Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework
We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphou...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 15; pp. 7158 - 717 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We show that a hydrogen-bonded framework,
TBAP
-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g
−1
h
−1
. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of
TBAP
was 20-200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of
TBAP
and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy-structure-function (ESF) maps can be used to identify molecules such as
TBAP
that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the
a priori
computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics.
A hydrogen-bonded organic framework is an effective photocatalyst for producing hydrogen from water. Its crystal structure is key to its activity; a chemically identical, amorphous version is almost inactive, as rationalized by crystal structure prediction. |
---|---|
AbstractList | We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g−1 h−1. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics. We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g⁻¹ h⁻¹. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics. We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20-200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy-structure-function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics. A hydrogen-bonded organic framework is an effective photocatalyst for producing hydrogen from water. Its crystal structure is key to its activity; a chemically identical, amorphous version is almost inactive, as rationalized by crystal structure prediction. We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics. |
Author | Day, Graeme M Pulido, Angeles Wilbraham, Liam Sprick, Reiner Sebastian Spackman, Peter R McMahon, David P Little, Marc A Aitchison, Catherine M Clowes, Rob Zwijnenburg, Martijn A Cooper, Andrew I Kane, Christopher M Wang, Xiaoyan Chen, Linjiang |
AuthorAffiliation | University of Liverpool Department of Chemistry Leverhulme Research Centre for Functional Materials Design University of Southampton Department of Chemistry and Materials Innovation Factory Computational Systems Chemistry University College London School of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry and Materials Innovation Factory – name: University of Liverpool – name: University of Southampton – name: Computational Systems Chemistry – name: Department of Chemistry – name: Leverhulme Research Centre for Functional Materials Design – name: School of Chemistry – name: University College London |
Author_xml | – sequence: 1 givenname: Catherine M surname: Aitchison fullname: Aitchison, Catherine M – sequence: 2 givenname: Christopher M surname: Kane fullname: Kane, Christopher M – sequence: 3 givenname: David P surname: McMahon fullname: McMahon, David P – sequence: 4 givenname: Peter R surname: Spackman fullname: Spackman, Peter R – sequence: 5 givenname: Angeles surname: Pulido fullname: Pulido, Angeles – sequence: 6 givenname: Xiaoyan surname: Wang fullname: Wang, Xiaoyan – sequence: 7 givenname: Liam surname: Wilbraham fullname: Wilbraham, Liam – sequence: 8 givenname: Linjiang surname: Chen fullname: Chen, Linjiang – sequence: 9 givenname: Rob surname: Clowes fullname: Clowes, Rob – sequence: 10 givenname: Martijn A surname: Zwijnenburg fullname: Zwijnenburg, Martijn A – sequence: 11 givenname: Reiner Sebastian surname: Sprick fullname: Sprick, Reiner Sebastian – sequence: 12 givenname: Marc A surname: Little fullname: Little, Marc A – sequence: 13 givenname: Graeme M surname: Day fullname: Day, Graeme M – sequence: 14 givenname: Andrew I surname: Cooper fullname: Cooper, Andrew I |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-209146$$DView record from Swedish Publication Index |
BookMark | eNp90c1rFTEQAPAgFaxtL96FFS9FXM1u9u0mx0ef2kJBD9VrmE0mbWp2syZZyv735rnyhFLMJR_8ZpjMvCRHox-RkFcV_VBRJj5qmoDSuhL6GTmu6YaWXSPao8OZ8xfkLMZ7mhentBXimOhvdz55BQnckqwqppCvYxFQzyrZfOqXAgrlh2lOsH8A55bCahyTNRb1-2LwDtXsIBR3iw7-Fsey96NGXZgAAz748POUPDfgIp793U_I98-fbi4uy-uvX64uttel2lRdKhk0yGvVtR3TTDWGmoa3CBXrWQ81V4ILAX3HqUbVUs6hMnzTCWp0rXrULTsh5Zo3PuA093IKdoCwSA9W7uyPrfThVjo7y5qKqtn789XnX_-aMSY52KjQORjRz1HWDRMNa3jXZfr2Eb33c8jdyIpxUbdtri6rd6tSwccY0BxKqKjcz0ju6M32z4x2GdNHWNm1xymAdU-HvFlDQlSH1P_GLidtsnn9P8N-A60jrJM |
CitedBy_id | crossref_primary_10_1002_sus2_220 crossref_primary_10_1021_acs_cgd_3c00706 crossref_primary_10_1021_acscentsci_2c01196 crossref_primary_10_1002_ajoc_202100789 crossref_primary_10_1016_j_ccr_2021_214375 crossref_primary_10_1038_s41467_021_21091_w crossref_primary_10_1021_jacs_0c04885 crossref_primary_10_1039_D0SC02675A crossref_primary_10_1038_s42004_022_00705_4 crossref_primary_10_1002_aenm_202303680 crossref_primary_10_1016_j_fuel_2023_128716 crossref_primary_10_1039_D1CE01702K crossref_primary_10_1002_aenm_202100709 crossref_primary_10_3390_ijms23041929 crossref_primary_10_1002_ange_202413131 crossref_primary_10_1098_rsta_2019_0600 crossref_primary_10_1016_j_seppur_2021_119244 crossref_primary_10_1038_s41929_023_00972_x crossref_primary_10_1038_s44160_021_00005_0 crossref_primary_10_1039_D4FD00105B crossref_primary_10_1039_D0NR07533G crossref_primary_10_1021_accountsmr_0c00019 crossref_primary_10_1021_acsapm_0c01070 crossref_primary_10_1016_j_apcatb_2021_120337 crossref_primary_10_1002_smll_202410063 crossref_primary_10_1038_s41557_021_00741_y crossref_primary_10_1055_a_1928_2562 crossref_primary_10_1021_jacs_2c02666 crossref_primary_10_1002_anie_202413131 crossref_primary_10_1039_D1SC03388C crossref_primary_10_1039_D1TA03710B crossref_primary_10_1039_D1TA08889K crossref_primary_10_1021_jacs_0c03418 crossref_primary_10_1039_D4CC03898C crossref_primary_10_1039_D4TA06883A crossref_primary_10_1007_s11426_022_1333_9 crossref_primary_10_1021_acs_macromol_2c00075 crossref_primary_10_1021_acscatal_4c03672 crossref_primary_10_1055_a_1695_0820 crossref_primary_10_1021_acsami_2c05176 crossref_primary_10_1039_D1TA04288B crossref_primary_10_1002_adma_202300037 crossref_primary_10_2174_1385272826666220330113959 crossref_primary_10_1016_j_dyepig_2022_110506 crossref_primary_10_3390_separations10030196 crossref_primary_10_1002_adfm_202214388 crossref_primary_10_1016_j_enchem_2025_100151 crossref_primary_10_1039_D1TA03098A crossref_primary_10_1002_chem_202101510 crossref_primary_10_1021_acs_chemrev_1c00686 crossref_primary_10_1039_D4NR00383G |
Cites_doi | 10.1002/anie.201603532 10.1021/acs.chemmater.8b02833 10.1021/acs.chemmater.8b01621 10.1021/jp809119m 10.1002/adma.201704944 10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y 10.1107/S0108768106026814 10.1039/b612190j 10.1103/PhysRevB.37.785 10.1002/anie.201607375 10.1021/cr9904009 10.1038/nature21419 10.1063/1.5012601 10.1016/j.trechm.2019.03.001 10.1039/C4SC00016A 10.1002/adfm.201703146 10.1002/anie.201706870 10.1002/anie.201406501 10.1039/C9SC02832C 10.1126/science.1226558 10.1038/natrevmats.2017.50 10.1021/ja511552k 10.1038/ncomms11564 10.1039/C5TC03765D 10.1126/science.aal1585 10.1007/BF00533485 10.1039/C8TA04186E 10.1021/ja2066016 10.1002/asia.201701107 10.1002/aenm.201802181 10.1021/acs.joc.5b02128 10.1039/C6TA09234A 10.1021/acs.chemmater.6b01894 10.1021/acs.jctc.5b01112 10.1126/science.1116275 10.1039/C8FD00031J 10.1002/anie.200504510 10.1021/ja809307s 10.1107/S0365110X65001391 10.1039/C4SC00095A 10.1039/C4SC01132E 10.1021/ja906041f 10.1038/nature01650 10.1063/1.1677028 10.1038/nchem.1730 10.1021/acscentsci.7b00145 10.1039/C7TA01142C 10.1021/ja952478m 10.1039/C7NR08890F 10.1021/jp960333b 10.1016/S1570-7946(10)28137-3 10.1002/anie.201605547 10.1021/ja00214a001 10.1021/acs.chemmater.5b04567 10.1126/science.aat6394 10.1039/c004164e 10.1002/aenm.201703278 10.1073/pnas.092143399 10.1039/C7TA10461H 10.1038/natrevmats.2016.78 10.1039/C7CS00153C 10.1021/acs.jpcc.6b11133 10.1063/1.464913 10.1021/ja00051a040 10.1021/jacs.9b03591 10.1038/s41467-018-07420-6 10.1039/C7TC02553J 10.1021/cr100428a 10.1021/jacs.6b03472 10.1139/p80-159 10.1021/j100096a001 10.1021/jacs.8b12124 10.1021/jacs.7b13706 10.1016/j.chempr.2019.04.015 10.1038/nature10125 10.1016/j.apsusc.2016.07.030 10.1126/science.aat7679 10.1038/natrevmats.2016.68 10.1038/nmat1612 10.1021/jp962060q 10.1038/natrevmats.2017.45 10.1038/s41557-018-0141-5 10.1107/S0567740878005312 10.1038/nature07786 10.1002/anie.201800354 10.1039/c3cp50168j |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1039/d0ta00219d |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 717 |
ExternalDocumentID | oai_DiVA_org_liu_209146 10_1039_D0TA00219D d0ta00219d |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 ABXSW ADTPV ANBJS AOWAS D8T DG8 EJD J3G J3H ROL ZZAVC |
ID | FETCH-LOGICAL-c517t-3a4e82c7673d3c4f0f486ea13b3ba28c9899ab780dec6088a1f85790fd2cbed63 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Aug 21 06:52:06 EDT 2025 Fri Jul 11 10:10:05 EDT 2025 Mon Jun 30 11:59:00 EDT 2025 Tue Jul 01 01:12:50 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Sat Jan 08 03:36:51 EST 2022 Wed Nov 11 00:36:14 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c517t-3a4e82c7673d3c4f0f486ea13b3ba28c9899ab780dec6088a1f85790fd2cbed63 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI 10.1039/d0ta00219d 1919802-1919809 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1994-0591 0000-0002-7596-7262 0000-0003-1437-8314 0000-0001-5291-2130 0000-0002-0382-5863 0000-0002-5389-2706 0000-0001-8396-2771 0000-0003-0201-1021 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-209146 |
PQID | 2389266989 |
PQPubID | 2047523 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2439434877 swepub_primary_oai_DiVA_org_liu_209146 rsc_primary_d0ta00219d proquest_journals_2389266989 crossref_primary_10_1039_D0TA00219D crossref_citationtrail_10_1039_D0TA00219D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hehre (D0TA00219D-(cit85)/*[position()=1]) 1972; 56 Sprick (D0TA00219D-(cit12)/*[position()=1]) 2015; 137 Jin (D0TA00219D-(cit46)/*[position()=1]) 2019; 5 Bredas (D0TA00219D-(cit56)/*[position()=1]) 2002; 99 Jorgensen (D0TA00219D-(cit75)/*[position()=1]) 1988; 110 Jones (D0TA00219D-(cit40)/*[position()=1]) 2011; 474 Zhang (D0TA00219D-(cit6)/*[position()=1]) 2017; 56 Stephens (D0TA00219D-(cit83)/*[position()=1]) 1994; 98 Pulido (D0TA00219D-(cit36)/*[position()=1]) 2017; 543 Trickett (D0TA00219D-(cit39)/*[position()=1]) 2017; 2 Frisch (D0TA00219D-(cit86)/*[position()=1]) 2016 Huang (D0TA00219D-(cit30)/*[position()=1]) 2016; 1 Case (D0TA00219D-(cit76)/*[position()=1]) 2016; 12 Rappe (D0TA00219D-(cit91)/*[position()=1]) 1992; 114 Kolossváry (D0TA00219D-(cit72)/*[position()=1]) 1999; 20 Stegbauer (D0TA00219D-(cit55)/*[position()=1]) 2014; 5 Vyas (D0TA00219D-(cit48)/*[position()=1]) 2016; 28 Schwarze (D0TA00219D-(cit60)/*[position()=1]) 2013; 15 Lee (D0TA00219D-(cit81)/*[position()=1]) 1988; 37 Yamashita (D0TA00219D-(cit67)/*[position()=1]) 2016; 28 Campbell (D0TA00219D-(cit51)/*[position()=1]) 2017; 5 Fabbiani (D0TA00219D-(cit16)/*[position()=1]) 2006; 62 Kang (D0TA00219D-(cit42)/*[position()=1]) 2017; 5 Wang (D0TA00219D-(cit53)/*[position()=1]) 2009; 131 Kosco (D0TA00219D-(cit63)/*[position()=1]) 2018; 8 Kalidindi (D0TA00219D-(cit24)/*[position()=1]) 2015; 54 Li (D0TA00219D-(cit4)/*[position()=1]) 2016; 138 Sprick (D0TA00219D-(cit47)/*[position()=1]) 2019; 31 Zhang (D0TA00219D-(cit1)/*[position()=1]) 2016; 55 Kai (D0TA00219D-(cit15)/*[position()=1]) 1978; 34 Sachs (D0TA00219D-(cit54)/*[position()=1]) 2018; 9 Yin (D0TA00219D-(cit25)/*[position()=1]) 2018; 57 Day (D0TA00219D-(cit49)/*[position()=1]) 2018; 30 Ma (D0TA00219D-(cit11)/*[position()=1]) 2018; 361 Yaghi (D0TA00219D-(cit27)/*[position()=1]) 2003; 423 Ma (D0TA00219D-(cit34)/*[position()=1]) 2009; 458 Dovesi (D0TA00219D-(cit89)/*[position()=1]) 2018; 8 Jansen (D0TA00219D-(cit33)/*[position()=1]) 2006; 45 Brandenburg (D0TA00219D-(cit62)/*[position()=1]) 2018; 148 Hariharan (D0TA00219D-(cit84)/*[position()=1]) 1973; 28 Bai (D0TA00219D-(cit8)/*[position()=1]) 2019; 141 Férey (D0TA00219D-(cit28)/*[position()=1]) 2005; 309 Huang (D0TA00219D-(cit9)/*[position()=1]) 2016; 7 Yamagishi (D0TA00219D-(cit21)/*[position()=1]) 2018; 361 McCulloch (D0TA00219D-(cit66)/*[position()=1]) 2006; 5 Coombes (D0TA00219D-(cit77)/*[position()=1]) 1996; 100 Adil (D0TA00219D-(cit26)/*[position()=1]) 2017; 46 Price (D0TA00219D-(cit78)/*[position()=1]) 2010; 12 Li (D0TA00219D-(cit23)/*[position()=1]) 2016; 55 Pyzer-Knapp (D0TA00219D-(cit41)/*[position()=1]) 2014; 5 Hisaki (D0TA00219D-(cit20)/*[position()=1]) 2019; 141 Stylianou (D0TA00219D-(cit22)/*[position()=1]) 2010; 132 Day (D0TA00219D-(cit69)/*[position()=1]) 2007; 9 Feng (D0TA00219D-(cit17)/*[position()=1]) 2015; 80 Cui (D0TA00219D-(cit37)/*[position()=1]) 2019; 10 Zhou (D0TA00219D-(cit45)/*[position()=1]) 2018; 13 Tomasi (D0TA00219D-(cit87)/*[position()=1]) 2005; 105 He (D0TA00219D-(cit18)/*[position()=1]) 2011; 133 Thompson (D0TA00219D-(cit71)/*[position()=1]) 2014; 5 Diercks (D0TA00219D-(cit29)/*[position()=1]) 2017; 355 Chen (D0TA00219D-(cit3)/*[position()=1]) 2017; 2 Denny (D0TA00219D-(cit43)/*[position()=1]) 2016; 1 Dyer (D0TA00219D-(cit35)/*[position()=1]) 2013; 340 Dapprich (D0TA00219D-(cit90)/*[position()=1]) 1999; 1 Yang (D0TA00219D-(cit5)/*[position()=1]) 2016; 55 Beaudoin (D0TA00219D-(cit10)/*[position()=1]) 2013; 5 Yang (D0TA00219D-(cit50)/*[position()=1]) 2018; 30 Ohtani (D0TA00219D-(cit65)/*[position()=1]) 1997; 101 Wang (D0TA00219D-(cit68)/*[position()=1]) 2018; 10 Thorley (D0TA00219D-(cit57)/*[position()=1]) 2016; 4 Kitaigorodskii (D0TA00219D-(cit32)/*[position()=1]) 1965; 18 Wang (D0TA00219D-(cit38)/*[position()=1]) 2017; 5 Kolossváry (D0TA00219D-(cit73)/*[position()=1]) 1996; 118 Bao (D0TA00219D-(cit19)/*[position()=1]) 2018; 140 Lyle (D0TA00219D-(cit31)/*[position()=1]) 2019; 1 McMahon (D0TA00219D-(cit79)/*[position()=1]) 2018; 211 Figueira-Duarte (D0TA00219D-(cit14)/*[position()=1]) 2011; 111 Guiglion (D0TA00219D-(cit61)/*[position()=1]) 2017; 121 Furche (D0TA00219D-(cit88)/*[position()=1]) 2014; 4 Rice (D0TA00219D-(cit52)/*[position()=1]) 2018; 10 Bi (D0TA00219D-(cit59)/*[position()=1]) 2017; 27 Kazantsev (D0TA00219D-(cit70)/*[position()=1]) 2010; 28 Vosko (D0TA00219D-(cit80)/*[position()=1]) 1980; 58 Becke (D0TA00219D-(cit82)/*[position()=1]) 1993; 98 Wen (D0TA00219D-(cit2)/*[position()=1]) 2017; 391 Stegbauer (D0TA00219D-(cit13)/*[position()=1]) 2018; 8 Maeda (D0TA00219D-(cit64)/*[position()=1]) 2009; 113 Slater (D0TA00219D-(cit44)/*[position()=1]) 2017; 3 Sprick (D0TA00219D-(cit7)/*[position()=1]) 2018; 6 Gao (D0TA00219D-(cit58)/*[position()=1]) 2018; 6 |
References_xml | – issn: 2011 publication-title: MacroModel, Version 9.0 doi: Schrodinger – issn: 2016 publication-title: Gaussian 16 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – volume: 55 start-page: 9202 year: 2016 ident: D0TA00219D-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201603532 – volume: 31 start-page: 305 year: 2019 ident: D0TA00219D-(cit47)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02833 – volume: 30 start-page: 4361 year: 2018 ident: D0TA00219D-(cit50)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01621 – volume: 113 start-page: 4940 year: 2009 ident: D0TA00219D-(cit64)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp809119m – volume: 30 start-page: 1704944 year: 2018 ident: D0TA00219D-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704944 – volume: 20 start-page: 1671 year: 1999 ident: D0TA00219D-(cit72)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y – volume: 62 start-page: 826 year: 2006 ident: D0TA00219D-(cit16)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768106026814 – volume: 9 start-page: 1693 year: 2007 ident: D0TA00219D-(cit69)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b612190j – volume: 37 start-page: 785 year: 1988 ident: D0TA00219D-(cit81)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 55 start-page: 15712 year: 2016 ident: D0TA00219D-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607375 – volume: 4 start-page: 91 year: 2014 ident: D0TA00219D-(cit88)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 105 start-page: 2999 year: 2005 ident: D0TA00219D-(cit87)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 543 start-page: 657 year: 2017 ident: D0TA00219D-(cit36)/*[position()=1] publication-title: Nature doi: 10.1038/nature21419 – volume: 148 start-page: 064104 year: 2018 ident: D0TA00219D-(cit62)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5012601 – volume: 1 start-page: 172 year: 2019 ident: D0TA00219D-(cit31)/*[position()=1] publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.03.001 – volume: 5 start-page: 2789 year: 2014 ident: D0TA00219D-(cit55)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC00016A – volume: 27 start-page: 1703146 year: 2017 ident: D0TA00219D-(cit59)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703146 – volume: 56 start-page: 13445 year: 2017 ident: D0TA00219D-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706870 – volume: 54 start-page: 221 year: 2015 ident: D0TA00219D-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201406501 – volume: 10 start-page: 9988 year: 2019 ident: D0TA00219D-(cit37)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02832C – volume: 340 start-page: 847 year: 2013 ident: D0TA00219D-(cit35)/*[position()=1] publication-title: Science doi: 10.1126/science.1226558 – volume: 2 start-page: 17050 year: 2017 ident: D0TA00219D-(cit3)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.50 – volume: 137 start-page: 3265 year: 2015 ident: D0TA00219D-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511552k – volume: 8 start-page: e1360 year: 2018 ident: D0TA00219D-(cit89)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 7 start-page: 11564 year: 2016 ident: D0TA00219D-(cit9)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11564 – volume: 4 start-page: 3825 year: 2016 ident: D0TA00219D-(cit57)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03765D – volume: 355 start-page: 585 year: 2017 ident: D0TA00219D-(cit29)/*[position()=1] publication-title: Science doi: 10.1126/science.aal1585 – volume: 28 start-page: 213 year: 1973 ident: D0TA00219D-(cit84)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/BF00533485 – volume: 6 start-page: 11994 year: 2018 ident: D0TA00219D-(cit7)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04186E – volume: 133 start-page: 14570 year: 2011 ident: D0TA00219D-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2066016 – volume: 13 start-page: 9 year: 2018 ident: D0TA00219D-(cit45)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201701107 – volume: 8 start-page: 1802181 year: 2018 ident: D0TA00219D-(cit63)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802181 – volume: 80 start-page: 10973 year: 2015 ident: D0TA00219D-(cit17)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b02128 – volume: 5 start-page: 1334 year: 2017 ident: D0TA00219D-(cit38)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09234A – volume: 28 start-page: 5191 year: 2016 ident: D0TA00219D-(cit48)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01894 – volume-title: Gaussian 16 year: 2016 ident: D0TA00219D-(cit86)/*[position()=1] – volume: 12 start-page: 910 year: 2016 ident: D0TA00219D-(cit76)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b01112 – volume: 309 start-page: 2040 year: 2005 ident: D0TA00219D-(cit28)/*[position()=1] publication-title: Science doi: 10.1126/science.1116275 – volume: 211 start-page: 383 year: 2018 ident: D0TA00219D-(cit79)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/C8FD00031J – volume: 45 start-page: 3406 year: 2006 ident: D0TA00219D-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200504510 – volume: 131 start-page: 1680 year: 2009 ident: D0TA00219D-(cit53)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 18 start-page: 585 year: 1965 ident: D0TA00219D-(cit32)/*[position()=1] publication-title: Acta Crystallogr. doi: 10.1107/S0365110X65001391 – volume: 5 start-page: 2235 year: 2014 ident: D0TA00219D-(cit41)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC00095A – volume: 5 start-page: 3173 year: 2014 ident: D0TA00219D-(cit71)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC01132E – volume: 132 start-page: 4119 year: 2010 ident: D0TA00219D-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906041f – volume: 423 start-page: 705 year: 2003 ident: D0TA00219D-(cit27)/*[position()=1] publication-title: Nature doi: 10.1038/nature01650 – volume: 56 start-page: 5255 year: 1972 ident: D0TA00219D-(cit85)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1677028 – volume: 5 start-page: 830 year: 2013 ident: D0TA00219D-(cit10)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1730 – volume: 3 start-page: 734 year: 2017 ident: D0TA00219D-(cit44)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00145 – volume: 5 start-page: 10073 year: 2017 ident: D0TA00219D-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01142C – volume: 118 start-page: 5011 year: 1996 ident: D0TA00219D-(cit73)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja952478m – volume: 10 start-page: 1865 year: 2018 ident: D0TA00219D-(cit52)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR08890F – volume: 100 start-page: 7352 year: 1996 ident: D0TA00219D-(cit77)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp960333b – volume: 28 start-page: 817 year: 2010 ident: D0TA00219D-(cit70)/*[position()=1] publication-title: Comput.-Aided Chem. Eng. doi: 10.1016/S1570-7946(10)28137-3 – volume: 55 start-page: 10358 year: 2016 ident: D0TA00219D-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605547 – volume: 110 start-page: 1657 year: 1988 ident: D0TA00219D-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00214a001 – volume: 28 start-page: 420 year: 2016 ident: D0TA00219D-(cit67)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04567 – volume: 361 start-page: 1242 year: 2018 ident: D0TA00219D-(cit21)/*[position()=1] publication-title: Science doi: 10.1126/science.aat6394 – volume: 12 start-page: 8478 year: 2010 ident: D0TA00219D-(cit78)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c004164e – volume: 8 start-page: 1703278 year: 2018 ident: D0TA00219D-(cit13)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703278 – volume: 99 start-page: 5804 year: 2002 ident: D0TA00219D-(cit56)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.092143399 – volume: 6 start-page: 2664 year: 2018 ident: D0TA00219D-(cit58)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10461H – volume: 1 start-page: 16078 year: 2016 ident: D0TA00219D-(cit43)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.78 – volume: 46 start-page: 3402 year: 2017 ident: D0TA00219D-(cit26)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00153C – volume: 121 start-page: 1498 year: 2017 ident: D0TA00219D-(cit61)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11133 – volume: 98 start-page: 5648 year: 1993 ident: D0TA00219D-(cit82)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 114 start-page: 10024 year: 1992 ident: D0TA00219D-(cit91)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 141 start-page: 9063 year: 2019 ident: D0TA00219D-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03591 – volume: 9 start-page: 4968 year: 2018 ident: D0TA00219D-(cit54)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07420-6 – volume: 5 start-page: 7574 year: 2017 ident: D0TA00219D-(cit51)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02553J – volume: 111 start-page: 7260 year: 2011 ident: D0TA00219D-(cit14)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100428a – volume: 138 start-page: 7681 year: 2016 ident: D0TA00219D-(cit4)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03472 – volume: 58 start-page: 1200 year: 1980 ident: D0TA00219D-(cit80)/*[position()=1] publication-title: Can. J. Phys. doi: 10.1139/p80-159 – volume: 98 start-page: 11623 year: 1994 ident: D0TA00219D-(cit83)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 1 start-page: 461 year: 1999 ident: D0TA00219D-(cit90)/*[position()=1] publication-title: J. Mol. Struct.: THEOCHEM – volume: 141 start-page: 2111 year: 2019 ident: D0TA00219D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12124 – volume: 140 start-page: 4596 year: 2018 ident: D0TA00219D-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13706 – volume: 5 start-page: 1632 year: 2019 ident: D0TA00219D-(cit46)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.04.015 – volume: 474 start-page: 367 year: 2011 ident: D0TA00219D-(cit40)/*[position()=1] publication-title: Nature doi: 10.1038/nature10125 – volume: 391 start-page: 72 year: 2017 ident: D0TA00219D-(cit2)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.030 – volume: 361 start-page: 48 year: 2018 ident: D0TA00219D-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.aat7679 – volume: 1 start-page: 16068 year: 2016 ident: D0TA00219D-(cit30)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 5 start-page: 328 year: 2006 ident: D0TA00219D-(cit66)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1612 – volume: 101 start-page: 3349 year: 1997 ident: D0TA00219D-(cit65)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp962060q – volume: 2 start-page: 17045 year: 2017 ident: D0TA00219D-(cit39)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.45 – volume: 10 start-page: 1180 year: 2018 ident: D0TA00219D-(cit68)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 34 start-page: 1263 year: 1978 ident: D0TA00219D-(cit15)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. doi: 10.1107/S0567740878005312 – volume: 458 start-page: 182 year: 2009 ident: D0TA00219D-(cit34)/*[position()=1] publication-title: Nature doi: 10.1038/nature07786 – volume: 57 start-page: 7691 year: 2018 ident: D0TA00219D-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800354 – volume: 15 start-page: 3466 year: 2013 ident: D0TA00219D-(cit60)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50168j |
SSID | ssj0000800699 |
Score | 2.5173333 |
Snippet | We show that a hydrogen-bonded framework,
TBAP
-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to... We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to... |
SourceID | swepub proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7158 |
SubjectTerms | Catalytic activity Chemical bonds Computer applications Crystal structure Crystallography Crystals electronics Hydrogen Hydrogen bonding Hydrogen production Organic crystals Photocatalysis photocatalysts prediction Pyrene Solid state Structure-function relationships |
Title | Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework |
URI | https://www.proquest.com/docview/2389266989 https://www.proquest.com/docview/2439434877 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-209146 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJjIGCQEgoZEvixEkeIzo0LkNIdGhvkW-hEaWpuvSh_Cf-I8dx4mSlk4CXqLUTJ835bH8-PeczQi8IoVTG0AGBGsduGASFm5JIurRgvsSx9H2hspHPP5Gzi_D9ZXQ5Gv0aRC2ta3bMf-7MK_kfq0IZ2FVlyf6DZU2jUACfwb5wBAvD8a9s_HlW1VXjgNko3VWluVCp9BShJWEVtaRN0Pi6bn1-841TCh0gpL2cP7rtcZ3ZRqwquJXLKuUVd4oubOsG_gpUV_9Gh3ebxh07mc7_6WoaPXGdXdg46LtsLRWQa3z5WQnIKdvML5OR2LtpP7ThuAMdBGcQe3BOZ_rSJjy_z1f7sqT8e-vfbaKQ29jI1sUReP0YGHiRp-RO9RAth2V6I9xuEE-GWI0GI3LsR8lgdo91pugfE4eHle6q8GqqWE8q-unRBC32lXtoP4BVSTBG-9np9N1H49RT9Js0e5aaB-8kcXF60jdwnQT1K5u91RXf0qxteM70LrrTGtjONNruoZFc3Ee3B7KVD5C4jjtb4842uLPZxqb2Fu7sHnevbYM6ewt1tkHdQ3Tx9nT65sxtd-tweeTHtYtpKJOAQ7_HAvOw8IowIZL6mGFGg4SnsLKnLE48ITmBuY36RRLFqVeIgDMpCD5A40W1kI-QHUSsICLChSAk5FikPvUlfGVwEUtZZKFX3evLeStlr3ZUmedNSAVO84k3zZpXPbHQc3PuUgu47DzrqLNC3nbwqxzYbAr8FR7cQs9MNXQo9Z8aQL9awzkqsxzDqj-20AFYz9yjN7aFDndX5EtRWOiltrapV3rvk_Jrllerb_m8XOcBUPqQHN7U_GN0S_UZ7RY8QuN6tZZPgCjX7GkLz98WWces |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+proton+reduction+by+a+computationally+identified%2C+molecular+hydrogen-bonded+framework&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Aitchison%2C+Catherine+M&rft.au=Kane%2C+Christopher+M&rft.au=McMahon%2C+David+P&rft.au=Spackman%2C+Peter+R&rft.date=2020&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=15&rft.spage=7158&rft.epage=717&rft_id=info:doi/10.1039%2Fd0ta00219d&rft.externalDocID=d0ta00219d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |