Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis
Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 – gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution....
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 226; p. 112826 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 – gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 °C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use.
[Display omitted]
•Green synthesis of magnetite nanoparticles using Moringa olifera was achieved.•Synthesized nanoparticles exhibited up to 86.15% removal efficiency of levofloxacin.•Maximum adsorption capacity of levofloxacin achieved at equilibrium was 22.47 mg/g.•Dominant mechanism for removal appeared as chemisorption. |
---|---|
AbstractList | Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 – gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 °C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use. Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 - gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 °C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use.Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 - gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 °C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use. Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 – gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 °C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use. [Display omitted] •Green synthesis of magnetite nanoparticles using Moringa olifera was achieved.•Synthesized nanoparticles exhibited up to 86.15% removal efficiency of levofloxacin.•Maximum adsorption capacity of levofloxacin achieved at equilibrium was 22.47 mg/g.•Dominant mechanism for removal appeared as chemisorption. |
ArticleNumber | 112826 |
Author | Arshad, Muhammad Bilal, Muhammad Altaf, Sikandar Yaqoob, Khurram Zaman, Waqas Qamar Zafar, Rabeea Syed, Asad Ahmad, Shakil Khan, Asim Jahangir |
Author_xml | – sequence: 1 givenname: Sikandar surname: Altaf fullname: Altaf, Sikandar organization: School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 2 givenname: Rabeea surname: Zafar fullname: Zafar, Rabeea organization: School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 3 givenname: Waqas Qamar surname: Zaman fullname: Zaman, Waqas Qamar organization: School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 4 givenname: Shakil surname: Ahmad fullname: Ahmad, Shakil organization: School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 5 givenname: Khurram surname: Yaqoob fullname: Yaqoob, Khurram organization: School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 6 givenname: Asad surname: Syed fullname: Syed, Asad organization: Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia – sequence: 7 givenname: Asim Jahangir surname: Khan fullname: Khan, Asim Jahangir organization: Department of Geohydraulics and Engineering Hydrology, University of Kassel, Kassel 34125, Germany – sequence: 8 givenname: Muhammad surname: Bilal fullname: Bilal, Muhammad organization: Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan – sequence: 9 givenname: Muhammad surname: Arshad fullname: Arshad, Muhammad email: marshad@iese.nust.edu.pk organization: School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan |
BookMark | eNqFkUFvEzEQhVeoSKSFf8DBx3JIsL32etMDEqpaqCiqhOBsje1x6shrF3sTEX4Ov5RNt1w4wGkka773PO-dNicpJ2ya14yuGGXd2-0Kbca0X3HK2Yox3vPuWbNgdE2XXDBx0iwoE2rZSda-aE5r3VJKWyrlovn1BYe8h0iyJxH32cf8A2xIxJc8EPi-w7yrpOa4G0NOxBzIpiAmUg9pvMcafqIjA2wSjmFEcn6N7Z14QxKk_ABlDDZiJbsa0oZ8zmUaQHIMHgtckE_hSNlKIDlSEOyjw4D2HlKok3mCeKihvmyee4gVXz3Ns-bb9dXXy4_L27sPN5fvb5dWMjUuuUMvZWd6xRxllhuFrWPSeCWdY0Z6I03bC6-YEP3agHJOdCg4b5XrjWrbs-Zm1nUZtvqhhAHKQWcI-vEhl41-OkmjXEvre2kFGDG59NysOyqg5aaV1PNJ63zWeih5yrCOegjVYoyQjoFqLlWvFO2omlYv5lVbcq0FvbZhhGMWY4EQNaP6WLLe6rlkfSxZzyVPsPgL_vPv_2DvZgynPPcBi642YLLoQkE7TgeHfwv8Bh9OyHs |
CitedBy_id | crossref_primary_10_1007_s10661_023_10925_3 crossref_primary_10_1016_j_hazadv_2023_100354 crossref_primary_10_1016_j_wmb_2024_02_007 crossref_primary_10_1007_s12011_023_03855_1 crossref_primary_10_17352_ojabc_000031 crossref_primary_10_1016_j_cartre_2023_100305 crossref_primary_10_1186_s40643_022_00616_1 crossref_primary_10_1155_2022_7957007 crossref_primary_10_2139_ssrn_4120203 crossref_primary_10_53982_ajerd_2024_0702_34_j crossref_primary_10_1016_j_microc_2024_110899 crossref_primary_10_1016_j_coesh_2022_100390 crossref_primary_10_1039_D4RA01971G crossref_primary_10_1016_j_cdc_2022_100970 crossref_primary_10_1016_j_emcon_2023_100258 crossref_primary_10_1007_s13762_023_04797_w crossref_primary_10_1016_j_jiec_2023_06_044 crossref_primary_10_1016_j_inoche_2024_112611 crossref_primary_10_1016_j_cscee_2024_100771 crossref_primary_10_1016_j_poly_2025_117500 crossref_primary_10_1016_j_crcon_2023_04_003 crossref_primary_10_1016_j_molliq_2023_122174 crossref_primary_10_1080_09593330_2023_2283409 crossref_primary_10_1016_j_ces_2025_121413 crossref_primary_10_4028_p_i8ynny crossref_primary_10_1016_j_envres_2024_119231 crossref_primary_10_1007_s13738_022_02685_7 crossref_primary_10_1039_D3EW00259D crossref_primary_10_1080_22297928_2024_2304001 crossref_primary_10_1038_s41598_024_60250_z crossref_primary_10_1016_j_jscs_2023_101716 crossref_primary_10_1007_s10854_022_09787_1 crossref_primary_10_1016_j_jhazmat_2023_131325 crossref_primary_10_1080_10643389_2022_2115271 crossref_primary_10_1016_j_ceja_2023_100460 crossref_primary_10_1016_j_envpol_2023_121806 crossref_primary_10_1080_15226514_2022_2040421 crossref_primary_10_1007_s42250_023_00822_0 crossref_primary_10_1016_j_diamond_2024_111779 crossref_primary_10_1016_j_hazadv_2024_100565 crossref_primary_10_1007_s13204_022_02420_x crossref_primary_10_1016_j_eti_2022_102783 crossref_primary_10_3390_polym15051221 crossref_primary_10_1016_j_jece_2023_110456 crossref_primary_10_1016_j_jwpe_2024_104971 crossref_primary_10_1016_j_eti_2024_103831 crossref_primary_10_1016_j_chemosphere_2022_136732 crossref_primary_10_1016_j_seppur_2024_130246 crossref_primary_10_1016_j_ecoenv_2021_112855 crossref_primary_10_4028_p_l9rTIG crossref_primary_10_1016_j_ceramint_2022_10_111 crossref_primary_10_1016_j_sna_2024_115493 crossref_primary_10_5582_ddt_2023_01057 crossref_primary_10_1039_D2RA03558H crossref_primary_10_1002_nano_202400068 crossref_primary_10_1016_j_foodchem_2024_140688 crossref_primary_10_3390_bios12100906 crossref_primary_10_1149_1945_7111_ad8a8f crossref_primary_10_3390_c10040096 crossref_primary_10_1007_s10967_022_08441_8 crossref_primary_10_1016_j_chemosphere_2022_136331 crossref_primary_10_1016_j_jece_2023_109506 crossref_primary_10_1016_j_desal_2024_118452 crossref_primary_10_1016_j_jhazmat_2022_128605 crossref_primary_10_3390_su16156278 crossref_primary_10_1016_j_jece_2025_115634 crossref_primary_10_3390_molecules28052095 crossref_primary_10_1016_j_indcrop_2023_116491 crossref_primary_10_1149_2162_8777_ac8b36 crossref_primary_10_3389_fmars_2023_1169883 crossref_primary_10_1016_j_heliyon_2024_e40319 crossref_primary_10_14233_ajchem_2022_23650 crossref_primary_10_1016_j_molliq_2023_121903 crossref_primary_10_1016_j_photonics_2023_101191 crossref_primary_10_1007_s13201_023_02045_7 crossref_primary_10_1080_00986445_2022_2053680 |
Cites_doi | 10.1061/JSEDAI.0000430 10.1016/j.cej.2019.122375 10.1016/j.chemosphere.2019.03.189 10.1016/j.molliq.2019.111249 10.1016/j.watres.2017.09.019 10.1016/j.etap.2015.07.016 10.1016/j.chemosphere.2020.128433 10.1016/j.ecoenv.2021.111942 10.1021/ja02268a002 10.1016/j.jssc.2019.121029 10.1016/j.clay.2015.10.010 10.3390/nano6110209 10.1016/j.jhazmat.2006.01.054 10.1016/j.ecoenv.2018.09.032 10.3390/molecules23123127 10.1016/j.cej.2008.06.024 10.1016/j.scitotenv.2020.142843 10.1016/S0304-3894(02)00089-4 10.25518/1780-4507.16270 10.1080/09593332808618823 10.5004/dwt.2020.25897 10.1007/s11356-018-3563-0 10.5004/dwt.2020.26387 10.1016/j.psep.2017.03.003 10.1016/S1452-3981(23)13848-X 10.3390/nano11020436 10.1016/j.chemosphere.2019.124680 10.1016/j.jiec.2015.11.010 10.1016/j.jhazmat.2008.09.113 10.1016/j.ecoenv.2021.111977 10.1016/j.biotechadv.2013.01.003 10.1016/j.indcrop.2012.09.021 10.1016/j.chemosphere.2020.127353 10.1007/s10311-007-0106-1 10.2166/wst.2012.644 10.1080/01496395.2018.1527353 10.1016/j.jcis.2009.10.074 10.1016/S0032-9592(98)00112-5 10.3390/app8101922 10.1590/S0104-66322010000200012 10.1016/j.matchemphys.2016.09.058 10.1016/j.cej.2015.08.096 10.1016/j.jcis.2011.07.057 10.1016/j.jcis.2013.08.020 10.1016/j.etap.2017.03.002 10.1016/j.clay.2010.08.001 10.1016/j.jclepro.2020.123960 10.1016/j.carbpol.2014.03.044 10.1007/s11356-017-8700-7 10.1016/j.chemosphere.2018.09.120 10.1016/j.envpol.2019.02.031 10.1016/j.scitotenv.2018.01.271 10.1016/j.watres.2013.05.044 10.1016/j.ecoenv.2021.112149 10.1016/j.molliq.2014.09.027 10.1016/j.cej.2010.11.016 10.1007/s13205-020-02366-3 10.1080/15320383.2018.1561650 10.1016/j.biortech.2016.05.106 10.1002/cphc.201402726 10.1016/j.jcis.2011.02.059 10.1016/j.jcis.2018.09.002 10.1016/j.scitotenv.2020.142596 10.1016/j.colsurfa.2018.05.086 10.1002/jrs.830 10.1016/j.cej.2013.09.053 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.ecoenv.2021.112826 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_e595cf85c4ab43d182b9604a32b350f2 10_1016_j_ecoenv_2021_112826 S0147651321009386 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM 7X8 EFKBS |
ID | FETCH-LOGICAL-c517t-2def556b871d01c2b7e3d15bf75dd1b5fb5b384f714489ba7dd46e42237d8b733 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Thu Jul 10 18:14:53 EDT 2025 Tue Jul 01 04:00:29 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 Sat Mar 02 16:01:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Isotherm Levofloxacin Green synthesis Magnetite Moringa olifera Kinetics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-2def556b871d01c2b7e3d15bf75dd1b5fb5b384f714489ba7dd46e42237d8b733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651321009386 |
PQID | 2578770607 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e595cf85c4ab43d182b9604a32b350f2 proquest_miscellaneous_2578770607 crossref_citationtrail_10_1016_j_ecoenv_2021_112826 crossref_primary_10_1016_j_ecoenv_2021_112826 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2021_112826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Nekouei, Nekouei, Tyagi, Gupta (bib42) 2015; 201 Da’na, Sayari (bib18) 2011; 166 Zahra, Maqbool, Arshad, Badshah, Choi, Hur (bib70) 2019; 227 Azadi, Karimi-Jashni, Zerafat (bib9) 2018; 165 Chaturvedi, Kaur, Umar, Khan, Algarni, Kansal (bib14) 2020; 281 Ho, McKay (bib28) 1999; 34 Arshad, Zafar (bib6) 2020 Chang, Li, Yu, Munkhbayer, Kuo, Hung, Lin (bib13) 2009; 165 Schmidt, Masson, Cheng, Brchignac (bib53) 2015; 16 Su, Cui, Li, Gao, Shang (bib57) 2013; 47 Priya, Gupta, Pathania, Singha (bib45) 2014; 109 Kalantzi, Rico, Mylona, Pergantis, Tsapakis (bib31) 2021; 764 Yu, Wang, Shi, Zhu, Yan (bib67) 2017; 24 Biswas, Sen, Yeneneh, Meikap (bib11) 2019; 54 Turku, Sainio, Paatero (bib59) 2007; 5 Langmuir (bib35) 1916; 38 Zahra, Ali, Parveen, Kim, Khokhar, Baig, Choi, Arshad (bib69) 2019; 28 Mittal, Chisti, Banerjee (bib40) 2013; 31 Wahid, Baig, Bhatti, Manzoor, Ahmed, Arshad (bib62) 2021; 264 Du, Li, Xu, Shang, Gao, Yue (bib23) 2019; 533 Rezaei, Vione (bib47) 2018; 23 Hernández-Montoya, Elizalde-Gonzalez, Trejo-Vazquez (bib27) 2007; 28 Chen, Jin, Chen, Megharaj, Naidu (bib15) 2011; 363 Hatt, Germain, Judd (bib26) 2013; 67 Stan, Lung, Soran, Leostean, Popa, Stefan, Porav (bib56) 2017; 107 Pompeu, Larondelle, Rogez, Abbas, Pierna, Baeten (bib44) 2018; 22 Wu, Li, Hong, Yin, Tie (bib64) 2010; 50 Kumar, Vincent, Kirthika, Kumar (bib34) 2010; 27 Ali, Gupta, Khan, Asim (bib1) 2012; 7 Rizwan, Ali, Ali, Adrees, Arshad, Hussain, Rehman, Waris (bib49) 2019; 214 Al-Jabari, Sulaiman, Ali, Barakat, Mubarak, Khan (bib2) 2019; 291 Gupta, Carrott, Singh, Chaudhary, Kushwaha (bib25) 2016; 216 Saif, Tahir, Chen (bib51) 2016; 6 Yazdani, Seddigh (bib65) 2018; 184 Yoon, Lee, Park, Kim, Kim, Lee, Choi (bib66) 2014; 236 Mukhtar, Manzoor, Gul, Zafar, Jamil, Niazi, Ali, Park, Arshad (bib41) 2020; 258 Soni, Bajpai, Bharti, Mittal, Arora (bib55) 2020; 205 Aydin, Aydin, Ulvi, Kiliç (bib8) 2019; 26 Arshad, Nisar, Gul, Nawaz, Irum, Ahmad, Sadat, Mian, Ali, Rizwan, Alsahli, Alyemeni (bib5) 2021; 215 Rizwan, Ali, Rehman, Adrees, Arshad, Qayyum, Ali, Hussain, Chatha, Imran (bib50) 2019; 248 Riaz, Mahmood, Kamal, Shafqat, Rashid (bib48) 2017; 52 Dong, Wei, Yuan, Li (bib22) 2015; 118 Liu, Lu, Guo, Xi, Wang (bib37) 2018; 627 Waani, Irum, Gul, Yaqoob, Khalid, Ali, Manzoor, Noor, Ali, Rizwan, Arshad (bib61) 2021; 213 Huang, Lee, Grattieri, Yuan, Cai, Macazo, Minteer (bib29) 2020; 380 Demirezen, Yıldız, Yılmaz (bib20) 2019; 11 Dil, Ghaedi, Ghaedi, Asfaram, Goudarzi, Hajati, Gupta (bib21) 2016; 34 Mezenner, Bensmaili (bib39) 2009; 147 Cochrane, Lu, Gibb, Villaescusa (bib16) 2006; 137 Das, Marwal, Verma (bib19) 2014; 2 Zhang, Yu, Zeng, Huang, Dong, Huang, Yang, Wei, Hu, Zhang (bib71) 2016; 284 Saima, Fiaz, Manzoor, Zafar, Ahmed, Nawaz, Arshad (bib52) 2020; 10 Swann, Laskowski, McCall, Vander Kuy, Dishburger (bib58) 1983; vol. 85 Atkins (bib7) 1995 Altaf, Lin, Tadda, Zhu, Liu (bib3) 2021; 278 Kuang, Wang, Chen, Megharaj, Naidu (bib33) 2013; 410 Zhou, Zhu, Chen, Wan, Tao, Zhang, Xie (bib72) 2018; 554 Repo, Warchoł, Bhatnagar, Sillanpää (bib46) 2011; 358 Orwa, Mutua, Kindt, Jamnadass, Anthony (bib43) 2009 Iannone, Groppa, Zawoznik, Coral, van Raap, Benavides (bib30) 2021; 211 Burkina, Zlabek, Zamaratskaia (bib12) 2015; 40 Vongsak, Sithisarn, Mangmool, Thongpraditchote, Wongkrajang, Gritsanapan (bib60) 2013; 44 Zafar, Bashir, Nabi, Arshad (bib68) 2021; 764 Arora, Kumar, Soni, Mittal, Mittal, Singh (bib4) 2020; 195 Khan, Shah, Riaz, Butt, Khan, Khalifa, Gasmi, Latifee, Arshad, Al-Naghi, Ul-Hamid, Arshad, Bilal (bib32) 2021; 11 Shukla, Zhang, Dubey, Margrave, Shukla (bib54) 2002; 95 Gupta, Rastogi, Nayak (bib24) 2010; 342 Leng, Wei, Xiong, Xu, Li, Lv, Zhou (bib36) 2020; 238 Da’na, Taha, Afkar (bib17) 2018; 8 Weber, Morris (bib63) 1963; 89 Bielen, Šimatović, Kosić-Vukšić, Senta, Ahel, Babić, Udiković-Kolić (bib10) 2017; 126 Mazzetti, Thistlethwaite (bib38) 2002; 33 Yoon (10.1016/j.ecoenv.2021.112826_bib66) 2014; 236 Zhang (10.1016/j.ecoenv.2021.112826_bib71) 2016; 284 Zhou (10.1016/j.ecoenv.2021.112826_bib72) 2018; 554 Da’na (10.1016/j.ecoenv.2021.112826_bib17) 2018; 8 Arshad (10.1016/j.ecoenv.2021.112826_bib6) 2020 Soni (10.1016/j.ecoenv.2021.112826_bib55) 2020; 205 Da’na (10.1016/j.ecoenv.2021.112826_bib18) 2011; 166 Schmidt (10.1016/j.ecoenv.2021.112826_bib53) 2015; 16 Demirezen (10.1016/j.ecoenv.2021.112826_bib20) 2019; 11 Turku (10.1016/j.ecoenv.2021.112826_bib59) 2007; 5 Ho (10.1016/j.ecoenv.2021.112826_bib28) 1999; 34 Iannone (10.1016/j.ecoenv.2021.112826_bib30) 2021; 211 Aydin (10.1016/j.ecoenv.2021.112826_bib8) 2019; 26 Pompeu (10.1016/j.ecoenv.2021.112826_bib44) 2018; 22 Langmuir (10.1016/j.ecoenv.2021.112826_bib35) 1916; 38 Saima (10.1016/j.ecoenv.2021.112826_bib52) 2020; 10 Priya (10.1016/j.ecoenv.2021.112826_bib45) 2014; 109 Rizwan (10.1016/j.ecoenv.2021.112826_bib50) 2019; 248 Gupta (10.1016/j.ecoenv.2021.112826_bib25) 2016; 216 Nekouei (10.1016/j.ecoenv.2021.112826_bib42) 2015; 201 Stan (10.1016/j.ecoenv.2021.112826_bib56) 2017; 107 Hernández-Montoya (10.1016/j.ecoenv.2021.112826_bib27) 2007; 28 Leng (10.1016/j.ecoenv.2021.112826_bib36) 2020; 238 Al-Jabari (10.1016/j.ecoenv.2021.112826_bib2) 2019; 291 Altaf (10.1016/j.ecoenv.2021.112826_bib3) 2021; 278 Saif (10.1016/j.ecoenv.2021.112826_bib51) 2016; 6 Kalantzi (10.1016/j.ecoenv.2021.112826_bib31) 2021; 764 Biswas (10.1016/j.ecoenv.2021.112826_bib11) 2019; 54 Dil (10.1016/j.ecoenv.2021.112826_bib21) 2016; 34 Zafar (10.1016/j.ecoenv.2021.112826_bib68) 2021; 764 Arshad (10.1016/j.ecoenv.2021.112826_bib5) 2021; 215 Azadi (10.1016/j.ecoenv.2021.112826_bib9) 2018; 165 Shukla (10.1016/j.ecoenv.2021.112826_bib54) 2002; 95 Vongsak (10.1016/j.ecoenv.2021.112826_bib60) 2013; 44 Mukhtar (10.1016/j.ecoenv.2021.112826_bib41) 2020; 258 Das (10.1016/j.ecoenv.2021.112826_bib19) 2014; 2 Chaturvedi (10.1016/j.ecoenv.2021.112826_bib14) 2020; 281 Liu (10.1016/j.ecoenv.2021.112826_bib37) 2018; 627 Yazdani (10.1016/j.ecoenv.2021.112826_bib65) 2018; 184 Burkina (10.1016/j.ecoenv.2021.112826_bib12) 2015; 40 Orwa (10.1016/j.ecoenv.2021.112826_bib43) 2009 Chen (10.1016/j.ecoenv.2021.112826_bib15) 2011; 363 Du (10.1016/j.ecoenv.2021.112826_bib23) 2019; 533 Kumar (10.1016/j.ecoenv.2021.112826_bib34) 2010; 27 Repo (10.1016/j.ecoenv.2021.112826_bib46) 2011; 358 Mittal (10.1016/j.ecoenv.2021.112826_bib40) 2013; 31 Su (10.1016/j.ecoenv.2021.112826_bib57) 2013; 47 Wahid (10.1016/j.ecoenv.2021.112826_bib62) 2021; 264 Cochrane (10.1016/j.ecoenv.2021.112826_bib16) 2006; 137 Gupta (10.1016/j.ecoenv.2021.112826_bib24) 2010; 342 Riaz (10.1016/j.ecoenv.2021.112826_bib48) 2017; 52 Ali (10.1016/j.ecoenv.2021.112826_bib1) 2012; 7 Chang (10.1016/j.ecoenv.2021.112826_bib13) 2009; 165 Khan (10.1016/j.ecoenv.2021.112826_bib32) 2021; 11 Atkins (10.1016/j.ecoenv.2021.112826_bib7) 1995 Wu (10.1016/j.ecoenv.2021.112826_bib64) 2010; 50 Hatt (10.1016/j.ecoenv.2021.112826_bib26) 2013; 67 Yu (10.1016/j.ecoenv.2021.112826_bib67) 2017; 24 Rizwan (10.1016/j.ecoenv.2021.112826_bib49) 2019; 214 Rezaei (10.1016/j.ecoenv.2021.112826_bib47) 2018; 23 Huang (10.1016/j.ecoenv.2021.112826_bib29) 2020; 380 Zahra (10.1016/j.ecoenv.2021.112826_bib69) 2019; 28 Swann (10.1016/j.ecoenv.2021.112826_bib58) 1983; vol. 85 Kuang (10.1016/j.ecoenv.2021.112826_bib33) 2013; 410 Bielen (10.1016/j.ecoenv.2021.112826_bib10) 2017; 126 Dong (10.1016/j.ecoenv.2021.112826_bib22) 2015; 118 Mazzetti (10.1016/j.ecoenv.2021.112826_bib38) 2002; 33 Waani (10.1016/j.ecoenv.2021.112826_bib61) 2021; 213 Zahra (10.1016/j.ecoenv.2021.112826_bib70) 2019; 227 Arora (10.1016/j.ecoenv.2021.112826_bib4) 2020; 195 Mezenner (10.1016/j.ecoenv.2021.112826_bib39) 2009; 147 Weber (10.1016/j.ecoenv.2021.112826_bib63) 1963; 89 |
References_xml | – volume: 216 start-page: 1066 year: 2016 end-page: 1076 ident: bib25 article-title: Cellulose: a review as natural, modified and activated carbon adsorbent publication-title: Bioresour. Technol. – volume: 291 year: 2019 ident: bib2 article-title: Adsorption study of levofloxacin on reusable magnetic nanoparticles: kinetics and antibacterial activity publication-title: J. Mol. Liq. – volume: 26 start-page: 544 year: 2019 end-page: 558 ident: bib8 article-title: Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment publication-title: Environ. Sci. Pollut. Res. – volume: 38 start-page: 2221 year: 1916 end-page: 2295 ident: bib35 article-title: The constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 595 year: 2007 end-page: 607 ident: bib27 article-title: Screening of commercial sorbents for removal of fluoride in synthetic and groundwater publication-title: Environ. Technol. – volume: 236 start-page: 341 year: 2014 end-page: 347 ident: bib66 article-title: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles publication-title: Chem. Eng. J. – volume: 31 start-page: 346 year: 2013 end-page: 356 ident: bib40 article-title: Synthesis of metallic nanoparticles using plant extracts publication-title: Biotechnol. Adv. – volume: 16 start-page: 855 year: 2015 end-page: 865 ident: bib53 article-title: Physisorption and chemisorption on silver clusters publication-title: ChemPhysChem – volume: 107 start-page: 357 year: 2017 end-page: 372 ident: bib56 article-title: Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts publication-title: Process Saf. Environ. Prot. – start-page: 138 year: 2020 end-page: 154 ident: bib6 article-title: Antibiotics, AMRs, and ARGs: fate in the environment publication-title: Antibiotics and Antimicrobial Resistance Genes in the Environment – volume: 34 start-page: 451 year: 1999 end-page: 465 ident: bib28 article-title: Pseudo-second order model for sorption processes publication-title: Process Biochem. – start-page: 15 year: 2009 ident: bib43 article-title: Agroforestree Database: A Tree Reference and Selection Guide Version 4.0 – volume: 281 year: 2020 ident: bib14 article-title: Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron-based MOFs, MIL-100 (Fe) publication-title: J. Solid State Chem. – volume: vol. 85 start-page: 17 year: 1983 end-page: 28 ident: bib58 article-title: A rapid method for the estimation of the environmental parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility publication-title: Residue Reviews – volume: 166 start-page: 445 year: 2011 end-page: 453 ident: bib18 article-title: Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties publication-title: Chem. Eng. J. – volume: 238 year: 2020 ident: bib36 article-title: Use of microalgae-based technology for the removal of antibiotics from wastewater: a review publication-title: Chemosphere – volume: 764 year: 2021 ident: bib68 article-title: Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan publication-title: Sci. Total Environ. – volume: 211 year: 2021 ident: bib30 article-title: Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth publication-title: Ecotoxicol. Environ. Saf. – volume: 205 start-page: 386 year: 2020 end-page: 399 ident: bib55 article-title: Removal of crystal violet from aqueous solution using iron-based metal organic framework publication-title: Desalin. Water Treat. – volume: 5 start-page: 225 year: 2007 end-page: 228 ident: bib59 article-title: Thermodynamics of tetracycline adsorption on silica publication-title: Environ. Chem. Lett. – volume: 44 start-page: 566 year: 2013 end-page: 571 ident: bib60 article-title: Maximizing total phenolics, total flavonoids contents and antioxidant activity of publication-title: Ind. Crop. Prod. – volume: 22 start-page: 13 year: 2018 end-page: 28 ident: bib44 article-title: Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools publication-title: Biotechnol. Agron. Soc. Environ. – start-page: 1995 year: 1995 ident: bib7 publication-title: Physical Chemistry – volume: 258 year: 2020 ident: bib41 article-title: Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments publication-title: Chemosphere – volume: 278 year: 2021 ident: bib3 article-title: Modified magnetite adsorbent (Zr–La@ Fe publication-title: J. Clean. Prod. – volume: 24 start-page: 10685 year: 2017 end-page: 10694 ident: bib67 article-title: Enhanced levofloxacin removal from water using zirconium (IV) loaded corn bracts publication-title: Environ. Sci. Pollut. Res. – volume: 227 start-page: 17 year: 2019 end-page: 25 ident: bib70 article-title: Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO publication-title: Chemosphere – volume: 7 start-page: 1898 year: 2012 end-page: 1907 ident: bib1 article-title: Removal of arsenate from aqueous solution by an electro-coagulation method using Al-Fe electrodes publication-title: Int. J. Electrochem. Sci. – volume: 195 start-page: 341 year: 2020 end-page: 352 ident: bib4 article-title: Efficient removal of malachite green dye from aqueous solution using publication-title: Desalin. Water Treat. – volume: 2 start-page: 21 year: 2014 end-page: 24 ident: bib19 article-title: leaf extract mediated one step green synthesis and characterization of magnetite (Fe publication-title: Res. Rev. J. Pharm. Nanotechnol. – volume: 554 start-page: 237 year: 2018 end-page: 244 ident: bib72 article-title: Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly (vinyl alcohol)/sodium alginate hydrogel beads publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 284 start-page: 247 year: 2016 end-page: 259 ident: bib71 article-title: Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd publication-title: Chem. Eng. J. – volume: 363 start-page: 601 year: 2011 end-page: 607 ident: bib15 article-title: Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron publication-title: J. Colloid Interface Sci. – volume: 358 start-page: 261 year: 2011 end-page: 267 ident: bib46 article-title: Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials publication-title: J. Colloid Interface Sci. – volume: 11 year: 2019 ident: bib20 article-title: Amoxicillin degradation using green synthesized iron oxide nanoparticles: kinetics and mechanism analysis publication-title: Environ. Nanotechnol. Monit. Manag. – volume: 118 start-page: 301 year: 2015 end-page: 307 ident: bib22 article-title: Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): kinetics, equilibrium and mechanism publication-title: Appl. Clay Sci. – volume: 52 start-page: 14 year: 2017 end-page: 20 ident: bib48 article-title: Industrial release of fluoroquinolones (FQs) in the wastewater bodies with their associated ecological risk in Pakistan publication-title: Environ. Toxicol. Pharmacol. – volume: 47 start-page: 5018 year: 2013 end-page: 5026 ident: bib57 article-title: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles publication-title: Water Res. – volume: 248 start-page: 358 year: 2019 end-page: 367 ident: bib50 article-title: Alleviation of cadmium accumulation in maize ( publication-title: Environ. Pollut. – volume: 533 start-page: 692 year: 2019 end-page: 699 ident: bib23 article-title: Selective removal of phosphate by dual Zr and La hydroxide/cellulose-based bio-composites publication-title: J. Colloid Interface Sci. – volume: 67 start-page: 846 year: 2013 end-page: 853 ident: bib26 article-title: Granular activated carbon for removal of organic matter and turbidity from secondary wastewater publication-title: Water Sci. Technol. – volume: 137 start-page: 198 year: 2006 end-page: 206 ident: bib16 article-title: A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media publication-title: J. Hazard. Mater. – volume: 342 start-page: 533 year: 2010 end-page: 539 ident: bib24 article-title: Biosorption of nickel onto treated alga ( publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 184 year: 2019 end-page: 199 ident: bib69 article-title: Exposure–response of wheat cultivars to TiO publication-title: Soil Sediment Contam. – volume: 34 start-page: 186 year: 2016 end-page: 197 ident: bib21 article-title: Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry publication-title: J. Ind. Eng. Chem. – volume: 126 start-page: 79 year: 2017 end-page: 87 ident: bib10 article-title: Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries publication-title: Water Res. – volume: 184 start-page: 318 year: 2018 end-page: 323 ident: bib65 article-title: Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications publication-title: Mater. Chem. Phys. – volume: 264 year: 2021 ident: bib62 article-title: Growth responses and Rubisco activity influenced by antibiotics and organic amendments used for stress alleviation in publication-title: Chemosphere – volume: 89 start-page: 31 year: 1963 end-page: 60 ident: bib63 article-title: Kinetics of adsorption on carbon from solution publication-title: J. Sanit. Eng. Div. – volume: 380 year: 2020 ident: bib29 article-title: Modified biochar for phosphate adsorption in environmentally relevant conditions publication-title: Chem. Eng. J. – volume: 10 start-page: 378 year: 2020 ident: bib52 article-title: Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan publication-title: 3 Biotech – volume: 8 start-page: 1922 year: 2018 ident: bib17 article-title: Green synthesis of iron nanoparticles by publication-title: Appl. Sci. – volume: 213 year: 2021 ident: bib61 article-title: TiO publication-title: Ecotoxicol. Environ. Saf. – volume: 147 start-page: 87 year: 2009 end-page: 96 ident: bib39 article-title: Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste publication-title: Chem. Eng. J. – volume: 215 year: 2021 ident: bib5 article-title: Multi-element uptake and growth responses of Rice ( publication-title: Ecotoxicol. Environ. Saf. – volume: 23 start-page: 3127 year: 2018 ident: bib47 article-title: Effect of pH on zero valent iron performance in heterogeneous Fenton and fenton-like processes: a review publication-title: Molecules – volume: 11 start-page: 436 year: 2021 ident: bib32 article-title: Synthesis and characterization of Fe-TiO publication-title: Nanomaterials – volume: 6 start-page: 209 year: 2016 ident: bib51 article-title: Green synthesis of iron nanoparticles and their environmental applications and implications publication-title: Nanomaterials – volume: 165 start-page: 148 year: 2009 end-page: 155 ident: bib13 article-title: Sorptive removal of tetracycline from water by palygorskite publication-title: J. Hazard. Mater. – volume: 627 start-page: 1195 year: 2018 end-page: 1208 ident: bib37 article-title: Antibiotics in the aquatic environments: a review of lakes, China publication-title: Sci. Total Environ. – volume: 33 start-page: 104 year: 2002 end-page: 111 ident: bib38 article-title: Raman spectra and thermal transformations of ferrihydrite and schwertmannite publication-title: J. Raman Spectrosc. – volume: 109 start-page: 171 year: 2014 end-page: 179 ident: bib45 article-title: Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre publication-title: Carbohydr. Polym. – volume: 50 start-page: 204 year: 2010 end-page: 211 ident: bib64 article-title: Adsorption and intercalation of ciprofloxacin on montmorillonite publication-title: Appl. Clay Sci. – volume: 27 start-page: 339 year: 2010 end-page: 346 ident: bib34 article-title: Kinetics and equilibrium studies of Pb publication-title: Braz. J. Chem. Eng. – volume: 764 year: 2021 ident: bib31 article-title: Fish farming, metals and antibiotics in the eastern Mediterranean Sea: is there a threat to sediment wildlife? publication-title: Sci. Total Environ. – volume: 40 start-page: 430 year: 2015 end-page: 444 ident: bib12 article-title: Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish publication-title: Environ. Toxicol. Pharmacol. – volume: 95 start-page: 137 year: 2002 end-page: 152 ident: bib54 article-title: The role of sawdust in the removal of unwanted materials from water publication-title: J. Hazard. Mater. – volume: 54 start-page: 1106 year: 2019 end-page: 1124 ident: bib11 article-title: Synthesis and characterization of a novel Ca-alginate-biochar composite as efficient zinc (Zn publication-title: Sep. Sci. Technol. – volume: 201 start-page: 124 year: 2015 end-page: 133 ident: bib42 article-title: Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent publication-title: J. Mol. Liq. – volume: 165 start-page: 467 year: 2018 end-page: 475 ident: bib9 article-title: Green synthesis and optimization of nano-magnetite using publication-title: Ecotoxicol. Environ. Saf. – volume: 410 start-page: 67 year: 2013 end-page: 73 ident: bib33 article-title: Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles publication-title: J. Colloid Interface Sci. – volume: 214 start-page: 269 year: 2019 end-page: 277 ident: bib49 article-title: Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat publication-title: Chemosphere – volume: 89 start-page: 31 year: 1963 ident: 10.1016/j.ecoenv.2021.112826_bib63 article-title: Kinetics of adsorption on carbon from solution publication-title: J. Sanit. Eng. Div. doi: 10.1061/JSEDAI.0000430 – volume: 380 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib29 article-title: Modified biochar for phosphate adsorption in environmentally relevant conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122375 – volume: 227 start-page: 17 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib70 article-title: Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO2 nanoparticles publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.189 – volume: 291 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib2 article-title: Adsorption study of levofloxacin on reusable magnetic nanoparticles: kinetics and antibacterial activity publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111249 – volume: 2 start-page: 21 issue: 2 year: 2014 ident: 10.1016/j.ecoenv.2021.112826_bib19 article-title: Datura inoxia leaf extract mediated one step green synthesis and characterization of magnetite (Fe3O4) nanoparticles publication-title: Res. Rev. J. Pharm. Nanotechnol. – volume: 126 start-page: 79 year: 2017 ident: 10.1016/j.ecoenv.2021.112826_bib10 article-title: Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries publication-title: Water Res. doi: 10.1016/j.watres.2017.09.019 – volume: 40 start-page: 430 issue: 2 year: 2015 ident: 10.1016/j.ecoenv.2021.112826_bib12 article-title: Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2015.07.016 – volume: 264 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib62 article-title: Growth responses and Rubisco activity influenced by antibiotics and organic amendments used for stress alleviation in Lactuca sativa publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128433 – volume: 211 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib30 article-title: Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.111942 – volume: 11 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib20 article-title: Amoxicillin degradation using green synthesized iron oxide nanoparticles: kinetics and mechanism analysis publication-title: Environ. Nanotechnol. Monit. Manag. – volume: 38 start-page: 2221 issue: 11 year: 1916 ident: 10.1016/j.ecoenv.2021.112826_bib35 article-title: The constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02268a002 – volume: 281 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib14 article-title: Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron-based MOFs, MIL-100 (Fe) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.121029 – volume: 118 start-page: 301 year: 2015 ident: 10.1016/j.ecoenv.2021.112826_bib22 article-title: Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): kinetics, equilibrium and mechanism publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2015.10.010 – volume: 6 start-page: 209 issue: 11 year: 2016 ident: 10.1016/j.ecoenv.2021.112826_bib51 article-title: Green synthesis of iron nanoparticles and their environmental applications and implications publication-title: Nanomaterials doi: 10.3390/nano6110209 – volume: 137 start-page: 198 issue: 1 year: 2006 ident: 10.1016/j.ecoenv.2021.112826_bib16 article-title: A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.01.054 – volume: 165 start-page: 467 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib9 article-title: Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.09.032 – volume: 23 start-page: 3127 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib47 article-title: Effect of pH on zero valent iron performance in heterogeneous Fenton and fenton-like processes: a review publication-title: Molecules doi: 10.3390/molecules23123127 – volume: 147 start-page: 87 year: 2009 ident: 10.1016/j.ecoenv.2021.112826_bib39 article-title: Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.024 – volume: 764 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib31 article-title: Fish farming, metals and antibiotics in the eastern Mediterranean Sea: is there a threat to sediment wildlife? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142843 – volume: 95 start-page: 137 issue: 1–2 year: 2002 ident: 10.1016/j.ecoenv.2021.112826_bib54 article-title: The role of sawdust in the removal of unwanted materials from water publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(02)00089-4 – volume: 22 start-page: 13 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib44 article-title: Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools publication-title: Biotechnol. Agron. Soc. Environ. doi: 10.25518/1780-4507.16270 – volume: 28 start-page: 595 issue: 6 year: 2007 ident: 10.1016/j.ecoenv.2021.112826_bib27 article-title: Screening of commercial sorbents for removal of fluoride in synthetic and groundwater publication-title: Environ. Technol. doi: 10.1080/09593332808618823 – volume: 195 start-page: 341 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib4 article-title: Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2020.25897 – volume: vol. 85 start-page: 17 year: 1983 ident: 10.1016/j.ecoenv.2021.112826_bib58 article-title: A rapid method for the estimation of the environmental parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility – volume: 26 start-page: 544 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib8 article-title: Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3563-0 – volume: 205 start-page: 386 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib55 article-title: Removal of crystal violet from aqueous solution using iron-based metal organic framework publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2020.26387 – volume: 107 start-page: 357 year: 2017 ident: 10.1016/j.ecoenv.2021.112826_bib56 article-title: Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2017.03.003 – volume: 7 start-page: 1898 issue: 2012 year: 2012 ident: 10.1016/j.ecoenv.2021.112826_bib1 article-title: Removal of arsenate from aqueous solution by an electro-coagulation method using Al-Fe electrodes publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)13848-X – volume: 11 start-page: 436 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib32 article-title: Synthesis and characterization of Fe-TiO2 nanomaterial: performance evaluation for RB5 decolorization and In vitro antibacterial studies publication-title: Nanomaterials doi: 10.3390/nano11020436 – volume: 238 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib36 article-title: Use of microalgae-based technology for the removal of antibiotics from wastewater: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124680 – volume: 34 start-page: 186 year: 2016 ident: 10.1016/j.ecoenv.2021.112826_bib21 article-title: Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.11.010 – volume: 165 start-page: 148 issue: 1–3 year: 2009 ident: 10.1016/j.ecoenv.2021.112826_bib13 article-title: Sorptive removal of tetracycline from water by palygorskite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.09.113 – volume: 213 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib61 article-title: TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in rice (Oryza sativa L.), soil enzymatic activities and plant growth publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.111977 – volume: 31 start-page: 346 issue: 2 year: 2013 ident: 10.1016/j.ecoenv.2021.112826_bib40 article-title: Synthesis of metallic nanoparticles using plant extracts publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.01.003 – volume: 44 start-page: 566 year: 2013 ident: 10.1016/j.ecoenv.2021.112826_bib60 article-title: Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2012.09.021 – volume: 258 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib41 article-title: Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127353 – volume: 5 start-page: 225 issue: 4 year: 2007 ident: 10.1016/j.ecoenv.2021.112826_bib59 article-title: Thermodynamics of tetracycline adsorption on silica publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-007-0106-1 – volume: 67 start-page: 846 issue: 4 year: 2013 ident: 10.1016/j.ecoenv.2021.112826_bib26 article-title: Granular activated carbon for removal of organic matter and turbidity from secondary wastewater publication-title: Water Sci. Technol. doi: 10.2166/wst.2012.644 – start-page: 1995 year: 1995 ident: 10.1016/j.ecoenv.2021.112826_bib7 – volume: 54 start-page: 1106 issue: 7 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib11 article-title: Synthesis and characterization of a novel Ca-alginate-biochar composite as efficient zinc (Zn2+) adsorbent: thermodynamics, process design, mass transfer and isotherm modeling publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2018.1527353 – volume: 342 start-page: 533 year: 2010 ident: 10.1016/j.ecoenv.2021.112826_bib24 article-title: Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.10.074 – volume: 34 start-page: 451 year: 1999 ident: 10.1016/j.ecoenv.2021.112826_bib28 article-title: Pseudo-second order model for sorption processes publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 – volume: 8 start-page: 1922 issue: 10 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib17 article-title: Green synthesis of iron nanoparticles by Acacia nilotica pods extract and its catalytic, adsorption, and antibacterial activities publication-title: Appl. Sci. doi: 10.3390/app8101922 – volume: 27 start-page: 339 issue: 2 year: 2010 ident: 10.1016/j.ecoenv.2021.112826_bib34 article-title: Kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silver sol-coated activated carbon publication-title: Braz. J. Chem. Eng. doi: 10.1590/S0104-66322010000200012 – volume: 184 start-page: 318 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib65 article-title: Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2016.09.058 – volume: 284 start-page: 247 year: 2016 ident: 10.1016/j.ecoenv.2021.112826_bib71 article-title: Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.096 – volume: 363 start-page: 601 issue: 2 year: 2011 ident: 10.1016/j.ecoenv.2021.112826_bib15 article-title: Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.07.057 – volume: 410 start-page: 67 year: 2013 ident: 10.1016/j.ecoenv.2021.112826_bib33 article-title: Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.08.020 – volume: 52 start-page: 14 year: 2017 ident: 10.1016/j.ecoenv.2021.112826_bib48 article-title: Industrial release of fluoroquinolones (FQs) in the wastewater bodies with their associated ecological risk in Pakistan publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2017.03.002 – volume: 50 start-page: 204 issue: 2 year: 2010 ident: 10.1016/j.ecoenv.2021.112826_bib64 article-title: Adsorption and intercalation of ciprofloxacin on montmorillonite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2010.08.001 – volume: 278 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib3 article-title: Modified magnetite adsorbent (Zr–La@ Fe3O4) for nitrilotrismethylenephosphonate (NTMP) removal and recovery from wastewater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123960 – volume: 109 start-page: 171 year: 2014 ident: 10.1016/j.ecoenv.2021.112826_bib45 article-title: Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.03.044 – volume: 24 start-page: 10685 issue: 11 year: 2017 ident: 10.1016/j.ecoenv.2021.112826_bib67 article-title: Enhanced levofloxacin removal from water using zirconium (IV) loaded corn bracts publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8700-7 – volume: 214 start-page: 269 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib49 article-title: Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.120 – volume: 248 start-page: 358 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib50 article-title: Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.031 – volume: 627 start-page: 1195 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib37 article-title: Antibiotics in the aquatic environments: a review of lakes, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.271 – volume: 47 start-page: 5018 issue: 14 year: 2013 ident: 10.1016/j.ecoenv.2021.112826_bib57 article-title: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2013.05.044 – volume: 215 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib5 article-title: Multi-element uptake and growth responses of Rice (Oryza sativa L.) to TiO2 nanoparticles applied in different textured soils publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112149 – volume: 201 start-page: 124 year: 2015 ident: 10.1016/j.ecoenv.2021.112826_bib42 article-title: Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2014.09.027 – start-page: 15 year: 2009 ident: 10.1016/j.ecoenv.2021.112826_bib43 – volume: 166 start-page: 445 issue: 1 year: 2011 ident: 10.1016/j.ecoenv.2021.112826_bib18 article-title: Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.016 – start-page: 138 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib6 article-title: Antibiotics, AMRs, and ARGs: fate in the environment – volume: 10 start-page: 378 year: 2020 ident: 10.1016/j.ecoenv.2021.112826_bib52 article-title: Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan publication-title: 3 Biotech doi: 10.1007/s13205-020-02366-3 – volume: 28 start-page: 184 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib69 article-title: Exposure–response of wheat cultivars to TiO2 nanoparticles in contrasted soils publication-title: Soil Sediment Contam. doi: 10.1080/15320383.2018.1561650 – volume: 216 start-page: 1066 year: 2016 ident: 10.1016/j.ecoenv.2021.112826_bib25 article-title: Cellulose: a review as natural, modified and activated carbon adsorbent publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.106 – volume: 16 start-page: 855 year: 2015 ident: 10.1016/j.ecoenv.2021.112826_bib53 article-title: Physisorption and chemisorption on silver clusters publication-title: ChemPhysChem doi: 10.1002/cphc.201402726 – volume: 358 start-page: 261 year: 2011 ident: 10.1016/j.ecoenv.2021.112826_bib46 article-title: Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.02.059 – volume: 533 start-page: 692 year: 2019 ident: 10.1016/j.ecoenv.2021.112826_bib23 article-title: Selective removal of phosphate by dual Zr and La hydroxide/cellulose-based bio-composites publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.09.002 – volume: 764 year: 2021 ident: 10.1016/j.ecoenv.2021.112826_bib68 article-title: Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142596 – volume: 554 start-page: 237 year: 2018 ident: 10.1016/j.ecoenv.2021.112826_bib72 article-title: Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly (vinyl alcohol)/sodium alginate hydrogel beads publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.05.086 – volume: 33 start-page: 104 year: 2002 ident: 10.1016/j.ecoenv.2021.112826_bib38 article-title: Raman spectra and thermal transformations of ferrihydrite and schwertmannite publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.830 – volume: 236 start-page: 341 year: 2014 ident: 10.1016/j.ecoenv.2021.112826_bib66 article-title: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.053 |
SSID | ssj0003055 |
Score | 2.571074 |
Snippet | Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112826 |
SubjectTerms | Green synthesis Isotherm Kinetics Levofloxacin Magnetite Moringa olifera |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2yIAgi66o4fnEFH_Sh2DZJ0_qmssOirIK4sG8ln8PITCrO7OL4c_yl3pu0y-rLvPha2iTk3ibntOeeMPZCi651vgyFMlogQTFloW1li1L7SuvKcOWIKJ5-ak7OxIdzeX7tqC_ShGV74Dxxr73spA2ttEIbwR3CYUN-IprXhssypNUX97yJTI1rMPlYZfGiKhpZ8aloLim7kNf5eIncsK6ogqYlY4Vrm1Ly7v9rb_pnlU5bz_yQ3RkxI7zNY73Lbvh4xG4eJ7_p3RG7nT-9Qa4ousd-f_HrARMIhgArfzmE1fBT22UEKiUBjV0g24cp58DsYEHiG9jsIqLBzfKXd7DWi0j1Zx5ezj3_LF5B1BH59SijA5LLL-A0qfc0DCsSyOg38HFJT9kN6OgA4WgqmoC1p_Li5QY7Hy1Q7rOz-fHX9yfFeBRDYWWltkXtfJCyMUivXFnZ2iiPsZAmKOlcZWQw0vBWBIX8rO2MVs6JxgvEHsq1RnH-gB3EIfqHDJoSY2drjS12gqvQet7IziG07IIQVs4Yn2LR29GnnI7LWPWTIO1bnyPYUwT7HMEZK66e-p59Ovbc_47CfHUvuWynC5h7_TiZ_b7cmzE1JUk_ApYMRLCp5Z7un0851eP7TD9pdKTo92kJJUsj9eh_DPExu0XdkgCnkk_YwfbHhX-KMGprnqU35g_TWRwU priority: 102 providerName: Directory of Open Access Journals |
Title | Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis |
URI | https://dx.doi.org/10.1016/j.ecoenv.2021.112826 https://www.proquest.com/docview/2578770607 https://doaj.org/article/e595cf85c4ab43d182b9604a32b350f2 |
Volume | 226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiQkVEEBsXysjMQBDmGT2I4TbqXqaqFqkRCVeov8uQradarutmI59Mf0lzLjJIVyqcQxlmMnmcl4nvPmhZC3ileldalPpFYcAIpOE2Uyk6TKZUplmkmLQPHouJid8C-n4nSL7A-1MEir7GN_F9NjtO5bJv3TnJw1zQRpSbIQGRahACwvUXabQwv49IerPzQPVLTqaIwywd5D-VzkeAHCc-ESUGKeYS1NiRILfy1PUcX_1ir1T7yOi9D0Ednps0e6113gY7Llwi65fxCVpze75GG3CUe72qIn5PqbW7bgSrT1dOEuW79ofyrTBIpFJVTBFID76eB9VG_oHGk4dLUJkBeuml_O0qWaB6xEc_Td1LGv_D0NKgDS7gl1FInzc3oUeXyKtgukyqiP9LDBs8yKqmApJKaxfIIuHRYaNyuYvBdDeUpOpgff92dJ_1OGxIhMrpPcOi9EoQFo2TQzuZaO2UxoL4W1mRZeC81K7iUgtbLSSlrLC8chC5G21JKxZ2Q7tME9J7RIFctNrmDEijPpS8cKUVlIMivPuREjwgZb1KZXLMcfZyzqgZr2o-4sWKMF686CI5LcnHXWKXbc0f8TmvmmL-ptx4b2fF73D7N2ohLGl8JwpTncb5lrVLWB69dMpD4fETk4SX3LfWGo5o7p3ww-VcObjZ9rVEDr1zGYoriRfPHfo78kD_AI-TeZeEW21-cX7jVkUWs9jq_JmNzb-3w4Ox7HvYjfPTcf9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIJISgglqeROMAhbBLbccINqq4W2i0SaqXeLD9XQbtO1V0qlgM_hl_KTB6FcqnENXHsJDMez5d885mQV5pXpfNpSKTRHACKSRNtM5uk2mdaZ4ZJh0BxdlhMj_mnE3GyRXaHWhikVfaxv4vpbbTuj4z7tzk-resx0pJkITIsQgFYXhbXyHUO0xe3MXj78w_PAyWtOh6jTLD5UD_XkrwA4vl4DjAxz7CYpkSNhb_Wp1bG_9Iy9U_AblehyV1yp08f6fvuDu-RLR93yI29Vnp6s0Nud1_haFdcdJ_8-uKXDfgSbQJd-PMmLJrv2taRYlUJ1TAEAH86uB81GzpHHg5dbSIkhqv6h3d0qecRS9E8fT3x7DN_Q6OOALV7Rh1F5vyczloin6bNArky-h3dr_Equ6I6OgqZaVs_QZceK43rFQzeq6E8IMeTvaPdadLvypBYkcl1kjsfhCgMIC2XZjY30jOXCROkcC4zIhhhWMmDBKhWVkZL53jhOaQh0pVGMvaQbMcm-keEFqlmuc019FhxJkPpWSEqB1lmFTi3YkTYYAtle8ly3DljoQZu2lfVWVChBVVnwRFJLq467SQ7rmj_Ac180RYFt9sDzdlc9S9TeVEJG0phuTYcnrfMDcrawP0bJtKQj4gcnERd8l_oqr5i-JeDTymY2vi_Rke0vmqjKaobycf_3fsLcnN6NDtQBx8P95-QW3gGyTiZeEq212ff_DNIqdbmeTtlfgPYKSCP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+levofloxacin+from+aqueous+solution+by+green+synthesized+magnetite+%28Fe3O4%29+nanoparticles+using+Moringa+olifera%3A+Kinetics+and+reaction+mechanism+analysis&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Altaf%2C+Sikandar&rft.au=Zafar%2C+Rabeea&rft.au=Zaman%2C+Waqas+Qamar&rft.au=Ahmad%2C+Shakil&rft.date=2021-12-15&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=226&rft_id=info:doi/10.1016%2Fj.ecoenv.2021.112826&rft.externalDocID=S0147651321009386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |