Generation of vascular chimerism within donor organs
Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. H...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 13437 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts. |
---|---|
AbstractList | Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts. Abstract Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts. Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts.Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts. Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts. |
ArticleNumber | 13437 |
Author | Azarov, Dmitry Niv-Drori, Hagit Shukrun, Golan Soffer-Hirschberg, Sarit Tobar, Ana Mor, Eytan Wertheimer, Avital Cohen, Shahar Kornowski, Ran Israeli, Moshe Atar, Eli Gurevich, Michael Perl, Leor Tennak, Vladimir Weiss, Chana Feinmesser, Meora Hovav, Benny Borovich, Adi Yahalom, Vered Cohen, Guy Nesher, Eviatar Partouche, Shirly Wiznitzer, Arnon Mezhybovsky, Vadym Leshem-Lev, Dorit |
Author_xml | – sequence: 1 givenname: Shahar surname: Cohen fullname: Cohen, Shahar email: shaharco@gmail.com organization: Laboratory for Organ Bioengineering, Rabin Medical Center – sequence: 2 givenname: Shirly surname: Partouche fullname: Partouche, Shirly organization: Laboratory for Organ Bioengineering, Rabin Medical Center, Felsenstien Medical Research Center, Rabin Medical Center – sequence: 3 givenname: Michael surname: Gurevich fullname: Gurevich, Michael organization: Department of Organ Transplantation, Rabin Medical Center – sequence: 4 givenname: Vladimir surname: Tennak fullname: Tennak, Vladimir organization: Department of Organ Transplantation, Rabin Medical Center – sequence: 5 givenname: Vadym surname: Mezhybovsky fullname: Mezhybovsky, Vadym organization: Department of Organ Transplantation, Rabin Medical Center – sequence: 6 givenname: Dmitry surname: Azarov fullname: Azarov, Dmitry organization: Experimental Surgery Unit, Rabin Medical Center – sequence: 7 givenname: Sarit surname: Soffer-Hirschberg fullname: Soffer-Hirschberg, Sarit organization: Department of Radiology, Rabin Medical Center – sequence: 8 givenname: Benny surname: Hovav fullname: Hovav, Benny organization: Department of Radiology, Rabin Medical Center – sequence: 9 givenname: Hagit surname: Niv-Drori fullname: Niv-Drori, Hagit organization: Department of Pathology, Rabin Medical Center – sequence: 10 givenname: Chana surname: Weiss fullname: Weiss, Chana organization: Department of Pathology, Rabin Medical Center – sequence: 11 givenname: Adi surname: Borovich fullname: Borovich, Adi organization: Helen Schneider Hospital for Women, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University – sequence: 12 givenname: Guy surname: Cohen fullname: Cohen, Guy organization: Helen Schneider Hospital for Women, Rabin Medical Center – sequence: 13 givenname: Avital surname: Wertheimer fullname: Wertheimer, Avital organization: Helen Schneider Hospital for Women, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University – sequence: 14 givenname: Golan surname: Shukrun fullname: Shukrun, Golan organization: Division of Pediatric Cardiothoracic Surgery, Schneider Children’s Medical Center, Department of Cardiothoracic Surgery, Rabin Medical Center – sequence: 15 givenname: Moshe surname: Israeli fullname: Israeli, Moshe organization: Tissue Typing Laboratory, Rabin Medical Center, Zefat Academic College – sequence: 16 givenname: Vered surname: Yahalom fullname: Yahalom, Vered organization: Sackler Faculty of Medicine, Tel Aviv University, Blood Services and Apheresis Institute, Rabin Medical Center – sequence: 17 givenname: Dorit surname: Leshem-Lev fullname: Leshem-Lev, Dorit organization: Felsenstien Medical Research Center, Rabin Medical Center, Department of Cardiology, Rabin Medical Center – sequence: 18 givenname: Leor surname: Perl fullname: Perl, Leor organization: Sackler Faculty of Medicine, Tel Aviv University, Department of Cardiology, Rabin Medical Center – sequence: 19 givenname: Ran surname: Kornowski fullname: Kornowski, Ran organization: Sackler Faculty of Medicine, Tel Aviv University, Department of Cardiology, Rabin Medical Center – sequence: 20 givenname: Arnon surname: Wiznitzer fullname: Wiznitzer, Arnon organization: Helen Schneider Hospital for Women, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University – sequence: 21 givenname: Ana surname: Tobar fullname: Tobar, Ana organization: Department of Pathology, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University – sequence: 22 givenname: Meora surname: Feinmesser fullname: Feinmesser, Meora organization: Department of Pathology, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University – sequence: 23 givenname: Eytan surname: Mor fullname: Mor, Eytan organization: Sackler Faculty of Medicine, Tel Aviv University, Transplantation Unit, Department of Surgery B, Sheba Medical Center – sequence: 24 givenname: Eli surname: Atar fullname: Atar, Eli organization: Department of Radiology, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University – sequence: 25 givenname: Eviatar surname: Nesher fullname: Nesher, Eviatar organization: Department of Organ Transplantation, Rabin Medical Center |
BookMark | eNp9UcFu1DAQtVARLaU_wCkSFy4Be2zH9gUJVVAqVeICZ8txJrteJXaxs0X9e7ybImgP9cUj-703b-a9JicxRSTkLaMfGOX6YxFMGt1SYK0BDbxVL8gZUCFb4AAn_9Wn5KKUHa1HghHMvCKnXDDNlTRnRFxhxOyWkGKTxubOFb-fXG78NsyYQ5mb32HZhtgMKabcpLxxsbwhL0c3Fbx4uM_Jz69fflx-a2--X11ffr5pvWRqaTkYZUbovTYDMCmkUz0b-56CryWMrHc98144PSB1owGhBfZcolZUMuf5ObledYfkdvY2h9nle5tcsMeHasa6vAQ_oeXccejrjFpQoTruTKdACY0dygFQVq1Pq9btvp9x8BiX7KZHoo9_YtjaTbqzdbfaSFUF3j8I5PRrj2Wxcygep8lFTPtiQYquO-64Qt89ge7SPse6qgNKKgOSQkXpFeVzKiXjaH1YjknU_mGyjNpD0nZN2tak7TFpe_ACT6h_53iWxFdSqeC4wfzP1TOsP6a-umo |
CitedBy_id | crossref_primary_10_26565_2313_6693_2024_50_08 crossref_primary_10_1016_j_cobme_2021_100335 crossref_primary_10_1038_s41598_023_31747_w crossref_primary_10_1681_ASN_2021081073 crossref_primary_10_3389_fcvm_2023_1272945 crossref_primary_10_1038_s44222_023_00066_0 crossref_primary_10_1155_2022_9018074 crossref_primary_10_3389_fbioe_2022_951644 crossref_primary_10_3389_fsurg_2022_843677 |
Cites_doi | 10.1016/0165-2427(94)90135-X 10.1038/s41467-017-00297-x 10.1038/srep29081 10.1016/S0140-6736(00)04217-3 10.1111/xen.12516 10.1111/xen.12219 10.1097/TP.0b013e3181ffba97 10.1126/scitranslmed.aau6934 10.1111/ajt.15672 10.1038/nprot.2010.6 10.1089/hum.2018.117 10.1016/S1074-7613(01)00124-8 10.1038/labinvest.3780086 10.1097/01.tp.0000231446.41051.98 10.1146/annurev-bioeng-071910-124743 10.1073/pnas.0812253106 10.1142/s2339547814500228 10.1126/science.1189345 10.1111/j.1399-3089.2007.00429.x 10.1038/s41598-018-23396-1 10.5966/sctm.2015-0227 10.1097/SLA.0000000000002129 10.1016/S0140-6736(00)03569-8 10.4049/jimmunol.1401536 10.1111/ajt.15677 10.1016/j.actbio.2018.07.046 10.1007/978-3-642-97323-9_30 10.3389/fimmu.2020.00265 10.1089/ten.tec.2016.0012 10.5966/sctm.2014-0162 10.1056/NEJMoa012081 10.1016/j.stemcr.2020.03.016 10.1016/j.biomaterials.2014.11.027 10.1172/JCI10233 10.1097/TP.0b013e3181891d8b 10.1089/ten.teb.2017.0127 10.1038/nbt.3354 10.1038/s41551-019-0460-x 10.1111/j.1365-2125.2009.03486.x 10.1126/sciimmunol.aat6114 10.1172/JCI93542 10.1038/s41598-019-44393-y 10.1111/ajt.15200 10.1002/ijc.28146 10.1038/s41587-019-0373-y 10.1155/2011/501749 10.1002/term.2604 10.1038/s41598-017-09115-2 10.1111/aor.13706 10.1053/jlts.2001.0070918 10.1053/jlts.2003.50116 10.1038/nm812 10.1073/pnas.0504705102 10.1038/s41551-020-00613-9 10.1038/s41536-019-0083-6 10.1038/s41581-018-0098-z 10.1016/j.trim.2005.10.003 10.1126/science.1078942 10.1111/ajt.13242 10.1111/tri.13462 10.1038/nbt.3889 10.1016/j.actbio.2016.12.033 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-92823-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_33a32b0008404763a9672748e6e5d2e5 PMC8238957 10_1038_s41598_021_92823_7 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-32979f2bc89d21545a7b1fbb02c5a72f1bab1cc4a8de0af92484eb35e87051ac3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:32:16 EDT 2025 Thu Aug 21 18:19:08 EDT 2025 Tue Aug 05 10:07:56 EDT 2025 Wed Aug 13 04:34:04 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Tue Jul 01 03:48:46 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-32979f2bc89d21545a7b1fbb02c5a72f1bab1cc4a8de0af92484eb35e87051ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-92823-7 |
PMID | 34183759 |
PQID | 2545792502 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33a32b0008404763a9672748e6e5d2e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8238957 proquest_miscellaneous_2546600529 proquest_journals_2545792502 crossref_citationtrail_10_1038_s41598_021_92823_7 crossref_primary_10_1038_s41598_021_92823_7 springer_journals_10_1038_s41598_021_92823_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-28 |
PublicationDateYYYYMMDD | 2021-06-28 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ko (CR16) 2014 Devalliere, Chen, Dooley, Yarmush, Uygun (CR51) 2018 Starzl (CR33) 2001 Cascalho, Platt (CR3) 2001 Hecht (CR39) 2009 Garry, Caplan, Garry (CR42) 2020 Hillebrands (CR30) 2001 Abrahimi, Liu, Pober (CR10) 2015; 15 Cui (CR12) 2017 Rogers (CR38) 2007 Hammerman (CR40) 2011 White (CR43) 2017 Doi (CR54) 2017 Cohen (CR24) 2020 Gao, McAlister, Williams (CR29) 2001 Yue (CR6) 2020 Arnaoutova, Kleinman (CR20) 2010 Al-Lamki, Bradley, Pober (CR9) 2008 Friedrich (CR44) 2018; 12 Stabler (CR55) 2016 CR45 Tilling, Chowienczyk, Clapp (CR59) 2009 Kirkton (CR58) 2019 Cooper (CR8) 2016 Jourde-Chiche (CR60) 2019 Shaheen (CR18) 2020 Phelps (CR4) 2003 Valapour (CR27) 2020 ten Hove (CR34) 2003 Quaini (CR31) 2002 Ander, Diamond, Coyne (CR49) 2019 Shimizu (CR7) 2000; 80 Hillebrandt (CR63) 2019 Brasile, Glowacki, Castracane, Stubenitsky (CR11) 2010 Wu (CR21) 2018 Cooper (CR62) 2019 Chen (CR35) 2018 Figueiredo (CR13) 2019 Badylak, Taylor, Uygun (CR15) 2011 Koopmans (CR32) 2006 Hart (CR26) 2020 Lagaaij (CR28) 2001 Peters (CR23) 2018 Ko (CR17) 2015 Petersen (CR50) 2010 Das (CR41) 2020 Solomon (CR46) 2016 Pittenger (CR47) 2019 Ciampi (CR56) 2019 Stevens (CR57) 2005 Takeda, Rogers, Hammerman (CR37) 2006 Sachs (CR2) 1994; 43 Chong, Ng, Chan (CR22) 2016 Leuning (CR52) 2019 Svensson-Arvelund (CR48) 2015 Franses, Drosu, Gibson, Chitalia, Edelman (CR61) 2013 Zhou (CR19) 2018 Dekel (CR36) 2003 Fischer (CR5) 2016 Cooper, Ye, Rolf, Zuhdi (CR1) 1991 Giwa (CR25) 2017 Ren (CR53) 2015 Yuzefovych (CR14) 2020 L Tilling (92823_CR59) 2009 MF Pittenger (92823_CR47) 2019 Y Yue (92823_CR6) 2020 LJ White (92823_CR43) 2017 K Fischer (92823_CR5) 2016 S Das (92823_CR41) 2020 CC Chen (92823_CR35) 2018 Y Yuzefovych (92823_CR14) 2020 RD Kirkton (92823_CR58) 2019 IK Ko (92823_CR17) 2015 DKC Cooper (92823_CR1) 1991 SA Rogers (92823_CR38) 2007 J Devalliere (92823_CR51) 2018 S Cohen (92823_CR24) 2020 MSK Chong (92823_CR22) 2016 DH Sachs (92823_CR2) 1994; 43 C Figueiredo (92823_CR13) 2019 MF Shaheen (92823_CR18) 2020 DKC Cooper (92823_CR8) 2016 DG Leuning (92823_CR52) 2019 I Arnaoutova (92823_CR20) 2010 R Doi (92823_CR54) 2017 92823_CR45 IK Ko (92823_CR16) 2014 O Ciampi (92823_CR56) 2019 MR Hammerman (92823_CR40) 2011 DJ Garry (92823_CR42) 2020 H Zhou (92823_CR19) 2018 N Jourde-Chiche (92823_CR60) 2019 TH Petersen (92823_CR50) 2010 J Svensson-Arvelund (92823_CR48) 2015 A Hart (92823_CR26) 2020 A Shimizu (92823_CR7) 2000; 80 M Valapour (92823_CR27) 2020 ZH Gao (92823_CR29) 2001 SF Badylak (92823_CR15) 2011 JW Franses (92823_CR61) 2013 L Brasile (92823_CR11) 2010 G Hecht (92823_CR39) 2009 SE Ander (92823_CR49) 2019 DKC Cooper (92823_CR62) 2019 JL Hillebrands (92823_CR30) 2001 TE Starzl (92823_CR33) 2001 J Cui (92823_CR12) 2017 F Quaini (92823_CR31) 2002 SI Takeda (92823_CR37) 2006 B Dekel (92823_CR36) 2003 X Ren (92823_CR53) 2015 WR ten Hove (92823_CR34) 2003 KH Hillebrandt (92823_CR63) 2019 EL Lagaaij (92823_CR28) 2001 MM Stevens (92823_CR57) 2005 S Giwa (92823_CR25) 2017 RS Al-Lamki (92823_CR9) 2008 EE Friedrich (92823_CR44) 2018; 12 I Solomon (92823_CR46) 2016 EB Peters (92823_CR23) 2018 M Cascalho (92823_CR3) 2001 M Wu (92823_CR21) 2018 CT Stabler (92823_CR55) 2016 P Abrahimi (92823_CR10) 2015; 15 CJ Phelps (92823_CR4) 2003 M Koopmans (92823_CR32) 2006 |
References_xml | – volume: 43 start-page: 185 year: 1994 end-page: 191 ident: CR2 article-title: The pig as a potential xenograft donor publication-title: Vet. Immunol. Immunopathol. doi: 10.1016/0165-2427(94)90135-X – year: 2017 ident: CR12 article-title: Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-00297-x – ident: CR45 – year: 2016 ident: CR5 article-title: Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing publication-title: Sci. Rep. doi: 10.1038/srep29081 – year: 2001 ident: CR29 article-title: Repopulation of liver endothelium by bone-marrow-derived cells publication-title: Lancet doi: 10.1016/S0140-6736(00)04217-3 – year: 2019 ident: CR62 article-title: Justification of specific genetic modifications in pigs for clinical organ xenotransplantation publication-title: Xenotransplantation doi: 10.1111/xen.12516 – year: 2016 ident: CR8 article-title: The pathobiology of pig-to-primate xenotransplantation: A historical review publication-title: Xenotransplantation doi: 10.1111/xen.12219 – year: 2010 ident: CR11 article-title: Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression publication-title: Transplantation doi: 10.1097/TP.0b013e3181ffba97 – year: 2019 ident: CR58 article-title: Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau6934 – year: 2020 ident: CR26 article-title: OPTN/SRTR 2018 annual data report: Kidney publication-title: Am. J. Transplant. doi: 10.1111/ajt.15672 – year: 2010 ident: CR20 article-title: In vitro angiogenesis: Endothelial cell tube formation on gelled basement membrane extract publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.6 – year: 2019 ident: CR13 article-title: Immunoengineering of the vascular endothelium to silence MHC expression during normothermic ex vivo lung perfusion publication-title: Hum. Gene Ther. doi: 10.1089/hum.2018.117 – year: 2001 ident: CR3 article-title: The immunological barrier to xenotransplantation publication-title: Immunity doi: 10.1016/S1074-7613(01)00124-8 – volume: 80 start-page: 815 year: 2000 end-page: 830 ident: CR7 article-title: Acute humoral xenograft rejection: Destruction of the microvascular capillary endothelium in pig-to-nonhuman primate renal grafts publication-title: Lab. Investig. doi: 10.1038/labinvest.3780086 – year: 2006 ident: CR32 article-title: Endothelial chimerism in transplantation: Looking for needles in a haystack publication-title: Transplantation doi: 10.1097/01.tp.0000231446.41051.98 – year: 2011 ident: CR15 article-title: Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071910-124743 – year: 2009 ident: CR39 article-title: Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0812253106 – year: 2014 ident: CR16 article-title: Enhanced re-endothelialization of acellular kidney scaffolds for whole organ engineering via antibody conjugation of vasculatures publication-title: Technology doi: 10.1142/s2339547814500228 – year: 2010 ident: CR50 article-title: Tissue-engineered lungs for in vivo implantation publication-title: Science doi: 10.1126/science.1189345 – year: 2007 ident: CR38 article-title: Long-term engraftment following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic rhesus macaques publication-title: Xenotransplantation doi: 10.1111/j.1399-3089.2007.00429.x – year: 2018 ident: CR21 article-title: Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord publication-title: Sci. Rep. doi: 10.1038/s41598-018-23396-1 – year: 2016 ident: CR22 article-title: Concise review: Endothelial progenitor cells in regenerative medicine: Applications and challenges publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0227 – year: 2018 ident: CR19 article-title: Bioengineering human lung grafts on porcine matrix publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002129 – year: 2001 ident: CR28 article-title: Endothelial cell chimerism after renal transplantation and vascular rejection publication-title: Lancet doi: 10.1016/S0140-6736(00)03569-8 – year: 2015 ident: CR48 article-title: The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.1401536 – year: 2020 ident: CR27 article-title: OPTN/SRTR 2018 annual data report: Lung publication-title: Am. J. Transplant. doi: 10.1111/ajt.15677 – year: 2018 ident: CR51 article-title: Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.07.046 – year: 1991 ident: CR1 article-title: The pig as potential organ donor for man publication-title: Xenotransplantation doi: 10.1007/978-3-642-97323-9_30 – year: 2020 ident: CR14 article-title: Genetic engineering of the kidney to permanently silence MHC transcripts during ex vivo organ perfusion publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00265 – year: 2016 ident: CR55 article-title: Enhanced re-endothelialization of decellularized rat lungs publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2016.0012 – year: 2016 ident: CR46 article-title: Functional differences between placental micro- and macrovascular endothelial colony-forming cells publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2014-0162 – year: 2002 ident: CR31 article-title: Chimerism of the transplanted heart publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012081 – year: 2020 ident: CR42 article-title: Chimeric humanized vasculature and blood: The intersection of science and ethics publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.03.016 – year: 2015 ident: CR17 article-title: Bioengineered transplantable porcine livers with re-endothelialized vasculature publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.11.027 – year: 2001 ident: CR30 article-title: Origin of neointimal endothelium and α-actin-positive smooth muscle cells in transplant arteriosclerosis publication-title: J. Clin. Investig. doi: 10.1172/JCI10233 – year: 2008 ident: CR9 article-title: Endothelial cells in allograft rejection publication-title: Transplantation doi: 10.1097/TP.0b013e3181891d8b – year: 2018 ident: CR23 article-title: Endothelial progenitor cells for the vascularization of engineered tissues publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2017.0127 – year: 2015 ident: CR53 article-title: Engineering pulmonary vasculature in decellularized rat and human lungs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3354 – year: 2020 ident: CR18 article-title: Sustained perfusion of revascularized bioengineered livers heterotopically transplanted into immunosuppressed pigs publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0460-x – year: 2009 ident: CR59 article-title: Progenitors in motion: Mechanisms of mobilization of endothelial progenitor cells publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2009.03486.x – year: 2019 ident: CR49 article-title: Immune responses at the maternal–fetal interface publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aat6114 – year: 2018 ident: CR35 article-title: Endothelial chimerism and vascular sequestration protect pancreatic islet grafts from antibody-mediated rejection publication-title: J. Clin. Investig. doi: 10.1172/JCI93542 – year: 2019 ident: CR56 article-title: Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells publication-title: Sci. Rep. doi: 10.1038/s41598-019-44393-y – year: 2019 ident: CR52 article-title: Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell-derived endothelium publication-title: Am. J. Transplant. doi: 10.1111/ajt.15200 – year: 2013 ident: CR61 article-title: Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis publication-title: Int. J. Cancer doi: 10.1002/ijc.28146 – year: 2020 ident: CR41 article-title: Generation of human endothelium in pig embryos deficient in ETV2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0373-y – year: 2011 ident: CR40 article-title: Xenotransplantation of embryonic pig kidney or pancreas to replace the function of mature organs publication-title: J. Transplant. doi: 10.1155/2011/501749 – volume: 12 start-page: e1704 year: 2018 end-page: e1715 ident: CR44 article-title: Residual sodium dodecyl sulfate in decellularized muscle matrices leads to fibroblast activation in vitro and foreign body response in vivo publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2604 – year: 2017 ident: CR54 article-title: Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-09115-2 – year: 2020 ident: CR24 article-title: Flow-controlled fluoroscopic angiography for the assessment of vascular integrity in bioengineered kidneys publication-title: Artif. Organs doi: 10.1111/aor.13706 – year: 2001 ident: CR33 article-title: The, “privileged” liver and hepatic tolerogenicity publication-title: Liver Transplant. doi: 10.1053/jlts.2001.0070918 – year: 2003 ident: CR34 article-title: Extensive chimerism in liver transplants: Vascular endothelium, bile duct epithelium, and hepatocytes publication-title: Liver Transplant. doi: 10.1053/jlts.2003.50116 – year: 2003 ident: CR36 article-title: Human and porcine early kidney precursors as a new source for transplantation publication-title: Nat. Med. doi: 10.1038/nm812 – year: 2005 ident: CR57 article-title: In vivo engineering of organs: The bone bioreactor publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0504705102 – year: 2020 ident: CR6 article-title: Extensive germline genome engineering in pigs publication-title: Nat. Biomed Eng doi: 10.1038/s41551-020-00613-9 – year: 2019 ident: CR47 article-title: Mesenchymal stem cell perspective: Cell biology to clinical progress publication-title: NPJ Regen. Med. doi: 10.1038/s41536-019-0083-6 – year: 2019 ident: CR60 article-title: Endothelium structure and function in kidney health and disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-018-0098-z – year: 2006 ident: CR37 article-title: Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats publication-title: Transpl. Immunol. doi: 10.1016/j.trim.2005.10.003 – year: 2003 ident: CR4 article-title: Production of α1,3-galactosyltransferase-deficient pigs publication-title: Science doi: 10.1126/science.1078942 – volume: 15 start-page: 1748 year: 2015 end-page: 1754 ident: CR10 article-title: Blood vessels in allotransplantation publication-title: Am. J. Transplant. doi: 10.1111/ajt.13242 – year: 2019 ident: CR63 article-title: Strategies based on organ decellularization and recellularization publication-title: Transpl. Int. doi: 10.1111/tri.13462 – year: 2017 ident: CR25 article-title: The promise of organ and tissue preservation to transform medicine publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3889 – year: 2017 ident: CR43 article-title: The impact of detergents on the tissue decellularization process: A ToF-SIMS study publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.12.033 – year: 2009 ident: 92823_CR39 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0812253106 – year: 2001 ident: 92823_CR33 publication-title: Liver Transplant. doi: 10.1053/jlts.2001.0070918 – year: 2019 ident: 92823_CR52 publication-title: Am. J. Transplant. doi: 10.1111/ajt.15200 – volume: 80 start-page: 815 year: 2000 ident: 92823_CR7 publication-title: Lab. Investig. doi: 10.1038/labinvest.3780086 – volume: 12 start-page: e1704 year: 2018 ident: 92823_CR44 publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2604 – year: 2019 ident: 92823_CR47 publication-title: NPJ Regen. Med. doi: 10.1038/s41536-019-0083-6 – year: 2017 ident: 92823_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00297-x – year: 2003 ident: 92823_CR4 publication-title: Science doi: 10.1126/science.1078942 – year: 2014 ident: 92823_CR16 publication-title: Technology doi: 10.1142/s2339547814500228 – year: 2010 ident: 92823_CR50 publication-title: Science doi: 10.1126/science.1189345 – year: 2016 ident: 92823_CR55 publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2016.0012 – year: 2020 ident: 92823_CR27 publication-title: Am. J. Transplant. doi: 10.1111/ajt.15677 – year: 2010 ident: 92823_CR11 publication-title: Transplantation doi: 10.1097/TP.0b013e3181ffba97 – year: 2017 ident: 92823_CR43 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.12.033 – year: 2020 ident: 92823_CR6 publication-title: Nat. Biomed Eng doi: 10.1038/s41551-020-00613-9 – year: 2018 ident: 92823_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-018-23396-1 – volume: 43 start-page: 185 year: 1994 ident: 92823_CR2 publication-title: Vet. Immunol. Immunopathol. doi: 10.1016/0165-2427(94)90135-X – year: 2016 ident: 92823_CR5 publication-title: Sci. Rep. doi: 10.1038/srep29081 – year: 2018 ident: 92823_CR19 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002129 – year: 2019 ident: 92823_CR56 publication-title: Sci. Rep. doi: 10.1038/s41598-019-44393-y – year: 2003 ident: 92823_CR36 publication-title: Nat. Med. doi: 10.1038/nm812 – year: 2020 ident: 92823_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0373-y – year: 2015 ident: 92823_CR48 publication-title: J. Immunol. doi: 10.4049/jimmunol.1401536 – year: 2017 ident: 92823_CR25 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3889 – year: 2002 ident: 92823_CR31 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012081 – year: 2006 ident: 92823_CR37 publication-title: Transpl. Immunol. doi: 10.1016/j.trim.2005.10.003 – year: 2011 ident: 92823_CR40 publication-title: J. Transplant. doi: 10.1155/2011/501749 – year: 2007 ident: 92823_CR38 publication-title: Xenotransplantation doi: 10.1111/j.1399-3089.2007.00429.x – year: 2019 ident: 92823_CR63 publication-title: Transpl. Int. doi: 10.1111/tri.13462 – year: 2019 ident: 92823_CR58 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau6934 – year: 2018 ident: 92823_CR35 publication-title: J. Clin. Investig. doi: 10.1172/JCI93542 – volume: 15 start-page: 1748 year: 2015 ident: 92823_CR10 publication-title: Am. J. Transplant. doi: 10.1111/ajt.13242 – year: 2020 ident: 92823_CR24 publication-title: Artif. Organs doi: 10.1111/aor.13706 – year: 2003 ident: 92823_CR34 publication-title: Liver Transplant. doi: 10.1053/jlts.2003.50116 – year: 2001 ident: 92823_CR3 publication-title: Immunity doi: 10.1016/S1074-7613(01)00124-8 – year: 2020 ident: 92823_CR14 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00265 – year: 2005 ident: 92823_CR57 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0504705102 – year: 2008 ident: 92823_CR9 publication-title: Transplantation doi: 10.1097/TP.0b013e3181891d8b – year: 2016 ident: 92823_CR46 publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2014-0162 – year: 2019 ident: 92823_CR13 publication-title: Hum. Gene Ther. doi: 10.1089/hum.2018.117 – year: 2018 ident: 92823_CR23 publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2017.0127 – year: 1991 ident: 92823_CR1 publication-title: Xenotransplantation doi: 10.1007/978-3-642-97323-9_30 – year: 2020 ident: 92823_CR42 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.03.016 – ident: 92823_CR45 – year: 2017 ident: 92823_CR54 publication-title: Sci. Rep. doi: 10.1038/s41598-017-09115-2 – year: 2010 ident: 92823_CR20 publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.6 – year: 2001 ident: 92823_CR30 publication-title: J. Clin. Investig. doi: 10.1172/JCI10233 – year: 2009 ident: 92823_CR59 publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2009.03486.x – year: 2019 ident: 92823_CR60 publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-018-0098-z – year: 2015 ident: 92823_CR53 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3354 – year: 2015 ident: 92823_CR17 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.11.027 – year: 2013 ident: 92823_CR61 publication-title: Int. J. Cancer doi: 10.1002/ijc.28146 – year: 2020 ident: 92823_CR18 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0460-x – year: 2006 ident: 92823_CR32 publication-title: Transplantation doi: 10.1097/01.tp.0000231446.41051.98 – year: 2019 ident: 92823_CR62 publication-title: Xenotransplantation doi: 10.1111/xen.12516 – year: 2011 ident: 92823_CR15 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071910-124743 – year: 2016 ident: 92823_CR8 publication-title: Xenotransplantation doi: 10.1111/xen.12219 – year: 2018 ident: 92823_CR51 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.07.046 – year: 2001 ident: 92823_CR29 publication-title: Lancet doi: 10.1016/S0140-6736(00)04217-3 – year: 2020 ident: 92823_CR26 publication-title: Am. J. Transplant. doi: 10.1111/ajt.15672 – year: 2016 ident: 92823_CR22 publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0227 – year: 2001 ident: 92823_CR28 publication-title: Lancet doi: 10.1016/S0140-6736(00)03569-8 – year: 2019 ident: 92823_CR49 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aat6114 |
SSID | ssj0000529419 |
Score | 2.3855016 |
Snippet | Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors.... Abstract Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13437 |
SubjectTerms | 631/61/2035 631/61/490 692/308/575 Aorta Chimerism Coronary vessels Endothelial cells Heart Humanities and Social Sciences Immunogenicity Immunology Kidneys Limbs multidisciplinary Organs Pancreas Perfusion Placenta Progenitor cells Science Science (multidisciplinary) Stem cells Xenografts Xenotransplantation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXFbxpMM8mOaq4LB48KXgLSZrggrbirgf_vUnaXa2gXryVNqXJNxlmpjP5BoATgymramRhIi-DrPYSGuYCRJZ7b5AR2Odqi9tqfM9uHvjDl1ZfqSasowfugDun1FCSTRVDLCqDUSl3yKSvPK-Jz-yl0eZ9CaY6Vm-iGFb9KRlE5fk0Wqp0mixVJMQwg0IxsESZsH_gZX6vkfyWKM32Z7QO1nrHsbzoJrwBlnyzCVa6VpLvW4B1_NEJ5rIN5bzAtHSPk5STmT6X6Y_rpCnrtmlfy9zMaboN7kfXd1dj2HdEgI5jMYOUKKECsU6qmiTnxwiLg7WIuHhJArbGYueYkbVHJsTYSrIYLXMftZJj4-gOWG7axu-C0tLaIBKocYGy4IOStfCCh8oGawxTBcBzdLTr6cJT14onndPWVOoOUR0R1RlRLQpwunjnpSPL-HX0ZQJ9MTIRXecbEQLdi1__Jf4CHMxFpnvtm-oY9HKhonNHCnC8eBz1JiVDTOPbtzymqvI-KYAYiHowoeGTZvKYGbjj_KXicQVn803x-fGfF7z3HwveB6skbWJUQSIPwPLs9c0fRr9oZo-yCnwAt1EHEg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxUxFA5aEdxIfeFolRHcaWiek8yqqFiKC1cW7i7kSS_oTNu5XfjvzclkbpmC3Q2TDJOcnJOcV76D0EdLuegCcRjAy7AIUWMrfMLEyRgtsYrGkm3xszs7Fz82clMdblNNq1z2xLJRh9GDj_w4GzJS9fnAZieXVxiqRkF0tZbQeIgeAXQZpHSpjdr7WCCKJWhf78oQro-nfF7BnTLIS8jGBsdqdR4V2P6Vrnk3U_JOuLScQqeH6GlVH9sv83o_Qw_i8Bw9ngtK_n2BxIwiDcRux9Quaaatv9hCZGb604LfdTu0YRzG67aUdJpeovPT77--neFaFwF7SdUOc9arPjHndR8YqEBWOZqcI8znR5aos456L6wOkdiULSwtss0sY5ZNSa3nr9DBMA7xNWodD5awxK1PXKSYeh1UVDJ1LjlrRd8gulDH-AoaDrUrfpsSvObazBQ1maKmUNSoBn3af3M5Q2bc2_srEH3fE-Cuy4tMAlOlx3BuOSv6iiAi74i2hwCy0LGLMrAoG3S0LJmpMjiZW45p0Id9c5YeCInYIY43pU_XFT5pkFot9WpA65Zhe1FwuPP4dS_zDD4vTHH78_9P-M39Y32LnjBgT9Jhpo_Qwe76Jr7Les_OvS_M_Q_D4ABh priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nax0hEB_SlEIvJekH3SYpW-itlfq56jF59PHIIacEchN1lTxod0veyyH_fdTdfWFDW8ht0ZHVcdQZZ_wNwFdLGG9a7FAGL0O8DQpZ7iPCToRgsZUklGiLi2Z1xc-vxfUe0OktTAnaL5CWZZueosN-bNJBkx-D5YCCZCUwJF_AywzdnqV60Sx29yrZc8WJHt_HYKb-0nR2BhWo_pl--TQ68omLtJw8ywN4M6qM9enQyUPYC91beDUkkbx_B3xAjs4MrvtYT6Gltb9ZZ2_M5ned71rXXd32XX9blzROm_dwtfx5uVihMRcC8oLILWJUSx2p80q3NKs9VjoSncPUp08aibOOeM-tagO2MVlViic7WYS0HgWxnn2A_a7vwkeoHWstppFZHxmPIWrVyiBFbFx01nJdAZm4Y_wIFJ7zVfwyxWHNlBk4ahJHTeGokRV827X5M8Bk_Jf6LDN9R5khrktBYoEZp9wwZhktOgrHPO2CVmenMVehCaKlQVRwPE2ZGdfdxiRzV0id1DpawZdddVox2Q1iu9DfFZqmKXJSgZxN9axD85pufVOwt1P_lRZpBN8noXj8-b8H_Ol55EfwmmZxxQ2i6hj2t7d34STpPlv3uQj7A3-O_i4 priority: 102 providerName: Springer Nature |
Title | Generation of vascular chimerism within donor organs |
URI | https://link.springer.com/article/10.1038/s41598-021-92823-7 https://www.proquest.com/docview/2545792502 https://www.proquest.com/docview/2546600529 https://pubmed.ncbi.nlm.nih.gov/PMC8238957 https://doaj.org/article/33a32b0008404763a9672748e6e5d2e5 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_6gdIX8RO31mMF33R1Nx-bzYPI9WgpBxZRD-4tJNmEHtRdvbtC-987ye6eXqk--LRLPkgymUlmMslvAF7rgrKyzk0WwMsyVrsq08z6LDfcOZ1rUbh42-K8PJux6ZzPd2AId9QTcHWnaRfiSc2Wl--uf958RIH_0D0Zr96vcBMKD8XCZQO0IGgmdmEfdyYRBPVTr-53WN9EskL2b2furnoA93FhR7MtoJf-sVVFRP8tNfT2JcpbntS4QZ0-hAe9ZpmOO1Z4BDuueQz3uliTN0-AdQDTYR7S1qfDDdTUXiyC02b1PQ1HsosmrdumXaYx2tPqKcxOT75NzrI-ZEJmeSHWGSVSSE-MrWRNgnakhSm8MTmx-Et8YbQprGW6ql2uPRpfFUNzmjsUW15oS5_BXtM27jmkhtY6J55q6ynzzsuqFk5wXxpvtGYygWKgjrI9nngIa3Gpol-bVqojrkLiqkhcJRJ4s6nzo0PT-Gfp40D0TcmAhB0TkASqFyxFqaYkqjIsZ7hYahl8y6xypeM1cTyBo2HK1MBdCq1iLiRqfySBV5tsFKzgLdGNa69imbKMLJOA2JrqrQ5t5zSLiwjRjf2vJMcRvB2Y4nfjfx_w4X839AIOSGDivMxIdQR76-WVe4na0tqMYFfMxQj2x-Pp1yl-j0_OP3_B1Ek5GcUTiFEUkl9nuBbZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE81UEqQ4ARWEz9i51BVLbTa0rJCqJV6M7ZjqytBUpqtUP8UvxHbSbZKJXrrLUqcxJ75xp7xjGcA3qmc0KLKNArJyxCtrECKGocyzaxVmeK5jdEWs2J6Qr-cstMV-DuchQlhlcOcGCfqqjFhj3zTGzKMl37Bxtvnv1GoGhW8q0MJjQ4Wh_bqjzfZ2q2Dz56_7zHe3zv-NEV9VQFkWM4XiOCSlw5rI8oKBwVCcZ07rTNs_CV2uVY6N4YqUdlMOW-fCOotTmY9slmuDPHfvQerlHhTZgKru3uzb9-XuzrBb0bzsj-dkxGx2foVMpxiC5EQ3rwhiI9WwFgoYKTd3ozNvOGgjeve_mN41Cus6U6HsCewYuuncL8rYXn1DGiXtzqwN21cOgS2puZsHnxB7a807PTO67Rq6uYijUWk2udwcic0ewGTuqntGqSaVCrDjijjCHXWlaLiljNXaKeVomUC-UAdafo05aFaxk8Z3eVEyI6i0lNURopKnsCH5TvnXZKOW1vvBqIvW4YE2_GGJ4Hs5VUSogiOGhLNqJ-DVRlc1lTYwrIKW5bA-sAy2Ut9K68xmsDb5WMvr8EJo2rbXMY2RRFxkgAfsXrUofGTen4WM3_7_ouS-RF8HEBx_fP_D_jl7X19Aw-mx1-P5NHB7PAVPMQBqlmBsFiHyeLi0r72WtdCb_RQT-HHXUvXPzXOP2I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFNNWyBIcAJr41fsHBACyqqlqOJApb0Z27HVlSApzVaof41fh-0kW6USvfUWJU5iz3xjz3jGMwCvNKasrAuDYvIyxGonkWbWo8Jw53ShBXYp2uKo3D9mXxZ8sQF_x7MwMaxynBPTRF23Nu6Rz4Ihw0UVFmwy80NYxLe9-fvT3yhWkIqe1rGcRg-RQ3fxJ5hv3buDvcDr14TMP3__tI-GCgPIcixWiJJKVJ4YK6uaRGVCC4O9MQWx4ZJ4bLTB1jIta1doH2wVyYL1yV1AOcfa0vDdW3BbUI6jjImFWO_vRA8aw9VwTqegctaFtTKeZ4sxEcHQoUhM1sJUMmCi516N0rziqk0r4PwB3B9U1_xDj7WHsOGaR3CnL2Z58RhYn8E6MjpvfT6GuOb2ZBm9Qt2vPO75Lpu8bpv2LE_lpLoncHwjFHsKm03buC3IDa11QTzV1lPmna9kLZzgvjTeaM2qDPBIHWWHhOWxbsZPlRznVKqeoipQVCWKKpHBm_U7p326jmtbf4xEX7eMqbbTjUACNUiuolRTknQlVrAwG-sqOq-ZdKXjNXE8g92RZWqQ_05dojWDl-vHQXKjO0Y3rj1Pbcoy4SQDMWH1pEPTJ83yJOUAD_2XFQ8jeDuC4vLn_x_w9vV9fQF3g0yprwdHhztwj0SkFiUichc2V2fn7llQv1bmecJ5Dj9uWrD-AZKCQjI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+vascular+chimerism+within+donor+organs&rft.jtitle=Scientific+reports&rft.au=Cohen%2C+Shahar&rft.au=Partouche%2C+Shirly&rft.au=Gurevich%2C+Michael&rft.au=Tennak%2C+Vladimir&rft.date=2021-06-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-92823-7&rft_id=info%3Apmid%2F34183759&rft.externalDocID=PMC8238957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |