1103/PhysRevE.95.062131 – ident: cit0314 doi: 10.1007/978-1-4939-6421-5 – ident: cit0087 doi: 10.1364/AO.47.006428 – ident: cit0053 doi: 10.1103/PhysRevLett.109.123604 – ident: cit0253 doi: 10.1038/nnano.2013.97 – volume: 2005 start-page: 03705 year: 2020 ident: cit0187 publication-title: arXiv. – ident: cit0036 doi: 10.1103/PhysRevLett.119.240401 – ident: cit0199 doi: 10.1021/acs.nanolett.6b01059 – ident: cit0200 doi: 10.1103/PhysRevE.99.042202 – ident: cit0167 doi: 10.1103/PhysRevLett.121.253601 – ident: cit0127 doi: 10.1364/OE.18.016005 – ident: cit0183 doi: 10.1364/OE.20.003563 – ident: cit0182 doi: 10.1038/ncomms4300 – ident: cit0068 doi: 10.1038/lsa.2016.158 – ident: cit0095 doi: 10.1364/OE.22.004349 – ident: cit0283 doi: 10.1088/1367-2630/aad1ea – ident: cit0024 doi: 10.1103/PhysRevA.93.053801 – ident: cit0153 doi: 10.1021/acsphotonics.9b00220 – ident: cit0212 doi: 10.1098/rstl.1866.0013 – ident: cit0044 doi: 10.1126/science.aba3993 – ident: cit0141 doi: 10.1103/PhysRevLett.92.198104 – ident: cit0189 doi: 10.1021/acs.chemrev.9b00401 – ident: cit0207 doi: 10.1016/j.biomaterials.2015.12.019 – ident: cit0327 doi: 10.1117/1.3332850 – ident: cit0135 doi: 10.1103/PhysRevLett.103.173602 – ident: cit0323 doi: 10.1103/PhysRevLett.100.013602 – ident: cit0209 doi: 10.1103/PhysRevE.88.050301 – ident: cit0266 doi: 10.1088/0953-8984/9/47/001 – ident: cit0313 doi: 10.1140/epjd/e2019-90702-3 – ident: cit0320 doi: 10.1364/OL.38.004919 – ident: cit0317 doi: 10.1088/2040-8978/18/6/064004 – ident: cit0150 doi: 10.1073/pnas.1510418112 – ident: cit0165 doi: 10.1038/ncomms10254 – ident: cit0083 doi: 10.1038/s41566-017-0005-3 – ident: cit0140 doi: 10.1038/nmeth1013 – ident: cit0079 doi: 10.1016/j.jqsrt.2014.04.012 – ident: cit0259 doi: 10.1088/1361-6463/aadccb – ident: cit0319 doi: 10.1016/S0030-4018(02)01524-9 – ident: cit0278 doi: 10.1038/s41467-020-15280-2 – ident: cit0132 doi: 10.1063/1.4971981 – ident: cit0252 doi: 10.1126/science.1235441 – ident: cit0158 doi: 10.1038/nmat1411 – ident: cit0211 doi: 10.1116/1.5139638 – ident: cit0312 doi: 10.1038/s41566-019-0395-5 – ident: cit0118 doi: 10.1103/PhysRevA.91.013416 – ident: cit0159 doi: 10.1063/1.1339258 – ident: cit0310 doi: 10.1103/PhysRevLett.124.020401 – ident: cit0192 doi: 10.1038/s41567-018-0199-4 – ident: cit0116 doi: 10.1103/PhysRevA.97.053842 – ident: cit0250 doi: 10.1103/PhysRevLett.97.058301 – ident: cit0267 doi: 10.1103/PhysRevA.98.013851 – ident: cit0224 doi: 10.1038/srep20380 – ident: cit0257 doi: 10.1103/PhysRevLett.117.101101 – ident: cit0138 doi: 10.1038/s41467-018-07376-7 – ident: cit0163 doi: 10.1088/1367-2630/11/9/093021 – ident: cit0101 doi: 10.1103/PhysRevLett.91.093602 – ident: cit0241 doi: 10.1038/s41586-020-2133-z – ident: cit0107 doi: 10.1364/OE.25.011265 – ident: cit0222 doi: 10.1103/PhysRevA.97.043803 – ident: cit0109 doi: 10.1201/b17140 – ident: cit0120 doi: 10.1039/c1lc20272c – volume: 2006 start-page: 04090 year: 2020 ident: cit0261 publication-title: arXiv. – ident: cit0157 doi: 10.1103/PhysRevE.73.021911 – ident: cit0329 doi: 10.1021/acsphotonics.9b01433 – ident: cit0055 doi: 10.1021/acs.nanolett.5b02302 – ident: cit0148 doi: 10.1002/adma.200401462 – ident: cit0219 doi: 10.1063/1.5025762 – ident: cit0289 doi: 10.1103/PhysRevA.94.052109 – ident: cit0086 doi: 10.1021/nl9034434 – ident: cit0226 doi: 10.1103/PhysRevResearch.2.033437 – ident: cit0060 doi: 10.1002/adfm.202002081 – ident: cit0156 doi: 10.1364/OE.11.000446 – ident: cit0325 doi: 10.1364/OE.25.011692 – ident: cit0279 doi: 10.1038/s41586-018-0038-x – volume: 2005 start-page: 11662 year: 2020 ident: cit0236 publication-title: arXiv. – ident: cit0026 doi: 10.1088/1367-2630/12/3/033015 – ident: cit0281 doi: 10.1016/j.physleta.2003.12.022 – ident: cit0124 doi: 10.1039/b805318a – ident: cit0232 doi: 10.1103/PhysRevLett.110.071105 – ident: cit0216 doi: 10.1088/1681-7575/aadbe4 – ident: cit0230 doi: 10.1103/PhysRevA.99.013821 – ident: cit0072 doi: 10.1209/0295-5075/100/48005 – ident: cit0203 doi: 10.1021/nl2008218 – ident: cit0193 doi: 10.1103/PhysRevLett.122.110601 – ident: cit0244 doi: 10.1103/RevModPhys.75.281 – ident: cit0324 doi: 10.1364/OE.18.006988 – ident: cit0137 doi: 10.1021/acs.nanolett.7b02196 – ident: cit0171 doi: 10.1103/PhysRevE.97.052112 – ident: cit0058 doi: 10.1364/OPTICA.374441 – ident: cit0027 doi: 10.1073/pnas.0912969107 – ident: cit0186 doi: 10.1103/PhysRevA.101.063819 – ident: cit0237 doi: 10.1103/PhysRevLett.111.180403 – ident: cit0208 doi: 10.1364/OE.22.016207 – ident: cit0264 doi: 10.1088/1367-2630/12/3/033028 – volume: 1912 start-page: 08159 year: 2019 ident: cit0302 publication-title: arXiv. – ident: cit0018 doi: 10.1002/adbi.201900082 – ident: cit0131 doi: 10.1209/epl/i2005-10022-6 – ident: cit0031 doi: 10.1103/RevModPhys.85.471 – ident: cit0265 doi: 10.1103/RevModPhys.71.1233 – ident: cit0005 doi: 10.1088/2040-8978/13/4/044024 – ident: cit0149 doi: 10.1063/1.1753067 – ident: cit0305 doi: 10.1088/1367-2630/14/10/103047 – ident: cit0243 doi: 10.1364/JOSAB.20.001003 – ident: cit0318 doi: 10.1016/0030-4018(94)90638-6 – ident: cit0017 doi: 10.1021/acs.nanolett.6b04583 – ident: cit0025 doi: 10.1103/PhysRevA.101.053835 – ident: cit0048 doi: 10.1038/nphoton.2011.81 – ident: cit0063 doi: 10.1002/lapl.201010100 – ident: cit0091 doi: 10.1103/PhysRevA.30.2508 – ident: cit0051 doi: 10.1103/PhysRevLett.105.113601 – ident: cit0001 doi: 10.1017/CBO9781107279711 – ident: cit0276 doi: 10.1038/nature15750 – ident: cit0067 doi: 10.1364/OE.15.008619 – ident: cit0297 doi: 10.1364/JOSAB.34.0000C1 – ident: cit0126 doi: 10.1364/OE.23.007273 – ident: cit0298 doi: 10.1023/A:1026048530567 – ident: cit0238 doi: 10.1103/PhysRevA.96.063810 – ident: cit0010 doi: 10.1038/348348a0 – ident: cit0094 doi: 10.1016/S0030-4018(99)00619-7 – ident: cit0330 doi: 10.1103/PhysRevA.96.063842 – ident: cit0075 doi: 10.1103/PhysRevLett.117.123604 – ident: cit0103 doi: 10.1364/OL.22.000052 – ident: cit0245 doi: 10.1103/PhysRevB.101.134415 – ident: cit0143 doi: 10.1039/b601886f – ident: cit0039 doi: 10.1073/pnas.1309167110 – ident: cit0074 doi: 10.1103/PhysRevA.94.033818 – ident: cit0145 doi: 10.1038/ncomms3374 – ident: cit0175 doi: 10.1103/PhysRevB.101.205416 – ident: cit0043 doi: 10.1103/PhysRevLett.122.223601 – ident: cit0164 doi: 10.1021/acs.cgd.7b01328 – ident: cit0239 doi: 10.1103/PhysRevA.96.023827 – ident: cit0210 doi: 10.1103/PhysRevB.95.235306 – ident: cit0220 doi: 10.1364/OPTICA.4.000746 – ident: cit0022 doi: 10.1088/1361-6633/ab6100 – ident: cit0057 doi: 10.1364/JOSAB.389394 – ident: cit0191 doi: 10.1038/s41427-018-0026-5 – ident: cit0205 doi: 10.1021/acsmacrolett.8b00498 – ident: cit0064 doi: 10.1126/science.1058591 – ident: cit0185 doi: 10.1038/s41598-019-40475-z – volume: 6 year: 2020 ident: cit0198 publication-title: Sci Adv doi: 10.1126/sciadv.aaz9858 – ident: cit0015 doi: 10.1038/s41467-017-00713-2 – ident: cit0251 doi: 10.1039/b901646e – ident: cit0041 doi: 10.1103/PhysRevLett.122.123602 – ident: cit0040 doi: 10.1103/PhysRevLett.122.123601 – ident: cit0286 doi: 10.1103/RevModPhys.86.1391 – ident: cit0271 doi: 10.1038/s42005-019-0163-3 – ident: cit0299 doi: 10.1038/srep07664 – ident: cit0002 doi: 10.1038/s41586-018-0450-2 – ident: cit0300 doi: 10.1088/1367-2630/aad863 – ident: cit0059 doi: 10.1364/OE.17.006230 – ident: cit0122 doi: 10.1364/OL.18.001867 – ident: cit0050 doi: 10.1021/acsphotonics.6b00023 – ident: cit0045 doi: 10.1038/s41467-019-08968-7 |
SSID | ssj0001670803 |
Score | 2.304042 |
SecondaryResourceType | review_article |
Snippet | The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of... The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Dark energy Dark matter Light optical manipulation optical tweezers orbital angular momentum precision sensing Remote control Rotation State-of-the-art reviews Torque Trapped particles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i6Sg5e627zaFpvKi6roCcX9hbyPEl36VbBf-8kbZeqh71IbyEpITPJfDOZfIPQdao82BXhYCMJmgAC54lWvEgmVgtCtbDMhHjHy2s2m7PnBV_0Sn2FnLCGHrhZuLEginFdwFlOPLOk0EXh4MuVMD4TJjKBgs3rOVMxupIJgEK0e7KTT8aECgamKLxNIdCU06DKP4xR5Oz_xVj654SOZmd6gPZbvIjvmnkeoh1XHqHdmLdp1sfo6ykk_6iQu4wr99npEYZ_4-UqxqlxYLjoqnTdYgB8uKmGtcaqtLh_g42XHlfLuo0PYttUq4_NdQUdncWrLpPuBM2nj28Ps6StppAYnoo6YRY8idRpa1OfccO5s4JZ711qHDgNOfETk1LLtDEm15nRVBitfQ6Az4FNF_QUDcpl6c4QnnilAWhxZbljAjxMJ7xlytPCQl_Hhoh1yypNSzUeKl68y7RlJO2kIYM0ZCuNIbrZDFs1XBvbBtwHmW06B6rs2AAKJNvlkNsUaIiKvsRlHSMlvilrIumWCYw69ZDt3l9LwvNA41owfv4f87tAeyTk0cSwzwgN6urDXQIQqvVV1Plv6SEE8g priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKKyQuqC0gWkrlQ6-BjR9xzI1WXW0rtaeuVE6Wn1zQZpWESvz7jh17u4BQDyg3y2NZnrFnPPn8DUJntQ7gV4SHjSRoBRE4r4zmspo5Iwg1wjEb8x03t81iya7veUETDhlWGe_QYSKKSGd13NzaDAUR95lQwcCrxGcmBJpaGq3yBdoj0VrBpGffFk9plkaACC1vd_4l_ZtXSuT9f1CX_nVUJ_8z30evc-CIv06aPkA7fnWIXiYApx3eoF9XEQWkI4gZ9_6hGBSGsXG3TglrHKkuSrmuLxgiPzyVxRowLAXe_pWNu4D7bsyJQuymsvWpeeyho3d4XSB1b9Fyfnl3sahyWYXK8lqMFXNwpai9ca4ODbeceyeYC8HX1sPtoSVhZmvqmLHWtqaxhgprTGgh8vPg3AV9h3ZX3cq_R3gWtIGIi2vHPRNw1fQiOKYDlQ76enaEWFlWZTPneCx98UPVmZq0aENFbaisjSP0aSO2nkg3nhM4jzrbdI6c2amh67-rvBxKEM24kRAVkMAckUZKD1-rhQ2NsDBZua1xNaaUSZjqmyj6zAROinmofAgMivA28rlKxo__Y-gP6BWJOJqU9jlBu2P_03-EQGg0p8nUHwH-2QCo priority: 102 providerName: Taylor & Francis |
Title | Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles |
URI | https://www.tandfonline.com/doi/abs/10.1080/23746149.2020.1838322 https://www.proquest.com/docview/2581109945 https://doaj.org/article/72a45b9cee2f4d29b99e9e98a7cf67c4 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYKqBIXBH2I58oHrimJH3HCBQECLUisqqorbU-Wn71UmyUbkPj3jB1noa0Eys2xI8szmRl_Hn-D0HGhPPgV4eBHEjSDCJxnWvE6y60WhGphmQl4x92kHE_Z7YzPEuC2TGmVg02Mhto2JmDkJ4RXgRyzZvxscZ-FqlHhdDWV0FhDG2CCK9h8bVxcTb7_eEFZSgEhER2u7lT5CaGCgUsKd1QINFU0qPRfTily9__DXPqfpY7u53obbaW4EZ_3gt5BH9z8E_oY8zfN8jN6uglJQCrkMOPWPQ76hOHbuFlEvBoHpouhWtcphsAP91WxlljNLX59ko0bj9umSzghtn3V-tjctdDRWbwYMuq-oOn11c_LcZaqKmSGF6LLmIUdReG0tYUvueHcWcGs964wDjYPFfG5Kahl2hhT6dJoKozWvoLAz4FvF_QrWp83c7eLcO6VhoCLK8sdE7DTdMJbpjytLfR1bA-xYVmlSZTjofLFH1kkZtJBGjJIQyZp7KFvq2GLnnPjvQEXQWarzoEyOzY07W-ZlkMKohjXNQQFxDNLal3XDp5KCeNLYWCy9WuJyy4iJr4vbyLpOxM4HNRDJhuwlC8au__26wO0SUKmTAR2DtF61z64Iwh1Oj1Ca_mv8Shp9SgCBs-v_v6Z |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKdaaMEHOIZu_IiTSqhqodUubVcItVJvxk8ukCzZQLV_it_YcWK3BSR6qnJz7MTyjD2fx-P5EHqdKw92RTiYSIJmgMB5phWvsrHVglAtLDPB33E8Kyan7OMZP1tBv9NdmBBWmdbEfqG2jQk-8i3Cy5Acs2J8Z_4jC6xR4XQ1UWgManHoluewZVu8m34A-b4h5GD_5P0ki6wCmeG56DJmAVHnTlub-4Ibzp0VzHrvcuMAPJfEj01OLdPGmFIXRlNhtPYlAB8Htk1Q-O4dtMoobGVGaHVvf_bp85VXpxAAwWi6KlSOtwgVDExguBNDoKikYQr9YQR7roC_MqX-Yxl6c3fwED2IOBXvDor1CK24-jG628eLmsUTtJyGoCMVYqZx634l_cXwbdzMe_84Dpk1EjvYNgagiQcWrgVWtcXXT85x43HbdNEvie2yVt_hN6G4a6Gis3ieIvieotNbGe9naFQ3tVtDeOyVBoDHleWOCdjZOuEtU55WFuo6to5YGlZpYorzwLTxTeYxE2qShgzSkFEa6-jtZbP5kOPjpgZ7QWaXlUOK7r6gab_KOBxSEMW4rgCEEM8sqXRVOXhKJYwvhIHOVtclLrveQ-MHOhVJb-jARlIPGdechbyaIc____oVujc5OT6SR9PZ4Qt0n4Qond6ptIFGXfvTbQLM6vTLqNsYfbnt6XQBTis7zA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKFYhLRQuINz5wDWz8iBNupWW12xbUA0hwsuIXF7RZZVOk_nvGjr28hDig3CyPZXnGnvHk8zcIHea1A78iLGwkQTOIwHmmal5lA6MEoUoYpn2-4_yiGF2xX9c8oQlnEVbp79CuJ4oIZ7Xf3FPjEiLumFDBwKv4ZyYEmkrqrXIBfeYl-How6cHN6DHNUggQoentzlvSz7xSIO9_QV366qgO_me4ir7EwBF_7zX9FX2yk29oKQA49WwN_R97FFDtQcy4tffJoDCMjZtpSFhjT3WRynWdYIj8cF8Wa4ZhKfDTX9m4cbhtupgoxKYvWx-auxY6WoOnCVK3jq6GZ5c_Rlksq5BpnosuYwauFLlVxuSu4JpzawQzztlcW7g9lMQNdE4NU1rrUhVaUaGVciVEfhacu6AbaHHSTOwmwgNXK4i4eG24ZQKumlY4w2pHKwN9LdtCLC2r1JFz3Je-uJN5pCZN2pBeGzJqYwsdzcWmPenGewKnXmfzzp4zOzQ07a2MyyEFqRlXFUQFxDFDKlVVFr6yFtoVQsNkq6cal11Imbi-vomk70xgN5mHjIfATBJeej7XivHtDwx9gJb__hzKP-OL3ztohXhITcgA7aLFrv1n9yAm6tR-sPoHZ_YDTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initiating+revolutions+for+optical+manipulation%3A+the+origins+and+applications+of+rotational+dynamics+of+trapped+particles&rft.jtitle=Advances+in+physics%3A+X&rft.au=Bruce%2C+Graham+D.&rft.au=Rodr%C3%ADguez-Sevilla%2C+Paloma&rft.au=Dholakia%2C+Kishan&rft.date=2021-01-01&rft.issn=2374-6149&rft.eissn=2374-6149&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2020.1838322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23746149_2020_1838322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon |