Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles

The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretica...

Full description

Saved in:
Bibliographic Details
Published inAdvances in physics: X Vol. 6; no. 1
Main Authors Bruce, Graham D., Rodríguez-Sevilla, Paloma, Dholakia, Kishan
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.01.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects.
AbstractList The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects.
The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects.
Author Dholakia, Kishan
Rodríguez-Sevilla, Paloma
Bruce, Graham D.
Author_xml – sequence: 1
  givenname: Graham D.
  orcidid: 0000-0003-3403-0614
  surname: Bruce
  fullname: Bruce, Graham D.
  organization: University of St Andrews
– sequence: 2
  givenname: Paloma
  orcidid: 0000-0003-4743-6576
  surname: Rodríguez-Sevilla
  fullname: Rodríguez-Sevilla, Paloma
  organization: University of St Andrews
– sequence: 3
  givenname: Kishan
  orcidid: 0000-0001-6534-9009
  surname: Dholakia
  fullname: Dholakia, Kishan
  email: gdb2@st-andrews.ac.uk, kd1@st-andrews.ac.uk
  organization: College of Science, Yonsei University
BookMark eNqFUcuOFCEUJWZMHMf5BBMS1z3yLCjdaCY-OpnEja4JxaOlQ0MJtKb_XqqrNcaFhgXcc885wD1PwVXKyQHwHKM7jCR6SahgA2bjHUGkQ5JKSsgjcL3gm6Vx9cf5CbitdY8QwoPoYnoNTtsUWtAtpB0s7nuOxxZyqtDnAvPcgtERHnQK8zHqpfMKtq8O5hJ2obN0slDPc-y0VZY9LLmdiy60p6QPwZzhVjrRWTjr0l2jq8_AY69jdbeX_QZ8ef_u8_3HzcOnD9v7tw8bw7FoG2YlGbCbrMV-4IZzZwWz3jtsnOBSEo8MppZNxhg5DWaiwkyTlwMfnORU0BuwXX1t1ns1l3DQ5aSyDuoM5LJTlycpQTTj02icI55ZMk7j6PqSWhg_CMO614vVay7529HVpvb5WPpXqyJcYozGkfHO4ivLlFxrcf73rRipJTT1KzS1hKYuoXXd6790Jqyz7MML8b_qN6s6pB7eQf_IJVrV9Cnm4otOJlRF_23xE3K7tWw
CitedBy_id crossref_primary_10_1007_s10812_023_01550_6
crossref_primary_10_1021_acsphotonics_4c01847
crossref_primary_10_1360_SST_2023_0080
crossref_primary_10_1063_10_0025758
crossref_primary_10_1088_2040_8986_ac16b5
crossref_primary_10_1117_1_AP_5_3_034003
crossref_primary_10_1021_acsphotonics_3c00890
crossref_primary_10_1063_5_0155512
crossref_primary_10_1364_OE_439491
crossref_primary_10_1103_PhysRevLett_129_023602
crossref_primary_10_1063_5_0235507
crossref_primary_10_1063_5_0094665
crossref_primary_10_1088_2515_7647_adb360
crossref_primary_10_1364_PRJ_466396
crossref_primary_10_37251_sjpe_v5i1_902
crossref_primary_10_1021_acs_chemrev_2c00576
crossref_primary_10_1021_acsphotonics_4c01547
crossref_primary_10_1063_5_0166136
crossref_primary_10_1080_00107514_2021_1930707
crossref_primary_10_1364_AO_447246
Cites_doi 10.1364/JOSAB.34.0000C8
10.1086/423023
10.1002/andp.19013111102
10.1126/science.3547653
10.1002/admt.201901091
10.1021/acsnano.5b03565
10.1103/PhysRevB.82.115441
10.1098/rstl.1798.0022
10.1063/1.4928154
10.1016/S0030-4018(00)00989-5
10.1103/PhysRevLett.105.101101
10.1103/PhysRevLett.117.143003
10.1103/PhysRevLett.101.128301
10.1103/PhysRevA.99.041802
10.1186/s11671-018-2739-3
10.1146/annurev.bb.23.060194.001335
10.1103/PhysRevA.94.053821
10.1364/OPTICA.2.000812
10.1021/nn404765w
10.1103/PhysRevResearch.2.022030
10.1038/s41586-018-0036-z
10.1103/PhysRevE.79.026301
10.1103/PhysRevLett.99.073901
10.1103/PhysRevB.99.165402
10.1038/nphoton.2011.287
10.1103/PhysRevLett.97.210603
10.1088/1367-2630/16/8/083037
10.1243/09544062JMES760
10.1038/s41377-019-0194-2
10.1103/PhysRevA.98.043415
10.1088/1367-2630/aa99bf
10.1038/nnano.2014.82
10.1126/science.1069571
10.1021/acsphotonics.8b00822
10.1103/PhysRevLett.121.033603
10.1038/s41467-018-08090-0
10.1364/OE.17.023316
10.1039/b600157m
10.1063/1.4993555
10.1364/OE.16.004991
10.1021/acsnano.6b07290
10.1117/1.OE.57.3.036103
10.1364/OL.31.001675
10.1063/1.111675
10.1088/1367-2630/aaece4
10.1038/nphoton.2010.266
10.1364/OE.16.016984
10.1364/OE.10.000984
10.1103/PhysRevLett.63.1233
10.1002/smll.201904154
10.1515/nanoph-2019-0055
10.1126/science.1189403
10.1515/nanoph-2018-0072
10.1039/c0sm00854k
10.1088/1367-2630/11/3/033035
10.1103/PhysRevLett.96.163905
10.1364/OE.23.008365
10.1103/PhysRevE.68.051404
10.1038/ncomms5788
10.1038/nphoton.2009.269
10.1063/1.89335
10.1364/OE.22.016322
10.1103/PhysRevLett.88.053601
10.1038/ncomms13165
10.1038/srep08058
10.1103/PhysRevA.95.053421
10.1021/acsnano.5b06311
10.1038/srep16926
10.1103/PhysRevA.94.032108
10.1039/C7TB01921A
10.1088/1464-4266/4/2/373
10.1088/2040-8978/19/1/013001
10.1038/s41565-019-0605-9
10.3390/e20050326
10.1103/PhysRevLett.121.063602
10.1088/1367-2630/17/1/013046
10.1038/365721a0
10.1103/PhysRevA.45.8185
10.1103/RevModPhys.89.035002
10.1088/1464-4258/10/11/115005
10.1002/adfm.201905568
10.1021/ac2024365
10.1038/nphys3518
10.1103/PhysRevA.89.033610
10.1103/PhysRevLett.107.020405
10.1364/OPTICA.4.000330
10.14440/jbm.2015.79
10.1038/nphys2798
10.1103/PhysRevA.97.051802
10.1073/pnas.1706985114
10.1103/PhysRevB.96.035402
10.1002/adom.201800161
10.1080/00107514.2019.1631555
10.1073/pnas.86.20.7914
10.1103/PhysRevA.96.013837
10.1103/PhysRevA.84.052121
10.1021/acs.nanolett.8b03978
10.1080/09500340.2013.778341
10.1038/nphoton.2011.80
10.1080/09500340108230922
10.1103/PhysRevE.72.031507
10.1038/nature08967
10.1109/JPHOT.2016.2517131
10.1103/PhysRevA.102.013505
10.1103/PhysRevB.73.085417
10.1038/nature01935
10.1002/adom.201901481
10.1007/978-3-319-99046-0_35
10.1016/j.bpj.2013.08.007
10.1017/S0022112090003007
10.1103/PhysRevA.82.063827
10.1088/1361-6463/ab16b5
10.1103/PhysRevLett.113.251801
10.1021/nl4010817
10.1007/s11433-015-5651-1
10.1021/acs.nanolett.9b00332
10.1364/JOSAB.34.002514
10.1103/PhysRevA.100.032111
10.1103/PhysRevA.96.033843
10.1063/1.2260823
10.1364/OL.40.004751
10.1038/s41467-017-01902-9
10.1038/nphys1952
10.1103/PhysRevLett.110.160403
10.1103/PhysRevE.76.041507
10.1021/nl403608a
10.1038/ncomms10974
10.1364/JOSAB.34.000C14
10.1103/PhysRevLett.89.108303
10.1103/PhysRevLett.122.223602
10.1103/PhysRevLett.118.133605
10.1103/PhysRevLett.75.826
10.1063/1.1480885
10.1038/ncomms1480
10.1103/PhysRevLett.109.103603
10.1088/1367-2630/aa99d1
10.1016/j.physrep.2003.11.002
10.1038/nnano.2010.128
10.1103/PhysRevA.94.033828
10.1016/j.optcom.2019.124864
10.1126/sciadv.1602738
10.1126/science.1057984
10.1088/0953-4075/49/15/153001
10.1038/s41467-018-07866-8
10.1103/PhysRevLett.125.090501
10.1364/JOSAB.20.000887
10.1088/1361-648X/ab76ac
10.1088/1367-2630/14/5/053012
10.1103/PhysRev.50.115
10.1103/PhysRevLett.121.033602
10.1146/annurev.biophys.050708.133724
10.1038/nature01810
10.1038/45492
10.1364/OPTICA.4.000356
10.1103/PhysRevA.68.033802
10.1103/PhysRevLett.92.190801
10.1039/C4NR00708E
10.1038/nphys2863
10.1038/nature16155
10.1038/28566
10.1103/PhysRevA.54.1593
10.1364/BOE.3.001891
10.1103/PhysRevLett.121.040401
10.1364/OPTICA.5.000910
10.1103/PhysRevE.59.3676
10.1039/C5NR06419H
10.1038/nature10461
10.1126/science.1163861
10.1002/lpor.201900140
10.1038/s41567-019-0663-9
10.1126/sciadv.1701519
10.1103/PhysRevE.95.062131
10.1007/978-1-4939-6421-5
10.1364/AO.47.006428
10.1103/PhysRevLett.109.123604
10.1038/nnano.2013.97
10.1103/PhysRevLett.119.240401
10.1021/acs.nanolett.6b01059
10.1103/PhysRevE.99.042202
10.1103/PhysRevLett.121.253601
10.1364/OE.18.016005
10.1364/OE.20.003563
10.1038/ncomms4300
10.1038/lsa.2016.158
10.1364/OE.22.004349
10.1088/1367-2630/aad1ea
10.1103/PhysRevA.93.053801
10.1021/acsphotonics.9b00220
10.1098/rstl.1866.0013
10.1126/science.aba3993
10.1103/PhysRevLett.92.198104
10.1021/acs.chemrev.9b00401
10.1016/j.biomaterials.2015.12.019
10.1117/1.3332850
10.1103/PhysRevLett.103.173602
10.1103/PhysRevLett.100.013602
10.1103/PhysRevE.88.050301
10.1088/0953-8984/9/47/001
10.1140/epjd/e2019-90702-3
10.1364/OL.38.004919
10.1088/2040-8978/18/6/064004
10.1073/pnas.1510418112
10.1038/ncomms10254
10.1038/s41566-017-0005-3
10.1038/nmeth1013
10.1016/j.jqsrt.2014.04.012
10.1088/1361-6463/aadccb
10.1016/S0030-4018(02)01524-9
10.1038/s41467-020-15280-2
10.1063/1.4971981
10.1126/science.1235441
10.1038/nmat1411
10.1116/1.5139638
10.1038/s41566-019-0395-5
10.1103/PhysRevA.91.013416
10.1063/1.1339258
10.1103/PhysRevLett.124.020401
10.1038/s41567-018-0199-4
10.1103/PhysRevA.97.053842
10.1103/PhysRevLett.97.058301
10.1103/PhysRevA.98.013851
10.1038/srep20380
10.1103/PhysRevLett.117.101101
10.1038/s41467-018-07376-7
10.1088/1367-2630/11/9/093021
10.1103/PhysRevLett.91.093602
10.1038/s41586-020-2133-z
10.1364/OE.25.011265
10.1103/PhysRevA.97.043803
10.1201/b17140
10.1039/c1lc20272c
10.1103/PhysRevE.73.021911
10.1021/acsphotonics.9b01433
10.1021/acs.nanolett.5b02302
10.1002/adma.200401462
10.1063/1.5025762
10.1103/PhysRevA.94.052109
10.1021/nl9034434
10.1103/PhysRevResearch.2.033437
10.1002/adfm.202002081
10.1364/OE.11.000446
10.1364/OE.25.011692
10.1038/s41586-018-0038-x
10.1088/1367-2630/12/3/033015
10.1016/j.physleta.2003.12.022
10.1039/b805318a
10.1103/PhysRevLett.110.071105
10.1088/1681-7575/aadbe4
10.1103/PhysRevA.99.013821
10.1209/0295-5075/100/48005
10.1021/nl2008218
10.1103/PhysRevLett.122.110601
10.1103/RevModPhys.75.281
10.1364/OE.18.006988
10.1021/acs.nanolett.7b02196
10.1103/PhysRevE.97.052112
10.1364/OPTICA.374441
10.1073/pnas.0912969107
10.1103/PhysRevA.101.063819
10.1103/PhysRevLett.111.180403
10.1364/OE.22.016207
10.1088/1367-2630/12/3/033028
10.1002/adbi.201900082
10.1209/epl/i2005-10022-6
10.1103/RevModPhys.85.471
10.1103/RevModPhys.71.1233
10.1088/2040-8978/13/4/044024
10.1063/1.1753067
10.1088/1367-2630/14/10/103047
10.1364/JOSAB.20.001003
10.1016/0030-4018(94)90638-6
10.1021/acs.nanolett.6b04583
10.1103/PhysRevA.101.053835
10.1038/nphoton.2011.81
10.1002/lapl.201010100
10.1103/PhysRevA.30.2508
10.1103/PhysRevLett.105.113601
10.1017/CBO9781107279711
10.1038/nature15750
10.1364/OE.15.008619
10.1364/JOSAB.34.0000C1
10.1364/OE.23.007273
10.1023/A:1026048530567
10.1103/PhysRevA.96.063810
10.1038/348348a0
10.1016/S0030-4018(99)00619-7
10.1103/PhysRevA.96.063842
10.1103/PhysRevLett.117.123604
10.1364/OL.22.000052
10.1103/PhysRevB.101.134415
10.1039/b601886f
10.1073/pnas.1309167110
10.1103/PhysRevA.94.033818
10.1038/ncomms3374
10.1103/PhysRevB.101.205416
10.1103/PhysRevLett.122.223601
10.1021/acs.cgd.7b01328
10.1103/PhysRevA.96.023827
10.1103/PhysRevB.95.235306
10.1364/OPTICA.4.000746
10.1088/1361-6633/ab6100
10.1364/JOSAB.389394
10.1038/s41427-018-0026-5
10.1021/acsmacrolett.8b00498
10.1126/science.1058591
10.1038/s41598-019-40475-z
10.1126/sciadv.aaz9858
10.1038/s41467-017-00713-2
10.1039/b901646e
10.1103/PhysRevLett.122.123602
10.1103/PhysRevLett.122.123601
10.1103/RevModPhys.86.1391
10.1038/s42005-019-0163-3
10.1038/srep07664
10.1038/s41586-018-0450-2
10.1088/1367-2630/aad863
10.1364/OE.17.006230
10.1364/OL.18.001867
10.1021/acsphotonics.6b00023
10.1038/s41467-019-08968-7
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
L7M
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/23746149.2020.1838322
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Advanced Technologies Database with Aerospace
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2374-6149
ExternalDocumentID oai_doaj_org_article_72a45b9cee2f4d29b99e9e98a7cf67c4
10_1080_23746149_2020_1838322
1838322
Genre Review
GroupedDBID 0YH
8G5
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
H13
M2O
M4Z
M~E
OK1
PIMPY
PROAC
TDBHL
TFW
AAFWJ
AAYXX
ADMLS
AFPKN
CITATION
PHGZM
PHGZT
3V.
7XB
8FD
8FK
H8D
L7M
MBDVC
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c517t-4d8261ebdd1f65c55ed74dffe1ce75882f0c13d4bccc8b6cb37cbbf8656e85373
IEDL.DBID BENPR
ISSN 2374-6149
IngestDate Wed Aug 27 01:22:36 EDT 2025
Sun Jun 29 12:41:56 EDT 2025
Tue Jul 01 01:13:49 EDT 2025
Thu Apr 24 22:54:10 EDT 2025
Wed Dec 25 09:06:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-4d8261ebdd1f65c55ed74dffe1ce75882f0c13d4bccc8b6cb37cbbf8656e85373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3403-0614
0000-0003-4743-6576
0000-0001-6534-9009
OpenAccessLink https://www.proquest.com/docview/2581109945?pq-origsite=%requestingapplication%
PQID 2581109945
PQPubID 3933228
ParticipantIDs crossref_citationtrail_10_1080_23746149_2020_1838322
proquest_journals_2581109945
informaworld_taylorfrancis_310_1080_23746149_2020_1838322
crossref_primary_10_1080_23746149_2020_1838322
doaj_primary_oai_doaj_org_article_72a45b9cee2f4d29b99e9e98a7cf67c4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Advances in physics: X
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0077
cit0078
cit0199
cit0075
cit0076
cit0197
cit0073
cit0194
cit0074
cit0195
cit0071
cit0192
cit0072
cit0193
cit0190
cit0070
cit0191
cit0079
cit0066
cit0067
cit0188
cit0064
cit0185
Hopper A (cit0236) 2020; 2005
cit0065
cit0186
cit0062
cit0183
cit0063
cit0184
cit0060
cit0181
cit0061
cit0182
cit0180
Arita Y (cit0198) 2020; 6
cit0068
cit0189
cit0069
cit0099
Seberson T (cit0235) 2019; 1910
cit0097
cit0098
cit0095
cit0096
cit0093
cit0094
cit0091
cit0092
Gieseler J (cit0196) 2018; 20
cit0090
cit0088
cit0089
cit0086
cit0087
cit0084
cit0085
cit0082
cit0083
cit0080
cit0081
cit0033
cit0154
cit0275
cit0034
cit0155
cit0276
cit0031
cit0152
cit0273
cit0032
cit0153
cit0274
cit0150
cit0271
cit0030
cit0151
cit0272
cit0270
cit0039
Casimir HB (cit0262) 1948; 100
cit0037
cit0158
cit0279
cit0038
cit0159
cit0035
cit0156
cit0277
cit0036
cit0157
cit0278
cit0022
cit0143
cit0264
cit0023
cit0144
cit0265
cit0020
cit0141
cit0021
cit0142
cit0263
cit0260
cit0140
Carlesso M (cit0302) 2019; 1912
cit0028
cit0149
cit0029
cit0026
cit0147
cit0268
Carlesso M (cit0296) 2017; 1710
cit0027
cit0148
cit0269
cit0024
cit0145
cit0266
cit0025
cit0146
cit0267
cit0055
cit0176
cit0297
cit0056
cit0177
cit0298
cit0053
cit0174
cit0295
cit0054
cit0175
cit0051
cit0172
cit0293
cit0052
cit0173
cit0294
cit0170
cit0291
cit0050
cit0171
cit0292
cit0290
cit0059
cit0057
cit0178
cit0299
cit0058
cit0179
cit0044
cit0165
cit0286
cit0045
cit0166
cit0287
cit0042
cit0163
cit0284
cit0043
cit0164
cit0285
cit0040
cit0161
cit0282
cit0041
cit0162
cit0283
cit0280
cit0160
cit0281
cit0048
cit0169
cit0049
cit0046
cit0167
cit0288
cit0047
cit0168
cit0289
cit0110
cit0231
cit0111
cit0232
cit0230
cit0118
cit0239
cit0119
cit0116
cit0237
cit0117
cit0238
cit0114
cit0115
cit0112
cit0113
cit0220
cit0100
cit0221
Schäfer J (cit0261) 2020; 2006
cit0109
cit0107
cit0228
cit0108
cit0229
cit0105
cit0226
cit0106
cit0227
cit0103
cit0224
cit0104
cit0225
cit0101
cit0222
cit0102
cit0223
cit0011
cit0132
cit0253
cit0012
cit0133
cit0254
cit0130
cit0251
cit0010
cit0131
cit0252
cit0250
Braidotti MC (cit0187) 2020; 2005
cit0019
cit0017
cit0138
cit0259
cit0018
cit0139
cit0015
cit0136
cit0257
cit0016
cit0137
cit0258
cit0013
cit0134
cit0255
cit0014
cit0135
cit0256
cit0121
cit0242
cit0001
cit0122
cit0243
de Coulomb CA (cit0247) 1785
cit0240
cit0120
cit0241
cit0008
cit0129
cit0009
cit0006
cit0127
cit0248
cit0007
cit0128
cit0249
cit0004
cit0125
cit0246
cit0005
cit0126
cit0002
cit0123
cit0244
cit0003
cit0124
cit0245
cit0319
cit0318
cit0317
cit0316
cit0315
cit0314
cit0313
cit0312
cit0311
cit0310
cit0309
cit0308
cit0307
Bang J (cit0233) 2020; 2004
cit0306
cit0305
cit0304
cit0303
cit0301
cit0300
cit0210
cit0330
Pan D (cit0234) 2019; 1908
cit0219
cit0217
cit0218
cit0215
cit0216
cit0213
cit0214
cit0211
cit0212
cit0320
cit0208
cit0209
cit0329
cit0206
cit0328
cit0207
cit0327
cit0204
cit0326
cit0205
cit0325
cit0202
cit0324
cit0203
cit0323
cit0200
cit0322
cit0201
cit0321
References_xml – ident: cit0228
  doi: 10.1364/JOSAB.34.0000C8
– ident: cit0155
  doi: 10.1086/423023
– ident: cit0249
  doi: 10.1002/andp.19013111102
– ident: cit0004
  doi: 10.1126/science.3547653
– ident: cit0093
  doi: 10.1002/admt.201901091
– ident: cit0169
  doi: 10.1021/acsnano.5b03565
– ident: cit0315
  doi: 10.1103/PhysRevB.82.115441
– ident: cit0248
  doi: 10.1098/rstl.1798.0022
– ident: cit0215
  doi: 10.1063/1.4928154
– ident: cit0098
  doi: 10.1016/S0030-4018(00)00989-5
– ident: cit0028
  doi: 10.1103/PhysRevLett.105.101101
– ident: cit0034
  doi: 10.1103/PhysRevLett.117.143003
– ident: cit0069
  doi: 10.1103/PhysRevLett.101.128301
– ident: cit0214
  doi: 10.1103/PhysRevA.99.041802
– start-page: 569
  year: 1785
  ident: cit0247
  publication-title: Histoire de l’Académie Royale des Sciences
– ident: cit0136
  doi: 10.1186/s11671-018-2739-3
– ident: cit0006
  doi: 10.1146/annurev.bb.23.060194.001335
– ident: cit0176
  doi: 10.1103/PhysRevA.94.053821
– ident: cit0130
  doi: 10.1364/OPTICA.2.000812
– ident: cit0166
  doi: 10.1021/nn404765w
– ident: cit0304
  doi: 10.1103/PhysRevResearch.2.022030
– ident: cit0280
  doi: 10.1038/s41586-018-0036-z
– ident: cit0073
  doi: 10.1103/PhysRevE.79.026301
– ident: cit0099
  doi: 10.1103/PhysRevLett.99.073901
– ident: cit0269
  doi: 10.1103/PhysRevB.99.165402
– ident: cit0046
  doi: 10.1038/nphoton.2011.287
– ident: cit0181
  doi: 10.1103/PhysRevLett.97.210603
– ident: cit0184
  doi: 10.1088/1367-2630/16/8/083037
– ident: cit0188
  doi: 10.1243/09544062JMES760
– ident: cit0112
  doi: 10.1038/s41377-019-0194-2
– volume: 1908
  start-page: 07973
  year: 2019
  ident: cit0234
  publication-title: arXiv.
– ident: cit0240
  doi: 10.1103/PhysRevA.98.043415
– ident: cit0035
  doi: 10.1088/1367-2630/aa99bf
– ident: cit0221
  doi: 10.1038/nnano.2014.82
– ident: cit0066
  doi: 10.1126/science.1069571
– ident: cit0152
  doi: 10.1021/acsphotonics.8b00822
– volume: 1710
  start-page: 08695
  year: 2017
  ident: cit0296
  publication-title: arXiv.
– ident: cit0081
  doi: 10.1103/PhysRevLett.121.033603
– ident: cit0194
  doi: 10.1038/s41467-018-08090-0
– ident: cit0117
  doi: 10.1364/OE.17.023316
– ident: cit0003
  doi: 10.1039/b600157m
– ident: cit0255
  doi: 10.1063/1.4993555
– ident: cit0104
  doi: 10.1364/OE.16.004991
– ident: cit0147
  doi: 10.1021/acsnano.6b07290
– ident: cit0179
  doi: 10.1117/1.OE.57.3.036103
– ident: cit0322
  doi: 10.1364/OL.31.001675
– ident: cit0160
  doi: 10.1063/1.111675
– ident: cit0292
  doi: 10.1088/1367-2630/aaece4
– ident: cit0162
  doi: 10.1038/nphoton.2010.266
– ident: cit0125
  doi: 10.1364/OE.16.016984
– ident: cit0085
  doi: 10.1364/OE.10.000984
– ident: cit0134
  doi: 10.1103/PhysRevLett.63.1233
– ident: cit0328
  doi: 10.1002/smll.201904154
– ident: cit0009
  doi: 10.1515/nanoph-2019-0055
– ident: cit0023
  doi: 10.1126/science.1189403
– volume: 2004
  start-page: 02384
  year: 2020
  ident: cit0233
  publication-title: arXiv.
– ident: cit0108
  doi: 10.1515/nanoph-2018-0072
– ident: cit0217
  doi: 10.1039/c0sm00854k
– ident: cit0263
  doi: 10.1088/1367-2630/11/3/033035
– ident: cit0114
  doi: 10.1103/PhysRevLett.96.163905
– ident: cit0307
  doi: 10.1364/OE.23.008365
– ident: cit0071
  doi: 10.1103/PhysRevE.68.051404
– ident: cit0032
  doi: 10.1038/ncomms5788
– ident: cit0223
  doi: 10.1038/nphoton.2009.269
– ident: cit0021
  doi: 10.1063/1.89335
– ident: cit0121
  doi: 10.1364/OE.22.016322
– ident: cit0097
  doi: 10.1103/PhysRevLett.88.053601
– ident: cit0258
  doi: 10.1038/ncomms13165
– ident: cit0033
  doi: 10.1038/srep08058
– ident: cit0084
  doi: 10.1103/PhysRevA.95.053421
– ident: cit0092
  doi: 10.1021/acsnano.5b06311
– ident: cit0170
  doi: 10.1038/srep16926
– ident: cit0229
  doi: 10.1103/PhysRevA.94.032108
– ident: cit0008
  doi: 10.1039/C7TB01921A
– ident: cit0100
  doi: 10.1088/1464-4266/4/2/373
– ident: cit0111
  doi: 10.1088/2040-8978/19/1/013001
– ident: cit0049
  doi: 10.1038/s41565-019-0605-9
– volume: 20
  year: 2018
  ident: cit0196
  publication-title: Entropy.
  doi: 10.3390/e20050326
– ident: cit0288
  doi: 10.1103/PhysRevLett.121.063602
– ident: cit0308
  doi: 10.1088/1367-2630/17/1/013046
– ident: cit0011
  doi: 10.1038/365721a0
– ident: cit0096
  doi: 10.1103/PhysRevA.45.8185
– ident: cit0282
  doi: 10.1103/RevModPhys.89.035002
– ident: cit0115
  doi: 10.1088/1464-4258/10/11/115005
– ident: cit0190
  doi: 10.1002/adfm.201905568
– ident: cit0144
  doi: 10.1021/ac2024365
– ident: cit0019
  doi: 10.1038/nphys3518
– ident: cit0306
  doi: 10.1103/PhysRevA.89.033610
– ident: cit0030
  doi: 10.1103/PhysRevLett.107.020405
– ident: cit0321
  doi: 10.1364/OPTICA.4.000330
– ident: cit0012
  doi: 10.14440/jbm.2015.79
– ident: cit0254
  doi: 10.1038/nphys2798
– ident: cit0146
  doi: 10.1103/PhysRevA.97.051802
– ident: cit0047
  doi: 10.1073/pnas.1706985114
– ident: cit0173
  doi: 10.1103/PhysRevB.96.035402
– ident: cit0151
  doi: 10.1002/adom.201800161
– ident: cit0195
  doi: 10.1080/00107514.2019.1631555
– ident: cit0013
  doi: 10.1073/pnas.86.20.7914
– ident: cit0309
  doi: 10.1103/PhysRevA.96.013837
– ident: cit0029
  doi: 10.1103/PhysRevA.84.052121
– ident: cit0113
  doi: 10.1021/acs.nanolett.8b03978
– ident: cit0291
  doi: 10.1080/09500340.2013.778341
– ident: cit0106
  doi: 10.1038/nphoton.2011.80
– ident: cit0078
  doi: 10.1080/09500340108230922
– ident: cit0142
  doi: 10.1103/PhysRevE.72.031507
– ident: cit0284
  doi: 10.1038/nature08967
– ident: cit0123
  doi: 10.1109/JPHOT.2016.2517131
– ident: cit0225
  doi: 10.1103/PhysRevA.102.013505
– ident: cit0326
  doi: 10.1103/PhysRevB.73.085417
– ident: cit0105
  doi: 10.1038/nature01935
– ident: cit0119
  doi: 10.1002/adom.201901481
– ident: cit0287
  doi: 10.1007/978-3-319-99046-0_35
– ident: cit0007
  doi: 10.1016/j.bpj.2013.08.007
– ident: cit0054
  doi: 10.1017/S0022112090003007
– ident: cit0052
  doi: 10.1103/PhysRevA.82.063827
– ident: cit0316
  doi: 10.1088/1361-6463/ab16b5
– ident: cit0256
  doi: 10.1103/PhysRevLett.113.251801
– ident: cit0090
  doi: 10.1021/nl4010817
– ident: cit0311
  doi: 10.1007/s11433-015-5651-1
– ident: cit0139
  doi: 10.1021/acs.nanolett.9b00332
– ident: cit0270
  doi: 10.1364/JOSAB.34.002514
– ident: cit0274
  doi: 10.1103/PhysRevA.100.032111
– ident: cit0231
  doi: 10.1103/PhysRevA.96.033843
– volume: 100
  start-page: 61
  year: 1948
  ident: cit0262
  publication-title: Front Phys
– ident: cit0133
  doi: 10.1063/1.2260823
– ident: cit0201
  doi: 10.1364/OL.40.004751
– ident: cit0213
  doi: 10.1038/s41467-017-01902-9
– ident: cit0037
  doi: 10.1038/nphys1952
– ident: cit0272
  doi: 10.1103/PhysRevLett.110.160403
– ident: cit0016
  doi: 10.1103/PhysRevE.76.041507
– ident: cit0129
  doi: 10.1021/nl403608a
– ident: cit0014
  doi: 10.1038/ncomms10974
– ident: cit0178
  doi: 10.1364/JOSAB.34.000C14
– ident: cit0070
  doi: 10.1103/PhysRevLett.89.108303
– ident: cit0042
  doi: 10.1103/PhysRevLett.122.223602
– ident: cit0268
  doi: 10.1103/PhysRevLett.118.133605
– ident: cit0102
  doi: 10.1103/PhysRevLett.75.826
– ident: cit0161
  doi: 10.1063/1.1480885
– ident: cit0056
  doi: 10.1038/ncomms1480
– ident: cit0038
  doi: 10.1103/PhysRevLett.109.103603
– ident: cit0293
  doi: 10.1088/1367-2630/aa99d1
– volume: 1910
  start-page: 05371
  year: 2019
  ident: cit0235
  publication-title: arXiv.
– ident: cit0295
  doi: 10.1016/j.physrep.2003.11.002
– ident: cit0128
  doi: 10.1038/nnano.2010.128
– ident: cit0301
  doi: 10.1103/PhysRevA.94.033828
– ident: cit0062
  doi: 10.1016/j.optcom.2019.124864
– ident: cit0168
  doi: 10.1126/sciadv.1602738
– ident: cit0260
  doi: 10.1126/science.1057984
– ident: cit0227
  doi: 10.1088/0953-4075/49/15/153001
– ident: cit0177
  doi: 10.1038/s41467-018-07866-8
– ident: cit0303
  doi: 10.1103/PhysRevLett.125.090501
– ident: cit0242
  doi: 10.1364/JOSAB.20.000887
– ident: cit0206
  doi: 10.1088/1361-648X/ab76ac
– ident: cit0218
  doi: 10.1088/1367-2630/14/5/053012
– ident: cit0088
  doi: 10.1103/PhysRev.50.115
– ident: cit0172
  doi: 10.1103/PhysRevLett.121.033602
– ident: cit0204
  doi: 10.1146/annurev.biophys.050708.133724
– ident: cit0246
  doi: 10.1038/nature01810
– ident: cit0020
  doi: 10.1038/45492
– ident: cit0082
  doi: 10.1364/OPTICA.4.000356
– ident: cit0180
  doi: 10.1103/PhysRevA.68.033802
– ident: cit0076
  doi: 10.1103/PhysRevLett.92.190801
– ident: cit0154
  doi: 10.1039/C4NR00708E
– ident: cit0273
  doi: 10.1038/nphys2863
– ident: cit0275
  doi: 10.1038/nature16155
– ident: cit0077
  doi: 10.1038/28566
– ident: cit0089
  doi: 10.1103/PhysRevA.54.1593
– ident: cit0065
  doi: 10.1364/BOE.3.001891
– ident: cit0294
  doi: 10.1103/PhysRevLett.121.040401
– ident: cit0202
  doi: 10.1364/OPTICA.5.000910
– ident: cit0080
  doi: 10.1103/PhysRevE.59.3676
– ident: cit0061
  doi: 10.1039/C5NR06419H
– ident: cit0285
  doi: 10.1038/nature10461
– ident: cit0290
  doi: 10.1126/science.1163861
– ident: cit0110
  doi: 10.1002/lpor.201900140
– ident: cit0277
  doi: 10.1038/s41567-019-0663-9
– ident: cit0174
  doi: 10.1126/sciadv.1701519
– ident: cit0197
  doi: 10.1103/PhysRevE.95.062131
– ident: cit0314
  doi: 10.1007/978-1-4939-6421-5
– ident: cit0087
  doi: 10.1364/AO.47.006428
– ident: cit0053
  doi: 10.1103/PhysRevLett.109.123604
– ident: cit0253
  doi: 10.1038/nnano.2013.97
– volume: 2005
  start-page: 03705
  year: 2020
  ident: cit0187
  publication-title: arXiv.
– ident: cit0036
  doi: 10.1103/PhysRevLett.119.240401
– ident: cit0199
  doi: 10.1021/acs.nanolett.6b01059
– ident: cit0200
  doi: 10.1103/PhysRevE.99.042202
– ident: cit0167
  doi: 10.1103/PhysRevLett.121.253601
– ident: cit0127
  doi: 10.1364/OE.18.016005
– ident: cit0183
  doi: 10.1364/OE.20.003563
– ident: cit0182
  doi: 10.1038/ncomms4300
– ident: cit0068
  doi: 10.1038/lsa.2016.158
– ident: cit0095
  doi: 10.1364/OE.22.004349
– ident: cit0283
  doi: 10.1088/1367-2630/aad1ea
– ident: cit0024
  doi: 10.1103/PhysRevA.93.053801
– ident: cit0153
  doi: 10.1021/acsphotonics.9b00220
– ident: cit0212
  doi: 10.1098/rstl.1866.0013
– ident: cit0044
  doi: 10.1126/science.aba3993
– ident: cit0141
  doi: 10.1103/PhysRevLett.92.198104
– ident: cit0189
  doi: 10.1021/acs.chemrev.9b00401
– ident: cit0207
  doi: 10.1016/j.biomaterials.2015.12.019
– ident: cit0327
  doi: 10.1117/1.3332850
– ident: cit0135
  doi: 10.1103/PhysRevLett.103.173602
– ident: cit0323
  doi: 10.1103/PhysRevLett.100.013602
– ident: cit0209
  doi: 10.1103/PhysRevE.88.050301
– ident: cit0266
  doi: 10.1088/0953-8984/9/47/001
– ident: cit0313
  doi: 10.1140/epjd/e2019-90702-3
– ident: cit0320
  doi: 10.1364/OL.38.004919
– ident: cit0317
  doi: 10.1088/2040-8978/18/6/064004
– ident: cit0150
  doi: 10.1073/pnas.1510418112
– ident: cit0165
  doi: 10.1038/ncomms10254
– ident: cit0083
  doi: 10.1038/s41566-017-0005-3
– ident: cit0140
  doi: 10.1038/nmeth1013
– ident: cit0079
  doi: 10.1016/j.jqsrt.2014.04.012
– ident: cit0259
  doi: 10.1088/1361-6463/aadccb
– ident: cit0319
  doi: 10.1016/S0030-4018(02)01524-9
– ident: cit0278
  doi: 10.1038/s41467-020-15280-2
– ident: cit0132
  doi: 10.1063/1.4971981
– ident: cit0252
  doi: 10.1126/science.1235441
– ident: cit0158
  doi: 10.1038/nmat1411
– ident: cit0211
  doi: 10.1116/1.5139638
– ident: cit0312
  doi: 10.1038/s41566-019-0395-5
– ident: cit0118
  doi: 10.1103/PhysRevA.91.013416
– ident: cit0159
  doi: 10.1063/1.1339258
– ident: cit0310
  doi: 10.1103/PhysRevLett.124.020401
– ident: cit0192
  doi: 10.1038/s41567-018-0199-4
– ident: cit0116
  doi: 10.1103/PhysRevA.97.053842
– ident: cit0250
  doi: 10.1103/PhysRevLett.97.058301
– ident: cit0267
  doi: 10.1103/PhysRevA.98.013851
– ident: cit0224
  doi: 10.1038/srep20380
– ident: cit0257
  doi: 10.1103/PhysRevLett.117.101101
– ident: cit0138
  doi: 10.1038/s41467-018-07376-7
– ident: cit0163
  doi: 10.1088/1367-2630/11/9/093021
– ident: cit0101
  doi: 10.1103/PhysRevLett.91.093602
– ident: cit0241
  doi: 10.1038/s41586-020-2133-z
– ident: cit0107
  doi: 10.1364/OE.25.011265
– ident: cit0222
  doi: 10.1103/PhysRevA.97.043803
– ident: cit0109
  doi: 10.1201/b17140
– ident: cit0120
  doi: 10.1039/c1lc20272c
– volume: 2006
  start-page: 04090
  year: 2020
  ident: cit0261
  publication-title: arXiv.
– ident: cit0157
  doi: 10.1103/PhysRevE.73.021911
– ident: cit0329
  doi: 10.1021/acsphotonics.9b01433
– ident: cit0055
  doi: 10.1021/acs.nanolett.5b02302
– ident: cit0148
  doi: 10.1002/adma.200401462
– ident: cit0219
  doi: 10.1063/1.5025762
– ident: cit0289
  doi: 10.1103/PhysRevA.94.052109
– ident: cit0086
  doi: 10.1021/nl9034434
– ident: cit0226
  doi: 10.1103/PhysRevResearch.2.033437
– ident: cit0060
  doi: 10.1002/adfm.202002081
– ident: cit0156
  doi: 10.1364/OE.11.000446
– ident: cit0325
  doi: 10.1364/OE.25.011692
– ident: cit0279
  doi: 10.1038/s41586-018-0038-x
– volume: 2005
  start-page: 11662
  year: 2020
  ident: cit0236
  publication-title: arXiv.
– ident: cit0026
  doi: 10.1088/1367-2630/12/3/033015
– ident: cit0281
  doi: 10.1016/j.physleta.2003.12.022
– ident: cit0124
  doi: 10.1039/b805318a
– ident: cit0232
  doi: 10.1103/PhysRevLett.110.071105
– ident: cit0216
  doi: 10.1088/1681-7575/aadbe4
– ident: cit0230
  doi: 10.1103/PhysRevA.99.013821
– ident: cit0072
  doi: 10.1209/0295-5075/100/48005
– ident: cit0203
  doi: 10.1021/nl2008218
– ident: cit0193
  doi: 10.1103/PhysRevLett.122.110601
– ident: cit0244
  doi: 10.1103/RevModPhys.75.281
– ident: cit0324
  doi: 10.1364/OE.18.006988
– ident: cit0137
  doi: 10.1021/acs.nanolett.7b02196
– ident: cit0171
  doi: 10.1103/PhysRevE.97.052112
– ident: cit0058
  doi: 10.1364/OPTICA.374441
– ident: cit0027
  doi: 10.1073/pnas.0912969107
– ident: cit0186
  doi: 10.1103/PhysRevA.101.063819
– ident: cit0237
  doi: 10.1103/PhysRevLett.111.180403
– ident: cit0208
  doi: 10.1364/OE.22.016207
– ident: cit0264
  doi: 10.1088/1367-2630/12/3/033028
– volume: 1912
  start-page: 08159
  year: 2019
  ident: cit0302
  publication-title: arXiv.
– ident: cit0018
  doi: 10.1002/adbi.201900082
– ident: cit0131
  doi: 10.1209/epl/i2005-10022-6
– ident: cit0031
  doi: 10.1103/RevModPhys.85.471
– ident: cit0265
  doi: 10.1103/RevModPhys.71.1233
– ident: cit0005
  doi: 10.1088/2040-8978/13/4/044024
– ident: cit0149
  doi: 10.1063/1.1753067
– ident: cit0305
  doi: 10.1088/1367-2630/14/10/103047
– ident: cit0243
  doi: 10.1364/JOSAB.20.001003
– ident: cit0318
  doi: 10.1016/0030-4018(94)90638-6
– ident: cit0017
  doi: 10.1021/acs.nanolett.6b04583
– ident: cit0025
  doi: 10.1103/PhysRevA.101.053835
– ident: cit0048
  doi: 10.1038/nphoton.2011.81
– ident: cit0063
  doi: 10.1002/lapl.201010100
– ident: cit0091
  doi: 10.1103/PhysRevA.30.2508
– ident: cit0051
  doi: 10.1103/PhysRevLett.105.113601
– ident: cit0001
  doi: 10.1017/CBO9781107279711
– ident: cit0276
  doi: 10.1038/nature15750
– ident: cit0067
  doi: 10.1364/OE.15.008619
– ident: cit0297
  doi: 10.1364/JOSAB.34.0000C1
– ident: cit0126
  doi: 10.1364/OE.23.007273
– ident: cit0298
  doi: 10.1023/A:1026048530567
– ident: cit0238
  doi: 10.1103/PhysRevA.96.063810
– ident: cit0010
  doi: 10.1038/348348a0
– ident: cit0094
  doi: 10.1016/S0030-4018(99)00619-7
– ident: cit0330
  doi: 10.1103/PhysRevA.96.063842
– ident: cit0075
  doi: 10.1103/PhysRevLett.117.123604
– ident: cit0103
  doi: 10.1364/OL.22.000052
– ident: cit0245
  doi: 10.1103/PhysRevB.101.134415
– ident: cit0143
  doi: 10.1039/b601886f
– ident: cit0039
  doi: 10.1073/pnas.1309167110
– ident: cit0074
  doi: 10.1103/PhysRevA.94.033818
– ident: cit0145
  doi: 10.1038/ncomms3374
– ident: cit0175
  doi: 10.1103/PhysRevB.101.205416
– ident: cit0043
  doi: 10.1103/PhysRevLett.122.223601
– ident: cit0164
  doi: 10.1021/acs.cgd.7b01328
– ident: cit0239
  doi: 10.1103/PhysRevA.96.023827
– ident: cit0210
  doi: 10.1103/PhysRevB.95.235306
– ident: cit0220
  doi: 10.1364/OPTICA.4.000746
– ident: cit0022
  doi: 10.1088/1361-6633/ab6100
– ident: cit0057
  doi: 10.1364/JOSAB.389394
– ident: cit0191
  doi: 10.1038/s41427-018-0026-5
– ident: cit0205
  doi: 10.1021/acsmacrolett.8b00498
– ident: cit0064
  doi: 10.1126/science.1058591
– ident: cit0185
  doi: 10.1038/s41598-019-40475-z
– volume: 6
  year: 2020
  ident: cit0198
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz9858
– ident: cit0015
  doi: 10.1038/s41467-017-00713-2
– ident: cit0251
  doi: 10.1039/b901646e
– ident: cit0041
  doi: 10.1103/PhysRevLett.122.123602
– ident: cit0040
  doi: 10.1103/PhysRevLett.122.123601
– ident: cit0286
  doi: 10.1103/RevModPhys.86.1391
– ident: cit0271
  doi: 10.1038/s42005-019-0163-3
– ident: cit0299
  doi: 10.1038/srep07664
– ident: cit0002
  doi: 10.1038/s41586-018-0450-2
– ident: cit0300
  doi: 10.1088/1367-2630/aad863
– ident: cit0059
  doi: 10.1364/OE.17.006230
– ident: cit0122
  doi: 10.1364/OL.18.001867
– ident: cit0050
  doi: 10.1021/acsphotonics.6b00023
– ident: cit0045
  doi: 10.1038/s41467-019-08968-7
SSID ssj0001670803
Score 2.304042
SecondaryResourceType review_article
Snippet The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of...
The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Dark energy
Dark matter
Light
optical manipulation
optical tweezers
orbital angular momentum
precision sensing
Remote control
Rotation
State-of-the-art reviews
Torque
Trapped particles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i6Sg5e627zaFpvKi6roCcX9hbyPEl36VbBf-8kbZeqh71IbyEpITPJfDOZfIPQdao82BXhYCMJmgAC54lWvEgmVgtCtbDMhHjHy2s2m7PnBV_0Sn2FnLCGHrhZuLEginFdwFlOPLOk0EXh4MuVMD4TJjKBgs3rOVMxupIJgEK0e7KTT8aECgamKLxNIdCU06DKP4xR5Oz_xVj654SOZmd6gPZbvIjvmnkeoh1XHqHdmLdp1sfo6ykk_6iQu4wr99npEYZ_4-UqxqlxYLjoqnTdYgB8uKmGtcaqtLh_g42XHlfLuo0PYttUq4_NdQUdncWrLpPuBM2nj28Ps6StppAYnoo6YRY8idRpa1OfccO5s4JZ711qHDgNOfETk1LLtDEm15nRVBitfQ6Az4FNF_QUDcpl6c4QnnilAWhxZbljAjxMJ7xlytPCQl_Hhoh1yypNSzUeKl68y7RlJO2kIYM0ZCuNIbrZDFs1XBvbBtwHmW06B6rs2AAKJNvlkNsUaIiKvsRlHSMlvilrIumWCYw69ZDt3l9LwvNA41owfv4f87tAeyTk0cSwzwgN6urDXQIQqvVV1Plv6SEE8g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKKyQuqC0gWkrlQ6-BjR9xzI1WXW0rtaeuVE6Wn1zQZpWESvz7jh17u4BQDyg3y2NZnrFnPPn8DUJntQ7gV4SHjSRoBRE4r4zmspo5Iwg1wjEb8x03t81iya7veUETDhlWGe_QYSKKSGd13NzaDAUR95lQwcCrxGcmBJpaGq3yBdoj0VrBpGffFk9plkaACC1vd_4l_ZtXSuT9f1CX_nVUJ_8z30evc-CIv06aPkA7fnWIXiYApx3eoF9XEQWkI4gZ9_6hGBSGsXG3TglrHKkuSrmuLxgiPzyVxRowLAXe_pWNu4D7bsyJQuymsvWpeeyho3d4XSB1b9Fyfnl3sahyWYXK8lqMFXNwpai9ca4ODbeceyeYC8HX1sPtoSVhZmvqmLHWtqaxhgprTGgh8vPg3AV9h3ZX3cq_R3gWtIGIi2vHPRNw1fQiOKYDlQ76enaEWFlWZTPneCx98UPVmZq0aENFbaisjSP0aSO2nkg3nhM4jzrbdI6c2amh67-rvBxKEM24kRAVkMAckUZKD1-rhQ2NsDBZua1xNaaUSZjqmyj6zAROinmofAgMivA28rlKxo__Y-gP6BWJOJqU9jlBu2P_03-EQGg0p8nUHwH-2QCo
  priority: 102
  providerName: Taylor & Francis
Title Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles
URI https://www.tandfonline.com/doi/abs/10.1080/23746149.2020.1838322
https://www.proquest.com/docview/2581109945
https://doaj.org/article/72a45b9cee2f4d29b99e9e98a7cf67c4
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYKqBIXBH2I58oHrimJH3HCBQECLUisqqorbU-Wn71UmyUbkPj3jB1noa0Eys2xI8szmRl_Hn-D0HGhPPgV4eBHEjSDCJxnWvE6y60WhGphmQl4x92kHE_Z7YzPEuC2TGmVg02Mhto2JmDkJ4RXgRyzZvxscZ-FqlHhdDWV0FhDG2CCK9h8bVxcTb7_eEFZSgEhER2u7lT5CaGCgUsKd1QINFU0qPRfTily9__DXPqfpY7u53obbaW4EZ_3gt5BH9z8E_oY8zfN8jN6uglJQCrkMOPWPQ76hOHbuFlEvBoHpouhWtcphsAP91WxlljNLX59ko0bj9umSzghtn3V-tjctdDRWbwYMuq-oOn11c_LcZaqKmSGF6LLmIUdReG0tYUvueHcWcGs964wDjYPFfG5Kahl2hhT6dJoKozWvoLAz4FvF_QrWp83c7eLcO6VhoCLK8sdE7DTdMJbpjytLfR1bA-xYVmlSZTjofLFH1kkZtJBGjJIQyZp7KFvq2GLnnPjvQEXQWarzoEyOzY07W-ZlkMKohjXNQQFxDNLal3XDp5KCeNLYWCy9WuJyy4iJr4vbyLpOxM4HNRDJhuwlC8au__26wO0SUKmTAR2DtF61z64Iwh1Oj1Ca_mv8Shp9SgCBs-v_v6Z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKdaaMEHOIZu_IiTSqhqodUubVcItVJvxk8ukCzZQLV_it_YcWK3BSR6qnJz7MTyjD2fx-P5EHqdKw92RTiYSIJmgMB5phWvsrHVglAtLDPB33E8Kyan7OMZP1tBv9NdmBBWmdbEfqG2jQk-8i3Cy5Acs2J8Z_4jC6xR4XQ1UWgManHoluewZVu8m34A-b4h5GD_5P0ki6wCmeG56DJmAVHnTlub-4Ibzp0VzHrvcuMAPJfEj01OLdPGmFIXRlNhtPYlAB8Htk1Q-O4dtMoobGVGaHVvf_bp85VXpxAAwWi6KlSOtwgVDExguBNDoKikYQr9YQR7roC_MqX-Yxl6c3fwED2IOBXvDor1CK24-jG628eLmsUTtJyGoCMVYqZx634l_cXwbdzMe_84Dpk1EjvYNgagiQcWrgVWtcXXT85x43HbdNEvie2yVt_hN6G4a6Gis3ieIvieotNbGe9naFQ3tVtDeOyVBoDHleWOCdjZOuEtU55WFuo6to5YGlZpYorzwLTxTeYxE2qShgzSkFEa6-jtZbP5kOPjpgZ7QWaXlUOK7r6gab_KOBxSEMW4rgCEEM8sqXRVOXhKJYwvhIHOVtclLrveQ-MHOhVJb-jARlIPGdechbyaIc____oVujc5OT6SR9PZ4Qt0n4Qond6ptIFGXfvTbQLM6vTLqNsYfbnt6XQBTis7zA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKFYhLRQuINz5wDWz8iBNupWW12xbUA0hwsuIXF7RZZVOk_nvGjr28hDig3CyPZXnGnvHk8zcIHea1A78iLGwkQTOIwHmmal5lA6MEoUoYpn2-4_yiGF2xX9c8oQlnEVbp79CuJ4oIZ7Xf3FPjEiLumFDBwKv4ZyYEmkrqrXIBfeYl-How6cHN6DHNUggQoentzlvSz7xSIO9_QV366qgO_me4ir7EwBF_7zX9FX2yk29oKQA49WwN_R97FFDtQcy4tffJoDCMjZtpSFhjT3WRynWdYIj8cF8Wa4ZhKfDTX9m4cbhtupgoxKYvWx-auxY6WoOnCVK3jq6GZ5c_Rlksq5BpnosuYwauFLlVxuSu4JpzawQzztlcW7g9lMQNdE4NU1rrUhVaUaGVciVEfhacu6AbaHHSTOwmwgNXK4i4eG24ZQKumlY4w2pHKwN9LdtCLC2r1JFz3Je-uJN5pCZN2pBeGzJqYwsdzcWmPenGewKnXmfzzp4zOzQ07a2MyyEFqRlXFUQFxDFDKlVVFr6yFtoVQsNkq6cal11Imbi-vomk70xgN5mHjIfATBJeej7XivHtDwx9gJb__hzKP-OL3ztohXhITcgA7aLFrv1n9yAm6tR-sPoHZ_YDTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initiating+revolutions+for+optical+manipulation%3A+the+origins+and+applications+of+rotational+dynamics+of+trapped+particles&rft.jtitle=Advances+in+physics%3A+X&rft.au=Bruce%2C+Graham+D.&rft.au=Rodr%C3%ADguez-Sevilla%2C+Paloma&rft.au=Dholakia%2C+Kishan&rft.date=2021-01-01&rft.issn=2374-6149&rft.eissn=2374-6149&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2020.1838322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23746149_2020_1838322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon