DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing
Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular...
Saved in:
Published in | Trends in genetics Vol. 37; no. 7; pp. 639 - 656 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.
Clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR-associated protein 9 (Cas9)-mediated genome editing offers a powerful approach as a potential therapy for monogenic human genetic diseases.Precise template-free base deletions can be achieved through microhomology-mediated end joining (MMEJ) repair and depend on local target site sequence.The DNA repair pathway choice in CRISPR-Cas9 induced-double-strand breaks (DSBs) is regulated by several key factors including the cell cycle, target site sequence and chromatin structure, and the identity of the donor DNA template.Homology-directed repair (HDR)-related DNA repair pathways in response to CRISPR-Cas9 induced-DSBs in mammalian cells are complicated and relatively inefficient. Different DNA repair pathways might be used to repair each end at a DSB resulting in the potential for asymmetric repair. |
---|---|
AbstractList | Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs. Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs. Clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR-associated protein 9 (Cas9)-mediated genome editing offers a powerful approach as a potential therapy for monogenic human genetic diseases.Precise template-free base deletions can be achieved through microhomology-mediated end joining (MMEJ) repair and depend on local target site sequence.The DNA repair pathway choice in CRISPR-Cas9 induced-double-strand breaks (DSBs) is regulated by several key factors including the cell cycle, target site sequence and chromatin structure, and the identity of the donor DNA template.Homology-directed repair (HDR)-related DNA repair pathways in response to CRISPR-Cas9 induced-DSBs in mammalian cells are complicated and relatively inefficient. Different DNA repair pathways might be used to repair each end at a DSB resulting in the potential for asymmetric repair. Many CRISPR-Cas-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical non-homologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight the CRISPR-Cas9 system and we then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway response to Cas9-induced DSBs. Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs. |
Author | Xue, Chaoyou Greene, Eric C. |
AuthorAffiliation | 1 Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032 |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032 |
Author_xml | – sequence: 1 givenname: Chaoyou surname: Xue fullname: Xue, Chaoyou organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 2 givenname: Eric C. surname: Greene fullname: Greene, Eric C. email: ecg2108@cumc.columbia.edu organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33896583$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1rGzEQhnVIiZ2PH9BL2WMvu9WHtZIoFMwmTQPOB05yFqo0a8vYkiutU_Lvq-DUNJeeBmaeeWd4TtBRiAEQ-khwQzBpv6yawS8aiilpMG0wlkdoXPqyVpzyETrJeYUx5oLxYzRiTKqWSzZG04vbaTWHrfGpujfD8rd5qbpl9BZy5UPVza8f7ud1Z7Kqb8B5M4CrriDEDVSXzg8-LM7Qh96sM5y_1VP09P3ysftRz-6urrvprLaciKFmRJlJ60D0PaWyZVi1xBAmuKBY0tbApAcrBCZOOQcTSym1VnAlFCVu0jt2ir7tc7e7nxtwFsKQzFpvk9-Y9KKj8fr9JPilXsRnLYkUVKoS8PktIMVfO8iD3vhsYb02AeIua8oLyHgrWUHJHrUp5pygP5whWL_q1itddOtX3RpTXXSXnU___nfY-Ou6AF_3ABRLzx6SztZDsEVrAjtoF_1_4v8A2SCShQ |
CitedBy_id | crossref_primary_10_1016_j_gene_2024_148733 crossref_primary_10_1038_s42003_023_05686_1 crossref_primary_10_3390_ani14040650 crossref_primary_10_1021_acs_biochem_2c00431 crossref_primary_10_1089_crispr_2023_0077 crossref_primary_10_1016_j_tcb_2021_07_005 crossref_primary_10_1073_pnas_2221127120 crossref_primary_10_1007_s40259_024_00654_5 crossref_primary_10_1016_j_omtn_2023_04_012 crossref_primary_10_2147_BTT_S429411 crossref_primary_10_1016_j_gene_2023_147480 crossref_primary_10_1016_j_omtm_2023_08_022 crossref_primary_10_3389_fgeed_2022_1050507 crossref_primary_10_1111_pbi_14122 crossref_primary_10_1002_biot_202100673 crossref_primary_10_3390_biom12091239 crossref_primary_10_3389_fpls_2023_1232938 crossref_primary_10_1093_jxb_erad096 crossref_primary_10_1038_s41467_024_46479_2 crossref_primary_10_3390_ijms231911541 crossref_primary_10_1016_j_cobme_2023_100489 crossref_primary_10_1093_cvr_cvac164 crossref_primary_10_1111_imr_13305 crossref_primary_10_1016_j_biosystems_2023_105072 crossref_primary_10_1016_j_ymthe_2024_03_005 crossref_primary_10_1038_s41551_023_01157_4 crossref_primary_10_3389_fgene_2021_738230 crossref_primary_10_1002_cbic_202100544 crossref_primary_10_1016_j_medp_2024_100027 crossref_primary_10_1038_s41467_022_34736_1 crossref_primary_10_3390_ijms24076261 crossref_primary_10_1002_bit_28393 crossref_primary_10_1371_journal_pone_0294683 crossref_primary_10_1038_s41557_024_01544_7 crossref_primary_10_17660_ActaHortic_2023_1383_23 crossref_primary_10_1134_S0026893322060164 crossref_primary_10_3390_genes14122118 crossref_primary_10_31857_S0026898423020155 crossref_primary_10_1007_s13365_024_01193_z crossref_primary_10_11144_Javeriana_SC291_gewc crossref_primary_10_1002_advs_202401797 crossref_primary_10_1016_j_omtn_2024_102119 crossref_primary_10_1007_s10577_023_09744_6 crossref_primary_10_1016_j_xpro_2021_101072 crossref_primary_10_1016_j_ibmb_2021_103705 crossref_primary_10_1021_acssuschemeng_3c05735 crossref_primary_10_1016_j_semradonc_2021_09_007 crossref_primary_10_1186_s13046_023_02741_x crossref_primary_10_2174_0113892010258617231020062637 crossref_primary_10_1007_s10529_023_03444_1 crossref_primary_10_1021_jacs_2c02633 crossref_primary_10_1002_biot_202100413 crossref_primary_10_1186_s44149_022_00044_w crossref_primary_10_3390_ijms232112852 crossref_primary_10_3389_fgeed_2022_785698 crossref_primary_10_1038_s44321_023_00008_8 crossref_primary_10_1038_s41587_024_02238_8 crossref_primary_10_1038_s41583_024_00829_7 crossref_primary_10_3390_v14091902 crossref_primary_10_3389_fimmu_2023_1210818 crossref_primary_10_1042_BST20221508 crossref_primary_10_1002_mco2_155 crossref_primary_10_1016_j_imlet_2022_03_005 crossref_primary_10_1016_j_lfs_2023_122165 crossref_primary_10_1016_j_omtn_2024_102138 crossref_primary_10_1089_crispr_2023_0033 crossref_primary_10_1098_rsob_210361 crossref_primary_10_3390_genes14081542 crossref_primary_10_1016_j_ydbio_2023_09_011 crossref_primary_10_3389_fbioe_2022_924914 crossref_primary_10_1016_j_preteyeres_2024_101248 crossref_primary_10_3390_cells12081103 crossref_primary_10_1002_mco2_388 crossref_primary_10_1038_s41467_022_34479_z crossref_primary_10_14348_molcells_2022_0163 crossref_primary_10_1038_s41587_023_01888_4 crossref_primary_10_7554_eLife_81577 crossref_primary_10_1089_crispr_2023_0029 crossref_primary_10_3390_ijms24021563 crossref_primary_10_3389_fgeed_2023_1114996 crossref_primary_10_1007_s40778_021_00205_6 crossref_primary_10_3390_cells12030440 crossref_primary_10_1134_S0026893323020139 crossref_primary_10_1098_rsob_230257 crossref_primary_10_1111_1751_7915_14418 crossref_primary_10_1002_adma_202110618 crossref_primary_10_1016_j_jddst_2024_105338 crossref_primary_10_3389_fgeed_2022_925088 crossref_primary_10_1021_acssynbio_2c00591 crossref_primary_10_1039_D2BM02169B crossref_primary_10_3390_ani14050719 crossref_primary_10_1093_genetics_iyad209 crossref_primary_10_1016_j_gene_2023_147821 crossref_primary_10_1016_j_rser_2023_113772 crossref_primary_10_3390_ijms241914807 crossref_primary_10_1186_s13059_022_02736_5 crossref_primary_10_1093_bib_bbad530 crossref_primary_10_1038_s41467_022_32285_1 crossref_primary_10_2174_0115733998263079231011073803 crossref_primary_10_1016_j_addr_2024_115215 crossref_primary_10_1021_acssynbio_3c00450 crossref_primary_10_3390_ijms25020823 crossref_primary_10_1007_s00425_023_04199_9 crossref_primary_10_1016_j_cell_2024_01_042 crossref_primary_10_1007_s00253_024_13056_y crossref_primary_10_1186_s12985_022_01859_2 crossref_primary_10_1016_j_fgb_2023_103777 crossref_primary_10_3390_jof9010016 crossref_primary_10_1080_14712598_2023_2192348 crossref_primary_10_3389_fonc_2024_1388475 crossref_primary_10_1016_j_omtm_2024_101290 crossref_primary_10_1093_femsre_fuac035 crossref_primary_10_3390_jof9030362 crossref_primary_10_1007_s42994_024_00147_7 crossref_primary_10_1016_j_apsb_2024_04_015 crossref_primary_10_1186_s13046_023_02901_z crossref_primary_10_3390_biology13010053 crossref_primary_10_1016_j_xpro_2022_101861 crossref_primary_10_1080_19768354_2024_2322054 crossref_primary_10_3390_cells11203235 crossref_primary_10_1038_s41598_022_24810_5 |
Cites_doi | 10.1371/journal.pgen.1008355 10.1038/s41467-020-16997-w 10.1073/pnas.1516674113 10.1038/s41467-019-09006-2 10.1016/j.febslet.2010.07.029 10.1073/pnas.052545899 10.1038/nature09523 10.1016/j.cell.2015.12.035 10.1016/j.tcb.2015.07.009 10.1016/j.celrep.2016.01.019 10.1074/jbc.M606023200 10.1038/nbt.2623 10.1074/jbc.M706734200 10.1101/gad.266593.115 10.1101/gad.333237.119 10.1038/s41551-017-0145-2 10.1038/nbt.4192 10.1038/ncomms6931 10.1038/s41579-019-0299-x 10.1038/nature13420 10.1038/s41578-019-0145-9 10.1038/s41586-018-0670-5 10.1038/nrd.2016.280 10.1038/nature24268 10.1038/nbt.3471 10.1038/nature07725 10.1186/s13578-018-0200-z 10.1038/s41467-018-04609-7 10.1371/journal.pgen.1003026 10.1038/nsmb.1915 10.1016/j.molcel.2019.11.018 10.1016/j.celrep.2017.09.048 10.1038/nature07955 10.1038/nature09886 10.1126/science.1165771 10.1016/j.tig.2016.06.007 10.1093/nar/gkp1249 10.1038/nbt.3127 10.1038/s41586-019-1076-8 10.1038/nmeth.3075 10.1016/j.mrfmmm.2017.07.002 10.1016/j.molcel.2013.04.032 10.7554/eLife.00471 10.1073/pnas.1208507109 10.1016/j.molcel.2006.04.013 10.1080/10717544.2018.1474964 10.1038/nbt.3198 10.1038/sj.emboj.7600469 10.1016/j.tibs.2015.08.006 10.1016/j.molcel.2016.10.017 10.1016/j.molcel.2018.11.031 10.1074/jbc.M116.770461 10.1093/nar/gkv259 10.1074/jbc.M404524200 10.1038/s41580-019-0152-0 10.1101/gr.171264.113 10.1016/j.cell.2008.08.016 10.1038/386804a0 10.1101/gr.171322.113 10.1038/nrm2008 10.1038/nbt.3609 10.1126/science.1258096 10.1371/journal.pgen.1008689 10.1016/j.molcel.2016.06.037 10.1126/science.aad5227 10.1073/pnas.1213431110 10.1038/ncomms10431 10.1074/jbc.RA120.012933 10.1038/s41467-018-05477-x 10.1038/s41591-018-0137-0 10.1126/science.1093620 10.1126/sciadv.aay2669 10.1038/s41587-020-0561-9 10.1038/nbt.2916 10.1038/nbt.3620 10.1038/nm1191 10.1042/BSR20200127 10.1016/j.tig.2019.02.003 10.1111/j.1365-2958.1993.tb01721.x 10.1073/pnas.1812753115 10.1038/s41467-019-10741-9 10.1101/gad.2003811 10.1016/S0065-2776(08)00602-0 10.1073/pnas.93.20.10729 10.1016/j.cell.2010.03.012 10.1038/nbt.2673 10.1074/jbc.M113.539726 10.1016/S1097-2765(00)80097-0 10.1038/nrg2842 10.1038/nsmb.3494 10.1038/nsmb.1916 10.1146/annurev-biochem-062917-012415 10.1126/science.1225829 10.7554/eLife.09832 10.1038/srep08841 10.1038/nature07710 10.1074/jbc.M710245200 10.1016/j.molcel.2005.02.012 10.1038/nrg.2016.28 10.1073/pnas.1520883112 10.1073/pnas.1520244113 10.1101/cshperspect.a016410 10.1074/jbc.M117.794545 10.1016/j.tibs.2020.05.003 10.1016/j.celrep.2016.05.007 10.1038/nbt.1755 10.3390/cells9071657 10.1128/MCB.00293-08 10.1126/science.1159689 10.1093/nar/gku803 10.1101/cshperspect.a016477 10.1146/annurev-cancerbio-030617-050502 10.1126/science.aay8204 10.1038/nbt.3190 10.1186/s13073-015-0215-6 10.1016/j.cell.2009.07.040 10.1038/nature16526 10.1016/j.tig.2018.04.002 10.1016/j.molcel.2017.08.002 10.1126/science.1138140 10.1093/nar/gkm888 10.1038/nsmb.2961 10.1146/annurev-genet-110410-132435 10.1038/cr.2007.111 10.1038/nbt.3469 10.1073/pnas.1512503112 10.1038/embor.2010.157 10.1128/MCB.20.9.2996-3003.2000 10.1038/s41586-018-0340-7 10.1038/nature06337 10.1016/j.molcel.2018.06.005 10.1089/hum.2015.087 10.7554/eLife.13450 10.1016/j.molcel.2020.06.014 10.7554/eLife.55780 10.1073/pnas.1402597111 10.1038/nrm.2017.48 10.7554/eLife.44063 10.1038/s41586-018-0324-7 10.1038/s41586-018-0380-z 10.1038/nprot.2014.171 10.1038/s41563-019-0385-5 10.1016/j.molcel.2018.04.016 10.1038/ni.1702 10.1126/sciadv.aay0922 10.1186/s13059-017-1164-8 10.1126/science.1232033 10.1016/j.molcel.2018.06.021 10.1038/nsmb.3336 10.1074/jbc.M114.578823 10.1126/sciadv.aao0027 10.1111/j.1365-2958.1995.mmi_17010085.x 10.1038/s41580-020-0218-z 10.1038/s41421-019-0120-z 10.1073/pnas.0402780101 10.1016/j.molcel.2007.10.024 10.1093/nar/gkn184 10.1038/nature01447 10.3390/ijms21103604 10.1038/nature14157 10.1016/j.cell.2018.03.050 10.1101/gad.315978.118 10.1016/j.molcel.2015.05.032 10.1016/j.molcel.2006.05.022 10.1038/s41586-018-0686-x 10.1101/gad.1032102 10.1074/jbc.272.45.28194 10.1073/pnas.1010959107 10.1038/s41556-019-0425-z 10.1038/35047123 10.1083/jcb.201103103 10.1038/nbt.3290 10.1089/hum.2015.074 10.1038/cddis.2013.171 10.1016/j.cell.2012.11.054 10.1038/nature13011 10.1128/jb.169.12.5429-5433.1987 10.1073/pnas.0609061103 10.1016/j.cell.2020.04.056 10.1126/science.297.5588.1837 10.1126/science.1231143 10.1038/nature24060 10.1093/nar/gkl840 10.1038/nature02964 10.1073/pnas.95.9.5287 10.1126/science.1091496 10.3109/10409238.2016.1172552 10.7554/eLife.04766 10.1093/nar/gkv1499 10.1002/biot.201400046 10.2174/156652311794520111 10.1038/nsmb.2786 10.1016/j.cell.2015.09.038 10.1146/annurev-genet-021920-092410 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.tig.2021.02.008 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 656 |
ExternalDocumentID | 10_1016_j_tig_2021_02_008 33896583 S0168952521000536 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA221858 – fundername: NCI NIH HHS grantid: R01 CA236606 – fundername: NIGMS NIH HHS grantid: R35 GM118026 |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEVXI AFCTW AFKWA AFMIJ AFRHN AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ XFK Y6R Z5R ZA5 ZCA ZCG ZGI ~G- ~KM AAMRU AAXKI ABDPE ADVLN AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c517t-319a46de7ff228630961a1375720826ae4fec7701d9dde4c222cc7597921d4fd3 |
IEDL.DBID | AIKHN |
ISSN | 0168-9525 |
IngestDate | Tue Sep 17 21:19:26 EDT 2024 Sat Oct 26 04:24:24 EDT 2024 Thu Sep 26 17:59:33 EDT 2024 Sat Nov 02 12:10:28 EDT 2024 Fri Feb 23 02:43:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-319a46de7ff228630961a1375720826ae4fec7701d9dde4c222cc7597921d4fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Present Address: Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187289 |
PMID | 33896583 |
PQID | 2518735683 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187289 proquest_miscellaneous_2518735683 crossref_primary_10_1016_j_tig_2021_02_008 pubmed_primary_33896583 elsevier_sciencedirect_doi_10_1016_j_tig_2021_02_008 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in genetics |
PublicationTitleAlternate | Trends Genet |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Deveryshetty (bb0800) 2019; 8 Hendel (bb0165) 2015; 33 Mari (bb0315) 2006; 103 Lee (bb0595) 2016; 44 Lee, Paull (bb0410) 2004; 304 Kosicki (bb0925) 2018; 36 Bizard, Hickson (bb0810) 2014; 6 Audebert (bb0450) 2004; 279 Zhou (bb0650) 2015; 4 Chu (bb0770) 2015; 6 Scully (bb0545) 2019; 20 Fu (bb0105) 2013; 31 Yin (bb0190) 2016; 34 Noordermeer (bb0675) 2018; 560 Xia (bb0745) 2006; 22 Buisson (bb0795) 2010; 17 Alexiadis, Kadonaga (bb0880) 2002; 16 Miller (bb0015) 2011; 29 Sharan (bb0760) 1997; 386 Andres (bb0310) 2007; 28 Mateos-Gomez (bb0465) 2017; 24 Genovese (bb0150) 2014; 510 Chen (bb0750) 1998; 95 Brouns (bb0965) 2008; 321 Kleinstiver (bb0275) 2016; 34 Barrangou (bb0960) 2007; 315 Seol (bb0380) 2018; 809 Nimonkar (bb0510) 2011; 25 Peterson (bb0575) 2011; 194 Shen (bb0480) 2018; 563 Crickard (bb0775) 2020; 181 Sfeir, Symington (bb0055) 2015; 40 Shou (bb0095) 2018; 71 Mojica (bb0955) 1995; 17 Schep (bb0865) 2020 Syed, Tainer (bb0585) 2018; 87 Jinek (bb0020) 2012; 337 Wright (bb0995) 2016; 164 Hemmi (bb0225) 2000; 408 Myler (bb0425) 2017; 67 Mortensen (bb0515) 1996; 93 Doudna, Charpentier (bb0005) 2014; 346 Clarke (bb0340) 2018; 71 Mirman, de Lange (bb0690) 2020; 34 Bhargava (bb0060) 2016; 32 Kim (bb0280) 2016; 34 Brinkman (bb0850) 2018; 70 Cong (bb0030) 2013; 339 Bonilla (bb0715) 2020; 54 Paull, Gellert (bb0430) 1998; 1 Sartori (bb0415) 2007; 450 Chen (bb0085) 2017; 550 Murugan (bb0285) 2020; 295 Gupta (bb0665) 2018; 173 Lin (bb0840) 2014; 3 Marraffini, Sontheimer (bb0970) 2008; 322 Hale (bb0980) 2009; 139 Kim (bb0220) 2014; 24 Aylon (bb0830) 2004; 23 Lee (bb0125) 2018; 9 Kuscu (bb0110) 2014; 32 Gallagher (bb0540) 2020; 16 Adikusuma (bb0930) 2018; 560 Symington, Gautier (bb0400) 2011; 45 Grimme (bb0520) 2010; 38 Cullot (bb0940) 2019; 10 Lou (bb0685) 2003; 421 Ferrari (bb0680) 2020; 11 Mojica (bb0950) 1993; 9 Liang (bb0390) 2008; 36 Chen (bb0070) 2014; 289 Shahbazi (bb0200) 2019; 18 Senis (bb0140) 2014; 9 Lamarche (bb0580) 2010; 584 Liu (bb0335) 2020; 368 Xue (bb0825) 2015; 29 Sung (bb0530) 1997; 272 Shao (bb0905) 2014; 9 Srivastava (bb0435) 2012; 151 van Overbeek (bb0495) 2016; 63 Sturzenegger (bb0505) 2014; 289 Gutschner (bb0845) 2016; 14 Fernandes-Alnemri (bb0235) 2009; 458 Garneau (bb0975) 2010; 468 Hornung (bb0180) 2005; 11 Urnov (bb0010) 2010; 11 Chen (bb0555) 2013; 50 Deng (bb0440) 2014; 21 Shi (bb0855) 2019; 5 Zhao, Sung (bb0805) 2015; 43 Heil (bb0175) 2004; 303 Allen (bb0490) 2018 Wang (bb0145) 2015; 26 Korablev (bb0935) 2020; 21 Ninomiya (bb0365) 2004; 101 Anzalone (bb0265) 2020; 38 Robert (bb0375) 2015; 7 Holkers (bb0215) 2014; 11 Shrivastav (bb0560) 2008; 18 Hornung (bb0230) 2009; 458 Yang (bb0755) 2002; 297 Riesenberg, Maricic (bb0370) 2018; 9 Ceccaldi (bb0405) 2016; 26 Cruz-Becerra, Kadonaga (bb0885) 2020; 9 Meek (bb0300) 2008; 99 Gori (bb0250) 2015; 26 Hanscom, McVey (bb0915) 2020; 9 Canaj (bb0875) 2019 Ma (bb0525) 2017; 292 Zhao (bb0780) 2017; 550 Iyer (bb0500) 2019; 568 Villarreal (bb0445) 2012; 8 Kleinstiver (bb0120) 2016; 529 Vakulskas (bb0130) 2018; 24 Deltcheva (bb0990) 2011; 471 Chen (bb0710) 2008; 283 Zhao (bb0740) 2015; 59 Bernstein (bb0330) 2005; 17 Ahmad (bb0470) 2008; 28 Chen (bb0725) 2018; 2 Xu (bb0565) 2017; 24 Kramara (bb0815) 2018; 34 Yoshimi (bb0900) 2016; 7 Myler (bb0645) 2016; 113 Silva (bb0205) 2011; 11 Isaac (bb0860) 2016; 5 Mirman (bb0670) 2018; 560 Daley (bb0660) 2017; 21 Daley (bb0655) 2014; 42 Stinson (bb0920) 2020; 77 Wang (bb0185) 2015; 33 Szczelkun (bb0080) 2014; 111 Garcin (bb0730) 2019; 15 Tsai, Joung (bb1000) 2016; 17 Kowalczykowski (bb0570) 2015; 7 Liang (bb0785) 2016; 15 Deshpande (bb0605) 2020; 6 Yeh (bb0065) 2019; 21 Kent (bb0385) 2015; 22 Paulsen (bb0910) 2017; 1 Truong (bb0395) 2013; 110 Haince (bb0590) 2008; 283 Yin (bb0135) 2017; 16 Wang (bb0455) 2006; 34 He (bb0620) 2018; 563 Hirakawa (bb0260) 2020; 40 Fuchs (bb0290) 2019 Nick McElhinny (bb0305) 2000; 20 Lim (bb0720) 2020; 6 Eid (bb0635) 2010; 11 Mali (bb0035) 2013; 339 Pattanayak (bb0100) 2013; 31 Bunting (bb0700) 2010; 141 Niewolik (bb0325) 2017; 292 Lu (bb0765) 2018; 115 Symington (bb0640) 2016; 51 Rahdar (bb0170) 2015; 112 Barber (bb0820) 2008; 135 Prakash (bb0735) 2020 Chu (bb0360) 2015; 33 Becker (bb0705) 2020 Anand (bb0420) 2016; 64 Zhang (bb0895) 2017; 18 Spagnolo (bb0295) 2006; 22 Allen (bb0610) 2002; 99 Yun, Hiom (bb0615) 2009; 459 Wang (bb0345) 2020; 79 Tarsounas, Sung (bb0695) 2020; 21 Dagdas (bb0090) 2017; 3 Dray (bb0790) 2010; 17 Lino (bb0245) 2018; 25 Sung, Klein (bb0045) 2006; 7 Makarova (bb0985) 2020; 18 Chang (bb0050) 2017; 18 Jinek (bb0025) 2013; 2 Sternberg (bb0075) 2014; 507 Gasiunas (bb0040) 2012; 109 Niewolik (bb0320) 2006; 281 Ronato (bb0630) 2020; 45 Moquin (bb0625) 2019; 33 Al-Minawi (bb0550) 2008; 36 Caron (bb0460) 2019; 10 Mateos-Gomez (bb0475) 2015; 518 Hisano (bb0890) 2015; 5 Chakrabarti (bb0485) 2019; 73 Sheng Tong (bb0255) 2019; 4 Schumann (bb0210) 2015; 112 Ira (bb0835) 2004; 431 Wang (bb0195) 2016; 113 Burckstummer (bb0240) 2009; 10 Feng (bb0535) 2011; 108 Zetsche (bb0270) 2015; 163 Slaymaker (bb0115) 2016; 351 Jiang (bb0600) 2013; 4 Maruyama (bb0350) 2015; 33 Hu (bb0355) 2018; 8 Yang (bb0155) 2016; 34 Ramakrishna (bb0160) 2014; 24 Clouaire, Legube (bb0870) 2019; 35 Ishino (bb0945) 1987; 169 van Overbeek (10.1016/j.tig.2021.02.008_bb0495) 2016; 63 Lee (10.1016/j.tig.2021.02.008_bb0125) 2018; 9 Wang (10.1016/j.tig.2021.02.008_bb0195) 2016; 113 Lamarche (10.1016/j.tig.2021.02.008_bb0580) 2010; 584 Hu (10.1016/j.tig.2021.02.008_bb0355) 2018; 8 Crickard (10.1016/j.tig.2021.02.008_bb0775) 2020; 181 Chen (10.1016/j.tig.2021.02.008_bb0070) 2014; 289 Eid (10.1016/j.tig.2021.02.008_bb0635) 2010; 11 Sartori (10.1016/j.tig.2021.02.008_bb0415) 2007; 450 Shao (10.1016/j.tig.2021.02.008_bb0905) 2014; 9 Brouns (10.1016/j.tig.2021.02.008_bb0965) 2008; 321 Daley (10.1016/j.tig.2021.02.008_bb0655) 2014; 42 Chang (10.1016/j.tig.2021.02.008_bb0050) 2017; 18 Silva (10.1016/j.tig.2021.02.008_bb0205) 2011; 11 Mari (10.1016/j.tig.2021.02.008_bb0315) 2006; 103 Ronato (10.1016/j.tig.2021.02.008_bb0630) 2020; 45 Senis (10.1016/j.tig.2021.02.008_bb0140) 2014; 9 Murugan (10.1016/j.tig.2021.02.008_bb0285) 2020; 295 Schumann (10.1016/j.tig.2021.02.008_bb0210) 2015; 112 Fernandes-Alnemri (10.1016/j.tig.2021.02.008_bb0235) 2009; 458 Zhao (10.1016/j.tig.2021.02.008_bb0740) 2015; 59 Andres (10.1016/j.tig.2021.02.008_bb0310) 2007; 28 Mateos-Gomez (10.1016/j.tig.2021.02.008_bb0465) 2017; 24 Yin (10.1016/j.tig.2021.02.008_bb0190) 2016; 34 Chen (10.1016/j.tig.2021.02.008_bb0085) 2017; 550 Paulsen (10.1016/j.tig.2021.02.008_bb0910) 2017; 1 Anand (10.1016/j.tig.2021.02.008_bb0420) 2016; 64 Genovese (10.1016/j.tig.2021.02.008_bb0150) 2014; 510 Rahdar (10.1016/j.tig.2021.02.008_bb0170) 2015; 112 Deltcheva (10.1016/j.tig.2021.02.008_bb0990) 2011; 471 Ferrari (10.1016/j.tig.2021.02.008_bb0680) 2020; 11 Isaac (10.1016/j.tig.2021.02.008_bb0860) 2016; 5 Lou (10.1016/j.tig.2021.02.008_bb0685) 2003; 421 Kleinstiver (10.1016/j.tig.2021.02.008_bb0120) 2016; 529 Yang (10.1016/j.tig.2021.02.008_bb0755) 2002; 297 Yun (10.1016/j.tig.2021.02.008_bb0615) 2009; 459 Jinek (10.1016/j.tig.2021.02.008_bb0025) 2013; 2 Hendel (10.1016/j.tig.2021.02.008_bb0165) 2015; 33 Gutschner (10.1016/j.tig.2021.02.008_bb0845) 2016; 14 Kuscu (10.1016/j.tig.2021.02.008_bb0110) 2014; 32 Nick McElhinny (10.1016/j.tig.2021.02.008_bb0305) 2000; 20 Caron (10.1016/j.tig.2021.02.008_bb0460) 2019; 10 Lu (10.1016/j.tig.2021.02.008_bb0765) 2018; 115 Chen (10.1016/j.tig.2021.02.008_bb0710) 2008; 283 Wang (10.1016/j.tig.2021.02.008_bb0455) 2006; 34 Fu (10.1016/j.tig.2021.02.008_bb0105) 2013; 31 Ishino (10.1016/j.tig.2021.02.008_bb0945) 1987; 169 Mirman (10.1016/j.tig.2021.02.008_bb0690) 2020; 34 Tarsounas (10.1016/j.tig.2021.02.008_bb0695) 2020; 21 Ninomiya (10.1016/j.tig.2021.02.008_bb0365) 2004; 101 Audebert (10.1016/j.tig.2021.02.008_bb0450) 2004; 279 Chen (10.1016/j.tig.2021.02.008_bb0725) 2018; 2 Anzalone (10.1016/j.tig.2021.02.008_bb0265) 2020; 38 Yoshimi (10.1016/j.tig.2021.02.008_bb0900) 2016; 7 Kim (10.1016/j.tig.2021.02.008_bb0280) 2016; 34 Wright (10.1016/j.tig.2021.02.008_bb0995) 2016; 164 Aylon (10.1016/j.tig.2021.02.008_bb0830) 2004; 23 Myler (10.1016/j.tig.2021.02.008_bb0425) 2017; 67 Daley (10.1016/j.tig.2021.02.008_bb0660) 2017; 21 Prakash (10.1016/j.tig.2021.02.008_bb0735) 2020 Symington (10.1016/j.tig.2021.02.008_bb0640) 2016; 51 Deveryshetty (10.1016/j.tig.2021.02.008_bb0800) 2019; 8 Wang (10.1016/j.tig.2021.02.008_bb0345) 2020; 79 Chu (10.1016/j.tig.2021.02.008_bb0360) 2015; 33 Xia (10.1016/j.tig.2021.02.008_bb0745) 2006; 22 Liang (10.1016/j.tig.2021.02.008_bb0390) 2008; 36 Allen (10.1016/j.tig.2021.02.008_bb0490) 2018 Makarova (10.1016/j.tig.2021.02.008_bb0985) 2020; 18 Robert (10.1016/j.tig.2021.02.008_bb0375) 2015; 7 Kleinstiver (10.1016/j.tig.2021.02.008_bb0275) 2016; 34 Korablev (10.1016/j.tig.2021.02.008_bb0935) 2020; 21 Szczelkun (10.1016/j.tig.2021.02.008_bb0080) 2014; 111 Adikusuma (10.1016/j.tig.2021.02.008_bb0930) 2018; 560 Hanscom (10.1016/j.tig.2021.02.008_bb0915) 2020; 9 Zhao (10.1016/j.tig.2021.02.008_bb0805) 2015; 43 Bizard (10.1016/j.tig.2021.02.008_bb0810) 2014; 6 Truong (10.1016/j.tig.2021.02.008_bb0395) 2013; 110 Kramara (10.1016/j.tig.2021.02.008_bb0815) 2018; 34 Kowalczykowski (10.1016/j.tig.2021.02.008_bb0570) 2015; 7 Mortensen (10.1016/j.tig.2021.02.008_bb0515) 1996; 93 Sharan (10.1016/j.tig.2021.02.008_bb0760) 1997; 386 Villarreal (10.1016/j.tig.2021.02.008_bb0445) 2012; 8 Hemmi (10.1016/j.tig.2021.02.008_bb0225) 2000; 408 Sfeir (10.1016/j.tig.2021.02.008_bb0055) 2015; 40 Bhargava (10.1016/j.tig.2021.02.008_bb0060) 2016; 32 Gallagher (10.1016/j.tig.2021.02.008_bb0540) 2020; 16 He (10.1016/j.tig.2021.02.008_bb0620) 2018; 563 Bonilla (10.1016/j.tig.2021.02.008_bb0715) 2020; 54 Becker (10.1016/j.tig.2021.02.008_bb0705) 2020 Hale (10.1016/j.tig.2021.02.008_bb0980) 2009; 139 Shen (10.1016/j.tig.2021.02.008_bb0480) 2018; 563 Shou (10.1016/j.tig.2021.02.008_bb0095) 2018; 71 Hornung (10.1016/j.tig.2021.02.008_bb0180) 2005; 11 Mojica (10.1016/j.tig.2021.02.008_bb0955) 1995; 17 Zetsche (10.1016/j.tig.2021.02.008_bb0270) 2015; 163 Sturzenegger (10.1016/j.tig.2021.02.008_bb0505) 2014; 289 Nimonkar (10.1016/j.tig.2021.02.008_bb0510) 2011; 25 Bernstein (10.1016/j.tig.2021.02.008_bb0330) 2005; 17 Schep (10.1016/j.tig.2021.02.008_bb0865) 2020 Deshpande (10.1016/j.tig.2021.02.008_bb0605) 2020; 6 Buisson (10.1016/j.tig.2021.02.008_bb0795) 2010; 17 Shrivastav (10.1016/j.tig.2021.02.008_bb0560) 2008; 18 Xu (10.1016/j.tig.2021.02.008_bb0565) 2017; 24 Haince (10.1016/j.tig.2021.02.008_bb0590) 2008; 283 Liang (10.1016/j.tig.2021.02.008_bb0785) 2016; 15 Doudna (10.1016/j.tig.2021.02.008_bb0005) 2014; 346 Wang (10.1016/j.tig.2021.02.008_bb0185) 2015; 33 Miller (10.1016/j.tig.2021.02.008_bb0015) 2011; 29 Pattanayak (10.1016/j.tig.2021.02.008_bb0100) 2013; 31 Srivastava (10.1016/j.tig.2021.02.008_bb0435) 2012; 151 Meek (10.1016/j.tig.2021.02.008_bb0300) 2008; 99 Vakulskas (10.1016/j.tig.2021.02.008_bb0130) 2018; 24 Seol (10.1016/j.tig.2021.02.008_bb0380) 2018; 809 Bunting (10.1016/j.tig.2021.02.008_bb0700) 2010; 141 Sung (10.1016/j.tig.2021.02.008_bb0530) 1997; 272 Jinek (10.1016/j.tig.2021.02.008_bb0020) 2012; 337 Grimme (10.1016/j.tig.2021.02.008_bb0520) 2010; 38 Cong (10.1016/j.tig.2021.02.008_bb0030) 2013; 339 Canaj (10.1016/j.tig.2021.02.008_bb0875) 2019 Al-Minawi (10.1016/j.tig.2021.02.008_bb0550) 2008; 36 Dray (10.1016/j.tig.2021.02.008_bb0790) 2010; 17 Barrangou (10.1016/j.tig.2021.02.008_bb0960) 2007; 315 Lino (10.1016/j.tig.2021.02.008_bb0245) 2018; 25 Zhou (10.1016/j.tig.2021.02.008_bb0650) 2015; 4 Chen (10.1016/j.tig.2021.02.008_bb0750) 1998; 95 Mirman (10.1016/j.tig.2021.02.008_bb0670) 2018; 560 Lin (10.1016/j.tig.2021.02.008_bb0840) 2014; 3 Feng (10.1016/j.tig.2021.02.008_bb0535) 2011; 108 Chen (10.1016/j.tig.2021.02.008_bb0555) 2013; 50 Hirakawa (10.1016/j.tig.2021.02.008_bb0260) 2020; 40 Clarke (10.1016/j.tig.2021.02.008_bb0340) 2018; 71 Gupta (10.1016/j.tig.2021.02.008_bb0665) 2018; 173 Hornung (10.1016/j.tig.2021.02.008_bb0230) 2009; 458 Syed (10.1016/j.tig.2021.02.008_bb0585) 2018; 87 Jiang (10.1016/j.tig.2021.02.008_bb0600) 2013; 4 Deng (10.1016/j.tig.2021.02.008_bb0440) 2014; 21 Hisano (10.1016/j.tig.2021.02.008_bb0890) 2015; 5 Cruz-Becerra (10.1016/j.tig.2021.02.008_bb0885) 2020; 9 Shahbazi (10.1016/j.tig.2021.02.008_bb0200) 2019; 18 Peterson (10.1016/j.tig.2021.02.008_bb0575) 2011; 194 Ira (10.1016/j.tig.2021.02.008_bb0835) 2004; 431 Slaymaker (10.1016/j.tig.2021.02.008_bb0115) 2016; 351 Noordermeer (10.1016/j.tig.2021.02.008_bb0675) 2018; 560 Symington (10.1016/j.tig.2021.02.008_bb0400) 2011; 45 Kim (10.1016/j.tig.2021.02.008_bb0220) 2014; 24 Scully (10.1016/j.tig.2021.02.008_bb0545) 2019; 20 Brinkman (10.1016/j.tig.2021.02.008_bb0850) 2018; 70 Garneau (10.1016/j.tig.2021.02.008_bb0975) 2010; 468 Zhang (10.1016/j.tig.2021.02.008_bb0895) 2017; 18 Yang (10.1016/j.tig.2021.02.008_bb0155) 2016; 34 Chu (10.1016/j.tig.2021.02.008_bb0770) 2015; 6 Mali (10.1016/j.tig.2021.02.008_bb0035) 2013; 339 Yin (10.1016/j.tig.2021.02.008_bb0135) 2017; 16 Lim (10.1016/j.tig.2021.02.008_bb0720) 2020; 6 Myler (10.1016/j.tig.2021.02.008_bb0645) 2016; 113 Barber (10.1016/j.tig.2021.02.008_bb0820) 2008; 135 Gori (10.1016/j.tig.2021.02.008_bb0250) 2015; 26 Cullot (10.1016/j.tig.2021.02.008_bb0940) 2019; 10 Urnov (10.1016/j.tig.2021.02.008_bb0010) 2010; 11 Paull (10.1016/j.tig.2021.02.008_bb0430) 1998; 1 Niewolik (10.1016/j.tig.2021.02.008_bb0320) 2006; 281 Liu (10.1016/j.tig.2021.02.008_bb0335) 2020; 368 Maruyama (10.1016/j.tig.2021.02.008_bb0350) 2015; 33 Burckstummer (10.1016/j.tig.2021.02.008_bb0240) 2009; 10 Niewolik (10.1016/j.tig.2021.02.008_bb0325) 2017; 292 Ceccaldi (10.1016/j.tig.2021.02.008_bb0405) 2016; 26 Allen (10.1016/j.tig.2021.02.008_bb0610) 2002; 99 Yeh (10.1016/j.tig.2021.02.008_bb0065) 2019; 21 Dagdas (10.1016/j.tig.2021.02.008_bb0090) 2017; 3 Ramakrishna (10.1016/j.tig.2021.02.008_bb0160) 2014; 24 Sheng Tong (10.1016/j.tig.2021.02.008_bb0255) 2019; 4 Mojica (10.1016/j.tig.2021.02.008_bb0950) 1993; 9 Tsai (10.1016/j.tig.2021.02.008_bb1000) 2016; 17 Kosicki (10.1016/j.tig.2021.02.008_bb0925) 2018; 36 Stinson (10.1016/j.tig.2021.02.008_bb0920) 2020; 77 Gasiunas (10.1016/j.tig.2021.02.008_bb0040) 2012; 109 Riesenberg (10.1016/j.tig.2021.02.008_bb0370) 2018; 9 Mateos-Gomez (10.1016/j.tig.2021.02.008_bb0475) 2015; 518 Chakrabarti (10.1016/j.tig.2021.02.008_bb0485) 2019; 73 Iyer (10.1016/j.tig.2021.02.008_bb0500) 2019; 568 Holkers (10.1016/j.tig.2021.02.008_bb0215) 2014; 11 Lee (10.1016/j.tig.2021.02.008_bb0595) 2016; 44 Ma (10.1016/j.tig.2021.02.008_bb0525) 2017; 292 Xue (10.1016/j.tig.2021.02.008_bb0825) 2015; 29 Fuchs (10.1016/j.tig.2021.02.008_bb0290) 2019 Lee (10.1016/j.tig.2021.02.008_bb0410) 2004; 304 Ahmad (10.1016/j.tig.2021.02.008_bb0470) 2008; 28 Garcin (10.1016/j.tig.2021.02.008_bb0730) 2019; 15 Moquin (10.1016/j.tig.2021.02.008_bb0625) 2019; 33 Zhao (10.1016/j.tig.2021.02.008_bb0780) 2017; 550 Sternberg (10.1016/j.tig.2021.02.008_bb0075) 2014; 507 Marraffini (10.1016/j.tig.2021.02.008_bb0970) 2008; 322 Spagnolo (10.1016/j.tig.2021.02.008_bb0295) 2006; 22 Heil (10.1016/j.tig.2021.02.008_bb0175) 2004; 303 Kent (10.1016/j.tig.2021.02.008_bb0385) 2015; 22 Sung (10.1016/j.tig.2021.02.008_bb0045) 2006; 7 Shi (10.1016/j.tig.2021.02.008_bb0855) 2019; 5 Wang (10.1016/j.tig.2021.02.008_bb0145) 2015; 26 Alexiadis (10.1016/j.tig.2021.02.008_bb0880) 2 |
References_xml | – volume: 77 start-page: 1080 year: 2020 end-page: 1091.e8 ident: bb0920 article-title: A mechanism to minimize errors during non-homologous end joining publication-title: Mol. Cell contributor: fullname: Stinson – volume: 459 start-page: 460 year: 2009 end-page: 463 ident: bb0615 article-title: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle publication-title: Nature contributor: fullname: Hiom – volume: 9 year: 2020 ident: bb0885 article-title: Enhancement of homology-directed repair with chromatin donor templates in cells publication-title: eLife contributor: fullname: Kadonaga – volume: 44 start-page: 1732 year: 2016 end-page: 1745 ident: bb0595 article-title: Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase publication-title: Nucleic Acids Res. contributor: fullname: Lee – volume: 584 start-page: 3682 year: 2010 end-page: 3695 ident: bb0580 article-title: The MRN complex in double-strand break repair and telomere maintenance publication-title: FEBS Lett. contributor: fullname: Lamarche – volume: 33 start-page: 175 year: 2015 end-page: 178 ident: bb0185 article-title: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors publication-title: Nat. Biotechnol. contributor: fullname: Wang – volume: 8 year: 2012 ident: bb0445 article-title: Microhomology directs diverse DNA break repair pathways and chromosomal translocations publication-title: PLoS Genet. contributor: fullname: Villarreal – volume: 529 start-page: 490 year: 2016 end-page: 495 ident: bb0120 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature contributor: fullname: Kleinstiver – start-page: 64 year: 2018 end-page: 72 ident: bb0490 article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks publication-title: Nat. Biotechnol. contributor: fullname: Allen – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: bb0270 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell contributor: fullname: Zetsche – volume: 63 start-page: 633 year: 2016 end-page: 646 ident: bb0495 article-title: DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks publication-title: Mol. Cell contributor: fullname: van Overbeek – volume: 18 start-page: 495 year: 2017 end-page: 506 ident: bb0050 article-title: Non-homologous DNA end joining and alternative pathways to double-strand break repair publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Chang – volume: 6 year: 2014 ident: bb0810 article-title: The dissolution of double Holliday junctions publication-title: Cold Spring Harb. Perspect. Biol. contributor: fullname: Hickson – volume: 36 start-page: 1 year: 2008 end-page: 9 ident: bb0550 article-title: The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells publication-title: Nucleic Acids Res. contributor: fullname: Al-Minawi – volume: 103 start-page: 18597 year: 2006 end-page: 18602 ident: bb0315 article-title: Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4 publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Mari – volume: 368 start-page: 1265 year: 2020 end-page: 1269 ident: bb0335 article-title: Very fast CRISPR on demand publication-title: Science contributor: fullname: Liu – year: 2020 ident: bb0865 article-title: Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance publication-title: bioRxiv contributor: fullname: Schep – volume: 11 start-page: 636 year: 2010 end-page: 646 ident: bb0010 article-title: Genome editing with engineered zinc finger nucleases publication-title: Nat. Rev. Genet. contributor: fullname: Urnov – volume: 563 start-page: 646 year: 2018 end-page: 651 ident: bb0480 article-title: Predictable and precise template-free CRISPR editing of pathogenic variants publication-title: Nature contributor: fullname: Shen – volume: 35 start-page: 330 year: 2019 end-page: 345 ident: bb0870 article-title: A snapshot on the Cis chromatin response to DNA double-strand breaks publication-title: Trends Genet. contributor: fullname: Legube – volume: 54 start-page: 25 year: 2020 end-page: 46 ident: bb0715 article-title: RAD51 gene family structure and function publication-title: Annu. Rev. Genet. contributor: fullname: Bonilla – volume: 283 start-page: 1197 year: 2008 end-page: 1208 ident: bb0590 article-title: PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites publication-title: J. Biol. Chem. contributor: fullname: Haince – volume: 17 start-page: 1247 year: 2010 end-page: 1254 ident: bb0795 article-title: Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Buisson – volume: 135 start-page: 261 year: 2008 end-page: 271 ident: bb0820 article-title: RTEL1 maintains genomic stability by suppressing homologous recombination publication-title: Cell contributor: fullname: Barber – volume: 24 start-page: 1020 year: 2014 end-page: 1027 ident: bb0160 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. contributor: fullname: Ramakrishna – volume: 11 start-page: 3181 year: 2020 ident: bb0680 article-title: Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases publication-title: Nat. Commun. contributor: fullname: Ferrari – volume: 32 start-page: 566 year: 2016 end-page: 575 ident: bb0060 article-title: Regulation of single-strand annealing and its role in genome maintenance publication-title: Trends Genet. contributor: fullname: Bhargava – volume: 34 start-page: 869 year: 2016 end-page: 874 ident: bb0275 article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells publication-title: Nat. Biotechnol. contributor: fullname: Kleinstiver – volume: 26 start-page: 432 year: 2015 end-page: 442 ident: bb0145 article-title: Adenovirus-mediated somatic genome editing of publication-title: Hum. Gene Ther. contributor: fullname: Wang – year: 2020 ident: bb0735 article-title: Distinct pathways of homologous recombination controlled by the SWS1-SWSAP1-SPIDR complex publication-title: bioRxiv contributor: fullname: Prakash – volume: 67 start-page: 891 year: 2017 end-page: 898 ident: bb0425 article-title: Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair publication-title: Mol. Cell contributor: fullname: Myler – volume: 21 start-page: 405 year: 2014 end-page: 412 ident: bb0440 article-title: RPA antagonizes microhomology-mediated repair of DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Deng – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bb0020 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science contributor: fullname: Jinek – volume: 45 start-page: 247 year: 2011 end-page: 271 ident: bb0400 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu. Rev. Genet. contributor: fullname: Gautier – volume: 11 start-page: 1051 year: 2014 end-page: 1057 ident: bb0215 article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases publication-title: Nat. Methods contributor: fullname: Holkers – volume: 5 start-page: 8841 year: 2015 ident: bb0890 article-title: Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish publication-title: Sci. Rep. contributor: fullname: Hisano – volume: 141 start-page: 243 year: 2010 end-page: 254 ident: bb0700 article-title: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks publication-title: Cell contributor: fullname: Bunting – volume: 34 start-page: 6170 year: 2006 end-page: 6182 ident: bb0455 article-title: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways publication-title: Nucleic Acids Res. contributor: fullname: Wang – volume: 151 start-page: 1474 year: 2012 end-page: 1487 ident: bb0435 article-title: An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression publication-title: Cell contributor: fullname: Srivastava – volume: 34 start-page: 328 year: 2016 end-page: 333 ident: bb0190 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. contributor: fullname: Yin – volume: 99 start-page: 33 year: 2008 end-page: 58 ident: bb0300 article-title: DNA-PK: the means to justify the ends? publication-title: Adv. Immunol. contributor: fullname: Meek – volume: 8 start-page: 12 year: 2018 ident: bb0355 article-title: Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells publication-title: Cell Biosci. contributor: fullname: Hu – volume: 16 start-page: 2767 year: 2002 end-page: 2771 ident: bb0880 article-title: Strand pairing by Rad54 and Rad51 is enhanced by chromatin publication-title: Genes Dev. contributor: fullname: Kadonaga – volume: 279 start-page: 55117 year: 2004 end-page: 55126 ident: bb0450 article-title: Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining publication-title: J. Biol. Chem. contributor: fullname: Audebert – volume: 10 start-page: 2954 year: 2019 ident: bb0460 article-title: Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks publication-title: Nat. Commun. contributor: fullname: Caron – volume: 110 start-page: 7720 year: 2013 end-page: 7725 ident: bb0395 article-title: Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Truong – volume: 36 start-page: 3297 year: 2008 end-page: 3310 ident: bb0390 article-title: Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks publication-title: Nucleic Acids Res. contributor: fullname: Liang – volume: 450 start-page: 509 year: 2007 end-page: 514 ident: bb0415 article-title: Human CtIP promotes DNA end resection publication-title: Nature contributor: fullname: Sartori – volume: 34 start-page: 334 year: 2016 end-page: 338 ident: bb0155 article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice publication-title: Nat. Biotechnol. contributor: fullname: Yang – volume: 5 start-page: 53 year: 2019 ident: bb0855 article-title: Cas9 has no exonuclease activity resulting in staggered cleavage with overhangs and predictable di- and tri-nucleotide CRISPR insertions without template donor publication-title: Cell Discov. contributor: fullname: Shi – volume: 315 start-page: 1709 year: 2007 end-page: 1712 ident: bb0960 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science contributor: fullname: Barrangou – volume: 295 start-page: 5538 year: 2020 end-page: 5553 ident: bb0285 article-title: CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects publication-title: J. Biol. Chem. contributor: fullname: Murugan – volume: 297 start-page: 1837 year: 2002 end-page: 1848 ident: bb0755 article-title: BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure publication-title: Science contributor: fullname: Yang – volume: 33 start-page: 985 year: 2015 end-page: 989 ident: bb0165 article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells publication-title: Nat. Biotechnol. contributor: fullname: Hendel – volume: 18 start-page: 1124 year: 2019 end-page: 1132 ident: bb0200 article-title: Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations publication-title: Nat. Mater. contributor: fullname: Shahbazi – volume: 24 start-page: 1012 year: 2014 end-page: 1019 ident: bb0220 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. contributor: fullname: Kim – volume: 15 year: 2019 ident: bb0730 article-title: Differential requirements for the RAD51 paralogs in genome repair and maintenance in human cells publication-title: PLoS Genet. contributor: fullname: Garcin – volume: 25 start-page: 1234 year: 2018 end-page: 1257 ident: bb0245 article-title: Delivering CRISPR: a review of the challenges and approaches publication-title: Drug Deliv. contributor: fullname: Lino – volume: 28 start-page: 5082 year: 2008 end-page: 5092 ident: bb0470 article-title: ERCC1-XPF endonuclease facilitates DNA double-strand break repair publication-title: Mol. Cell. Biol. contributor: fullname: Ahmad – volume: 5 year: 2016 ident: bb0860 article-title: Nucleosome breathing and remodeling constrain CRISPR-Cas9 function publication-title: eLife contributor: fullname: Isaac – volume: 194 start-page: 705 year: 2011 end-page: 720 ident: bb0575 article-title: Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair publication-title: J. Cell Biol. contributor: fullname: Peterson – volume: 181 start-page: 1380 year: 2020 end-page: 1394 e18 ident: bb0775 article-title: Rad54 drives ATP hydrolysis-dependent DNA sequence alignment during homologous recombination publication-title: Cell contributor: fullname: Crickard – volume: 16 year: 2020 ident: bb0540 article-title: A Rad51-independent pathway promotes single-strand template repair in gene editing publication-title: PLoS Genet. contributor: fullname: Gallagher – volume: 507 start-page: 62 year: 2014 end-page: 67 ident: bb0075 article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 publication-title: Nature contributor: fullname: Sternberg – volume: 9 start-page: 1657 year: 2020 ident: bb0915 article-title: Regulation of error-prone DNA double-strand break repair and its impact on genome evolution publication-title: Cells contributor: fullname: McVey – volume: 111 start-page: 9798 year: 2014 end-page: 9803 ident: bb0080 article-title: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Szczelkun – volume: 6 year: 2020 ident: bb0720 article-title: Phosphoregulation of Rad51/Rad52 by CDK1 functions as a molecular switch for cell cycle-specific activation of homologous recombination publication-title: Sci. Adv. contributor: fullname: Lim – volume: 22 start-page: 51151 year: 2006 end-page: 51159 ident: bb0295 article-title: Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair publication-title: Mol. Cell contributor: fullname: Spagnolo – volume: 17 start-page: 300 year: 2016 end-page: 312 ident: bb1000 article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases publication-title: Nat. Rev. Genet. contributor: fullname: Joung – volume: 346 start-page: 1258096 year: 2014 ident: bb0005 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science contributor: fullname: Charpentier – volume: 550 start-page: 360 year: 2017 end-page: 365 ident: bb0780 article-title: BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing publication-title: Nature contributor: fullname: Zhao – volume: 108 start-page: 686 year: 2011 end-page: 691 ident: bb0535 article-title: Rad52 inactivation is synthetically lethal with BRCA2 deficiency publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Feng – volume: 20 start-page: 2996 year: 2000 end-page: 3003 ident: bb0305 article-title: Ku recruits the XRCC4-ligase IV complex to DNA ends publication-title: Mol. Cell. Biol. contributor: fullname: Nick McElhinny – volume: 560 start-page: 112 year: 2018 end-page: 116 ident: bb0670 article-title: 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in publication-title: Nature contributor: fullname: Mirman – volume: 42 start-page: 11083 year: 2014 end-page: 11091 ident: bb0655 article-title: Multifaceted role of the Topo IIIalpha-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection publication-title: Nucleic Acids Res. contributor: fullname: Daley – volume: 25 start-page: 350 year: 2011 end-page: 362 ident: bb0510 article-title: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair publication-title: Genes Dev. contributor: fullname: Nimonkar – volume: 283 start-page: 7713 year: 2008 end-page: 7720 ident: bb0710 article-title: Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair publication-title: J. Biol. Chem. contributor: fullname: Chen – volume: 468 start-page: 67 year: 2010 end-page: 71 ident: bb0975 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature contributor: fullname: Garneau – volume: 15 start-page: 2118 year: 2016 end-page: 2126 ident: bb0785 article-title: Promotion of RAD51-mediated homologous DNA pairing by the RAD51AP1-UAF1 complex publication-title: Cell Rep. contributor: fullname: Liang – volume: 9 start-page: 2493 year: 2014 end-page: 2512 ident: bb0905 article-title: CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos publication-title: Nat. Protoc. contributor: fullname: Shao – volume: 10 start-page: 1136 year: 2019 ident: bb0940 article-title: CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations publication-title: Nat. Commun. contributor: fullname: Cullot – volume: 289 start-page: 13284 year: 2014 end-page: 13294 ident: bb0070 article-title: Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease publication-title: J. Biol. Chem. contributor: fullname: Chen – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: bb0040 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Gasiunas – volume: 21 start-page: 284 year: 2020 end-page: 299 ident: bb0695 article-title: The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Sung – volume: 11 start-page: 11 year: 2011 end-page: 27 ident: bb0205 article-title: Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy publication-title: Curr. Gene Ther. contributor: fullname: Silva – volume: 560 start-page: 117 year: 2018 end-page: 121 ident: bb0675 article-title: The shieldin complex mediates 53BP1-dependent DNA repair publication-title: Nature contributor: fullname: Noordermeer – volume: 2 start-page: 313 year: 2018 end-page: 336 ident: bb0725 article-title: Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer publication-title: Annu. Rev. Cancer Biol. contributor: fullname: Chen – volume: 71 start-page: 498 year: 2018 end-page: 509 e4 ident: bb0095 article-title: Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion publication-title: Mol. Cell contributor: fullname: Shou – volume: 321 start-page: 960 year: 2008 end-page: 964 ident: bb0965 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science contributor: fullname: Brouns – volume: 16 start-page: 387 year: 2017 end-page: 399 ident: bb0135 article-title: Delivery technologies for genome editing publication-title: Nat. Rev. Drug Discov. contributor: fullname: Yin – volume: 139 start-page: 945 year: 2009 end-page: 956 ident: bb0980 article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex publication-title: Cell contributor: fullname: Hale – volume: 33 start-page: 75 year: 2019 end-page: 89 ident: bb0625 article-title: Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination publication-title: Genes Dev. contributor: fullname: Moquin – volume: 9 start-page: 3048 year: 2018 ident: bb0125 article-title: Directed evolution of CRISPR-Cas9 to increase its specificity publication-title: Nat. Commun. contributor: fullname: Lee – year: 2020 ident: bb0705 article-title: BARD1 links histone H2A Lysine-15 ubiquitination to initiation of BRCA1-dependent homologous recombination publication-title: bioRxiv contributor: fullname: Becker – volume: 6 start-page: 5931 year: 2015 ident: bb0770 article-title: FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51 publication-title: Nat. Commun. contributor: fullname: Chu – volume: 26 start-page: 443 year: 2015 end-page: 451 ident: bb0250 article-title: Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy publication-title: Hum. Gene Ther. contributor: fullname: Gori – volume: 36 start-page: 765 year: 2018 end-page: 771 ident: bb0925 article-title: Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements publication-title: Nat. Biotechnol. contributor: fullname: Kosicki – volume: 1 start-page: 969 year: 1998 end-page: 979 ident: bb0430 article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks publication-title: Mol. Cell contributor: fullname: Gellert – volume: 169 start-page: 5429 year: 1987 end-page: 5433 ident: bb0945 article-title: Nucleotide sequence of the publication-title: J. Bacteriol. contributor: fullname: Ishino – volume: 9 start-page: 2164 year: 2018 ident: bb0370 article-title: Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells publication-title: Nat. Commun. contributor: fullname: Maricic – volume: 458 start-page: 514 year: 2009 end-page: 518 ident: bb0230 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC publication-title: Nature contributor: fullname: Hornung – volume: 164 start-page: 29 year: 2016 end-page: 44 ident: bb0995 article-title: Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering publication-title: Cell contributor: fullname: Wright – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bb0030 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science contributor: fullname: Cong – volume: 550 start-page: 407 year: 2017 end-page: 410 ident: bb0085 article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy publication-title: Nature contributor: fullname: Chen – volume: 113 start-page: 2868 year: 2016 end-page: 2873 ident: bb0195 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Wang – volume: 34 start-page: 7 year: 2020 end-page: 23 ident: bb0690 article-title: 53BP1: a DSB escort publication-title: Genes Dev. contributor: fullname: de Lange – volume: 17 start-page: 657 year: 2005 end-page: 670 ident: bb0330 article-title: The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase publication-title: Mol. Cell contributor: fullname: Bernstein – volume: 3 year: 2014 ident: bb0840 article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife contributor: fullname: Lin – volume: 4 year: 2013 ident: bb0600 article-title: Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells publication-title: Cell Death Dis. contributor: fullname: Jiang – volume: 112 start-page: 10437 year: 2015 end-page: 10442 ident: bb0210 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Schumann – volume: 7 start-page: 93 year: 2015 ident: bb0375 article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing publication-title: Genome Med. contributor: fullname: Robert – volume: 17 start-page: 1255 year: 2010 end-page: 1259 ident: bb0790 article-title: Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2 publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Dray – volume: 4 start-page: 726 year: 2019 end-page: 737 ident: bb0255 article-title: Engineered materials for in vivo delivery of genome-editing machinery publication-title: Nat. Rev. Mater. contributor: fullname: Sheng Tong – volume: 7 year: 2015 ident: bb0570 article-title: An overview of the molecular mechanisms of recombinational DNA repair publication-title: Cold Spring Harb. Perspect. Biol. contributor: fullname: Kowalczykowski – volume: 518 start-page: 254 year: 2015 end-page: 257 ident: bb0475 article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination publication-title: Nature contributor: fullname: Mateos-Gomez – volume: 18 start-page: 134 year: 2008 end-page: 147 ident: bb0560 article-title: Regulation of DNA double-strand break repair pathway choice publication-title: Cell Res. contributor: fullname: Shrivastav – volume: 38 start-page: 824 year: 2020 end-page: 844 ident: bb0265 article-title: Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors publication-title: Nat. Biotechnol. contributor: fullname: Anzalone – volume: 40 year: 2020 ident: bb0260 article-title: Gene editing and CRISPR in the clinic: current and future perspectives publication-title: Biosci. Rep. contributor: fullname: Hirakawa – volume: 101 start-page: 12248 year: 2004 end-page: 12253 ident: bb0365 article-title: Highly efficient gene replacements in publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Ninomiya – volume: 173 start-page: 972 year: 2018 end-page: 988 e23 ident: bb0665 article-title: DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity publication-title: Cell contributor: fullname: Gupta – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: bb0035 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science contributor: fullname: Mali – volume: 113 start-page: E1170 year: 2016 end-page: E1179 ident: bb0645 article-title: Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Myler – volume: 563 start-page: 522 year: 2018 end-page: 526 ident: bb0620 article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells publication-title: Nature contributor: fullname: He – volume: 421 start-page: 957 year: 2003 end-page: 961 ident: bb0685 article-title: MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways publication-title: Nature contributor: fullname: Lou – volume: 303 start-page: 1526 year: 2004 end-page: 1529 ident: bb0175 article-title: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 publication-title: Science contributor: fullname: Heil – volume: 24 start-page: 40 year: 2017 end-page: 46 ident: bb0565 article-title: Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Xu – volume: 43 start-page: 4055 year: 2015 end-page: 4066 ident: bb0805 article-title: Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis publication-title: Nucleic Acids Res. contributor: fullname: Sung – volume: 29 start-page: 1777 year: 2015 end-page: 1788 ident: bb0825 article-title: Functions and regulation of the multitasking FANCM family of DNA motor proteins publication-title: Genes Dev. contributor: fullname: Xue – volume: 10 start-page: 266 year: 2009 end-page: 272 ident: bb0240 article-title: An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome publication-title: Nat. Immunol. contributor: fullname: Burckstummer – volume: 8 year: 2019 ident: bb0800 article-title: Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells publication-title: eLife contributor: fullname: Deveryshetty – volume: 21 start-page: 1468 year: 2019 end-page: 1478 ident: bb0065 article-title: Advances in genome editing through control of DNA repair pathways publication-title: Nat. Cell Biol. contributor: fullname: Yeh – volume: 11 start-page: 263 year: 2005 end-page: 270 ident: bb0180 article-title: Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7 publication-title: Nat. Med. contributor: fullname: Hornung – volume: 560 start-page: E8 year: 2018 end-page: E9 ident: bb0930 article-title: Large deletions induced by Cas9 cleavage publication-title: Nature contributor: fullname: Adikusuma – volume: 28 start-page: 1093 year: 2007 end-page: 1101 ident: bb0310 article-title: Crystal structure of human XLF: a twist in nonhomologous DNA end-joining publication-title: Mol. Cell contributor: fullname: Andres – volume: 568 start-page: 561 year: 2019 end-page: 565 ident: bb0500 article-title: Precise therapeutic gene correction by a simple nuclease-induced double-stranded break publication-title: Nature contributor: fullname: Iyer – volume: 431 start-page: 1011 year: 2004 end-page: 1017 ident: bb0835 article-title: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 publication-title: Nature contributor: fullname: Ira – volume: 292 start-page: 3351 year: 2017 end-page: 3365 ident: bb0325 article-title: Autoinhibition of the nuclease ARTEMIS is mediated by a physical interaction between its catalytic and C-terminal domains publication-title: J. Biol. Chem. contributor: fullname: Niewolik – volume: 14 start-page: 1555 year: 2016 end-page: 1566 ident: bb0845 article-title: Post-translational regulation of Cas9 during G1 enhances homology-directed repair publication-title: Cell Rep. contributor: fullname: Gutschner – volume: 4 year: 2015 ident: bb0650 article-title: Dna2 nuclease-helicase structure, mechanism and regulation by Rpa publication-title: eLife contributor: fullname: Zhou – volume: 24 start-page: 1216 year: 2018 end-page: 1224 ident: bb0130 article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells publication-title: Nat. Med. contributor: fullname: Vakulskas – volume: 24 start-page: 1116 year: 2017 end-page: 1123 ident: bb0465 article-title: The helicase domain of Polθ counteracts RPA to promote alt-NHEJ publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Mateos-Gomez – volume: 18 start-page: 67 year: 2020 end-page: 83 ident: bb0985 article-title: Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants publication-title: Nat. Rev. Microbiol. contributor: fullname: Makarova – volume: 45 start-page: 779 year: 2020 end-page: 793 ident: bb0630 article-title: Limiting the DNA double-strand break resectosome for genome protection publication-title: Trends Biochem. Sci. contributor: fullname: Ronato – volume: 458 start-page: 509 year: 2009 end-page: 513 ident: bb0235 article-title: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA publication-title: Nature contributor: fullname: Fernandes-Alnemri – volume: 386 start-page: 804 year: 1997 end-page: 810 ident: bb0760 article-title: Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2 publication-title: Nature contributor: fullname: Sharan – volume: 9 start-page: 613 year: 1993 end-page: 621 ident: bb0950 article-title: Transcription at different salinities of publication-title: Mol. Microbiol. contributor: fullname: Mojica – year: 2019 ident: bb0290 article-title: Cas12a trans-cleavage can be modulated in vitro and is active on ssDNA, dsDNA, and RNA publication-title: bioRxiv contributor: fullname: Fuchs – volume: 93 start-page: 10729 year: 1996 end-page: 10734 ident: bb0515 article-title: DNA strand annealing is promoted by the yeast Rad52 protein publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Mortensen – volume: 64 start-page: 940 year: 2016 end-page: 950 ident: bb0420 article-title: Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection publication-title: Mol. Cell contributor: fullname: Anand – volume: 22 start-page: 719 year: 2006 end-page: 729 ident: bb0745 article-title: Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2 publication-title: Mol. Cell contributor: fullname: Xia – volume: 32 start-page: 677 year: 2014 end-page: 683 ident: bb0110 article-title: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease publication-title: Nat. Biotechnol. contributor: fullname: Kuscu – volume: 95 start-page: 5287 year: 1998 end-page: 5292 ident: bb0750 article-title: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Chen – volume: 23 start-page: 4868 year: 2004 end-page: 4875 ident: bb0830 article-title: The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle publication-title: EMBO J. contributor: fullname: Aylon – volume: 408 start-page: 740 year: 2000 end-page: 745 ident: bb0225 article-title: A Toll-like receptor recognizes bacterial DNA publication-title: Nature contributor: fullname: Hemmi – volume: 51 start-page: 195 year: 2016 end-page: 212 ident: bb0640 article-title: Mechanism and regulation of DNA end resection in eukaryotes publication-title: Crit. Rev. Biochem. Mol. Biol. contributor: fullname: Symington – volume: 21 start-page: 324 year: 2017 end-page: 332 ident: bb0660 article-title: Enhancement of BLM-DNA2-mediated long-range DNA end resection by CtIP publication-title: Cell Rep. contributor: fullname: Daley – volume: 73 start-page: 699 year: 2019 end-page: 713 ident: bb0485 article-title: Target-specific precision of CRISPR-mediated genome editing publication-title: Mol. Cell contributor: fullname: Chakrabarti – volume: 322 start-page: 1843 year: 2008 end-page: 1845 ident: bb0970 article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA publication-title: Science contributor: fullname: Sontheimer – volume: 70 start-page: 801 year: 2018 end-page: 813 ident: bb0850 article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks publication-title: Mol. Cell contributor: fullname: Brinkman – volume: 510 start-page: 235 year: 2014 end-page: 240 ident: bb0150 article-title: Targeted genome editing in human repopulating haematopoietic stem cells publication-title: Nature contributor: fullname: Genovese – volume: 22 start-page: 230 year: 2015 end-page: 237 ident: bb0385 article-title: Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Kent – volume: 2 year: 2013 ident: bb0025 article-title: RNA-programmed genome editing in human cells publication-title: eLife contributor: fullname: Jinek – volume: 351 start-page: 84 year: 2016 end-page: 88 ident: bb0115 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science contributor: fullname: Slaymaker – volume: 9 start-page: 1402 year: 2014 end-page: 1412 ident: bb0140 article-title: CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox publication-title: Biotechnol. J. contributor: fullname: Senis – volume: 304 start-page: 93 year: 2004 end-page: 96 ident: bb0410 article-title: Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex publication-title: Science contributor: fullname: Paull – volume: 17 start-page: 85 year: 1995 end-page: 93 ident: bb0955 article-title: Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and publication-title: Mol. Microbiol. contributor: fullname: Mojica – volume: 31 start-page: 822 year: 2013 end-page: 826 ident: bb0105 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. contributor: fullname: Fu – volume: 7 start-page: 739 year: 2006 end-page: 750 ident: bb0045 article-title: Mechanism of homologous recombination: mediators and helicases take on regulatory functions publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Klein – volume: 71 start-page: 42 year: 2018 end-page: 55 ident: bb0340 article-title: Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks publication-title: Mol. Cell contributor: fullname: Clarke – volume: 3 year: 2017 ident: bb0090 article-title: A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9 publication-title: Sci. Adv. contributor: fullname: Dagdas – volume: 112 start-page: E7110 year: 2015 end-page: E7117 ident: bb0170 article-title: Synthetic CRISPR RNA-Cas9-guided genome editing in human cells publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Rahdar – volume: 289 start-page: 27314 year: 2014 end-page: 27326 ident: bb0505 article-title: DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells publication-title: J. Biol. Chem. contributor: fullname: Sturzenegger – volume: 59 start-page: 176 year: 2015 end-page: 187 ident: bb0740 article-title: Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry publication-title: Mol. Cell contributor: fullname: Zhao – volume: 34 start-page: 863 year: 2016 end-page: 868 ident: bb0280 article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells publication-title: Nat. Biotechnol. contributor: fullname: Kim – volume: 40 start-page: 701 year: 2015 end-page: 714 ident: bb0055 article-title: Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? publication-title: Trends Biochem. Sci. contributor: fullname: Symington – volume: 272 start-page: 28194 year: 1997 end-page: 28197 ident: bb0530 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. contributor: fullname: Sung – volume: 809 start-page: 81 year: 2018 end-page: 87 ident: bb0380 article-title: Microhomology-mediated end joining: Good, bad and ugly publication-title: Mutat. Res. contributor: fullname: Seol – volume: 21 start-page: 3604 year: 2020 ident: bb0935 article-title: On-target CRISPR/Cas9 activity can cause undesigned large deletion in mouse zygotes publication-title: Int. J. Mol. Sci. contributor: fullname: Korablev – volume: 31 start-page: 839 year: 2013 end-page: 843 ident: bb0100 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. contributor: fullname: Pattanayak – volume: 79 start-page: 221 year: 2020 end-page: 233 ident: bb0345 article-title: The histone chaperone FACT induces Cas9 multi-turnover behavior and modifies genome manipulation in human cells publication-title: Mol. Cell contributor: fullname: Wang – volume: 281 start-page: 33900 year: 2006 end-page: 33909 ident: bb0320 article-title: DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5′ or 3′ overhangs publication-title: J. Biol. Chem. contributor: fullname: Niewolik – volume: 292 start-page: 11702 year: 2017 end-page: 11713 ident: bb0525 article-title: Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex publication-title: J. Biol. Chem. contributor: fullname: Ma – volume: 29 start-page: 143 year: 2011 end-page: 148 ident: bb0015 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. contributor: fullname: Miller – volume: 50 start-page: 589 year: 2013 end-page: 600 ident: bb0555 article-title: RPA coordinates DNA end resection and prevents formation of DNA hairpins publication-title: Mol. Cell contributor: fullname: Chen – volume: 7 start-page: 10431 year: 2016 ident: bb0900 article-title: ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes publication-title: Nat. Commun. contributor: fullname: Yoshimi – volume: 115 start-page: E10059 year: 2018 end-page: E10068 ident: bb0765 article-title: Swi5-Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Lu – volume: 99 start-page: 3758 year: 2002 end-page: 3763 ident: bb0610 article-title: DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Allen – volume: 34 start-page: 518 year: 2018 end-page: 531 ident: bb0815 article-title: Break-induced replication: The where, the why, and the how publication-title: Trends Genet. contributor: fullname: Kramara – volume: 38 start-page: 2917 year: 2010 end-page: 2930 ident: bb0520 article-title: Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes publication-title: Nucleic Acids Res. contributor: fullname: Grimme – volume: 26 start-page: 52 year: 2016 end-page: 64 ident: bb0405 article-title: Repair pathway choices and consequences at the double-strand break publication-title: Trends Cell Biol. contributor: fullname: Ceccaldi – volume: 20 start-page: 698 year: 2019 end-page: 714 ident: bb0545 article-title: DNA double-strand break repair-pathway choice in somatic mammalian cells publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Scully – volume: 11 start-page: 962 year: 2010 end-page: 968 ident: bb0635 article-title: DNA end resection by CtIP and exonuclease 1 prevents genomic instability publication-title: EMBO Rep. contributor: fullname: Eid – year: 2019 ident: bb0875 article-title: Deep profiling reveals substantial heterogeneity of integration outcomes in CRISPR knock-in experiments publication-title: bioRxiv contributor: fullname: Canaj – volume: 33 start-page: 538 year: 2015 end-page: 542 ident: bb0350 article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining publication-title: Nat. Biotechnol. contributor: fullname: Maruyama – volume: 87 start-page: 263 year: 2018 end-page: 294 ident: bb0585 article-title: The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair publication-title: Annu. Rev. Biochem. contributor: fullname: Tainer – volume: 18 start-page: 35 year: 2017 ident: bb0895 article-title: Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage publication-title: Genome Biol. contributor: fullname: Zhang – volume: 1 start-page: 878 year: 2017 end-page: 888 ident: bb0910 article-title: Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing publication-title: Nat. Biomed. Eng. contributor: fullname: Paulsen – volume: 471 start-page: 602 year: 2011 end-page: 607 ident: bb0990 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature contributor: fullname: Deltcheva – volume: 33 start-page: 543 year: 2015 end-page: 548 ident: bb0360 article-title: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells publication-title: Nat. Biotechnol. contributor: fullname: Chu – volume: 6 year: 2020 ident: bb0605 article-title: DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP publication-title: Sci. Adv. contributor: fullname: Deshpande – volume: 15 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0730 article-title: Differential requirements for the RAD51 paralogs in genome repair and maintenance in human cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008355 contributor: fullname: Garcin – volume: 11 start-page: 3181 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0680 article-title: Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases publication-title: Nat. Commun. doi: 10.1038/s41467-020-16997-w contributor: fullname: Ferrari – volume: 113 start-page: E1170 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0645 article-title: Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1516674113 contributor: fullname: Myler – volume: 10 start-page: 1136 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0940 article-title: CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations publication-title: Nat. Commun. doi: 10.1038/s41467-019-09006-2 contributor: fullname: Cullot – volume: 584 start-page: 3682 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0580 article-title: The MRN complex in double-strand break repair and telomere maintenance publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.07.029 contributor: fullname: Lamarche – volume: 99 start-page: 3758 year: 2002 ident: 10.1016/j.tig.2021.02.008_bb0610 article-title: DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.052545899 contributor: fullname: Allen – volume: 468 start-page: 67 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0975 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature doi: 10.1038/nature09523 contributor: fullname: Garneau – volume: 164 start-page: 29 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0995 article-title: Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering publication-title: Cell doi: 10.1016/j.cell.2015.12.035 contributor: fullname: Wright – volume: 26 start-page: 52 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0405 article-title: Repair pathway choices and consequences at the double-strand break publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.07.009 contributor: fullname: Ceccaldi – volume: 14 start-page: 1555 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0845 article-title: Post-translational regulation of Cas9 during G1 enhances homology-directed repair publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.019 contributor: fullname: Gutschner – volume: 281 start-page: 33900 year: 2006 ident: 10.1016/j.tig.2021.02.008_bb0320 article-title: DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5′ or 3′ overhangs publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606023200 contributor: fullname: Niewolik – volume: 31 start-page: 822 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0105 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2623 contributor: fullname: Fu – volume: 283 start-page: 1197 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0590 article-title: PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706734200 contributor: fullname: Haince – volume: 29 start-page: 1777 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0825 article-title: Functions and regulation of the multitasking FANCM family of DNA motor proteins publication-title: Genes Dev. doi: 10.1101/gad.266593.115 contributor: fullname: Xue – volume: 34 start-page: 7 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0690 article-title: 53BP1: a DSB escort publication-title: Genes Dev. doi: 10.1101/gad.333237.119 contributor: fullname: Mirman – volume: 1 start-page: 878 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0910 article-title: Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0145-2 contributor: fullname: Paulsen – volume: 36 start-page: 765 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0925 article-title: Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4192 contributor: fullname: Kosicki – volume: 6 start-page: 5931 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0770 article-title: FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51 publication-title: Nat. Commun. doi: 10.1038/ncomms6931 contributor: fullname: Chu – volume: 18 start-page: 67 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0985 article-title: Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0299-x contributor: fullname: Makarova – volume: 510 start-page: 235 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0150 article-title: Targeted genome editing in human repopulating haematopoietic stem cells publication-title: Nature doi: 10.1038/nature13420 contributor: fullname: Genovese – volume: 4 start-page: 726 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0255 article-title: Engineered materials for in vivo delivery of genome-editing machinery publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0145-9 contributor: fullname: Sheng Tong – volume: 563 start-page: 522 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0620 article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells publication-title: Nature doi: 10.1038/s41586-018-0670-5 contributor: fullname: He – volume: 16 start-page: 387 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0135 article-title: Delivery technologies for genome editing publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.280 contributor: fullname: Yin – volume: 550 start-page: 407 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0085 article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy publication-title: Nature doi: 10.1038/nature24268 contributor: fullname: Chen – volume: 34 start-page: 328 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0190 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3471 contributor: fullname: Yin – volume: 458 start-page: 514 year: 2009 ident: 10.1016/j.tig.2021.02.008_bb0230 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC publication-title: Nature doi: 10.1038/nature07725 contributor: fullname: Hornung – volume: 8 start-page: 12 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0355 article-title: Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells publication-title: Cell Biosci. doi: 10.1186/s13578-018-0200-z contributor: fullname: Hu – volume: 9 start-page: 2164 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0370 article-title: Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-04609-7 contributor: fullname: Riesenberg – volume: 8 year: 2012 ident: 10.1016/j.tig.2021.02.008_bb0445 article-title: Microhomology directs diverse DNA break repair pathways and chromosomal translocations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003026 contributor: fullname: Villarreal – volume: 17 start-page: 1247 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0795 article-title: Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1915 contributor: fullname: Buisson – volume: 77 start-page: 1080 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0920 article-title: A mechanism to minimize errors during non-homologous end joining publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.018 contributor: fullname: Stinson – volume: 21 start-page: 324 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0660 article-title: Enhancement of BLM-DNA2-mediated long-range DNA end resection by CtIP publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.048 contributor: fullname: Daley – volume: 459 start-page: 460 year: 2009 ident: 10.1016/j.tig.2021.02.008_bb0615 article-title: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle publication-title: Nature doi: 10.1038/nature07955 contributor: fullname: Yun – volume: 471 start-page: 602 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0990 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature doi: 10.1038/nature09886 contributor: fullname: Deltcheva – volume: 322 start-page: 1843 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0970 article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA publication-title: Science doi: 10.1126/science.1165771 contributor: fullname: Marraffini – volume: 32 start-page: 566 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0060 article-title: Regulation of single-strand annealing and its role in genome maintenance publication-title: Trends Genet. doi: 10.1016/j.tig.2016.06.007 contributor: fullname: Bhargava – volume: 38 start-page: 2917 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0520 article-title: Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1249 contributor: fullname: Grimme – volume: 33 start-page: 175 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0185 article-title: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3127 contributor: fullname: Wang – volume: 568 start-page: 561 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0500 article-title: Precise therapeutic gene correction by a simple nuclease-induced double-stranded break publication-title: Nature doi: 10.1038/s41586-019-1076-8 contributor: fullname: Iyer – volume: 11 start-page: 1051 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0215 article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases publication-title: Nat. Methods doi: 10.1038/nmeth.3075 contributor: fullname: Holkers – volume: 809 start-page: 81 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0380 article-title: Microhomology-mediated end joining: Good, bad and ugly publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2017.07.002 contributor: fullname: Seol – volume: 50 start-page: 589 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0555 article-title: RPA coordinates DNA end resection and prevents formation of DNA hairpins publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.04.032 contributor: fullname: Chen – volume: 2 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0025 article-title: RNA-programmed genome editing in human cells publication-title: eLife doi: 10.7554/eLife.00471 contributor: fullname: Jinek – volume: 109 start-page: E2579 year: 2012 ident: 10.1016/j.tig.2021.02.008_bb0040 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1208507109 contributor: fullname: Gasiunas – volume: 22 start-page: 51151 year: 2006 ident: 10.1016/j.tig.2021.02.008_bb0295 article-title: Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.04.013 contributor: fullname: Spagnolo – volume: 25 start-page: 1234 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0245 article-title: Delivering CRISPR: a review of the challenges and approaches publication-title: Drug Deliv. doi: 10.1080/10717544.2018.1474964 contributor: fullname: Lino – volume: 33 start-page: 543 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0360 article-title: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3198 contributor: fullname: Chu – volume: 23 start-page: 4868 year: 2004 ident: 10.1016/j.tig.2021.02.008_bb0830 article-title: The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle publication-title: EMBO J. doi: 10.1038/sj.emboj.7600469 contributor: fullname: Aylon – volume: 40 start-page: 701 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0055 article-title: Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.08.006 contributor: fullname: Sfeir – volume: 64 start-page: 940 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0420 article-title: Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.017 contributor: fullname: Anand – volume: 73 start-page: 699 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0485 article-title: Target-specific precision of CRISPR-mediated genome editing publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.031 contributor: fullname: Chakrabarti – volume: 292 start-page: 3351 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0325 article-title: Autoinhibition of the nuclease ARTEMIS is mediated by a physical interaction between its catalytic and C-terminal domains publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.770461 contributor: fullname: Niewolik – volume: 43 start-page: 4055 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0805 article-title: Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv259 contributor: fullname: Zhao – volume: 279 start-page: 55117 year: 2004 ident: 10.1016/j.tig.2021.02.008_bb0450 article-title: Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404524200 contributor: fullname: Audebert – volume: 20 start-page: 698 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0545 article-title: DNA double-strand break repair-pathway choice in somatic mammalian cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0152-0 contributor: fullname: Scully – volume: 24 start-page: 1020 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0160 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. doi: 10.1101/gr.171264.113 contributor: fullname: Ramakrishna – volume: 135 start-page: 261 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0820 article-title: RTEL1 maintains genomic stability by suppressing homologous recombination publication-title: Cell doi: 10.1016/j.cell.2008.08.016 contributor: fullname: Barber – volume: 386 start-page: 804 year: 1997 ident: 10.1016/j.tig.2021.02.008_bb0760 article-title: Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2 publication-title: Nature doi: 10.1038/386804a0 contributor: fullname: Sharan – volume: 24 start-page: 1012 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0220 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. doi: 10.1101/gr.171322.113 contributor: fullname: Kim – volume: 7 start-page: 739 year: 2006 ident: 10.1016/j.tig.2021.02.008_bb0045 article-title: Mechanism of homologous recombination: mediators and helicases take on regulatory functions publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2008 contributor: fullname: Sung – volume: 34 start-page: 863 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0280 article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3609 contributor: fullname: Kim – volume: 346 start-page: 1258096 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0005 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 contributor: fullname: Doudna – volume: 16 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0540 article-title: A Rad51-independent pathway promotes single-strand template repair in gene editing publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008689 contributor: fullname: Gallagher – volume: 63 start-page: 633 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0495 article-title: DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.037 contributor: fullname: van Overbeek – volume: 351 start-page: 84 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0115 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science doi: 10.1126/science.aad5227 contributor: fullname: Slaymaker – volume: 110 start-page: 7720 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0395 article-title: Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1213431110 contributor: fullname: Truong – volume: 7 start-page: 10431 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0900 article-title: ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes publication-title: Nat. Commun. doi: 10.1038/ncomms10431 contributor: fullname: Yoshimi – volume: 295 start-page: 5538 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0285 article-title: CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.012933 contributor: fullname: Murugan – volume: 9 start-page: 3048 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0125 article-title: Directed evolution of CRISPR-Cas9 to increase its specificity publication-title: Nat. Commun. doi: 10.1038/s41467-018-05477-x contributor: fullname: Lee – volume: 24 start-page: 1216 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0130 article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells publication-title: Nat. Med. doi: 10.1038/s41591-018-0137-0 contributor: fullname: Vakulskas – volume: 303 start-page: 1526 year: 2004 ident: 10.1016/j.tig.2021.02.008_bb0175 article-title: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 publication-title: Science doi: 10.1126/science.1093620 contributor: fullname: Heil – volume: 6 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0720 article-title: Phosphoregulation of Rad51/Rad52 by CDK1 functions as a molecular switch for cell cycle-specific activation of homologous recombination publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2669 contributor: fullname: Lim – volume: 38 start-page: 824 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0265 article-title: Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0561-9 contributor: fullname: Anzalone – volume: 32 start-page: 677 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0110 article-title: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2916 contributor: fullname: Kuscu – volume: 34 start-page: 869 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0275 article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3620 contributor: fullname: Kleinstiver – volume: 11 start-page: 263 year: 2005 ident: 10.1016/j.tig.2021.02.008_bb0180 article-title: Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7 publication-title: Nat. Med. doi: 10.1038/nm1191 contributor: fullname: Hornung – volume: 40 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0260 article-title: Gene editing and CRISPR in the clinic: current and future perspectives publication-title: Biosci. Rep. doi: 10.1042/BSR20200127 contributor: fullname: Hirakawa – year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0735 article-title: Distinct pathways of homologous recombination controlled by the SWS1-SWSAP1-SPIDR complex publication-title: bioRxiv contributor: fullname: Prakash – volume: 35 start-page: 330 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0870 article-title: A snapshot on the Cis chromatin response to DNA double-strand breaks publication-title: Trends Genet. doi: 10.1016/j.tig.2019.02.003 contributor: fullname: Clouaire – volume: 9 start-page: 613 year: 1993 ident: 10.1016/j.tig.2021.02.008_bb0950 article-title: Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01721.x contributor: fullname: Mojica – volume: 115 start-page: E10059 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0765 article-title: Swi5-Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1812753115 contributor: fullname: Lu – volume: 10 start-page: 2954 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0460 article-title: Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks publication-title: Nat. Commun. doi: 10.1038/s41467-019-10741-9 contributor: fullname: Caron – volume: 25 start-page: 350 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0510 article-title: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair publication-title: Genes Dev. doi: 10.1101/gad.2003811 contributor: fullname: Nimonkar – volume: 99 start-page: 33 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0300 article-title: DNA-PK: the means to justify the ends? publication-title: Adv. Immunol. doi: 10.1016/S0065-2776(08)00602-0 contributor: fullname: Meek – volume: 93 start-page: 10729 year: 1996 ident: 10.1016/j.tig.2021.02.008_bb0515 article-title: DNA strand annealing is promoted by the yeast Rad52 protein publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.20.10729 contributor: fullname: Mortensen – volume: 141 start-page: 243 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0700 article-title: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks publication-title: Cell doi: 10.1016/j.cell.2010.03.012 contributor: fullname: Bunting – volume: 31 start-page: 839 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0100 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2673 contributor: fullname: Pattanayak – volume: 289 start-page: 13284 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0070 article-title: Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.539726 contributor: fullname: Chen – volume: 1 start-page: 969 year: 1998 ident: 10.1016/j.tig.2021.02.008_bb0430 article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80097-0 contributor: fullname: Paull – volume: 11 start-page: 636 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0010 article-title: Genome editing with engineered zinc finger nucleases publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2842 contributor: fullname: Urnov – volume: 24 start-page: 1116 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0465 article-title: The helicase domain of Polθ counteracts RPA to promote alt-NHEJ publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3494 contributor: fullname: Mateos-Gomez – volume: 17 start-page: 1255 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0790 article-title: Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1916 contributor: fullname: Dray – volume: 87 start-page: 263 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0585 article-title: The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012415 contributor: fullname: Syed – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.tig.2021.02.008_bb0020 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 contributor: fullname: Jinek – volume: 4 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0650 article-title: Dna2 nuclease-helicase structure, mechanism and regulation by Rpa publication-title: eLife doi: 10.7554/eLife.09832 contributor: fullname: Zhou – volume: 5 start-page: 8841 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0890 article-title: Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish publication-title: Sci. Rep. doi: 10.1038/srep08841 contributor: fullname: Hisano – volume: 458 start-page: 509 year: 2009 ident: 10.1016/j.tig.2021.02.008_bb0235 article-title: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA publication-title: Nature doi: 10.1038/nature07710 contributor: fullname: Fernandes-Alnemri – volume: 283 start-page: 7713 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0710 article-title: Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710245200 contributor: fullname: Chen – volume: 17 start-page: 657 year: 2005 ident: 10.1016/j.tig.2021.02.008_bb0330 article-title: The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.012 contributor: fullname: Bernstein – volume: 17 start-page: 300 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb1000 article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.28 contributor: fullname: Tsai – volume: 112 start-page: E7110 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0170 article-title: Synthetic CRISPR RNA-Cas9-guided genome editing in human cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1520883112 contributor: fullname: Rahdar – volume: 113 start-page: 2868 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0195 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1520244113 contributor: fullname: Wang – volume: 7 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0570 article-title: An overview of the molecular mechanisms of recombinational DNA repair publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016410 contributor: fullname: Kowalczykowski – volume: 292 start-page: 11702 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0525 article-title: Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.794545 contributor: fullname: Ma – volume: 45 start-page: 779 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0630 article-title: Limiting the DNA double-strand break resectosome for genome protection publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.05.003 contributor: fullname: Ronato – volume: 15 start-page: 2118 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0785 article-title: Promotion of RAD51-mediated homologous DNA pairing by the RAD51AP1-UAF1 complex publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.007 contributor: fullname: Liang – volume: 29 start-page: 143 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0015 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1755 contributor: fullname: Miller – year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0875 article-title: Deep profiling reveals substantial heterogeneity of integration outcomes in CRISPR knock-in experiments publication-title: bioRxiv contributor: fullname: Canaj – volume: 9 start-page: 1657 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0915 article-title: Regulation of error-prone DNA double-strand break repair and its impact on genome evolution publication-title: Cells doi: 10.3390/cells9071657 contributor: fullname: Hanscom – year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0290 article-title: Cas12a trans-cleavage can be modulated in vitro and is active on ssDNA, dsDNA, and RNA publication-title: bioRxiv contributor: fullname: Fuchs – volume: 28 start-page: 5082 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0470 article-title: ERCC1-XPF endonuclease facilitates DNA double-strand break repair publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00293-08 contributor: fullname: Ahmad – volume: 321 start-page: 960 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0965 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science doi: 10.1126/science.1159689 contributor: fullname: Brouns – volume: 42 start-page: 11083 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0655 article-title: Multifaceted role of the Topo IIIalpha-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku803 contributor: fullname: Daley – volume: 6 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0810 article-title: The dissolution of double Holliday junctions publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016477 contributor: fullname: Bizard – volume: 2 start-page: 313 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0725 article-title: Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer publication-title: Annu. Rev. Cancer Biol. doi: 10.1146/annurev-cancerbio-030617-050502 contributor: fullname: Chen – volume: 368 start-page: 1265 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0335 article-title: Very fast CRISPR on demand publication-title: Science doi: 10.1126/science.aay8204 contributor: fullname: Liu – volume: 33 start-page: 538 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0350 article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3190 contributor: fullname: Maruyama – year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0865 article-title: Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance publication-title: bioRxiv contributor: fullname: Schep – volume: 7 start-page: 93 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0375 article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing publication-title: Genome Med. doi: 10.1186/s13073-015-0215-6 contributor: fullname: Robert – volume: 139 start-page: 945 year: 2009 ident: 10.1016/j.tig.2021.02.008_bb0980 article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex publication-title: Cell doi: 10.1016/j.cell.2009.07.040 contributor: fullname: Hale – volume: 529 start-page: 490 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0120 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature doi: 10.1038/nature16526 contributor: fullname: Kleinstiver – volume: 34 start-page: 518 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0815 article-title: Break-induced replication: The where, the why, and the how publication-title: Trends Genet. doi: 10.1016/j.tig.2018.04.002 contributor: fullname: Kramara – volume: 67 start-page: 891 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0425 article-title: Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.002 contributor: fullname: Myler – volume: 315 start-page: 1709 year: 2007 ident: 10.1016/j.tig.2021.02.008_bb0960 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science doi: 10.1126/science.1138140 contributor: fullname: Barrangou – volume: 36 start-page: 1 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0550 article-title: The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm888 contributor: fullname: Al-Minawi – volume: 22 start-page: 230 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0385 article-title: Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2961 contributor: fullname: Kent – volume: 45 start-page: 247 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0400 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132435 contributor: fullname: Symington – volume: 18 start-page: 134 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0560 article-title: Regulation of DNA double-strand break repair pathway choice publication-title: Cell Res. doi: 10.1038/cr.2007.111 contributor: fullname: Shrivastav – volume: 34 start-page: 334 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0155 article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3469 contributor: fullname: Yang – volume: 112 start-page: 10437 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0210 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1512503112 contributor: fullname: Schumann – volume: 11 start-page: 962 year: 2010 ident: 10.1016/j.tig.2021.02.008_bb0635 article-title: DNA end resection by CtIP and exonuclease 1 prevents genomic instability publication-title: EMBO Rep. doi: 10.1038/embor.2010.157 contributor: fullname: Eid – volume: 20 start-page: 2996 year: 2000 ident: 10.1016/j.tig.2021.02.008_bb0305 article-title: Ku recruits the XRCC4-ligase IV complex to DNA ends publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.9.2996-3003.2000 contributor: fullname: Nick McElhinny – volume: 560 start-page: 117 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0675 article-title: The shieldin complex mediates 53BP1-dependent DNA repair publication-title: Nature doi: 10.1038/s41586-018-0340-7 contributor: fullname: Noordermeer – volume: 450 start-page: 509 year: 2007 ident: 10.1016/j.tig.2021.02.008_bb0415 article-title: Human CtIP promotes DNA end resection publication-title: Nature doi: 10.1038/nature06337 contributor: fullname: Sartori – volume: 71 start-page: 42 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0340 article-title: Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.005 contributor: fullname: Clarke – volume: 26 start-page: 432 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0145 article-title: Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.087 contributor: fullname: Wang – volume: 5 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0860 article-title: Nucleosome breathing and remodeling constrain CRISPR-Cas9 function publication-title: eLife doi: 10.7554/eLife.13450 contributor: fullname: Isaac – volume: 79 start-page: 221 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0345 article-title: The histone chaperone FACT induces Cas9 multi-turnover behavior and modifies genome manipulation in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.06.014 contributor: fullname: Wang – volume: 9 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0885 article-title: Enhancement of homology-directed repair with chromatin donor templates in cells publication-title: eLife doi: 10.7554/eLife.55780 contributor: fullname: Cruz-Becerra – start-page: 64 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0490 article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks publication-title: Nat. Biotechnol. contributor: fullname: Allen – volume: 111 start-page: 9798 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0080 article-title: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1402597111 contributor: fullname: Szczelkun – volume: 18 start-page: 495 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0050 article-title: Non-homologous DNA end joining and alternative pathways to double-strand break repair publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.48 contributor: fullname: Chang – volume: 8 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0800 article-title: Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells publication-title: eLife doi: 10.7554/eLife.44063 contributor: fullname: Deveryshetty – volume: 560 start-page: 112 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0670 article-title: 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in publication-title: Nature doi: 10.1038/s41586-018-0324-7 contributor: fullname: Mirman – volume: 560 start-page: E8 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0930 article-title: Large deletions induced by Cas9 cleavage publication-title: Nature doi: 10.1038/s41586-018-0380-z contributor: fullname: Adikusuma – volume: 9 start-page: 2493 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0905 article-title: CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.171 contributor: fullname: Shao – volume: 18 start-page: 1124 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0200 article-title: Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations publication-title: Nat. Mater. doi: 10.1038/s41563-019-0385-5 contributor: fullname: Shahbazi – volume: 70 start-page: 801 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0850 article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.04.016 contributor: fullname: Brinkman – volume: 10 start-page: 266 year: 2009 ident: 10.1016/j.tig.2021.02.008_bb0240 article-title: An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome publication-title: Nat. Immunol. doi: 10.1038/ni.1702 contributor: fullname: Burckstummer – volume: 6 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0605 article-title: DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP publication-title: Sci. Adv. doi: 10.1126/sciadv.aay0922 contributor: fullname: Deshpande – volume: 18 start-page: 35 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0895 article-title: Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage publication-title: Genome Biol. doi: 10.1186/s13059-017-1164-8 contributor: fullname: Zhang – volume: 339 start-page: 823 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0035 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 contributor: fullname: Mali – volume: 71 start-page: 498 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0095 article-title: Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.021 contributor: fullname: Shou – volume: 24 start-page: 40 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0565 article-title: Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3336 contributor: fullname: Xu – volume: 289 start-page: 27314 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0505 article-title: DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.578823 contributor: fullname: Sturzenegger – volume: 3 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0090 article-title: A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao0027 contributor: fullname: Dagdas – volume: 17 start-page: 85 year: 1995 ident: 10.1016/j.tig.2021.02.008_bb0955 article-title: Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.mmi_17010085.x contributor: fullname: Mojica – volume: 21 start-page: 284 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0695 article-title: The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0218-z contributor: fullname: Tarsounas – volume: 5 start-page: 53 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0855 article-title: Cas9 has no exonuclease activity resulting in staggered cleavage with overhangs and predictable di- and tri-nucleotide CRISPR insertions without template donor publication-title: Cell Discov. doi: 10.1038/s41421-019-0120-z contributor: fullname: Shi – volume: 101 start-page: 12248 year: 2004 ident: 10.1016/j.tig.2021.02.008_bb0365 article-title: Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0402780101 contributor: fullname: Ninomiya – volume: 28 start-page: 1093 year: 2007 ident: 10.1016/j.tig.2021.02.008_bb0310 article-title: Crystal structure of human XLF: a twist in nonhomologous DNA end-joining publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.10.024 contributor: fullname: Andres – volume: 36 start-page: 3297 year: 2008 ident: 10.1016/j.tig.2021.02.008_bb0390 article-title: Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn184 contributor: fullname: Liang – volume: 421 start-page: 957 year: 2003 ident: 10.1016/j.tig.2021.02.008_bb0685 article-title: MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways publication-title: Nature doi: 10.1038/nature01447 contributor: fullname: Lou – volume: 21 start-page: 3604 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0935 article-title: On-target CRISPR/Cas9 activity can cause undesigned large deletion in mouse zygotes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21103604 contributor: fullname: Korablev – volume: 518 start-page: 254 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0475 article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination publication-title: Nature doi: 10.1038/nature14157 contributor: fullname: Mateos-Gomez – volume: 173 start-page: 972 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0665 article-title: DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity publication-title: Cell doi: 10.1016/j.cell.2018.03.050 contributor: fullname: Gupta – volume: 33 start-page: 75 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0625 article-title: Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination publication-title: Genes Dev. doi: 10.1101/gad.315978.118 contributor: fullname: Moquin – volume: 59 start-page: 176 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0740 article-title: Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.032 contributor: fullname: Zhao – volume: 22 start-page: 719 year: 2006 ident: 10.1016/j.tig.2021.02.008_bb0745 article-title: Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.05.022 contributor: fullname: Xia – volume: 563 start-page: 646 year: 2018 ident: 10.1016/j.tig.2021.02.008_bb0480 article-title: Predictable and precise template-free CRISPR editing of pathogenic variants publication-title: Nature doi: 10.1038/s41586-018-0686-x contributor: fullname: Shen – volume: 16 start-page: 2767 year: 2002 ident: 10.1016/j.tig.2021.02.008_bb0880 article-title: Strand pairing by Rad54 and Rad51 is enhanced by chromatin publication-title: Genes Dev. doi: 10.1101/gad.1032102 contributor: fullname: Alexiadis – volume: 272 start-page: 28194 year: 1997 ident: 10.1016/j.tig.2021.02.008_bb0530 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.45.28194 contributor: fullname: Sung – volume: 108 start-page: 686 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0535 article-title: Rad52 inactivation is synthetically lethal with BRCA2 deficiency publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1010959107 contributor: fullname: Feng – volume: 21 start-page: 1468 year: 2019 ident: 10.1016/j.tig.2021.02.008_bb0065 article-title: Advances in genome editing through control of DNA repair pathways publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0425-z contributor: fullname: Yeh – volume: 408 start-page: 740 year: 2000 ident: 10.1016/j.tig.2021.02.008_bb0225 article-title: A Toll-like receptor recognizes bacterial DNA publication-title: Nature doi: 10.1038/35047123 contributor: fullname: Hemmi – volume: 194 start-page: 705 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0575 article-title: Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair publication-title: J. Cell Biol. doi: 10.1083/jcb.201103103 contributor: fullname: Peterson – volume: 33 start-page: 985 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0165 article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3290 contributor: fullname: Hendel – volume: 26 start-page: 443 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0250 article-title: Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.074 contributor: fullname: Gori – volume: 4 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0600 article-title: Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.171 contributor: fullname: Jiang – volume: 151 start-page: 1474 year: 2012 ident: 10.1016/j.tig.2021.02.008_bb0435 article-title: An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression publication-title: Cell doi: 10.1016/j.cell.2012.11.054 contributor: fullname: Srivastava – volume: 507 start-page: 62 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0075 article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 publication-title: Nature doi: 10.1038/nature13011 contributor: fullname: Sternberg – volume: 169 start-page: 5429 year: 1987 ident: 10.1016/j.tig.2021.02.008_bb0945 article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product publication-title: J. Bacteriol. doi: 10.1128/jb.169.12.5429-5433.1987 contributor: fullname: Ishino – volume: 103 start-page: 18597 year: 2006 ident: 10.1016/j.tig.2021.02.008_bb0315 article-title: Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0609061103 contributor: fullname: Mari – volume: 181 start-page: 1380 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0775 article-title: Rad54 drives ATP hydrolysis-dependent DNA sequence alignment during homologous recombination publication-title: Cell doi: 10.1016/j.cell.2020.04.056 contributor: fullname: Crickard – volume: 297 start-page: 1837 year: 2002 ident: 10.1016/j.tig.2021.02.008_bb0755 article-title: BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure publication-title: Science doi: 10.1126/science.297.5588.1837 contributor: fullname: Yang – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.tig.2021.02.008_bb0030 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 contributor: fullname: Cong – volume: 550 start-page: 360 year: 2017 ident: 10.1016/j.tig.2021.02.008_bb0780 article-title: BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing publication-title: Nature doi: 10.1038/nature24060 contributor: fullname: Zhao – volume: 34 start-page: 6170 year: 2006 ident: 10.1016/j.tig.2021.02.008_bb0455 article-title: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl840 contributor: fullname: Wang – volume: 431 start-page: 1011 year: 2004 ident: 10.1016/j.tig.2021.02.008_bb0835 article-title: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 publication-title: Nature doi: 10.1038/nature02964 contributor: fullname: Ira – year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0705 article-title: BARD1 links histone H2A Lysine-15 ubiquitination to initiation of BRCA1-dependent homologous recombination publication-title: bioRxiv contributor: fullname: Becker – volume: 95 start-page: 5287 year: 1998 ident: 10.1016/j.tig.2021.02.008_bb0750 article-title: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.9.5287 contributor: fullname: Chen – volume: 304 start-page: 93 year: 2004 ident: 10.1016/j.tig.2021.02.008_bb0410 article-title: Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex publication-title: Science doi: 10.1126/science.1091496 contributor: fullname: Lee – volume: 51 start-page: 195 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0640 article-title: Mechanism and regulation of DNA end resection in eukaryotes publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2016.1172552 contributor: fullname: Symington – volume: 3 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0840 article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife doi: 10.7554/eLife.04766 contributor: fullname: Lin – volume: 44 start-page: 1732 year: 2016 ident: 10.1016/j.tig.2021.02.008_bb0595 article-title: Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1499 contributor: fullname: Lee – volume: 9 start-page: 1402 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0140 article-title: CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox publication-title: Biotechnol. J. doi: 10.1002/biot.201400046 contributor: fullname: Senis – volume: 11 start-page: 11 year: 2011 ident: 10.1016/j.tig.2021.02.008_bb0205 article-title: Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy publication-title: Curr. Gene Ther. doi: 10.2174/156652311794520111 contributor: fullname: Silva – volume: 21 start-page: 405 year: 2014 ident: 10.1016/j.tig.2021.02.008_bb0440 article-title: RPA antagonizes microhomology-mediated repair of DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2786 contributor: fullname: Deng – volume: 163 start-page: 759 year: 2015 ident: 10.1016/j.tig.2021.02.008_bb0270 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 contributor: fullname: Zetsche – volume: 54 start-page: 25 year: 2020 ident: 10.1016/j.tig.2021.02.008_bb0715 article-title: RAD51 gene family structure and function publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-021920-092410 contributor: fullname: Bonilla |
SSID | ssj0005735 |
Score | 2.6824107 |
SecondaryResourceType | review_article |
Snippet | Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of... Many CRISPR-Cas-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 639 |
SubjectTerms | CRISPR-Cas Systems - genetics DNA Breaks, Double-Stranded DNA End-Joining Repair - genetics DNA Repair - genetics Gene Editing - trends Genome, Human - genetics Homologous Recombination - genetics Humans Mutagenesis, Insertional - genetics Signal Transduction - genetics |
Title | DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing |
URI | https://dx.doi.org/10.1016/j.tig.2021.02.008 https://www.ncbi.nlm.nih.gov/pubmed/33896583 https://www.proquest.com/docview/2518735683 https://pubmed.ncbi.nlm.nih.gov/PMC8187289 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50F8WL6PpaX0TwJMTdtkmTHpf6WJVdxAd4C7FNtYJd0V1kL_52J32oq-jBY9ukhJn2m2_IlxmAXQxykedEjCY6SChGKEk145xqIz3jxJhS5J7u9f3uNTu94TdTEFZnYaysssT-AtNztC7vtEprtp7StHWJZEUG3MX4k58o9aehjuHIlTWod07Ouv1PpYco-mzieGonVJubucxrmN5hluiWlTvlb-HpJ_38rqL8EpaOFmC-5JOkUyx5EaZM1oCZosPkuAGzvXLvfAk6B_0OQb6t02dyjrzvVY9JeD-wQEHSjIQXJ5fnFzTULwHt5f07TEyOTTZ4NOQwTq06ehmujw6vwi4tGyjQiDtiiPgaaObHRiSJ60rfs-1dtOMJLlyM_L42LDGREG0nDhDlWIRcIYoEphiB68Qsib0VqGWDzKwBSURgjDRewiPN2tpoewRVtGMf3xNwLpuwV9lNPRV1MlQlIHtQaGRljazarkIjN4FVllUTzlaI439N26m8oPAnsDsbOjOD0YtCkibRyb70mrBaeOVjFZiD2wI3-ERM-OtjgC2wPfkkS-_zQttIZgQmpOv_W-4GzNmrQtu7CbXh88hsIYMZ3m7D9P6bs11-p-86sOxa |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD6CogEvaCu3box50p4mWW0SO7Yfq3BpgVYVF4k3yyQODRJp1RZN_Psd58LoJnjYaxxH1jnxd74jfz4H4AcGuTjwYkZTo1KKEUpSwzinxsrAegmmFIWnB8Owd8PObvntCkT1XRgnq6ywv8T0Aq2rJ-3Kmu1plrWvkKxIxX2MP8WN0nAV1pANKNyda93-eW_4R-khyj6b-D51E-rDzULmtcjuMUv0q8qd8q3w9C_9_FtF-SosnXyErYpPkm655E-wYvMmfCg7TD43YX1QnZ1vQ_do2CXIt002IyPkfb_MM4nGEwcUJMtJdNm_Gl3SyMwVHRT9O2xCTm0-ebTkOMmcOnoHbk6Or6MerRoo0Jh7YoH4qgwLEyvS1PdlGLj2LsYLBBc-Rv7QWJbaWIiOlyhEORYjV4hjgSmG8r2EpUmwC418ktt9IKlQ1kobpDw2rGOscVdQRScJ8TuKc9mCn7Xd9LSsk6FrAdmDRiNrZ2Td8TUauQWstqxecrZGHH9v2vfaCxo3gTvZMLmdPM01kjSJTg5l0IK90isvq8Ac3BW4wRGx5K-XF1yB7eWRPBsXhbaRzAhMSD__33K_wUbvenChL_rD8y-w6UZKne8BNBazJ_sV2czi7rD6W38D8-LuTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+repair+pathway+choices+in+CRISPR-Cas9+mediated+genome+editing&rft.jtitle=Trends+in+genetics&rft.au=Xue%2C+Chaoyou&rft.au=Greene%2C+Eric+C.&rft.date=2021-07-01&rft.issn=0168-9525&rft.volume=37&rft.issue=7&rft.spage=639&rft.epage=656&rft_id=info:doi/10.1016%2Fj.tig.2021.02.008&rft_id=info%3Apmid%2F33896583&rft.externalDBID=PMC8187289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |