Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-pl...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 12064 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-90029-5 |
Cover
Loading…
Abstract | This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others. |
---|---|
AbstractList | This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others. Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others. This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others. |
ArticleNumber | 12064 |
Author | Saeedinia, Samaneh Alsadat Jahed-Motlagh, Mohammad Reza Tafakhori, Abbas Kasabov, Nikola |
Author_xml | – sequence: 1 givenname: Samaneh Alsadat surname: Saeedinia fullname: Saeedinia, Samaneh Alsadat organization: Iran University of Science and Technology – sequence: 2 givenname: Mohammad Reza surname: Jahed-Motlagh fullname: Jahed-Motlagh, Mohammad Reza email: jahedmr@iust.ac.ir organization: Iran University of Science and Technology – sequence: 3 givenname: Abbas surname: Tafakhori fullname: Tafakhori, Abbas organization: Iranian Center of Neurological Research, Tehran University of Medical Sciences – sequence: 4 givenname: Nikola surname: Kasabov fullname: Kasabov, Nikola email: nkasabov@aut.ac.nz organization: School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, George Moore Chair of Data Analytics, University of Ulster |
BookMark | eNp9kk1v1DAQhiNURD_oH-AUiQuHBvyZ2BckVLZlpSIkBGdr1nZSbxN7sZOi8hv40TibImgP9WUsz_s-Mx7NcXHgg7dF8QqjtxhR8S4xzKWoEMGVRIjIij8rjghivCKUkIP_7ofFaUpblA8nkmH5ojikLDM440fF7482uc6XoS0_f12XaYyTHqdoTZl27sb5rvR2itDnMP4M8SaV4E3ZW4h-TkLfhejG6yGVbYjlzsYUPPTuVwYMwdi-z6qz7IH-Lrl0tnfvMt7p0YV92dXqspxbgD69LJ63OdjT-3hSfL9YfTv_VF19uVyff7iqNMfNWJFa1lhIbjUm0hiOiaFIa2CiZow2mIqmbawAbGqJEQNMTbPRxLSYt7YFSU-K9cI1AbZqF90A8U4FcGr_EGKnII5O91YBaZEGSs2GACNsI4FmlGg5RTWu9cx6v7B202awRls_5nE9gD7MeHetunCrBBZNXc-AN_eAGH5MNo1qcEnnyYG3YUqKcCo5qZuaZenrR9JtmOI8uVklMo8gkVViUekYUoq2VdqNMI8713e9wkjNG6SWDVJ5g9R-gxTPVvLI-vcfT5roYkpZ7Dsb_3X1hOsPDU3bEA |
CitedBy_id | crossref_primary_10_1038_s41467_024_47495_y crossref_primary_10_1109_TFUZZ_2023_3292802 crossref_primary_10_1016_j_cmpb_2023_107927 crossref_primary_10_1016_j_neunet_2024_106171 crossref_primary_10_3390_bdcc5040067 crossref_primary_10_3390_ijms24021554 crossref_primary_10_1109_ACCESS_2024_3360491 crossref_primary_10_1007_s13534_024_00405_z crossref_primary_10_1016_j_bspc_2025_107610 crossref_primary_10_15406_mojabb_2024_08_00208 crossref_primary_10_1155_2022_6299645 crossref_primary_10_1038_s41598_024_60996_6 crossref_primary_10_1109_TSMC_2024_3517620 crossref_primary_10_1016_j_neunet_2021_09_013 crossref_primary_10_1155_2022_4443277 crossref_primary_10_1371_journal_pcbi_1012716 crossref_primary_10_3390_brainsci13091316 |
Cites_doi | 10.1016/j.eplepsyres.2014.12.003 10.1007/s00371-015-1183-y 10.1038/s41386-019-0483-8 10.1038/s41598-021-81805-4 10.1007/s11042-019-07905-6 10.1016/j.neunet.2019.08.029 10.1016/j.neunet.2014.01.006 10.1007/s00221-018-5200-z 10.1109/TNN.2004.832719 10.3233/THC-174739 10.1016/j.clinph.2011.11.007 10.1016/j.resuscitation.2020.02.006 10.1016/j.neunet.2015.03.009 10.1016/S1388-2457(01)00714-3 10.1097/00004691-200604000-00003 10.1080/21646821.2016.1245568 10.1109/TNSRE.2018.2872924 10.1109/TCDS.2016.2636291 10.1109/TCDS.2018.2826840 10.1016/j.neunet.2012.11.014 10.1016/j.neunet.2019.07.021 10.1109/TNNLS.2018.2796023 10.1109/ISCAS51556.2021.9401560 10.1038/s41598-019-42863-x 10.1155/2011/156869 10.1088/1741-2552/aafabc 10.1007/978-3-662-57715-8 10.1007/978-1-4471-0417-9 10.1371/journal.pone.0206107 10.1155/2007/83416 10.1038/s41598-018-27169-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-90029-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_a2f0ca33db2a424b9a3bc28f530616c9 PMC8187669 10_1038_s41598_021_90029_5 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c517t-26961895ec129dd512d30cca48644371387f7e8a1d69104a13d7bc2df15fefa93 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:06 EDT 2025 Thu Aug 21 18:14:33 EDT 2025 Fri Sep 05 08:23:29 EDT 2025 Wed Aug 13 08:18:40 EDT 2025 Tue Jul 01 03:48:37 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:39:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-26961895ec129dd512d30cca48644371387f7e8a1d69104a13d7bc2df15fefa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-021-90029-5 |
PMID | 34103545 |
PQID | 2538876208 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a2f0ca33db2a424b9a3bc28f530616c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187669 proquest_miscellaneous_2539526764 proquest_journals_2538876208 crossref_citationtrail_10_1038_s41598_021_90029_5 crossref_primary_10_1038_s41598_021_90029_5 springer_journals_10_1038_s41598_021_90029_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-08 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Capecci, Kasabov, Wang (CR3) 2015; 68 Lu, Yang, Worrell, He (CR30) 2012; 123 CR19 Das (CR20) 2019; 78 CR18 CR17 Kasabov (CR15) 2014; 52 Lan, Sourina, Wang, Liu (CR8) 2016; 32 CR34 CR33 Chai (CR2) 2018; 26 CR32 CR31 Vecchio (CR25) 2018; 236 Bénar, Gotman (CR12) 2002; 113 Izhikevich (CR16) 2004; 15 Kasabov, Dhoble, Nuntalid, Indiveri (CR11) 2013; 41 Goldstein-Piekarski, Holt-Gosselin, O’Hora, Williams (CR14) 2020; 45 Assenza (CR4) 2015; 110 (CR29) 2006; 23 Lan, Sourina, Wang, Scherer, Müller-Putz (CR7) 2018; 11 CR5 Lim, Sourina, Wang (CR6) 2018; 26 Kasabov, Zhou, Doborjeh, Doborjeh, Yang (CR9) 2016; 9 CR27 CR26 Galaris, Siettos (CR10) 2019; 2019 CR24 Keijzer, Hoedemaekers (CR1) 2020; 149 CR21 Doborjeh (CR23) 2019; 119 Kuratani (CR28) 2016; 56 Kumarasinghe, Kasabov, Taylor (CR13) 2021; 11 Kumarasinghe, Kasabov, Taylor (CR22) 2020; 121 90029_CR18 C Bénar (90029_CR12) 2002; 113 90029_CR17 X Chai (90029_CR2) 2018; 26 90029_CR19 N Kasabov (90029_CR9) 2016; 9 90029_CR32 G Assenza (90029_CR4) 2015; 110 90029_CR31 90029_CR34 90029_CR33 BB Das (90029_CR20) 2019; 78 Z Lan (90029_CR8) 2016; 32 W Lim (90029_CR6) 2018; 26 N Kasabov (90029_CR11) 2013; 41 J Kuratani (90029_CR28) 2016; 56 Z Lan (90029_CR7) 2018; 11 AN Goldstein-Piekarski (90029_CR14) 2020; 45 K Kumarasinghe (90029_CR22) 2020; 121 F Vecchio (90029_CR25) 2018; 236 NK Kasabov (90029_CR15) 2014; 52 Society, A. C. N (90029_CR29) 2006; 23 90029_CR5 M Doborjeh (90029_CR23) 2019; 119 E Capecci (90029_CR3) 2015; 68 90029_CR24 E Galaris (90029_CR10) 2019; 2019 90029_CR27 90029_CR26 90029_CR21 K Kumarasinghe (90029_CR13) 2021; 11 Y Lu (90029_CR30) 2012; 123 H Keijzer (90029_CR1) 2020; 149 EM Izhikevich (90029_CR16) 2004; 15 |
References_xml | – volume: 110 start-page: 221 year: 2015 end-page: 227 ident: CR4 article-title: Hyperventilation induces sympathetic overactivation in mesial temporal epilepsy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2014.12.003 – volume: 32 start-page: 347 year: 2016 end-page: 358 ident: CR8 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Vis. Comput. doi: 10.1007/s00371-015-1183-y – volume: 45 start-page: 192 year: 2020 end-page: 204 ident: CR14 article-title: Integrating sleep, neuroimaging, and computational approaches for precision psychiatry publication-title: Neuropsychopharmacology doi: 10.1038/s41386-019-0483-8 – ident: CR18 – volume: 11 start-page: 2486 year: 2021 ident: CR13 article-title: Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements publication-title: Sci. Rep. doi: 10.1038/s41598-021-81805-4 – volume: 78 start-page: 28157 year: 2019 end-page: 28177 ident: CR20 article-title: A spatio-temporal model for EEG-based person identification publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-07905-6 – volume: 121 start-page: 169 year: 2020 end-page: 185 ident: CR22 article-title: Deep learning and deep knowledge representation in spiking neural networks for brain-computer interfaces publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.08.029 – volume: 52 start-page: 62 year: 2014 end-page: 76 ident: CR15 article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.01.006 – ident: CR33 – volume: 236 start-page: 1117 year: 2018 end-page: 1127 ident: CR25 article-title: Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: An EEG graph theoretical analysis publication-title: Exp. Brain Res. doi: 10.1007/s00221-018-5200-z – volume: 15 start-page: 1063 year: 2004 end-page: 1070 ident: CR16 article-title: Which model to use for cortical spiking neurons? publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.832719 – volume: 26 start-page: 327 year: 2018 end-page: 335 ident: CR2 article-title: Multi-subject subspace alignment for non-stationary EEG-based emotion recognition publication-title: Technol. Health Care doi: 10.3233/THC-174739 – ident: CR27 – volume: 123 start-page: 1275 year: 2012 end-page: 1283 ident: CR30 article-title: Seizure source imaging by means of FINE spatio-temporal dipole localization and directed transfer function in partial epilepsy patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.11.007 – ident: CR21 – volume: 149 start-page: 240 year: 2020 end-page: 242 ident: CR1 article-title: Timing is everything: Combining EEG and MRI to predict neurological recovery after cardiac arrest publication-title: Resuscitation doi: 10.1016/j.resuscitation.2020.02.006 – ident: CR19 – volume: 68 start-page: 62 year: 2015 end-page: 77 ident: CR3 article-title: Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.03.009 – volume: 113 start-page: 48 year: 2002 end-page: 56 ident: CR12 article-title: Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(01)00714-3 – volume: 23 start-page: 92 year: 2006 ident: CR29 article-title: Guideline 2: Minimum technical standards for pediatric electoencephalography publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200604000-00003 – ident: CR17 – ident: CR31 – volume: 56 start-page: 266 year: 2016 end-page: 275 ident: CR28 article-title: American Clinical Neurophysiology Society guideline 5: Minimum technical standards for pediatric electroencephalography publication-title: Neurodiagn. J. doi: 10.1080/21646821.2016.1245568 – ident: CR32 – ident: CR34 – volume: 2019 start-page: 128 year: 2019 ident: CR10 article-title: Modelling and analysis of functional connectivity in EEG source level in children with epilepsy publication-title: Numer. Comput. Theory Algorithms NUMTA – ident: CR5 – volume: 26 start-page: 2106 year: 2018 end-page: 2114 ident: CR6 article-title: STEW: simultaneous task EEG workload data set publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2872924 – volume: 9 start-page: 293 year: 2016 end-page: 303 ident: CR9 article-title: New algorithms for encoding, learning and classification of fMRI data in a spiking neural network architecture: A case on modeling and understanding of dynamic cognitive processes publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2016.2636291 – ident: CR26 – volume: 11 start-page: 85 year: 2018 end-page: 94 ident: CR7 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – volume: 41 start-page: 188 year: 2013 end-page: 201 ident: CR11 article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.11.014 – ident: CR24 – volume: 119 start-page: 162 year: 2019 end-page: 177 ident: CR23 article-title: Personalised modelling with spiking neural networks integrating temporal and static information publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.07.021 – volume: 9 start-page: 293 year: 2016 ident: 90029_CR9 publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2016.2636291 – volume: 45 start-page: 192 year: 2020 ident: 90029_CR14 publication-title: Neuropsychopharmacology doi: 10.1038/s41386-019-0483-8 – ident: 90029_CR18 doi: 10.1109/TNNLS.2018.2796023 – ident: 90029_CR33 doi: 10.1109/ISCAS51556.2021.9401560 – ident: 90029_CR17 doi: 10.1038/s41598-019-42863-x – volume: 56 start-page: 266 year: 2016 ident: 90029_CR28 publication-title: Neurodiagn. J. doi: 10.1080/21646821.2016.1245568 – volume: 41 start-page: 188 year: 2013 ident: 90029_CR11 publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.11.014 – volume: 113 start-page: 48 year: 2002 ident: 90029_CR12 publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(01)00714-3 – volume: 11 start-page: 2486 year: 2021 ident: 90029_CR13 publication-title: Sci. Rep. doi: 10.1038/s41598-021-81805-4 – volume: 149 start-page: 240 year: 2020 ident: 90029_CR1 publication-title: Resuscitation doi: 10.1016/j.resuscitation.2020.02.006 – ident: 90029_CR27 doi: 10.1155/2011/156869 – volume: 121 start-page: 169 year: 2020 ident: 90029_CR22 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.08.029 – volume: 23 start-page: 92 year: 2006 ident: 90029_CR29 publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200604000-00003 – ident: 90029_CR19 doi: 10.1088/1741-2552/aafabc – volume: 26 start-page: 2106 year: 2018 ident: 90029_CR6 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2872924 – ident: 90029_CR21 doi: 10.1007/978-3-662-57715-8 – volume: 26 start-page: 327 year: 2018 ident: 90029_CR2 publication-title: Technol. Health Care doi: 10.3233/THC-174739 – volume: 11 start-page: 85 year: 2018 ident: 90029_CR7 publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – volume: 2019 start-page: 128 year: 2019 ident: 90029_CR10 publication-title: Numer. Comput. Theory Algorithms NUMTA – volume: 15 start-page: 1063 year: 2004 ident: 90029_CR16 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.832719 – volume: 68 start-page: 62 year: 2015 ident: 90029_CR3 publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.03.009 – volume: 110 start-page: 221 year: 2015 ident: 90029_CR4 publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2014.12.003 – volume: 52 start-page: 62 year: 2014 ident: 90029_CR15 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.01.006 – ident: 90029_CR31 doi: 10.1007/978-1-4471-0417-9 – ident: 90029_CR24 doi: 10.1371/journal.pone.0206107 – volume: 119 start-page: 162 year: 2019 ident: 90029_CR23 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.07.021 – ident: 90029_CR32 doi: 10.1155/2007/83416 – ident: 90029_CR34 doi: 10.1038/s41598-018-27169-8 – volume: 236 start-page: 1117 year: 2018 ident: 90029_CR25 publication-title: Exp. Brain Res. doi: 10.1007/s00221-018-5200-z – ident: 90029_CR5 – volume: 32 start-page: 347 year: 2016 ident: 90029_CR8 publication-title: Vis. Comput. doi: 10.1007/s00371-015-1183-y – volume: 78 start-page: 28157 year: 2019 ident: 90029_CR20 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-07905-6 – volume: 123 start-page: 1275 year: 2012 ident: 90029_CR30 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.11.007 – ident: 90029_CR26 |
SSID | ssj0000529419 |
Score | 2.4215887 |
Snippet | This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better... Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12064 |
SubjectTerms | 631/114/116 631/114/1564 631/114/2397 631/114/2401 Algorithms EEG Epilepsy Firing pattern Humanities and Social Sciences Interfaces Learning algorithms Magnetic resonance imaging multidisciplinary Neural networks Predictions Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcIFGQkbmzU2PEjPvLYUpDggKjUm-XYcbtSm11ttgf4Df3RnbGzS1MJuHDJIfF7xpnP9vgbQt4Yr6Jwvi0jh4fwrSlbXcWSuai9FJ6rNrF9flNHx-LLiTy5EeoLfcIyPXAeuAPHY-VdXYeWO8FFa1zdet5ECViXKZ-u7oHNu7GYyqze3AhmxlsyVd0cDGCp8DZZ8khAnw85sUSJsH-CMm_7SN46KE325_ABuT8CR_ouN_ghudP1j8jdHEry52Ny9TG5YtBlpF-_f6aZFvZy3QU6rBa4HU6RuRIK6LPf90BdH-gYM-KUuvPT5XqxObsYKKBYutpC9F9QQAqWg7fWZ5AnU5jMUu7VGk95ULJY7Xz-iWITQJ-fkOPD-Y8PR-UYaaH0kulNyRUGfjGy82D-QwAQEOrKI-E5wKUa1rGNjrprHAsK4IVwrA4apBAik7GLztRPyV6_7LtnhBoNCywNv1AXopCGGdGGhkXjguYyel8Qth1160cacoyGcW7TcXjd2CwpC5KySVJWFuTtLs8qk3D8NfV7FOYuJRJopxegVnZUK_svtSrI_lYV7DirB8vBOqD1qJqCvN59hvmIhyyu75aXKY2RXGklCqInKjRp0PRLvzhLzN6AnrRSUPlsq2y_K_9zh5__jw6_IPc4Tg7cYGr2yR6oafcS8NamfZWm1jXzpylD priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgKyQuiE8RKMhI3NioG8eO4xNqYUtBokIVlXqzHDveVipJ2GwP8Bv40Z1xnK1SiV72sLFjOzNjP3vGbwh5r2zhubFV6hn8cFuptJILn2bGSyu4ZUUV2D6Pi6NT_u1MnMUDtz6GVY5zYpioXWvxjHyPgWWi5S7Kj93vFLNGoXc1ptC4T3ZgCi7FjOwcLI9_nGxPWdCPxTMVb8ss8nKvhxULb5WFyASM_RCTFSkQ90_Q5u1YyVsO07AOHT4mjyKApPuDxJ-Qe3XzlDwYUkr-eUb-fQ4hGbT19PvJVzrQw16ta0f77gKPxSkyWMILmiH-u6emcTTmjlhRc7mCQW_Of_UU0CztRqj-F14Qkubg7fU51BmoTOahdrdGbw9KGJtdLr9Q7ALo9XNyerj8-ekojRkXUisyuUlZgQlglKgtwADnAAy4fGGR-BxgUw772VJ6WZcmcwXADG6y3MnKMucz4WtvVP6CzJq2qV8SqiRstCRMpcZ5LlSmeOXKzCvjJBPe2oRk41fXNtKRY1aMSx3c4nmpB0lpkJQOktIiIR-2dbqBjOPO0gcozG1JJNIOf7TrlY52qQ3zC2vy3FXMcMYrZXIYUOkFbKWywqqE7I6qoKN19_pGFxPybvsY7BKdLaap26tQRglWyIInRE5UaNKh6ZPm4jwwfAOKkkUBjc9HZbtp_P8DfnV3X1-ThwzVHo-Qyl0yAwWs3wCi2lRvo9lcAwvlIeo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxFMECjISNzawdvyIDwjx2FKQygGxUm-RY8fblbbJstlKlN_Aj2bGSRalKkhcckjs2PHMZD7b428IeW6cCsK6Mg0cLsKVJi31NKTMBu2kcFyVke3zizqai88n8mSPDOmO-gFsr5zaYT6p-Wb18sf3izdg8K-7I-P5qxacEB4Ui8EGGM4hr5Hr4JkUavlxD_c7rm9uBDP92Zmrq478U6TxH2HPy5GTl7ZPo1c6vE1u9XCSvu3kf4fsVfVdcqNLMHlxj_z6EAM0aBPo8ddPtCOLPd9UnrbrJS6SU-SzhBfUXTR4S23taZ9JYkHtatFsltvTs5YCtqXrAbj_hBfEFDp4ln0CdTpik0msvd7g3g_KG5udzT5S7AKM9n0yP5x9e3-U9vkXUieZ3qZcYToYIysHoMB7gAY-mzqkQQcQlcHsNtdBV7llXgHoEJZlXpeO-8BkqII12QOyXzd19ZBQo2HapeHHan0Q0jAjSp-zYKzXXAbnEsKGUS9cT06OOTJWRdwkz_Kik1QBkiqipAqZkBe7OuuOmuOfpd-hMHclkVY73mg2i6K30sLyMHU2y3zJreCiNDaDD8qDhIkVU84k5GBQhWJQ1YKDz0CfMs0T8mz3GKwUt15sXTXnsYyRXGklEqJHKjTq0PhJvTyNfN-AqbRS0PhkULY_jf_9gx_9X_HH5CZHM8AFpvyA7INCVk8Ab23Lp9GIfgPoPifv priority: 102 providerName: Scholars Portal |
Title | Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals |
URI | https://link.springer.com/article/10.1038/s41598-021-90029-5 https://www.proquest.com/docview/2538876208 https://www.proquest.com/docview/2539526764 https://pubmed.ncbi.nlm.nih.gov/PMC8187669 https://doaj.org/article/a2f0ca33db2a424b9a3bc28f530616c9 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiKcILJWRuNGIxPEjPnZLl6XSrtDCSr1Fjh13Ky1J1ZYD_AZ-NDNOUpQVIHFJpPidGXvGnvE3hLzRVnpubBl7Bg9uSx2XKvFxaryyglsmy4D2eSnPr_l8IRYHhPV3YYLTfoC0DMt07x32bguCBi-DBYcCdNkQh-QYodsRL38qp_tzFbRc8VR392OSLP9D0YEMClD9A_3yrnfkHRNpkDxnD8mDTmWkk7aTj8hBVT8m99ogkt-fkJ_vgxMGbTy9uPpIW0BYGJmj2_UKD8IpYlZCBXXr8b2lpna0ixaxpOZ22WxWu5uvWwr6K133yvkPqCCEycH76mMo04KXjEPp9QbtO0hTbHY2-0CxC8DJT8n12ezL9DzuYizEVqRqFzOJIV-0qCwIfudA_LsssQh1DopSBjvYXHlV5SZ1EhQLbtLMqdIy51PhK2909owc1U1dPSdUK9haKVg8jfNc6FTz0uWp18YpJry1EUn7v17YDoAc42DcFsEQnuVFS6kCKFUEShUiIm_3ZdYt_MY_c58iMfc5ETo7fGg2y6JjpcIwn1iTZa5khjNeapPBgHIvYPOUSqsjctKzQtHN523BQC6g3EjyiLzeJ8NMRPOKqavmW8ijBZNK8oioAQsNOjRMqVc3AdMb9CYlJTQ-7pntd-N_H_CL_8v-ktxnOA3wECk_IUfAkNUr0Kl25YgcqoUakePJZP55Du_T2eWnq1GYWqNwTgHPC57_AguhJCQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLemTQguiL8iMMBIcKLRGseO4wNCjHW0bKvQtEm7GceOu0kjLU0nND4Dn4XPyHtO0qmT2G2XHBI7dvL-2u_59wh5q2zmubFF7BlcuC1UXMi-jxPjpRXcsqwIaJ_jbHjMv56IkzXytzsLg2mVnU4MitpNLe6RbzGQTJTcfv5x9jPGqlEYXe1KaDRssVde_oIlW_1htAP0fcfY7uDo8zBuqwrEViRyEbMMi5woUVowdc6BwXNp3yK4N7gGKazZcullmZvEZWBKuUlSJwvLnE-EL71B8CVQ-RvgZiiQoo3twfjb4XJXB-NmPFHt6Zx-mm_VYCHxFFvIhMBcE7FiAUOhgBXv9npu5rUAbbB7uw_I_dZhpZ8aDntI1srqEbnTlLC8fEz-7IQUEDr19OBwRBs42ot56Wg9O8NteIqImfCCqsk3r6mpHG1rVUyoOZ_AT16c_qgpeM901i0NfsMLQpEePC3fgz4NdEov9J7NMbqEHIXDDgZfKE4B5OgJOb4VWjwl69W0Kp8RqiQs7CSobuM8FypRvHB54pVxkglvbUSS7q9r28KfYxWOcx3C8GmuG0ppoJQOlNIiIu-XfWYN-MeNrbeRmMuWCNwdbkznE93qAW2Y71uTpq5ghjNeKJPCB-VewNItyayKyGbHCrrVJrW-4v2IvFk-Bj2AwR1TldOL0EYJlsmMR0SusNDKhFafVGenAVEcvDaZZTB4r2O2q8H__8HPb57ra3J3eHSwr_dH470X5B5DEcDtq3yTrAMzli_Bm1sUr1oRouT7bUvtP2fUXfE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLemTiAuiL-iMMBIcKJRG8eO4wNCjLasDKppYtJuxrHjbtJIS9MJjc_AJ-LT8Z6TdOokdtslh8SOnby_9nv-PUJeK5t6bmweeQYXbnMV5XLgo9h4aQW3LM0D2uc03Tvin4_F8Rb5256FwbTKVicGRe3mFvfI-wwkEyV3kPV9kxZxMBy_X_yMsIIURlrbcho1i-wXF79g-Va9mwyB1m8YG4--fdyLmgoDkRWxXEUsxYInShQWzJ5zYPxcMrAI9A1uQgLrt0x6WWQmdimYVW7ixMncMudj4QtvEIgJ1P-2BKuYdcj27mh6cLje4cEYGo9Vc1JnkGT9CqwlnmgLWRGYdyI2rGEoGrDh6V7N07wSrA02cHyP3G2cV_qh5rb7ZKsoH5BbdTnLi4fkzzCkg9C5p18PJ7SGpj1fFo5Wi1PckqeIngkvKOvc84qa0tGmbsWMmrMZ_OTVyY-KgidNF-0y4Te8IBTswZPzPehTw6j0Qu_FEiNNyF047Gj0ieIUQKYekaMbocVj0innZfGEUCVhkSdBjRvnuVCx4rnLYq-Mk0x4a7skbv-6tg0UOlbkONMhJJ9kuqaUBkrpQCktuuTtus-iBgK5tvUuEnPdEkG8w435cqYbnaAN8wNrksTlzHDGc2US-KDMC1jGxalVXbLTsoJuNEulL-WgS16tH4NOwECPKYv5eWijBEtlyrtEbrDQxoQ2n5SnJwFdHDw4maYweK9ltsvB___BT6-f60tyG6RVf5lM95-ROwwlAHeysh3SAV4snoNjt8pfNBJEyfebFtp_lURiHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+MRI+structured+spiking+neural+networks+and+learning+algorithms+for+personalized+modelling%2C+analysis%2C+and+prediction+of+EEG+signals&rft.jtitle=Scientific+reports&rft.au=Saeedinia%2C+Samaneh+Alsadat&rft.au=Jahed-Motlagh%2C+Mohammad+Reza&rft.au=Tafakhori%2C+Abbas&rft.au=Kasabov%2C+Nikola&rft.date=2021-06-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-90029-5&rft.externalDocID=10_1038_s41598_021_90029_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |