Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles

The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretica...

Full description

Saved in:
Bibliographic Details
Published inAdvances in physics: X Vol. 6; no. 1
Main Authors Bruce, Graham D., Rodríguez-Sevilla, Paloma, Dholakia, Kishan
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.01.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The fastest-spinning man-made object is a tiny dumbbell rotating at 5 GHz. The smallest wind-up motor is constructed from a DNA molecule. Picoliter volumes of fluids are remotely controlled and their viscosity precisely measured using microrheometers based on miniscule rotating particles. Theoretical predictions for extraordinarily weak forces related to the presence of dark matter, dark energy and vacuum-induced friction might be revealed, and the surprising properties of light have already been experimentally evidenced. All of these exciting landmarks have only been possible thanks to the torque exerted by light, which enables rotation of an optically trapped particle. Here, we review how light can impart torque on optically trapped particles, paying close attention to the design of the properties of both the particle and the light field. We detail how the maximum achievable rotation speed is limited by the environment, but can simultaneously be used to infer properties of the surrounding medium and of the light field itself. We also review the state-of-the-art applications of light-driven rotors, as well as proposals for the next generation of measurements, particularly at the classical-quantum interface, which can be performed using rotating optically trapped objects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2374-6149
2374-6149
DOI:10.1080/23746149.2020.1838322