Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework

We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphou...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 15; pp. 7158 - 717
Main Authors Aitchison, Catherine M, Kane, Christopher M, McMahon, David P, Spackman, Peter R, Pulido, Angeles, Wang, Xiaoyan, Wilbraham, Liam, Chen, Linjiang, Clowes, Rob, Zwijnenburg, Martijn A, Sprick, Reiner Sebastian, Little, Marc A, Day, Graeme M, Cooper, Andrew I
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20-200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy-structure-function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics. A hydrogen-bonded organic framework is an effective photocatalyst for producing hydrogen from water. Its crystal structure is key to its activity; a chemically identical, amorphous version is almost inactive, as rationalized by crystal structure prediction.
AbstractList We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g−1 h−1. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics.
We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g⁻¹ h⁻¹. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics.
We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20-200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy-structure-function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics. A hydrogen-bonded organic framework is an effective photocatalyst for producing hydrogen from water. Its crystal structure is key to its activity; a chemically identical, amorphous version is almost inactive, as rationalized by crystal structure prediction.
We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g −1 h −1 . This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics.
Author Day, Graeme M
Pulido, Angeles
Wilbraham, Liam
Sprick, Reiner Sebastian
Spackman, Peter R
McMahon, David P
Little, Marc A
Aitchison, Catherine M
Clowes, Rob
Zwijnenburg, Martijn A
Cooper, Andrew I
Kane, Christopher M
Wang, Xiaoyan
Chen, Linjiang
AuthorAffiliation University of Liverpool
Department of Chemistry
Leverhulme Research Centre for Functional Materials Design
University of Southampton
Department of Chemistry and Materials Innovation Factory
Computational Systems Chemistry
University College London
School of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry and Materials Innovation Factory
– name: University of Liverpool
– name: University of Southampton
– name: Computational Systems Chemistry
– name: Department of Chemistry
– name: Leverhulme Research Centre for Functional Materials Design
– name: School of Chemistry
– name: University College London
Author_xml – sequence: 1
  givenname: Catherine M
  surname: Aitchison
  fullname: Aitchison, Catherine M
– sequence: 2
  givenname: Christopher M
  surname: Kane
  fullname: Kane, Christopher M
– sequence: 3
  givenname: David P
  surname: McMahon
  fullname: McMahon, David P
– sequence: 4
  givenname: Peter R
  surname: Spackman
  fullname: Spackman, Peter R
– sequence: 5
  givenname: Angeles
  surname: Pulido
  fullname: Pulido, Angeles
– sequence: 6
  givenname: Xiaoyan
  surname: Wang
  fullname: Wang, Xiaoyan
– sequence: 7
  givenname: Liam
  surname: Wilbraham
  fullname: Wilbraham, Liam
– sequence: 8
  givenname: Linjiang
  surname: Chen
  fullname: Chen, Linjiang
– sequence: 9
  givenname: Rob
  surname: Clowes
  fullname: Clowes, Rob
– sequence: 10
  givenname: Martijn A
  surname: Zwijnenburg
  fullname: Zwijnenburg, Martijn A
– sequence: 11
  givenname: Reiner Sebastian
  surname: Sprick
  fullname: Sprick, Reiner Sebastian
– sequence: 12
  givenname: Marc A
  surname: Little
  fullname: Little, Marc A
– sequence: 13
  givenname: Graeme M
  surname: Day
  fullname: Day, Graeme M
– sequence: 14
  givenname: Andrew I
  surname: Cooper
  fullname: Cooper, Andrew I
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-209146$$DView record from Swedish Publication Index
BookMark eNp90c1rFTEQAPAgFaxtL96FFS9FXM1u9u0mx0ef2kJBD9VrmE0mbWp2syZZyv735rnyhFLMJR_8ZpjMvCRHox-RkFcV_VBRJj5qmoDSuhL6GTmu6YaWXSPao8OZ8xfkLMZ7mhentBXimOhvdz55BQnckqwqppCvYxFQzyrZfOqXAgrlh2lOsH8A55bCahyTNRb1-2LwDtXsIBR3iw7-Fsey96NGXZgAAz748POUPDfgIp793U_I98-fbi4uy-uvX64uttel2lRdKhk0yGvVtR3TTDWGmoa3CBXrWQ81V4ILAX3HqUbVUs6hMnzTCWp0rXrULTsh5Zo3PuA093IKdoCwSA9W7uyPrfThVjo7y5qKqtn789XnX_-aMSY52KjQORjRz1HWDRMNa3jXZfr2Eb33c8jdyIpxUbdtri6rd6tSwccY0BxKqKjcz0ju6M32z4x2GdNHWNm1xymAdU-HvFlDQlSH1P_GLidtsnn9P8N-A60jrJM
CitedBy_id crossref_primary_10_1002_sus2_220
crossref_primary_10_1021_acs_cgd_3c00706
crossref_primary_10_1021_acscentsci_2c01196
crossref_primary_10_1002_ajoc_202100789
crossref_primary_10_1016_j_ccr_2021_214375
crossref_primary_10_1038_s41467_021_21091_w
crossref_primary_10_1021_jacs_0c04885
crossref_primary_10_1039_D0SC02675A
crossref_primary_10_1038_s42004_022_00705_4
crossref_primary_10_1002_aenm_202303680
crossref_primary_10_1016_j_fuel_2023_128716
crossref_primary_10_1039_D1CE01702K
crossref_primary_10_1002_aenm_202100709
crossref_primary_10_3390_ijms23041929
crossref_primary_10_1002_ange_202413131
crossref_primary_10_1098_rsta_2019_0600
crossref_primary_10_1016_j_seppur_2021_119244
crossref_primary_10_1038_s41929_023_00972_x
crossref_primary_10_1038_s44160_021_00005_0
crossref_primary_10_1039_D4FD00105B
crossref_primary_10_1039_D0NR07533G
crossref_primary_10_1021_accountsmr_0c00019
crossref_primary_10_1021_acsapm_0c01070
crossref_primary_10_1016_j_apcatb_2021_120337
crossref_primary_10_1002_smll_202410063
crossref_primary_10_1038_s41557_021_00741_y
crossref_primary_10_1055_a_1928_2562
crossref_primary_10_1021_jacs_2c02666
crossref_primary_10_1002_anie_202413131
crossref_primary_10_1039_D1SC03388C
crossref_primary_10_1039_D1TA03710B
crossref_primary_10_1039_D1TA08889K
crossref_primary_10_1021_jacs_0c03418
crossref_primary_10_1039_D4CC03898C
crossref_primary_10_1039_D4TA06883A
crossref_primary_10_1007_s11426_022_1333_9
crossref_primary_10_1021_acs_macromol_2c00075
crossref_primary_10_1021_acscatal_4c03672
crossref_primary_10_1055_a_1695_0820
crossref_primary_10_1021_acsami_2c05176
crossref_primary_10_1039_D1TA04288B
crossref_primary_10_1002_adma_202300037
crossref_primary_10_2174_1385272826666220330113959
crossref_primary_10_1016_j_dyepig_2022_110506
crossref_primary_10_3390_separations10030196
crossref_primary_10_1002_adfm_202214388
crossref_primary_10_1016_j_enchem_2025_100151
crossref_primary_10_1039_D1TA03098A
crossref_primary_10_1002_chem_202101510
crossref_primary_10_1021_acs_chemrev_1c00686
crossref_primary_10_1039_D4NR00383G
Cites_doi 10.1002/anie.201603532
10.1021/acs.chemmater.8b02833
10.1021/acs.chemmater.8b01621
10.1021/jp809119m
10.1002/adma.201704944
10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y
10.1107/S0108768106026814
10.1039/b612190j
10.1103/PhysRevB.37.785
10.1002/anie.201607375
10.1021/cr9904009
10.1038/nature21419
10.1063/1.5012601
10.1016/j.trechm.2019.03.001
10.1039/C4SC00016A
10.1002/adfm.201703146
10.1002/anie.201706870
10.1002/anie.201406501
10.1039/C9SC02832C
10.1126/science.1226558
10.1038/natrevmats.2017.50
10.1021/ja511552k
10.1038/ncomms11564
10.1039/C5TC03765D
10.1126/science.aal1585
10.1007/BF00533485
10.1039/C8TA04186E
10.1021/ja2066016
10.1002/asia.201701107
10.1002/aenm.201802181
10.1021/acs.joc.5b02128
10.1039/C6TA09234A
10.1021/acs.chemmater.6b01894
10.1021/acs.jctc.5b01112
10.1126/science.1116275
10.1039/C8FD00031J
10.1002/anie.200504510
10.1021/ja809307s
10.1107/S0365110X65001391
10.1039/C4SC00095A
10.1039/C4SC01132E
10.1021/ja906041f
10.1038/nature01650
10.1063/1.1677028
10.1038/nchem.1730
10.1021/acscentsci.7b00145
10.1039/C7TA01142C
10.1021/ja952478m
10.1039/C7NR08890F
10.1021/jp960333b
10.1016/S1570-7946(10)28137-3
10.1002/anie.201605547
10.1021/ja00214a001
10.1021/acs.chemmater.5b04567
10.1126/science.aat6394
10.1039/c004164e
10.1002/aenm.201703278
10.1073/pnas.092143399
10.1039/C7TA10461H
10.1038/natrevmats.2016.78
10.1039/C7CS00153C
10.1021/acs.jpcc.6b11133
10.1063/1.464913
10.1021/ja00051a040
10.1021/jacs.9b03591
10.1038/s41467-018-07420-6
10.1039/C7TC02553J
10.1021/cr100428a
10.1021/jacs.6b03472
10.1139/p80-159
10.1021/j100096a001
10.1021/jacs.8b12124
10.1021/jacs.7b13706
10.1016/j.chempr.2019.04.015
10.1038/nature10125
10.1016/j.apsusc.2016.07.030
10.1126/science.aat7679
10.1038/natrevmats.2016.68
10.1038/nmat1612
10.1021/jp962060q
10.1038/natrevmats.2017.45
10.1038/s41557-018-0141-5
10.1107/S0567740878005312
10.1038/nature07786
10.1002/anie.201800354
10.1039/c3cp50168j
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1039/d0ta00219d
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 717
ExternalDocumentID oai_DiVA_org_liu_209146
10_1039_D0TA00219D
d0ta00219d
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ABXSW
ADTPV
ANBJS
AOWAS
D8T
DG8
EJD
J3G
J3H
ROL
ZZAVC
ID FETCH-LOGICAL-c517t-3a4e82c7673d3c4f0f486ea13b3ba28c9899ab780dec6088a1f85790fd2cbed63
ISSN 2050-7488
2050-7496
IngestDate Thu Aug 21 06:52:06 EDT 2025
Fri Jul 11 10:10:05 EDT 2025
Mon Jun 30 11:59:00 EDT 2025
Tue Jul 01 01:12:50 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Sat Jan 08 03:36:51 EST 2022
Wed Nov 11 00:36:14 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c517t-3a4e82c7673d3c4f0f486ea13b3ba28c9899ab780dec6088a1f85790fd2cbed63
Notes Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
10.1039/d0ta00219d
1919802-1919809
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1994-0591
0000-0002-7596-7262
0000-0003-1437-8314
0000-0001-5291-2130
0000-0002-0382-5863
0000-0002-5389-2706
0000-0001-8396-2771
0000-0003-0201-1021
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-209146
PQID 2389266989
PQPubID 2047523
PageCount 13
ParticipantIDs proquest_miscellaneous_2439434877
swepub_primary_oai_DiVA_org_liu_209146
rsc_primary_d0ta00219d
proquest_journals_2389266989
crossref_primary_10_1039_D0TA00219D
crossref_citationtrail_10_1039_D0TA00219D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hehre (D0TA00219D-(cit85)/*[position()=1]) 1972; 56
Sprick (D0TA00219D-(cit12)/*[position()=1]) 2015; 137
Jin (D0TA00219D-(cit46)/*[position()=1]) 2019; 5
Bredas (D0TA00219D-(cit56)/*[position()=1]) 2002; 99
Jorgensen (D0TA00219D-(cit75)/*[position()=1]) 1988; 110
Jones (D0TA00219D-(cit40)/*[position()=1]) 2011; 474
Zhang (D0TA00219D-(cit6)/*[position()=1]) 2017; 56
Stephens (D0TA00219D-(cit83)/*[position()=1]) 1994; 98
Pulido (D0TA00219D-(cit36)/*[position()=1]) 2017; 543
Trickett (D0TA00219D-(cit39)/*[position()=1]) 2017; 2
Frisch (D0TA00219D-(cit86)/*[position()=1]) 2016
Huang (D0TA00219D-(cit30)/*[position()=1]) 2016; 1
Case (D0TA00219D-(cit76)/*[position()=1]) 2016; 12
Rappe (D0TA00219D-(cit91)/*[position()=1]) 1992; 114
Kolossváry (D0TA00219D-(cit72)/*[position()=1]) 1999; 20
Stegbauer (D0TA00219D-(cit55)/*[position()=1]) 2014; 5
Vyas (D0TA00219D-(cit48)/*[position()=1]) 2016; 28
Schwarze (D0TA00219D-(cit60)/*[position()=1]) 2013; 15
Lee (D0TA00219D-(cit81)/*[position()=1]) 1988; 37
Yamashita (D0TA00219D-(cit67)/*[position()=1]) 2016; 28
Campbell (D0TA00219D-(cit51)/*[position()=1]) 2017; 5
Fabbiani (D0TA00219D-(cit16)/*[position()=1]) 2006; 62
Kang (D0TA00219D-(cit42)/*[position()=1]) 2017; 5
Wang (D0TA00219D-(cit53)/*[position()=1]) 2009; 131
Kosco (D0TA00219D-(cit63)/*[position()=1]) 2018; 8
Kalidindi (D0TA00219D-(cit24)/*[position()=1]) 2015; 54
Li (D0TA00219D-(cit4)/*[position()=1]) 2016; 138
Sprick (D0TA00219D-(cit47)/*[position()=1]) 2019; 31
Zhang (D0TA00219D-(cit1)/*[position()=1]) 2016; 55
Kai (D0TA00219D-(cit15)/*[position()=1]) 1978; 34
Sachs (D0TA00219D-(cit54)/*[position()=1]) 2018; 9
Yin (D0TA00219D-(cit25)/*[position()=1]) 2018; 57
Day (D0TA00219D-(cit49)/*[position()=1]) 2018; 30
Ma (D0TA00219D-(cit11)/*[position()=1]) 2018; 361
Yaghi (D0TA00219D-(cit27)/*[position()=1]) 2003; 423
Ma (D0TA00219D-(cit34)/*[position()=1]) 2009; 458
Dovesi (D0TA00219D-(cit89)/*[position()=1]) 2018; 8
Jansen (D0TA00219D-(cit33)/*[position()=1]) 2006; 45
Brandenburg (D0TA00219D-(cit62)/*[position()=1]) 2018; 148
Hariharan (D0TA00219D-(cit84)/*[position()=1]) 1973; 28
Bai (D0TA00219D-(cit8)/*[position()=1]) 2019; 141
Férey (D0TA00219D-(cit28)/*[position()=1]) 2005; 309
Huang (D0TA00219D-(cit9)/*[position()=1]) 2016; 7
Yamagishi (D0TA00219D-(cit21)/*[position()=1]) 2018; 361
McCulloch (D0TA00219D-(cit66)/*[position()=1]) 2006; 5
Coombes (D0TA00219D-(cit77)/*[position()=1]) 1996; 100
Adil (D0TA00219D-(cit26)/*[position()=1]) 2017; 46
Price (D0TA00219D-(cit78)/*[position()=1]) 2010; 12
Li (D0TA00219D-(cit23)/*[position()=1]) 2016; 55
Pyzer-Knapp (D0TA00219D-(cit41)/*[position()=1]) 2014; 5
Hisaki (D0TA00219D-(cit20)/*[position()=1]) 2019; 141
Stylianou (D0TA00219D-(cit22)/*[position()=1]) 2010; 132
Day (D0TA00219D-(cit69)/*[position()=1]) 2007; 9
Feng (D0TA00219D-(cit17)/*[position()=1]) 2015; 80
Cui (D0TA00219D-(cit37)/*[position()=1]) 2019; 10
Zhou (D0TA00219D-(cit45)/*[position()=1]) 2018; 13
Tomasi (D0TA00219D-(cit87)/*[position()=1]) 2005; 105
He (D0TA00219D-(cit18)/*[position()=1]) 2011; 133
Thompson (D0TA00219D-(cit71)/*[position()=1]) 2014; 5
Diercks (D0TA00219D-(cit29)/*[position()=1]) 2017; 355
Chen (D0TA00219D-(cit3)/*[position()=1]) 2017; 2
Denny (D0TA00219D-(cit43)/*[position()=1]) 2016; 1
Dyer (D0TA00219D-(cit35)/*[position()=1]) 2013; 340
Dapprich (D0TA00219D-(cit90)/*[position()=1]) 1999; 1
Yang (D0TA00219D-(cit5)/*[position()=1]) 2016; 55
Beaudoin (D0TA00219D-(cit10)/*[position()=1]) 2013; 5
Yang (D0TA00219D-(cit50)/*[position()=1]) 2018; 30
Ohtani (D0TA00219D-(cit65)/*[position()=1]) 1997; 101
Wang (D0TA00219D-(cit68)/*[position()=1]) 2018; 10
Thorley (D0TA00219D-(cit57)/*[position()=1]) 2016; 4
Kitaigorodskii (D0TA00219D-(cit32)/*[position()=1]) 1965; 18
Wang (D0TA00219D-(cit38)/*[position()=1]) 2017; 5
Kolossváry (D0TA00219D-(cit73)/*[position()=1]) 1996; 118
Bao (D0TA00219D-(cit19)/*[position()=1]) 2018; 140
Lyle (D0TA00219D-(cit31)/*[position()=1]) 2019; 1
McMahon (D0TA00219D-(cit79)/*[position()=1]) 2018; 211
Figueira-Duarte (D0TA00219D-(cit14)/*[position()=1]) 2011; 111
Guiglion (D0TA00219D-(cit61)/*[position()=1]) 2017; 121
Furche (D0TA00219D-(cit88)/*[position()=1]) 2014; 4
Rice (D0TA00219D-(cit52)/*[position()=1]) 2018; 10
Bi (D0TA00219D-(cit59)/*[position()=1]) 2017; 27
Kazantsev (D0TA00219D-(cit70)/*[position()=1]) 2010; 28
Vosko (D0TA00219D-(cit80)/*[position()=1]) 1980; 58
Becke (D0TA00219D-(cit82)/*[position()=1]) 1993; 98
Wen (D0TA00219D-(cit2)/*[position()=1]) 2017; 391
Stegbauer (D0TA00219D-(cit13)/*[position()=1]) 2018; 8
Maeda (D0TA00219D-(cit64)/*[position()=1]) 2009; 113
Slater (D0TA00219D-(cit44)/*[position()=1]) 2017; 3
Sprick (D0TA00219D-(cit7)/*[position()=1]) 2018; 6
Gao (D0TA00219D-(cit58)/*[position()=1]) 2018; 6
References_xml – issn: 2011
  publication-title: MacroModel, Version 9.0
  doi: Schrodinger
– issn: 2016
  publication-title: Gaussian 16
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– volume: 55
  start-page: 9202
  year: 2016
  ident: D0TA00219D-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201603532
– volume: 31
  start-page: 305
  year: 2019
  ident: D0TA00219D-(cit47)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02833
– volume: 30
  start-page: 4361
  year: 2018
  ident: D0TA00219D-(cit50)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01621
– volume: 113
  start-page: 4940
  year: 2009
  ident: D0TA00219D-(cit64)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp809119m
– volume: 30
  start-page: 1704944
  year: 2018
  ident: D0TA00219D-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704944
– volume: 20
  start-page: 1671
  year: 1999
  ident: D0TA00219D-(cit72)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y
– volume: 62
  start-page: 826
  year: 2006
  ident: D0TA00219D-(cit16)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768106026814
– volume: 9
  start-page: 1693
  year: 2007
  ident: D0TA00219D-(cit69)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b612190j
– volume: 37
  start-page: 785
  year: 1988
  ident: D0TA00219D-(cit81)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
– volume: 55
  start-page: 15712
  year: 2016
  ident: D0TA00219D-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607375
– volume: 4
  start-page: 91
  year: 2014
  ident: D0TA00219D-(cit88)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 105
  start-page: 2999
  year: 2005
  ident: D0TA00219D-(cit87)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 543
  start-page: 657
  year: 2017
  ident: D0TA00219D-(cit36)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature21419
– volume: 148
  start-page: 064104
  year: 2018
  ident: D0TA00219D-(cit62)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5012601
– volume: 1
  start-page: 172
  year: 2019
  ident: D0TA00219D-(cit31)/*[position()=1]
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.03.001
– volume: 5
  start-page: 2789
  year: 2014
  ident: D0TA00219D-(cit55)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00016A
– volume: 27
  start-page: 1703146
  year: 2017
  ident: D0TA00219D-(cit59)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703146
– volume: 56
  start-page: 13445
  year: 2017
  ident: D0TA00219D-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706870
– volume: 54
  start-page: 221
  year: 2015
  ident: D0TA00219D-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406501
– volume: 10
  start-page: 9988
  year: 2019
  ident: D0TA00219D-(cit37)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02832C
– volume: 340
  start-page: 847
  year: 2013
  ident: D0TA00219D-(cit35)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1226558
– volume: 2
  start-page: 17050
  year: 2017
  ident: D0TA00219D-(cit3)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.50
– volume: 137
  start-page: 3265
  year: 2015
  ident: D0TA00219D-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511552k
– volume: 8
  start-page: e1360
  year: 2018
  ident: D0TA00219D-(cit89)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 7
  start-page: 11564
  year: 2016
  ident: D0TA00219D-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11564
– volume: 4
  start-page: 3825
  year: 2016
  ident: D0TA00219D-(cit57)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03765D
– volume: 355
  start-page: 585
  year: 2017
  ident: D0TA00219D-(cit29)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 28
  start-page: 213
  year: 1973
  ident: D0TA00219D-(cit84)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00533485
– volume: 6
  start-page: 11994
  year: 2018
  ident: D0TA00219D-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04186E
– volume: 133
  start-page: 14570
  year: 2011
  ident: D0TA00219D-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2066016
– volume: 13
  start-page: 9
  year: 2018
  ident: D0TA00219D-(cit45)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201701107
– volume: 8
  start-page: 1802181
  year: 2018
  ident: D0TA00219D-(cit63)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802181
– volume: 80
  start-page: 10973
  year: 2015
  ident: D0TA00219D-(cit17)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b02128
– volume: 5
  start-page: 1334
  year: 2017
  ident: D0TA00219D-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09234A
– volume: 28
  start-page: 5191
  year: 2016
  ident: D0TA00219D-(cit48)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01894
– volume-title: Gaussian 16
  year: 2016
  ident: D0TA00219D-(cit86)/*[position()=1]
– volume: 12
  start-page: 910
  year: 2016
  ident: D0TA00219D-(cit76)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b01112
– volume: 309
  start-page: 2040
  year: 2005
  ident: D0TA00219D-(cit28)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1116275
– volume: 211
  start-page: 383
  year: 2018
  ident: D0TA00219D-(cit79)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00031J
– volume: 45
  start-page: 3406
  year: 2006
  ident: D0TA00219D-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200504510
– volume: 131
  start-page: 1680
  year: 2009
  ident: D0TA00219D-(cit53)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 18
  start-page: 585
  year: 1965
  ident: D0TA00219D-(cit32)/*[position()=1]
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X65001391
– volume: 5
  start-page: 2235
  year: 2014
  ident: D0TA00219D-(cit41)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00095A
– volume: 5
  start-page: 3173
  year: 2014
  ident: D0TA00219D-(cit71)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01132E
– volume: 132
  start-page: 4119
  year: 2010
  ident: D0TA00219D-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906041f
– volume: 423
  start-page: 705
  year: 2003
  ident: D0TA00219D-(cit27)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 56
  start-page: 5255
  year: 1972
  ident: D0TA00219D-(cit85)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677028
– volume: 5
  start-page: 830
  year: 2013
  ident: D0TA00219D-(cit10)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1730
– volume: 3
  start-page: 734
  year: 2017
  ident: D0TA00219D-(cit44)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00145
– volume: 5
  start-page: 10073
  year: 2017
  ident: D0TA00219D-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01142C
– volume: 118
  start-page: 5011
  year: 1996
  ident: D0TA00219D-(cit73)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja952478m
– volume: 10
  start-page: 1865
  year: 2018
  ident: D0TA00219D-(cit52)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR08890F
– volume: 100
  start-page: 7352
  year: 1996
  ident: D0TA00219D-(cit77)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960333b
– volume: 28
  start-page: 817
  year: 2010
  ident: D0TA00219D-(cit70)/*[position()=1]
  publication-title: Comput.-Aided Chem. Eng.
  doi: 10.1016/S1570-7946(10)28137-3
– volume: 55
  start-page: 10358
  year: 2016
  ident: D0TA00219D-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201605547
– volume: 110
  start-page: 1657
  year: 1988
  ident: D0TA00219D-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00214a001
– volume: 28
  start-page: 420
  year: 2016
  ident: D0TA00219D-(cit67)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04567
– volume: 361
  start-page: 1242
  year: 2018
  ident: D0TA00219D-(cit21)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aat6394
– volume: 12
  start-page: 8478
  year: 2010
  ident: D0TA00219D-(cit78)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c004164e
– volume: 8
  start-page: 1703278
  year: 2018
  ident: D0TA00219D-(cit13)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703278
– volume: 99
  start-page: 5804
  year: 2002
  ident: D0TA00219D-(cit56)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.092143399
– volume: 6
  start-page: 2664
  year: 2018
  ident: D0TA00219D-(cit58)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10461H
– volume: 1
  start-page: 16078
  year: 2016
  ident: D0TA00219D-(cit43)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.78
– volume: 46
  start-page: 3402
  year: 2017
  ident: D0TA00219D-(cit26)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00153C
– volume: 121
  start-page: 1498
  year: 2017
  ident: D0TA00219D-(cit61)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11133
– volume: 98
  start-page: 5648
  year: 1993
  ident: D0TA00219D-(cit82)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 114
  start-page: 10024
  year: 1992
  ident: D0TA00219D-(cit91)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 141
  start-page: 9063
  year: 2019
  ident: D0TA00219D-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03591
– volume: 9
  start-page: 4968
  year: 2018
  ident: D0TA00219D-(cit54)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07420-6
– volume: 5
  start-page: 7574
  year: 2017
  ident: D0TA00219D-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02553J
– volume: 111
  start-page: 7260
  year: 2011
  ident: D0TA00219D-(cit14)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100428a
– volume: 138
  start-page: 7681
  year: 2016
  ident: D0TA00219D-(cit4)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03472
– volume: 58
  start-page: 1200
  year: 1980
  ident: D0TA00219D-(cit80)/*[position()=1]
  publication-title: Can. J. Phys.
  doi: 10.1139/p80-159
– volume: 98
  start-page: 11623
  year: 1994
  ident: D0TA00219D-(cit83)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 1
  start-page: 461
  year: 1999
  ident: D0TA00219D-(cit90)/*[position()=1]
  publication-title: J. Mol. Struct.: THEOCHEM
– volume: 141
  start-page: 2111
  year: 2019
  ident: D0TA00219D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12124
– volume: 140
  start-page: 4596
  year: 2018
  ident: D0TA00219D-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13706
– volume: 5
  start-page: 1632
  year: 2019
  ident: D0TA00219D-(cit46)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.015
– volume: 474
  start-page: 367
  year: 2011
  ident: D0TA00219D-(cit40)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature10125
– volume: 391
  start-page: 72
  year: 2017
  ident: D0TA00219D-(cit2)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.030
– volume: 361
  start-page: 48
  year: 2018
  ident: D0TA00219D-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aat7679
– volume: 1
  start-page: 16068
  year: 2016
  ident: D0TA00219D-(cit30)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 5
  start-page: 328
  year: 2006
  ident: D0TA00219D-(cit66)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1612
– volume: 101
  start-page: 3349
  year: 1997
  ident: D0TA00219D-(cit65)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp962060q
– volume: 2
  start-page: 17045
  year: 2017
  ident: D0TA00219D-(cit39)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.45
– volume: 10
  start-page: 1180
  year: 2018
  ident: D0TA00219D-(cit68)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0141-5
– volume: 34
  start-page: 1263
  year: 1978
  ident: D0TA00219D-(cit15)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
  doi: 10.1107/S0567740878005312
– volume: 458
  start-page: 182
  year: 2009
  ident: D0TA00219D-(cit34)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07786
– volume: 57
  start-page: 7691
  year: 2018
  ident: D0TA00219D-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800354
– volume: 15
  start-page: 3466
  year: 2013
  ident: D0TA00219D-(cit60)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50168j
SSID ssj0000800699
Score 2.5173333
Snippet We show that a hydrogen-bonded framework, TBAP -α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to...
We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to...
SourceID swepub
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7158
SubjectTerms Catalytic activity
Chemical bonds
Computer applications
Crystal structure
Crystallography
Crystals
electronics
Hydrogen
Hydrogen bonding
Hydrogen production
Organic crystals
Photocatalysis
photocatalysts
prediction
Pyrene
Solid state
Structure-function relationships
Title Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework
URI https://www.proquest.com/docview/2389266989
https://www.proquest.com/docview/2439434877
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-209146
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJjIGCQEgoZEvixEkeIzo0LkNIdGhvkW-hEaWpuvSh_Cf-I8dx4mSlk4CXqLUTJ835bH8-PeczQi8IoVTG0AGBGsduGASFm5JIurRgvsSx9H2hspHPP5Gzi_D9ZXQ5Gv0aRC2ta3bMf-7MK_kfq0IZ2FVlyf6DZU2jUACfwb5wBAvD8a9s_HlW1VXjgNko3VWluVCp9BShJWEVtaRN0Pi6bn1-841TCh0gpL2cP7rtcZ3ZRqwquJXLKuUVd4oubOsG_gpUV_9Gh3ebxh07mc7_6WoaPXGdXdg46LtsLRWQa3z5WQnIKdvML5OR2LtpP7ThuAMdBGcQe3BOZ_rSJjy_z1f7sqT8e-vfbaKQ29jI1sUReP0YGHiRp-RO9RAth2V6I9xuEE-GWI0GI3LsR8lgdo91pugfE4eHle6q8GqqWE8q-unRBC32lXtoP4BVSTBG-9np9N1H49RT9Js0e5aaB-8kcXF60jdwnQT1K5u91RXf0qxteM70LrrTGtjONNruoZFc3Ee3B7KVD5C4jjtb4842uLPZxqb2Fu7sHnevbYM6ewt1tkHdQ3Tx9nT65sxtd-tweeTHtYtpKJOAQ7_HAvOw8IowIZL6mGFGg4SnsLKnLE48ITmBuY36RRLFqVeIgDMpCD5A40W1kI-QHUSsICLChSAk5FikPvUlfGVwEUtZZKFX3evLeStlr3ZUmedNSAVO84k3zZpXPbHQc3PuUgu47DzrqLNC3nbwqxzYbAr8FR7cQs9MNXQo9Z8aQL9awzkqsxzDqj-20AFYz9yjN7aFDndX5EtRWOiltrapV3rvk_Jrllerb_m8XOcBUPqQHN7U_GN0S_UZ7RY8QuN6tZZPgCjX7GkLz98WWces
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+proton+reduction+by+a+computationally+identified%2C+molecular+hydrogen-bonded+framework&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Aitchison%2C+Catherine+M&rft.au=Kane%2C+Christopher+M&rft.au=McMahon%2C+David+P&rft.au=Spackman%2C+Peter+R&rft.date=2020&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=15&rft.spage=7158&rft.epage=717&rft_id=info:doi/10.1039%2Fd0ta00219d&rft.externalDocID=d0ta00219d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon