Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals

This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-pl...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 12064 - 14
Main Authors Saeedinia, Samaneh Alsadat, Jahed-Motlagh, Mohammad Reza, Tafakhori, Abbas, Kasabov, Nikola
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-90029-5

Cover

Loading…
Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.
AbstractList This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.
Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.
This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.
ArticleNumber 12064
Author Saeedinia, Samaneh Alsadat
Jahed-Motlagh, Mohammad Reza
Tafakhori, Abbas
Kasabov, Nikola
Author_xml – sequence: 1
  givenname: Samaneh Alsadat
  surname: Saeedinia
  fullname: Saeedinia, Samaneh Alsadat
  organization: Iran University of Science and Technology
– sequence: 2
  givenname: Mohammad Reza
  surname: Jahed-Motlagh
  fullname: Jahed-Motlagh, Mohammad Reza
  email: jahedmr@iust.ac.ir
  organization: Iran University of Science and Technology
– sequence: 3
  givenname: Abbas
  surname: Tafakhori
  fullname: Tafakhori, Abbas
  organization: Iranian Center of Neurological Research, Tehran University of Medical Sciences
– sequence: 4
  givenname: Nikola
  surname: Kasabov
  fullname: Kasabov, Nikola
  email: nkasabov@aut.ac.nz
  organization: School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, George Moore Chair of Data Analytics, University of Ulster
BookMark eNp9kk1v1DAQhiNURD_oH-AUiQuHBvyZ2BckVLZlpSIkBGdr1nZSbxN7sZOi8hv40TibImgP9WUsz_s-Mx7NcXHgg7dF8QqjtxhR8S4xzKWoEMGVRIjIij8rjghivCKUkIP_7ofFaUpblA8nkmH5ojikLDM440fF7482uc6XoS0_f12XaYyTHqdoTZl27sb5rvR2itDnMP4M8SaV4E3ZW4h-TkLfhejG6yGVbYjlzsYUPPTuVwYMwdi-z6qz7IH-Lrl0tnfvMt7p0YV92dXqspxbgD69LJ63OdjT-3hSfL9YfTv_VF19uVyff7iqNMfNWJFa1lhIbjUm0hiOiaFIa2CiZow2mIqmbawAbGqJEQNMTbPRxLSYt7YFSU-K9cI1AbZqF90A8U4FcGr_EGKnII5O91YBaZEGSs2GACNsI4FmlGg5RTWu9cx6v7B202awRls_5nE9gD7MeHetunCrBBZNXc-AN_eAGH5MNo1qcEnnyYG3YUqKcCo5qZuaZenrR9JtmOI8uVklMo8gkVViUekYUoq2VdqNMI8713e9wkjNG6SWDVJ5g9R-gxTPVvLI-vcfT5roYkpZ7Dsb_3X1hOsPDU3bEA
CitedBy_id crossref_primary_10_1038_s41467_024_47495_y
crossref_primary_10_1109_TFUZZ_2023_3292802
crossref_primary_10_1016_j_cmpb_2023_107927
crossref_primary_10_1016_j_neunet_2024_106171
crossref_primary_10_3390_bdcc5040067
crossref_primary_10_3390_ijms24021554
crossref_primary_10_1109_ACCESS_2024_3360491
crossref_primary_10_1007_s13534_024_00405_z
crossref_primary_10_1016_j_bspc_2025_107610
crossref_primary_10_15406_mojabb_2024_08_00208
crossref_primary_10_1155_2022_6299645
crossref_primary_10_1038_s41598_024_60996_6
crossref_primary_10_1109_TSMC_2024_3517620
crossref_primary_10_1016_j_neunet_2021_09_013
crossref_primary_10_1155_2022_4443277
crossref_primary_10_1371_journal_pcbi_1012716
crossref_primary_10_3390_brainsci13091316
Cites_doi 10.1016/j.eplepsyres.2014.12.003
10.1007/s00371-015-1183-y
10.1038/s41386-019-0483-8
10.1038/s41598-021-81805-4
10.1007/s11042-019-07905-6
10.1016/j.neunet.2019.08.029
10.1016/j.neunet.2014.01.006
10.1007/s00221-018-5200-z
10.1109/TNN.2004.832719
10.3233/THC-174739
10.1016/j.clinph.2011.11.007
10.1016/j.resuscitation.2020.02.006
10.1016/j.neunet.2015.03.009
10.1016/S1388-2457(01)00714-3
10.1097/00004691-200604000-00003
10.1080/21646821.2016.1245568
10.1109/TNSRE.2018.2872924
10.1109/TCDS.2016.2636291
10.1109/TCDS.2018.2826840
10.1016/j.neunet.2012.11.014
10.1016/j.neunet.2019.07.021
10.1109/TNNLS.2018.2796023
10.1109/ISCAS51556.2021.9401560
10.1038/s41598-019-42863-x
10.1155/2011/156869
10.1088/1741-2552/aafabc
10.1007/978-3-662-57715-8
10.1007/978-1-4471-0417-9
10.1371/journal.pone.0206107
10.1155/2007/83416
10.1038/s41598-018-27169-8
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-90029-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_a2f0ca33db2a424b9a3bc28f530616c9
PMC8187669
10_1038_s41598_021_90029_5
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-26961895ec129dd512d30cca48644371387f7e8a1d69104a13d7bc2df15fefa93
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:06 EDT 2025
Thu Aug 21 18:14:33 EDT 2025
Fri Sep 05 08:23:29 EDT 2025
Wed Aug 13 08:18:40 EDT 2025
Tue Jul 01 03:48:37 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Fri Feb 21 02:39:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-26961895ec129dd512d30cca48644371387f7e8a1d69104a13d7bc2df15fefa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-021-90029-5
PMID 34103545
PQID 2538876208
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a2f0ca33db2a424b9a3bc28f530616c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187669
proquest_miscellaneous_2539526764
proquest_journals_2538876208
crossref_citationtrail_10_1038_s41598_021_90029_5
crossref_primary_10_1038_s41598_021_90029_5
springer_journals_10_1038_s41598_021_90029_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Capecci, Kasabov, Wang (CR3) 2015; 68
Lu, Yang, Worrell, He (CR30) 2012; 123
CR19
Das (CR20) 2019; 78
CR18
CR17
Kasabov (CR15) 2014; 52
Lan, Sourina, Wang, Liu (CR8) 2016; 32
CR34
CR33
Chai (CR2) 2018; 26
CR32
CR31
Vecchio (CR25) 2018; 236
Bénar, Gotman (CR12) 2002; 113
Izhikevich (CR16) 2004; 15
Kasabov, Dhoble, Nuntalid, Indiveri (CR11) 2013; 41
Goldstein-Piekarski, Holt-Gosselin, O’Hora, Williams (CR14) 2020; 45
Assenza (CR4) 2015; 110
(CR29) 2006; 23
Lan, Sourina, Wang, Scherer, Müller-Putz (CR7) 2018; 11
CR5
Lim, Sourina, Wang (CR6) 2018; 26
Kasabov, Zhou, Doborjeh, Doborjeh, Yang (CR9) 2016; 9
CR27
CR26
Galaris, Siettos (CR10) 2019; 2019
CR24
Keijzer, Hoedemaekers (CR1) 2020; 149
CR21
Doborjeh (CR23) 2019; 119
Kuratani (CR28) 2016; 56
Kumarasinghe, Kasabov, Taylor (CR13) 2021; 11
Kumarasinghe, Kasabov, Taylor (CR22) 2020; 121
90029_CR18
C Bénar (90029_CR12) 2002; 113
90029_CR17
X Chai (90029_CR2) 2018; 26
90029_CR19
N Kasabov (90029_CR9) 2016; 9
90029_CR32
G Assenza (90029_CR4) 2015; 110
90029_CR31
90029_CR34
90029_CR33
BB Das (90029_CR20) 2019; 78
Z Lan (90029_CR8) 2016; 32
W Lim (90029_CR6) 2018; 26
N Kasabov (90029_CR11) 2013; 41
J Kuratani (90029_CR28) 2016; 56
Z Lan (90029_CR7) 2018; 11
AN Goldstein-Piekarski (90029_CR14) 2020; 45
K Kumarasinghe (90029_CR22) 2020; 121
F Vecchio (90029_CR25) 2018; 236
NK Kasabov (90029_CR15) 2014; 52
Society, A. C. N (90029_CR29) 2006; 23
90029_CR5
M Doborjeh (90029_CR23) 2019; 119
E Capecci (90029_CR3) 2015; 68
90029_CR24
E Galaris (90029_CR10) 2019; 2019
90029_CR27
90029_CR26
90029_CR21
K Kumarasinghe (90029_CR13) 2021; 11
Y Lu (90029_CR30) 2012; 123
H Keijzer (90029_CR1) 2020; 149
EM Izhikevich (90029_CR16) 2004; 15
References_xml – volume: 110
  start-page: 221
  year: 2015
  end-page: 227
  ident: CR4
  article-title: Hyperventilation induces sympathetic overactivation in mesial temporal epilepsy
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2014.12.003
– volume: 32
  start-page: 347
  year: 2016
  end-page: 358
  ident: CR8
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1183-y
– volume: 45
  start-page: 192
  year: 2020
  end-page: 204
  ident: CR14
  article-title: Integrating sleep, neuroimaging, and computational approaches for precision psychiatry
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-019-0483-8
– ident: CR18
– volume: 11
  start-page: 2486
  year: 2021
  ident: CR13
  article-title: Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81805-4
– volume: 78
  start-page: 28157
  year: 2019
  end-page: 28177
  ident: CR20
  article-title: A spatio-temporal model for EEG-based person identification
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-07905-6
– volume: 121
  start-page: 169
  year: 2020
  end-page: 185
  ident: CR22
  article-title: Deep learning and deep knowledge representation in spiking neural networks for brain-computer interfaces
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.029
– volume: 52
  start-page: 62
  year: 2014
  end-page: 76
  ident: CR15
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.006
– ident: CR33
– volume: 236
  start-page: 1117
  year: 2018
  end-page: 1127
  ident: CR25
  article-title: Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: An EEG graph theoretical analysis
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-018-5200-z
– volume: 15
  start-page: 1063
  year: 2004
  end-page: 1070
  ident: CR16
  article-title: Which model to use for cortical spiking neurons?
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.832719
– volume: 26
  start-page: 327
  year: 2018
  end-page: 335
  ident: CR2
  article-title: Multi-subject subspace alignment for non-stationary EEG-based emotion recognition
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174739
– ident: CR27
– volume: 123
  start-page: 1275
  year: 2012
  end-page: 1283
  ident: CR30
  article-title: Seizure source imaging by means of FINE spatio-temporal dipole localization and directed transfer function in partial epilepsy patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.11.007
– ident: CR21
– volume: 149
  start-page: 240
  year: 2020
  end-page: 242
  ident: CR1
  article-title: Timing is everything: Combining EEG and MRI to predict neurological recovery after cardiac arrest
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2020.02.006
– ident: CR19
– volume: 68
  start-page: 62
  year: 2015
  end-page: 77
  ident: CR3
  article-title: Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.03.009
– volume: 113
  start-page: 48
  year: 2002
  end-page: 56
  ident: CR12
  article-title: Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(01)00714-3
– volume: 23
  start-page: 92
  year: 2006
  ident: CR29
  article-title: Guideline 2: Minimum technical standards for pediatric electoencephalography
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200604000-00003
– ident: CR17
– ident: CR31
– volume: 56
  start-page: 266
  year: 2016
  end-page: 275
  ident: CR28
  article-title: American Clinical Neurophysiology Society guideline 5: Minimum technical standards for pediatric electroencephalography
  publication-title: Neurodiagn. J.
  doi: 10.1080/21646821.2016.1245568
– ident: CR32
– ident: CR34
– volume: 2019
  start-page: 128
  year: 2019
  ident: CR10
  article-title: Modelling and analysis of functional connectivity in EEG source level in children with epilepsy
  publication-title: Numer. Comput. Theory Algorithms NUMTA
– ident: CR5
– volume: 26
  start-page: 2106
  year: 2018
  end-page: 2114
  ident: CR6
  article-title: STEW: simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2872924
– volume: 9
  start-page: 293
  year: 2016
  end-page: 303
  ident: CR9
  article-title: New algorithms for encoding, learning and classification of fMRI data in a spiking neural network architecture: A case on modeling and understanding of dynamic cognitive processes
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2016.2636291
– ident: CR26
– volume: 11
  start-page: 85
  year: 2018
  end-page: 94
  ident: CR7
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– volume: 41
  start-page: 188
  year: 2013
  end-page: 201
  ident: CR11
  article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.11.014
– ident: CR24
– volume: 119
  start-page: 162
  year: 2019
  end-page: 177
  ident: CR23
  article-title: Personalised modelling with spiking neural networks integrating temporal and static information
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.07.021
– volume: 9
  start-page: 293
  year: 2016
  ident: 90029_CR9
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2016.2636291
– volume: 45
  start-page: 192
  year: 2020
  ident: 90029_CR14
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-019-0483-8
– ident: 90029_CR18
  doi: 10.1109/TNNLS.2018.2796023
– ident: 90029_CR33
  doi: 10.1109/ISCAS51556.2021.9401560
– ident: 90029_CR17
  doi: 10.1038/s41598-019-42863-x
– volume: 56
  start-page: 266
  year: 2016
  ident: 90029_CR28
  publication-title: Neurodiagn. J.
  doi: 10.1080/21646821.2016.1245568
– volume: 41
  start-page: 188
  year: 2013
  ident: 90029_CR11
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.11.014
– volume: 113
  start-page: 48
  year: 2002
  ident: 90029_CR12
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(01)00714-3
– volume: 11
  start-page: 2486
  year: 2021
  ident: 90029_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81805-4
– volume: 149
  start-page: 240
  year: 2020
  ident: 90029_CR1
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2020.02.006
– ident: 90029_CR27
  doi: 10.1155/2011/156869
– volume: 121
  start-page: 169
  year: 2020
  ident: 90029_CR22
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.029
– volume: 23
  start-page: 92
  year: 2006
  ident: 90029_CR29
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200604000-00003
– ident: 90029_CR19
  doi: 10.1088/1741-2552/aafabc
– volume: 26
  start-page: 2106
  year: 2018
  ident: 90029_CR6
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2872924
– ident: 90029_CR21
  doi: 10.1007/978-3-662-57715-8
– volume: 26
  start-page: 327
  year: 2018
  ident: 90029_CR2
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174739
– volume: 11
  start-page: 85
  year: 2018
  ident: 90029_CR7
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– volume: 2019
  start-page: 128
  year: 2019
  ident: 90029_CR10
  publication-title: Numer. Comput. Theory Algorithms NUMTA
– volume: 15
  start-page: 1063
  year: 2004
  ident: 90029_CR16
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.832719
– volume: 68
  start-page: 62
  year: 2015
  ident: 90029_CR3
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.03.009
– volume: 110
  start-page: 221
  year: 2015
  ident: 90029_CR4
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2014.12.003
– volume: 52
  start-page: 62
  year: 2014
  ident: 90029_CR15
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.006
– ident: 90029_CR31
  doi: 10.1007/978-1-4471-0417-9
– ident: 90029_CR24
  doi: 10.1371/journal.pone.0206107
– volume: 119
  start-page: 162
  year: 2019
  ident: 90029_CR23
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.07.021
– ident: 90029_CR32
  doi: 10.1155/2007/83416
– ident: 90029_CR34
  doi: 10.1038/s41598-018-27169-8
– volume: 236
  start-page: 1117
  year: 2018
  ident: 90029_CR25
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-018-5200-z
– ident: 90029_CR5
– volume: 32
  start-page: 347
  year: 2016
  ident: 90029_CR8
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1183-y
– volume: 78
  start-page: 28157
  year: 2019
  ident: 90029_CR20
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-07905-6
– volume: 123
  start-page: 1275
  year: 2012
  ident: 90029_CR30
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.11.007
– ident: 90029_CR26
SSID ssj0000529419
Score 2.4215887
Snippet This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better...
Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12064
SubjectTerms 631/114/116
631/114/1564
631/114/2397
631/114/2401
Algorithms
EEG
Epilepsy
Firing pattern
Humanities and Social Sciences
Interfaces
Learning algorithms
Magnetic resonance imaging
multidisciplinary
Neural networks
Predictions
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcIFGQkbmzU2PEjPvLYUpDggKjUm-XYcbtSm11ttgf4Df3RnbGzS1MJuHDJIfF7xpnP9vgbQt4Yr6Jwvi0jh4fwrSlbXcWSuai9FJ6rNrF9flNHx-LLiTy5EeoLfcIyPXAeuAPHY-VdXYeWO8FFa1zdet5ECViXKZ-u7oHNu7GYyqze3AhmxlsyVd0cDGCp8DZZ8khAnw85sUSJsH-CMm_7SN46KE325_ABuT8CR_ouN_ghudP1j8jdHEry52Ny9TG5YtBlpF-_f6aZFvZy3QU6rBa4HU6RuRIK6LPf90BdH-gYM-KUuvPT5XqxObsYKKBYutpC9F9QQAqWg7fWZ5AnU5jMUu7VGk95ULJY7Xz-iWITQJ-fkOPD-Y8PR-UYaaH0kulNyRUGfjGy82D-QwAQEOrKI-E5wKUa1rGNjrprHAsK4IVwrA4apBAik7GLztRPyV6_7LtnhBoNCywNv1AXopCGGdGGhkXjguYyel8Qth1160cacoyGcW7TcXjd2CwpC5KySVJWFuTtLs8qk3D8NfV7FOYuJRJopxegVnZUK_svtSrI_lYV7DirB8vBOqD1qJqCvN59hvmIhyyu75aXKY2RXGklCqInKjRp0PRLvzhLzN6AnrRSUPlsq2y_K_9zh5__jw6_IPc4Tg7cYGr2yR6oafcS8NamfZWm1jXzpylD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgKyQuiE8RKMhI3NioG8eO4xNqYUtBokIVlXqzHDveVipJ2GwP8Bv40Z1xnK1SiV72sLFjOzNjP3vGbwh5r2zhubFV6hn8cFuptJILn2bGSyu4ZUUV2D6Pi6NT_u1MnMUDtz6GVY5zYpioXWvxjHyPgWWi5S7Kj93vFLNGoXc1ptC4T3ZgCi7FjOwcLI9_nGxPWdCPxTMVb8ss8nKvhxULb5WFyASM_RCTFSkQ90_Q5u1YyVsO07AOHT4mjyKApPuDxJ-Qe3XzlDwYUkr-eUb-fQ4hGbT19PvJVzrQw16ta0f77gKPxSkyWMILmiH-u6emcTTmjlhRc7mCQW_Of_UU0CztRqj-F14Qkubg7fU51BmoTOahdrdGbw9KGJtdLr9Q7ALo9XNyerj8-ekojRkXUisyuUlZgQlglKgtwADnAAy4fGGR-BxgUw772VJ6WZcmcwXADG6y3MnKMucz4WtvVP6CzJq2qV8SqiRstCRMpcZ5LlSmeOXKzCvjJBPe2oRk41fXNtKRY1aMSx3c4nmpB0lpkJQOktIiIR-2dbqBjOPO0gcozG1JJNIOf7TrlY52qQ3zC2vy3FXMcMYrZXIYUOkFbKWywqqE7I6qoKN19_pGFxPybvsY7BKdLaap26tQRglWyIInRE5UaNKh6ZPm4jwwfAOKkkUBjc9HZbtp_P8DfnV3X1-ThwzVHo-Qyl0yAwWs3wCi2lRvo9lcAwvlIeo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxFMECjISNzawdvyIDwjx2FKQygGxUm-RY8fblbbJstlKlN_Aj2bGSRalKkhcckjs2PHMZD7b428IeW6cCsK6Mg0cLsKVJi31NKTMBu2kcFyVke3zizqai88n8mSPDOmO-gFsr5zaYT6p-Wb18sf3izdg8K-7I-P5qxacEB4Ui8EGGM4hr5Hr4JkUavlxD_c7rm9uBDP92Zmrq478U6TxH2HPy5GTl7ZPo1c6vE1u9XCSvu3kf4fsVfVdcqNLMHlxj_z6EAM0aBPo8ddPtCOLPd9UnrbrJS6SU-SzhBfUXTR4S23taZ9JYkHtatFsltvTs5YCtqXrAbj_hBfEFDp4ln0CdTpik0msvd7g3g_KG5udzT5S7AKM9n0yP5x9e3-U9vkXUieZ3qZcYToYIysHoMB7gAY-mzqkQQcQlcHsNtdBV7llXgHoEJZlXpeO-8BkqII12QOyXzd19ZBQo2HapeHHan0Q0jAjSp-zYKzXXAbnEsKGUS9cT06OOTJWRdwkz_Kik1QBkiqipAqZkBe7OuuOmuOfpd-hMHclkVY73mg2i6K30sLyMHU2y3zJreCiNDaDD8qDhIkVU84k5GBQhWJQ1YKDz0CfMs0T8mz3GKwUt15sXTXnsYyRXGklEqJHKjTq0PhJvTyNfN-AqbRS0PhkULY_jf_9gx_9X_HH5CZHM8AFpvyA7INCVk8Ab23Lp9GIfgPoPifv
  priority: 102
  providerName: Scholars Portal
Title Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
URI https://link.springer.com/article/10.1038/s41598-021-90029-5
https://www.proquest.com/docview/2538876208
https://www.proquest.com/docview/2539526764
https://pubmed.ncbi.nlm.nih.gov/PMC8187669
https://doaj.org/article/a2f0ca33db2a424b9a3bc28f530616c9
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiKcILJWRuNGIxPEjPnZLl6XSrtDCSr1Fjh13Ky1J1ZYD_AZ-NDNOUpQVIHFJpPidGXvGnvE3hLzRVnpubBl7Bg9uSx2XKvFxaryyglsmy4D2eSnPr_l8IRYHhPV3YYLTfoC0DMt07x32bguCBi-DBYcCdNkQh-QYodsRL38qp_tzFbRc8VR392OSLP9D0YEMClD9A_3yrnfkHRNpkDxnD8mDTmWkk7aTj8hBVT8m99ogkt-fkJ_vgxMGbTy9uPpIW0BYGJmj2_UKD8IpYlZCBXXr8b2lpna0ixaxpOZ22WxWu5uvWwr6K133yvkPqCCEycH76mMo04KXjEPp9QbtO0hTbHY2-0CxC8DJT8n12ezL9DzuYizEVqRqFzOJIV-0qCwIfudA_LsssQh1DopSBjvYXHlV5SZ1EhQLbtLMqdIy51PhK2909owc1U1dPSdUK9haKVg8jfNc6FTz0uWp18YpJry1EUn7v17YDoAc42DcFsEQnuVFS6kCKFUEShUiIm_3ZdYt_MY_c58iMfc5ETo7fGg2y6JjpcIwn1iTZa5khjNeapPBgHIvYPOUSqsjctKzQtHN523BQC6g3EjyiLzeJ8NMRPOKqavmW8ijBZNK8oioAQsNOjRMqVc3AdMb9CYlJTQ-7pntd-N_H_CL_8v-ktxnOA3wECk_IUfAkNUr0Kl25YgcqoUakePJZP55Du_T2eWnq1GYWqNwTgHPC57_AguhJCQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLemTQguiL8iMMBIcKLRGseO4wNCjHW0bKvQtEm7GceOu0kjLU0nND4Dn4XPyHtO0qmT2G2XHBI7dvL-2u_59wh5q2zmubFF7BlcuC1UXMi-jxPjpRXcsqwIaJ_jbHjMv56IkzXytzsLg2mVnU4MitpNLe6RbzGQTJTcfv5x9jPGqlEYXe1KaDRssVde_oIlW_1htAP0fcfY7uDo8zBuqwrEViRyEbMMi5woUVowdc6BwXNp3yK4N7gGKazZcullmZvEZWBKuUlSJwvLnE-EL71B8CVQ-RvgZiiQoo3twfjb4XJXB-NmPFHt6Zx-mm_VYCHxFFvIhMBcE7FiAUOhgBXv9npu5rUAbbB7uw_I_dZhpZ8aDntI1srqEbnTlLC8fEz-7IQUEDr19OBwRBs42ot56Wg9O8NteIqImfCCqsk3r6mpHG1rVUyoOZ_AT16c_qgpeM901i0NfsMLQpEePC3fgz4NdEov9J7NMbqEHIXDDgZfKE4B5OgJOb4VWjwl69W0Kp8RqiQs7CSobuM8FypRvHB54pVxkglvbUSS7q9r28KfYxWOcx3C8GmuG0ppoJQOlNIiIu-XfWYN-MeNrbeRmMuWCNwdbkznE93qAW2Y71uTpq5ghjNeKJPCB-VewNItyayKyGbHCrrVJrW-4v2IvFk-Bj2AwR1TldOL0EYJlsmMR0SusNDKhFafVGenAVEcvDaZZTB4r2O2q8H__8HPb57ra3J3eHSwr_dH470X5B5DEcDtq3yTrAMzli_Bm1sUr1oRouT7bUvtP2fUXfE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLemTiAuiL-iMMBIcKJRG8eO4wNCjLasDKppYtJuxrHjbtJIS9MJjc_AJ-LT8Z6TdOokdtslh8SOnby_9nv-PUJeK5t6bmweeQYXbnMV5XLgo9h4aQW3LM0D2uc03Tvin4_F8Rb5256FwbTKVicGRe3mFvfI-wwkEyV3kPV9kxZxMBy_X_yMsIIURlrbcho1i-wXF79g-Va9mwyB1m8YG4--fdyLmgoDkRWxXEUsxYInShQWzJ5zYPxcMrAI9A1uQgLrt0x6WWQmdimYVW7ixMncMudj4QtvEIgJ1P-2BKuYdcj27mh6cLje4cEYGo9Vc1JnkGT9CqwlnmgLWRGYdyI2rGEoGrDh6V7N07wSrA02cHyP3G2cV_qh5rb7ZKsoH5BbdTnLi4fkzzCkg9C5p18PJ7SGpj1fFo5Wi1PckqeIngkvKOvc84qa0tGmbsWMmrMZ_OTVyY-KgidNF-0y4Te8IBTswZPzPehTw6j0Qu_FEiNNyF047Gj0ieIUQKYekaMbocVj0innZfGEUCVhkSdBjRvnuVCx4rnLYq-Mk0x4a7skbv-6tg0UOlbkONMhJJ9kuqaUBkrpQCktuuTtus-iBgK5tvUuEnPdEkG8w435cqYbnaAN8wNrksTlzHDGc2US-KDMC1jGxalVXbLTsoJuNEulL-WgS16tH4NOwECPKYv5eWijBEtlyrtEbrDQxoQ2n5SnJwFdHDw4maYweK9ltsvB___BT6-f60tyG6RVf5lM95-ROwwlAHeysh3SAV4snoNjt8pfNBJEyfebFtp_lURiHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+MRI+structured+spiking+neural+networks+and+learning+algorithms+for+personalized+modelling%2C+analysis%2C+and+prediction+of+EEG+signals&rft.jtitle=Scientific+reports&rft.au=Saeedinia%2C+Samaneh+Alsadat&rft.au=Jahed-Motlagh%2C+Mohammad+Reza&rft.au=Tafakhori%2C+Abbas&rft.au=Kasabov%2C+Nikola&rft.date=2021-06-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-90029-5&rft.externalDocID=10_1038_s41598_021_90029_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon