A stress-free strategy to correct point mutations in patient iPS cells

•A CRISPR-Cas9 gene knock-in method for correction of point mutations or frameshifting.•sgRNA sequences selected from the nearest intron of the mutation providing more flexibility.•Donor vectors containing correct genomic DNA information on the homologous arms and antibiotic selection cassette.•No o...

Full description

Saved in:
Bibliographic Details
Published inStem cell research Vol. 53; p. 102332
Main Authors Cai, Jingli, Kropf, Elizabeth, Hou, Ya-Ming, Iacovitti, Lorraine
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.05.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A CRISPR-Cas9 gene knock-in method for correction of point mutations or frameshifting.•sgRNA sequences selected from the nearest intron of the mutation providing more flexibility.•Donor vectors containing correct genomic DNA information on the homologous arms and antibiotic selection cassette.•No off-targeting events detected. When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 “knock-in” methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
AbstractList When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
•A CRISPR-Cas9 gene knock-in method for correction of point mutations or frameshifting.•sgRNA sequences selected from the nearest intron of the mutation providing more flexibility.•Donor vectors containing correct genomic DNA information on the homologous arms and antibiotic selection cassette.•No off-targeting events detected. When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 “knock-in” methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-Puro cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-Puro cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 “knock-in” methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-Puro R cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-Puro R cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 “knock-in” methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
ArticleNumber 102332
Author Hou, Ya-Ming
Kropf, Elizabeth
Iacovitti, Lorraine
Cai, Jingli
AuthorAffiliation b Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB Suite 220, Philadelphia, PA 19107, USA
a Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
AuthorAffiliation_xml – name: b Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB Suite 220, Philadelphia, PA 19107, USA
– name: a Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
Author_xml – sequence: 1
  givenname: Jingli
  surname: Cai
  fullname: Cai, Jingli
  organization: Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
– sequence: 2
  givenname: Elizabeth
  surname: Kropf
  fullname: Kropf, Elizabeth
  organization: Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
– sequence: 3
  givenname: Ya-Ming
  surname: Hou
  fullname: Hou, Ya-Ming
  organization: Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB Suite 220, Philadelphia, PA 19107, USA
– sequence: 4
  givenname: Lorraine
  surname: Iacovitti
  fullname: Iacovitti, Lorraine
  email: lorraine.iacovitti@jefferson.edu
  organization: Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33857832$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhq2Kqgm0P6AXtEcuG_yx_ogqISFUClKkVmp7trz2bHC0Wae2g8S_x8tCRThw8ng87zvjeY7R0RAGQOgrwQuCiTjfLJKNC4opKXfKGP2A5kRJUUvJ2dFTzGqOBZmh45Q2GPMlVfQTmjGmuFSMztH1ZZVyhJTqLgKMscmwfqhyqGyIEWyudsEPudrus8k-DKnyQ7UrIZSk__W7stD36TP62Jk-wZfn8wT9vf7-5-qmXv38cXt1uaotJzLXjDpmHLbAGrxsJe8wKdO1SqoOtxZLx5kk3CkCohVSmpZbZt2Scw5GKdewE3Q7-bpgNnoX_dbEBx2M10-JENfaxOxtD1oIY4XoBFYSGuKIomZJO2sE8EZSiYvXxeS127dbcLZ8KJr-wPTwZfB3eh3utaKKScGKwdmzQQz_9pCy3vo0rsMMEPZJU06asnHWjHOfvu71v8kLiFIgpwIbQ0oROm39tPDS2veaYD0i1xtdkOsRuZ6QFyV5o3wxf0_zbdJAYXXvIZaKAtSC8yPyskz_jvoR1lbDAA
CitedBy_id crossref_primary_10_1177_20417314241310508
crossref_primary_10_1016_j_ejcb_2025_151485
crossref_primary_10_1089_crispr_2023_0013
crossref_primary_10_1523_JNEUROSCI_0340_21_2021
crossref_primary_10_3390_biomedicines12071550
crossref_primary_10_1038_s41598_022_16004_w
Cites_doi 10.1073/pnas.0507360102
10.1136/jmg.2005.035568
10.1038/nprot.2013.143
10.1128/MCB.18.1.93
10.1002/humu.21635
10.1371/journal.pone.0129308
10.1038/s41598-019-41121-4
10.1038/nbt.3481
10.1371/journal.pone.0150188
10.1038/s41586-019-1711-4
10.1038/nature17664
10.1016/j.cell.2007.11.019
10.1038/nature17946
10.1093/nar/gky076
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.scr.2021.102332
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1876-7753
EndPage 102332
ExternalDocumentID oai_doaj_org_article_66ac66f6087e41d182a92fca6e547270
PMC8283763
33857832
10_1016_j_scr_2021_102332
S1873506121001781
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI125650
– fundername: NINDS NIH HHS
  grantid: R03 NS107751
– fundername: NINDS NIH HHS
  grantid: R01 NS075839
– fundername: NIGMS NIH HHS
  grantid: R35 GM134931
GroupedDBID ---
--K
.~1
0R~
0SF
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABBQC
ABCQJ
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
ADUVX
AEKER
AENEX
AEXQZ
AFTJW
AGHFR
AGWIK
AGYEJ
AITUG
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CS3
DU5
EBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KQ8
M41
M48
MO0
N9A
NCXOZ
O-L
O9-
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c517t-32d3ad0ce3409b75f01061b878f0bc07d53715d81e6b677ab5c3cd9555ea88d43
IEDL.DBID M48
ISSN 1873-5061
1876-7753
IngestDate Wed Aug 27 01:29:18 EDT 2025
Thu Aug 21 13:40:21 EDT 2025
Thu Jul 10 23:54:41 EDT 2025
Thu Apr 03 06:57:01 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Tue Jul 01 00:52:27 EDT 2025
Fri Feb 23 02:38:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Isogenic iPS cells
Gene targeting
CRISPR-Cas9
Point mutation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-32d3ad0ce3409b75f01061b878f0bc07d53715d81e6b677ab5c3cd9555ea88d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
CRediT authorship contribution statement
Jingli Cai: Conceptualization, Methodology, Investigation, Writing - original draft. Elizabeth Kropf: Resources, Investigation. Ya-Ming Hou: Conceptualization, Writing - review & editing, Funding acquisition. Lorraine Iacovitti: Conceptualization, Writing - review & editing, Funding acquisition.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.scr.2021.102332
PMID 33857832
PQID 2514592344
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_66ac66f6087e41d182a92fca6e547270
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8283763
proquest_miscellaneous_2514592344
pubmed_primary_33857832
crossref_citationtrail_10_1016_j_scr_2021_102332
crossref_primary_10_1016_j_scr_2021_102332
elsevier_sciencedirect_doi_10_1016_j_scr_2021_102332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Stem cell research
PublicationTitleAlternate Stem Cell Res
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Okamoto, Amaishi, Maki, Enoki, Mineno (b0045) 2019; 9
Paquet, Kwart, Chen, Sproul, Jacob, Teo, Olsen, Gregg, Noggle, Tessier-Lavigne (b0050) 2016; 533
Anzalone, Randolph, Davis, Sousa, Koblan, Levy, Chen, Wilson, Newby, Raguram, Liu (b0005) 2019; 576
West, Moore, Biskup, Bugayenko, Smith, Ross, Dawson, Dawson (b0065) 2005; 102
Komor, Kim, Packer, Zuris, Liu (b0035) 2016; 533
Richardson, Ray, DeWitt, Curie, Corn (b0060) 2016; 34
Bialk, Rivera-Torres, Strouse, Kmiec (b0015) 2015; 10
Harmsen, Klaasen, Van De Vrugt, Te Riele (b0030) 2018; 46
Armstrong, Liao, You, Lissouba, Chen, Drapeau (b0010) 2016; 11
McLaughlin, Sakaguchi, Giblin, Wilson, Biesecker, Lupski, Talbot, Vance, Züchner, Lee, Kennerson, Hou, Nicholson, Antonellis (b0040) 2012; 33
Ran, Hsu, Wright, Agarwala, Scott, Zhang (b0055) 2013; 8
Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (b9000) 2007; 131
Elliott, Richardson, Winderbaum, Nickoloff, Jasin (b0020) 1998; 18
Goldwurm, Di Fonzo, Simons, Rohé, Zini, Canesi, Tesei, Zecchinelli, Antonini, Mariani, Meucci, Sacilotto, Sironi, Salani, Ferreira, Chien, Fabrizio, Vanacore, Dalla Libera, Stocchi, Diroma, Lamberti, Sampaio, Meco, Barbosa, Bertoli-Avella, Breedveld, Oostra, Pezzoli, Bonifati (b0025) 2005; 42
West (10.1016/j.scr.2021.102332_b0065) 2005; 102
Bialk (10.1016/j.scr.2021.102332_b0015) 2015; 10
McLaughlin (10.1016/j.scr.2021.102332_b0040) 2012; 33
Richardson (10.1016/j.scr.2021.102332_b0060) 2016; 34
Takahashi (10.1016/j.scr.2021.102332_b9000) 2007; 131
Goldwurm (10.1016/j.scr.2021.102332_b0025) 2005; 42
Ran (10.1016/j.scr.2021.102332_b0055) 2013; 8
Anzalone (10.1016/j.scr.2021.102332_b0005) 2019; 576
Elliott (10.1016/j.scr.2021.102332_b0020) 1998; 18
Harmsen (10.1016/j.scr.2021.102332_b0030) 2018; 46
Okamoto (10.1016/j.scr.2021.102332_b0045) 2019; 9
Armstrong (10.1016/j.scr.2021.102332_b0010) 2016; 11
Komor (10.1016/j.scr.2021.102332_b0035) 2016; 533
Paquet (10.1016/j.scr.2021.102332_b0050) 2016; 533
References_xml – volume: 34
  start-page: 339
  year: 2016
  end-page: 344
  ident: b0060
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
– volume: 33
  start-page: 244
  year: 2012
  end-page: 253
  ident: b0040
  article-title: A recurrent loss-of-function alanyl-tRNA synthetase (AARS) mutation in patients with charcot-marie-tooth disease type 2N (CMT2N)
  publication-title: Hum. Mutat.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0045
  article-title: Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs
  publication-title: Sci. Rep.
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: b9000
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: b0055
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 18
  start-page: 93
  year: 1998
  end-page: 101
  ident: b0020
  article-title: Gene conversion tracts from double-strand break repair in mammalian cells
  publication-title: Mol. Cell. Biol.
– volume: 42
  start-page: 1
  year: 2005
  end-page: 8
  ident: b0025
  article-title: The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor
  publication-title: J. Med. Genet.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0010
  article-title: Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system
  publication-title: PLoS One
– volume: 533
  start-page: 125
  year: 2016
  end-page: 129
  ident: b0050
  article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
  publication-title: Nature
– volume: 102
  start-page: 16842
  year: 2005
  end-page: 16847
  ident: b0065
  article-title: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 576
  start-page: 149
  year: 2019
  end-page: 157
  ident: b0005
  article-title: Search-and-replace genome editing without double-strand breaks or donor DNA
  publication-title: Nature
– volume: 10
  start-page: 1
  year: 2015
  end-page: 19
  ident: b0015
  article-title: Regulation of gene editing activity directed by single-stranded oligonucleotides and CRISPR/Cas9 systems
  publication-title: PLoS One
– volume: 46
  start-page: 2945
  year: 2018
  end-page: 2955
  ident: b0030
  article-title: DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break
  publication-title: Nucl. Acids Res.
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: b0035
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– volume: 102
  start-page: 16842
  year: 2005
  ident: 10.1016/j.scr.2021.102332_b0065
  article-title: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0507360102
– volume: 42
  start-page: 1
  year: 2005
  ident: 10.1016/j.scr.2021.102332_b0025
  article-title: The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2005.035568
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.scr.2021.102332_b0055
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 18
  start-page: 93
  year: 1998
  ident: 10.1016/j.scr.2021.102332_b0020
  article-title: Gene conversion tracts from double-strand break repair in mammalian cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.1.93
– volume: 33
  start-page: 244
  year: 2012
  ident: 10.1016/j.scr.2021.102332_b0040
  article-title: A recurrent loss-of-function alanyl-tRNA synthetase (AARS) mutation in patients with charcot-marie-tooth disease type 2N (CMT2N)
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.21635
– volume: 10
  start-page: 1
  year: 2015
  ident: 10.1016/j.scr.2021.102332_b0015
  article-title: Regulation of gene editing activity directed by single-stranded oligonucleotides and CRISPR/Cas9 systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129308
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.scr.2021.102332_b0045
  article-title: Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41121-4
– volume: 34
  start-page: 339
  year: 2016
  ident: 10.1016/j.scr.2021.102332_b0060
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3481
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.scr.2021.102332_b0010
  article-title: Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150188
– volume: 576
  start-page: 149
  year: 2019
  ident: 10.1016/j.scr.2021.102332_b0005
  article-title: Search-and-replace genome editing without double-strand breaks or donor DNA
  publication-title: Nature
  doi: 10.1038/s41586-019-1711-4
– volume: 533
  start-page: 125
  year: 2016
  ident: 10.1016/j.scr.2021.102332_b0050
  article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
  publication-title: Nature
  doi: 10.1038/nature17664
– volume: 131
  start-page: 861
  issue: 5
  year: 2007
  ident: 10.1016/j.scr.2021.102332_b9000
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.11.019
– volume: 533
  start-page: 420
  year: 2016
  ident: 10.1016/j.scr.2021.102332_b0035
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 46
  start-page: 2945
  year: 2018
  ident: 10.1016/j.scr.2021.102332_b0030
  article-title: DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gky076
SSID ssj0059282
Score 2.2778606
Snippet •A CRISPR-Cas9 gene knock-in method for correction of point mutations or frameshifting.•sgRNA sequences selected from the nearest intron of the mutation...
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102332
SubjectTerms Clone Cells
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR-Cas Systems - genetics
CRISPR-Cas9
Gene targeting
Homologous Recombination
Humans
Induced Pluripotent Stem Cells
Isogenic iPS cells
Mutation
Point Mutation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEMgl9JG2m7RFhZwCppb19DEtWUKgJZAEchN6mbik3iXrPeTfZyTZS9xCcsnFB1uyPaORvhlr_A1CR7z0DFAgFC4yEDJbmsLAsaDGRPIR7lnKdv_1W5xds_MbfvOk1FfMCcv0wFlx34UwTohGlEoGRjy4w6auGmdE4AywN0XrgHljMJXXYF5XqUwUUZIWHCBr3M9MmV0wHyEwrEiiLaDVBJEScf8EmP53PP_Nn3wCSPM3aG_wJPFJluAt2grdO7STa0s-vEfzE5z_Ayma-xDwKrPQPuB-gV2syOF6vFy0XY__rvNu_Aq3HR5oVnF7cYnjN_3VPrqen179PCuGogmF40T2Ba08Nb50gULkZiVvUtBnlVRNaV0pPaeScK9IEFZIaSx31Pmacx6MUp7RD2i7W3ThE8IVgVjHEkYkVSyURImGkLr2teXS8aqZoXJUnHYDo3gsbHGnx9SxPxp0raOuddb1DB1vuiwzncZzjX_E0dg0jEzY6QTYhx7sQ79kHzPExrHUg1ORnQW4Vfvcs7-N465hwkWNmy4s1isNDiED-6KMzdDHbAebN4R4H1bA2FtOLGQiwvRK194mUm8VaYgEPXgNmQ_RbhQl52V-Rtv9_Tp8Ad-pt1_TNHkE9FQSQg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUMiltGnabpsEFXIquCtZTx-T0CUEUgJpIDehl1uX1l52vYdc8tujh73UDeTQi8H2yJZHo3lYo28AOGHI0WAFfGEjAiE1SBc6HAuidQQfYY6mbPerb_zill7esbsdcD7uhYlplYPuzzo9aevhynzg5nzZNPMbLAVhKCFgxRrzaQc7FVHKvzxs0zxYVaaCUZG4iNTjymbK8QozM4SIJU4ABqSc2KYE4T8xUU9d0H8zKf8yTYtX4OXgU8LT3O3XYMe3--BFrjJ5_wYsTmHeEVLUK-_hOuPR3sO-gzbW5rA9XHZN28M_m7wuv4ZNCwfAVdhc38D4d399AG4XX7-fXxRD-YTCMiz6gpSOaIesJyGGM4LVKfwzUsgaGYuEY0Rg5iT23HAhtGGWWFcxxryW0lHyFuy2XevfA1jiEPUYTLEgknqEJa8xripXGSYsK-sZQCPjlB2wxWOJi99qTCL7pQKvVeS1yryegc_bJssMrPEc8VkcjS1hxMROF7rVDzUIheJcW85rjqTwFLsQOOmqrK3mntHgpaEZoONYqomIhUc1z7370zjuKky9yHHd-m6zVsE1pEG-CKUz8C7LwbaHIfIPujC2FhMJmXzC9E7b_Ezw3jICEnHy4f-6-xHsxbOck3kIdvvVxh8Fv6k3x2liPALrYRKa
  priority: 102
  providerName: Elsevier
Title A stress-free strategy to correct point mutations in patient iPS cells
URI https://dx.doi.org/10.1016/j.scr.2021.102332
https://www.ncbi.nlm.nih.gov/pubmed/33857832
https://www.proquest.com/docview/2514592344
https://pubmed.ncbi.nlm.nih.gov/PMC8283763
https://doaj.org/article/66ac66f6087e41d182a92fca6e547270
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKEagXxLvhsTISJ6RUcfzMAaEWsSqgIhCstDfLcZwSVJJ2k5XYC7-dcZwsBEovPiSx44xnMvPFk28Qes6TgoEXcLH1DIQsT0xsoI2pMZ58hBesz3Y_-SCOF-zdki930FjeahBgeym08_WkFquzgx8Xm1dg8C9_52qBhQHUS0lPREDhjXwdHJP0BQ1O2HZTgWcAL8aNzcu67aGbANhAhWk68VI9mf_EWf0bjP6dU_mHk5rfRreG6BIfBnW4g3ZcfRfdCPUmN_fQ_BCHf0PicuUcbgMz7QZ3Dba-Soft8HlT1R3-vg479C2uajxQr-Lq42fsv_O399Fi_ubL6-N4KKQQW05kF9O0oKZIrKOA5nLJyx4I5kqqMsltIgtOJeGFIk7kQkqTc0ttkXHOnVGqYPQB2q2b2u0jnBLAPzkB6VLFXEKUKAnJsiLLubQ8LSOUjILTdmAZ98UuzvSYTvZNg9i1F7sOYo_Qi22X80CxcdXFR341thd6duz-QLM61YOxaSGMFaIUiZKOkQIglMnS0hrhOIN4LYkQG9dSD4FGCCBgqOqqez8b112DEXqJm9o161ZDkMhAvShjEXoY9GA7w1GlIiQnGjJ5hOmZuvraE30rT00k6KP_jvkY7fn5hQTMJ2i3W63dUwiSunyGrh38JLP-EwO0b5dH0L7_pGa9SfwCxx0P0w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgSXijdbXkbihBTWjp85lorVAm2F1FbqzfIrEATJajd76IXfjh_JioDUA5ccnHHijGfGM_H4GwDeMORoWAV8YSMCITVIFzpcC6J1BB9hjqZs99Mzvrykn67Y1R44Hs_CxLTKwfZnm56s9dAyH7g5XzXN_BxLQRhKCFixxnwIgW7RoL6xjMG7X7s8D1aVqWJUpC4i-bi1mZK8gmqGGLHECcGAlJPFKWH4T9aof33Qv1Mp_1ibFvfAweBUwqM87vtgz7cPwO1cZvL6IVgcwXwkpKjX3sNNBqS9hn0HbSzOYXu46pq2hz-3eWN-A5sWDoirsPlyDuPv_c0jcLn4cHG8LIb6CYVlWPQFKR3RDllPQhBnBKtT_GekkDUyFgnHiMDMSey54UJowyyxrmKMeS2lo-Qx2G-71j8FsMQh7DGYYkEk9QhLXmNcVa4yTFhW1jOARsYpO4CLxxoXP9SYRfZdBV6ryGuVeT0Db3ddVhlZ4ybi93E2doQRFDs1dOuvapAKxbm2nNccSeEpdiFy0lVZW809o8FNQzNAx7lUExkLj2puevfrcd5V0L3Icd36brtRwTekQb4IpTPwJMvBboQh9A_GMPYWEwmZfML0Ttt8S_jeMiIScXL4f8N9Be4sL05P1MnHs8_PwN14JydoPgf7_XrrXwQnqjcvk5L8Bq3XFbY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stress-free+strategy+to+correct+point+mutations+in+patient+iPS+cells&rft.jtitle=Stem+cell+research&rft.au=Cai%2C+Jingli&rft.au=Kropf%2C+Elizabeth&rft.au=Hou%2C+Ya-Ming&rft.au=Iacovitti%2C+Lorraine&rft.date=2021-05-01&rft.eissn=1876-7753&rft.volume=53&rft.spage=102332&rft_id=info:doi/10.1016%2Fj.scr.2021.102332&rft_id=info%3Apmid%2F33857832&rft.externalDocID=33857832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1873-5061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1873-5061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1873-5061&client=summon