Long-term warming and nitrogen fertilization affect C-, N- and P-acquiring hydrolase and oxidase activities in winter wheat monocropping soil

The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases ta...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 18542 - 10
Main Authors Zhang, Chuang, Dong, Wenxu, Manevski, Kiril, Hu, Wenpei, Timilsina, Arbindra, Chen, Xiaoru, Zhang, Xinyuan, Hu, Chunsheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.
AbstractList The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.
Abstract The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.
The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.
The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.
ArticleNumber 18542
Author Zhang, Chuang
Zhang, Xinyuan
Manevski, Kiril
Hu, Chunsheng
Hu, Wenpei
Chen, Xiaoru
Dong, Wenxu
Timilsina, Arbindra
Author_xml – sequence: 1
  givenname: Chuang
  surname: Zhang
  fullname: Zhang, Chuang
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Wenxu
  surname: Dong
  fullname: Dong, Wenxu
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences
– sequence: 3
  givenname: Kiril
  surname: Manevski
  fullname: Manevski, Kiril
  organization: Department of Agroecology, Aarhus University, Sino-Danish Center for Education and Research
– sequence: 4
  givenname: Wenpei
  surname: Hu
  fullname: Hu, Wenpei
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Arbindra
  surname: Timilsina
  fullname: Timilsina, Arbindra
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 6
  givenname: Xiaoru
  surname: Chen
  fullname: Chen, Xiaoru
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences
– sequence: 7
  givenname: Xinyuan
  surname: Zhang
  fullname: Zhang, Xinyuan
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 8
  givenname: Chunsheng
  surname: Hu
  fullname: Hu, Chunsheng
  email: cshu@sjziam.ac.cn
  organization: Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9UstuUzEQvUJFtJT-ACtLbFhwwc9ce4OEIh6VImABa8vxHSeO7rVT22laPqLf0G_hy3CSImgX9cajmXPOeMbneXMUYoCmeUnwW4KZfJc5EUq2mJJWdZSRVjxpTijmoqWM0qP_4uPmLOcVrkdQxYl61hwzLpjoMD5pbmYxLNoCaURbk0YfFr9vTehR8CXFBQTkIBU_-F-m-BiQcQ5sQdP2Dfraoh3we2vsxcanykTL6z7FwWTYV-KV7_exLf7SFw8Z-YC2PtRuaLsEU9AYQ7Qprtc7do5-eNE8dWbIcHZ3nzY_P338Mf3Szr59Pp9-mLVWkK60VHAOeO6UEcIqkESyzirGgPWWKtmpiemVo1YpYBRoZ53jnZNigvt-zi1lp835QbePZqXXyY8mXetovN4nYlpoU-e2A-gJAcKFBMww5a4jUnA1scQQ16t5P--q1vuD1nozH6G3EEoywz3R-5Xgl3oRL7XkXEqGq8DrO4EULzaQix59tjAMJkDcZE1FxzkWAssKffUAuoqbFOqqdig2YbSKVpQ8oOpuc07gtPVl_4G1vx80wXrnIX3wkK4e0nsPaVGp9AH17xyPktiBlNc7H0D696pHWH8AZPDcWQ
CitedBy_id crossref_primary_10_3390_microorganisms10051049
Cites_doi 10.1111/j.1461-0248.2008.01251.x
10.1146/annurev-ecolsys-071112-124414
10.1111/gcb.14394
10.1111/j.1469-8137.2007.02237.x
10.1111/gcb.12620
10.1016/j.scitotenv.2019.135992
10.1111/gcb.12788
10.1111/geb.12576
10.3389/fmicb.2013.00333
10.1038/nature20150
10.1016/j.scitotenv.2018.07.296
10.1016/s0038-0717(02)00074-3
10.1007/s10533-014-0030-y
10.1111/gcb.14986
10.1111/nph.12252
10.1038/nature08632
10.1016/j.soilbio.2019.04.020
10.1016/j.soilbio.2016.07.003
10.1017/CBO9781107415324.015
10.1111/j.1469-8137.2012.04095.x
10.1071/sr19114
10.2307/23436275
10.1016/j.soilbio.2016.12.026
10.1111/j.1365-2486.2011.02496.x
10.1016/j.fcr.2013.07.006
10.1111/gcb.13253
10.1016/j.soilbio.2012.11.009
10.1371/journal.pone.0189908
10.1007/978-94-007-7420-9_5
10.5194/bg-14-4815-2017
10.1111/gcb.15218
10.1016/j.geoderma.2019.02.017
10.1126/science.aap7325
10.1016/j.soilbio.2017.03.002
10.1111/gcb.13125
10.1016/j.soilbio.2015.10.019
10.1111/gcb.15077
10.1016/j.soilbio.2018.05.001
10.1126/science.aan2874
10.1111/j.1365-2486.2012.02745.x
10.1016/j.soilbio.2009.10.014
10.1111/j.1469-8137.2011.03967.x
10.1016/j.soilbio.2020.107816
10.1111/gcb.15290
10.1016/j.soilbio.2017.04.020
10.1038/nclimate1331
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-97231-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_61e1458e03024f7185496c1a1fd9bdb7
PMC8448830
10_1038_s41598_021_97231_5
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-2544e0bf9a55c9e81837c933e3dc298796ad9f2c99e32e27cff47f8560ddb4c23
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:21:15 EDT 2025
Thu Aug 21 14:23:59 EDT 2025
Fri Jul 11 09:03:19 EDT 2025
Wed Aug 13 04:54:33 EDT 2025
Tue Jul 01 03:49:19 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-2544e0bf9a55c9e81837c933e3dc298796ad9f2c99e32e27cff47f8560ddb4c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-97231-5
PMID 34535700
PQID 2573632844
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_61e1458e03024f7185496c1a1fd9bdb7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448830
proquest_miscellaneous_2574405508
proquest_journals_2573632844
crossref_citationtrail_10_1038_s41598_021_97231_5
crossref_primary_10_1038_s41598_021_97231_5
springer_journals_10_1038_s41598_021_97231_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-17
PublicationDateYYYYMMDD 2021-09-17
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ZhangCContrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical ChinaBiogeosciences201714481548272017BGeo...14.4815Z1:CAS:528:DC%2BC1cXisFSksbjP10.5194/bg-14-4815-2017
LiuLWarming and nitrogen fertilization effects on winter wheat yields in northern China varied between four yearsField Crop Res2013151566410.1016/j.fcr.2013.07.006
MengCGlobal meta-analysis on the responses of soil extracellular enzyme activities to warmingSci. Total Environ.20207051359922020ScTEn.705m5992M1:CAS:528:DC%2BC1MXisVSktrbJ10.1016/j.scitotenv.2019.13599231841928
SinsabaughRLFollstad ShahJJEcoenzymatic stoichiometry and ecological theoryAnnu. Rev. Eco. Evol. Syst.20124331334310.1146/annurev-ecolsys-071112-124414
MelilloJMLong-term pattern and magnitude of soil carbon feedback to the climate system in a warming worldScience20173581011052017Sci...358..101M1:CAS:528:DC%2BC2sXhsF2jtL3P10.1126/science.aan287428983050
ZhouJMicrobial mediation of carbon-cycle feedbacks to climate warmingNat. Clim. Change201121061102012NatCC...2..106Z1:CAS:528:DC%2BC38XhsVKntb0%3D10.1038/nclimate1331
GongSZhangTGuoJWarming and nitrogen deposition accelerate soil phosphorus cycling in a temperate meadow ecosystemSoil Res.2020581091:CAS:528:DC%2BB3cXjslaktQ%3D%3D10.1071/sr19114
ThakurMPSoil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitationSoil Biol. Biochem.20191351841931:CAS:528:DC%2BC1MXps1Cktbs%3D10.1016/j.soilbio.2019.04.020
DengQHuiDDennisSReddyKCResponses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysisGlob. Ecol. Biogeogr.20172671372810.1111/geb.12576
CrowtherTWQuantifying global soil carbon losses in response to warmingNature20165401041082016Natur.540..104C1:CAS:528:DC%2BC28XhvFylsLvE10.1038/nature2015027905442
Ciais, P., Sabine, C., Bala, G., Bopp, L. & Brovkin, V. Carbon and other biogeochemical cycles. In: Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 465–570 (2013).
CanariniAKiærLPDijkstraFASoil carbon loss regulated by drought intensity and available substrate: A meta-analysisSoil Biol. Biochem.201711290991:CAS:528:DC%2BC2sXns1ynsLg%3D10.1016/j.soilbio.2017.04.020
ZhouLInteractive effects of global change factors on soil respiration and its components: A meta-analysisGlob. Chang Biol.201622315731692016GCBio..22.3157Z10.1111/gcb.1325326896336
MoorheadDLSinsabaughRLHillBHWeintraubMNVector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamicsSoil Biol. Biochem.201693171:CAS:528:DC%2BC2MXhsl2msLrM10.1016/j.soilbio.2015.10.019
PoldGGrandyASMelilloJMDeAngelisKMChanges in substrate availability drive carbon cycle response to chronic warmingSoil Biol. Biochem.201711068781:CAS:528:DC%2BC2sXkvVWgsro%3D10.1016/j.soilbio.2017.03.002
ChenJLong-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystemsGlob. Change Biol.202010.1111/gcb.15218
MetcalfeDBMicrobial change in warming soilsScience201735841422017Sci...358...41M1:CAS:528:DC%2BC2sXhs1yis7%2FF10.1126/science.aap732528983036
BaiEA meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamicsNew Phytol.20131994314401:CAS:528:DC%2BC3sXpvFars7g%3D10.1111/nph.12252
XuWYuanWCuiLMaMZhangFResponses of soil organic carbon decomposition to warming depend on the natural warming gradientGeoderma201934310182019Geode.343...10X1:CAS:528:DC%2BC1MXjs1CqtbY%3D10.1016/j.geoderma.2019.02.017
BradfordMAThermal adaptation of decomposer communities in warming soilsFront. Microbiol.2013433310.3389/fmicb.2013.00333243398213825258
ChenJDifferential responses of carbon-degrading enzyme activities to warming: Implications for soil respirationGlob. Change Biol.201824481648262018GCBio..24.4816C10.1111/gcb.14394
BradfordMAThermal adaptation of soil microbial respiration to elevated temperatureEcol. Lett.2008111316132710.1111/j.1461-0248.2008.01251.x19046360
SinsabaughRLHillBHFollstad ShahJJEcoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimentNature20094627957982009Natur.462..795S1:CAS:528:DC%2BD1MXhsFersrvK10.1038/nature0863220010687
DielemanWISimple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperatureGlob. Change Biol.201218268126932012GCBio..18.2681D10.1111/j.1365-2486.2012.02745.x
MoriTDoes ecoenzymatic stoichiometry really determine microbial nutrient limitations?Soil Biol. Biochem.20201461078161:CAS:528:DC%2BB3cXosV2hsbg%3D10.1016/j.soilbio.2020.107816
LuMResponses of ecosystem C cycle to experimental warming a meta analysisEcology2013947267382013AIPC.1542..726L10.2307/2343627523687898
WangXSoil respiration under climate warming: Differential response of heterotrophic and autotrophic respirationGlob. Change Biol.201420322932372014GCBio..20.3229W10.1111/gcb.12620
LiYNiuSYuGAggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysisGlob. Change Biol.2016229349432016GCBio..22..934L10.1111/gcb.13125
NiuSWater-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppeNew Phytol.20081772092191:CAS:528:DC%2BD1cXot1yktw%3D%3D10.1111/j.1469-8137.2007.02237.x17944829
MarkleinARHoultonBZNitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystemsNew Phytol.20121936967041:CAS:528:DC%2BC38XitVejsbc%3D10.1111/j.1469-8137.2011.03967.x22122515
ZuccariniPAsensioDOgayaRSardansJPenuelasJEffects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrublandGlob. Change Biol.202026369837142020GCBio..26.3698Z10.1111/gcb.15077
ChenJSoil carbon loss with warming: New evidence from carbon-degrading enzymesGlob. Change Biol.202026194419522020GCBio..26.1944C10.1111/gcb.14986
NiuSThermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanismsNew Phytol.201219477578310.1111/j.1469-8137.2012.04095.x22404566
SinsabaughRLPhenol oxidase, peroxidase and organic matter dynamics of soilSoil Biol. Biochem.2010423914041:CAS:528:DC%2BC3cXhtVaqt74%3D10.1016/j.soilbio.2009.10.014
XiaoWChenXJingXZhuBA meta-analysis of soil extracellular enzyme activities in response to global changeSoil Biol. Biochem.201812321321:CAS:528:DC%2BC1cXpt1ehtL0%3D10.1016/j.soilbio.2018.05.001
ConantRTTemperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forwardGlob. Change Biol.201117339234042011GCBio..17.3392C10.1111/j.1365-2486.2011.02496.x
ZhangJIncreased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigationGlob. Chang Biol.20202020sona.book.....Z10.1111/gcb.15290332456137756728
Romero-OlivaresALAllisonSDTresederKKSoil microbes and their response to experimental warming over time: A meta-analysis of field studiesSoil Biol. Biochem.201710732401:CAS:528:DC%2BC2sXhs1GqsA%3D%3D10.1016/j.soilbio.2016.12.026
LiJIrrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensitySci. Total Environ.20196462902992019ScTEn.646..290L1:CAS:528:DC%2BC1cXhtl2lsbvM10.1016/j.scitotenv.2018.07.29630055491
SinsabaughRLExtracellular enzyme kinetics scale with resource availabilityBiogeochemistry20141212873041:CAS:528:DC%2BC2cXhsFGls73J10.1007/s10533-014-0030-y
Saiya-CorkKRSinsabaughRLZakDRThe effects of long term nitrogen deposition on extracellular enzyme activities in an Acer saccharum forest soilSoil Biol. Biochem.200234130913141:CAS:528:DC%2BD38XlvVemu7w%3D10.1016/s0038-0717(02)00074-3
LinSVariations in eco-enzymatic stoichiometric and microbial characteristics in paddy soil as affected by long-term integrated organic–inorganic fertilizationPLoS One201712e01899081:CAS:528:DC%2BC1cXhsFelsbvM10.1371/journal.pone.0189908292530005734689
Garcia-PalaciosPAre there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspectiveGlob. Change Biol.201521159016002015GCBio..21.1590G10.1111/gcb.12788
BurnsRGSoil enzymes in a changing environment: Current knowledge and future directionsSoil Biol. Biochem.2013582162341:CAS:528:DC%2BC3sXivFymsLY%3D10.1016/j.soilbio.2012.11.009
JianSSoil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysisSoil Biol. Biochem.201610132431:CAS:528:DC%2BC28XhtFemsrvN10.1016/j.soilbio.2016.07.003
ShahidSAIdentification of the Taxonomic Class of a Soil2014Springer10.1007/978-94-007-7420-9_5
RL Sinsabaugh (97231_CR15) 2010; 42
MA Bradford (97231_CR8) 2008; 11
Y Li (97231_CR30) 2016; 22
M Lu (97231_CR3) 2013; 94
T Mori (97231_CR25) 2020; 146
J Zhang (97231_CR11) 2020
MP Thakur (97231_CR35) 2019; 135
C Zhang (97231_CR19) 2017; 14
RL Sinsabaugh (97231_CR22) 2014; 121
W Xiao (97231_CR13) 2018; 123
KR Saiya-Cork (97231_CR46) 2002; 34
DL Moorhead (97231_CR16) 2016; 93
S Jian (97231_CR31) 2016; 101
AL Romero-Olivares (97231_CR40) 2017; 107
X Wang (97231_CR4) 2014; 20
AR Marklein (97231_CR29) 2012; 193
J Chen (97231_CR23) 2018; 24
L Zhou (97231_CR12) 2016; 22
P Zuccarini (97231_CR28) 2020; 26
TW Crowther (97231_CR34) 2016; 540
RT Conant (97231_CR42) 2011; 17
W Xu (97231_CR20) 2019; 343
G Pold (97231_CR27) 2017; 110
DB Metcalfe (97231_CR38) 2017; 358
J Chen (97231_CR33) 2020
P Garcia-Palacios (97231_CR9) 2015; 21
JM Melillo (97231_CR5) 2017; 358
RL Sinsabaugh (97231_CR17) 2009; 462
L Liu (97231_CR41) 2013; 151
J Zhou (97231_CR26) 2011; 2
SA Shahid (97231_CR44) 2014
S Gong (97231_CR36) 2020; 58
S Niu (97231_CR43) 2008; 177
97231_CR1
A Canarini (97231_CR7) 2017; 112
RG Burns (97231_CR14) 2013; 58
MA Bradford (97231_CR2) 2013; 4
S Lin (97231_CR21) 2017; 12
Q Deng (97231_CR32) 2017; 26
S Niu (97231_CR6) 2012; 194
J Chen (97231_CR10) 2020; 26
WI Dieleman (97231_CR39) 2012; 18
C Meng (97231_CR24) 2020; 705
RL Sinsabaugh (97231_CR18) 2012; 43
J Li (97231_CR45) 2019; 646
E Bai (97231_CR37) 2013; 199
References_xml – reference: ZhangJIncreased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigationGlob. Chang Biol.20202020sona.book.....Z10.1111/gcb.15290332456137756728
– reference: LinSVariations in eco-enzymatic stoichiometric and microbial characteristics in paddy soil as affected by long-term integrated organic–inorganic fertilizationPLoS One201712e01899081:CAS:528:DC%2BC1cXhsFelsbvM10.1371/journal.pone.0189908292530005734689
– reference: ChenJLong-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystemsGlob. Change Biol.202010.1111/gcb.15218
– reference: MelilloJMLong-term pattern and magnitude of soil carbon feedback to the climate system in a warming worldScience20173581011052017Sci...358..101M1:CAS:528:DC%2BC2sXhsF2jtL3P10.1126/science.aan287428983050
– reference: NiuSWater-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppeNew Phytol.20081772092191:CAS:528:DC%2BD1cXot1yktw%3D%3D10.1111/j.1469-8137.2007.02237.x17944829
– reference: XiaoWChenXJingXZhuBA meta-analysis of soil extracellular enzyme activities in response to global changeSoil Biol. Biochem.201812321321:CAS:528:DC%2BC1cXpt1ehtL0%3D10.1016/j.soilbio.2018.05.001
– reference: MarkleinARHoultonBZNitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystemsNew Phytol.20121936967041:CAS:528:DC%2BC38XitVejsbc%3D10.1111/j.1469-8137.2011.03967.x22122515
– reference: MoorheadDLSinsabaughRLHillBHWeintraubMNVector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamicsSoil Biol. Biochem.201693171:CAS:528:DC%2BC2MXhsl2msLrM10.1016/j.soilbio.2015.10.019
– reference: CrowtherTWQuantifying global soil carbon losses in response to warmingNature20165401041082016Natur.540..104C1:CAS:528:DC%2BC28XhvFylsLvE10.1038/nature2015027905442
– reference: BradfordMAThermal adaptation of decomposer communities in warming soilsFront. Microbiol.2013433310.3389/fmicb.2013.00333243398213825258
– reference: MetcalfeDBMicrobial change in warming soilsScience201735841422017Sci...358...41M1:CAS:528:DC%2BC2sXhs1yis7%2FF10.1126/science.aap732528983036
– reference: ThakurMPSoil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitationSoil Biol. Biochem.20191351841931:CAS:528:DC%2BC1MXps1Cktbs%3D10.1016/j.soilbio.2019.04.020
– reference: SinsabaughRLFollstad ShahJJEcoenzymatic stoichiometry and ecological theoryAnnu. Rev. Eco. Evol. Syst.20124331334310.1146/annurev-ecolsys-071112-124414
– reference: SinsabaughRLExtracellular enzyme kinetics scale with resource availabilityBiogeochemistry20141212873041:CAS:528:DC%2BC2cXhsFGls73J10.1007/s10533-014-0030-y
– reference: XuWYuanWCuiLMaMZhangFResponses of soil organic carbon decomposition to warming depend on the natural warming gradientGeoderma201934310182019Geode.343...10X1:CAS:528:DC%2BC1MXjs1CqtbY%3D10.1016/j.geoderma.2019.02.017
– reference: LuMResponses of ecosystem C cycle to experimental warming a meta analysisEcology2013947267382013AIPC.1542..726L10.2307/2343627523687898
– reference: ChenJSoil carbon loss with warming: New evidence from carbon-degrading enzymesGlob. Change Biol.202026194419522020GCBio..26.1944C10.1111/gcb.14986
– reference: ShahidSAIdentification of the Taxonomic Class of a Soil2014Springer10.1007/978-94-007-7420-9_5
– reference: DengQHuiDDennisSReddyKCResponses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysisGlob. Ecol. Biogeogr.20172671372810.1111/geb.12576
– reference: Romero-OlivaresALAllisonSDTresederKKSoil microbes and their response to experimental warming over time: A meta-analysis of field studiesSoil Biol. Biochem.201710732401:CAS:528:DC%2BC2sXhs1GqsA%3D%3D10.1016/j.soilbio.2016.12.026
– reference: DielemanWISimple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperatureGlob. Change Biol.201218268126932012GCBio..18.2681D10.1111/j.1365-2486.2012.02745.x
– reference: NiuSThermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanismsNew Phytol.201219477578310.1111/j.1469-8137.2012.04095.x22404566
– reference: BurnsRGSoil enzymes in a changing environment: Current knowledge and future directionsSoil Biol. Biochem.2013582162341:CAS:528:DC%2BC3sXivFymsLY%3D10.1016/j.soilbio.2012.11.009
– reference: SinsabaughRLHillBHFollstad ShahJJEcoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimentNature20094627957982009Natur.462..795S1:CAS:528:DC%2BD1MXhsFersrvK10.1038/nature0863220010687
– reference: Saiya-CorkKRSinsabaughRLZakDRThe effects of long term nitrogen deposition on extracellular enzyme activities in an Acer saccharum forest soilSoil Biol. Biochem.200234130913141:CAS:528:DC%2BD38XlvVemu7w%3D10.1016/s0038-0717(02)00074-3
– reference: PoldGGrandyASMelilloJMDeAngelisKMChanges in substrate availability drive carbon cycle response to chronic warmingSoil Biol. Biochem.201711068781:CAS:528:DC%2BC2sXkvVWgsro%3D10.1016/j.soilbio.2017.03.002
– reference: LiYNiuSYuGAggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysisGlob. Change Biol.2016229349432016GCBio..22..934L10.1111/gcb.13125
– reference: GongSZhangTGuoJWarming and nitrogen deposition accelerate soil phosphorus cycling in a temperate meadow ecosystemSoil Res.2020581091:CAS:528:DC%2BB3cXjslaktQ%3D%3D10.1071/sr19114
– reference: ZhouJMicrobial mediation of carbon-cycle feedbacks to climate warmingNat. Clim. Change201121061102012NatCC...2..106Z1:CAS:528:DC%2BC38XhsVKntb0%3D10.1038/nclimate1331
– reference: ConantRTTemperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forwardGlob. Change Biol.201117339234042011GCBio..17.3392C10.1111/j.1365-2486.2011.02496.x
– reference: ZhouLInteractive effects of global change factors on soil respiration and its components: A meta-analysisGlob. Chang Biol.201622315731692016GCBio..22.3157Z10.1111/gcb.1325326896336
– reference: BaiEA meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamicsNew Phytol.20131994314401:CAS:528:DC%2BC3sXpvFars7g%3D10.1111/nph.12252
– reference: CanariniAKiærLPDijkstraFASoil carbon loss regulated by drought intensity and available substrate: A meta-analysisSoil Biol. Biochem.201711290991:CAS:528:DC%2BC2sXns1ynsLg%3D10.1016/j.soilbio.2017.04.020
– reference: MoriTDoes ecoenzymatic stoichiometry really determine microbial nutrient limitations?Soil Biol. Biochem.20201461078161:CAS:528:DC%2BB3cXosV2hsbg%3D10.1016/j.soilbio.2020.107816
– reference: LiJIrrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensitySci. Total Environ.20196462902992019ScTEn.646..290L1:CAS:528:DC%2BC1cXhtl2lsbvM10.1016/j.scitotenv.2018.07.29630055491
– reference: LiuLWarming and nitrogen fertilization effects on winter wheat yields in northern China varied between four yearsField Crop Res2013151566410.1016/j.fcr.2013.07.006
– reference: ChenJDifferential responses of carbon-degrading enzyme activities to warming: Implications for soil respirationGlob. Change Biol.201824481648262018GCBio..24.4816C10.1111/gcb.14394
– reference: ZhangCContrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical ChinaBiogeosciences201714481548272017BGeo...14.4815Z1:CAS:528:DC%2BC1cXisFSksbjP10.5194/bg-14-4815-2017
– reference: ZuccariniPAsensioDOgayaRSardansJPenuelasJEffects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrublandGlob. Change Biol.202026369837142020GCBio..26.3698Z10.1111/gcb.15077
– reference: JianSSoil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysisSoil Biol. Biochem.201610132431:CAS:528:DC%2BC28XhtFemsrvN10.1016/j.soilbio.2016.07.003
– reference: WangXSoil respiration under climate warming: Differential response of heterotrophic and autotrophic respirationGlob. Change Biol.201420322932372014GCBio..20.3229W10.1111/gcb.12620
– reference: MengCGlobal meta-analysis on the responses of soil extracellular enzyme activities to warmingSci. Total Environ.20207051359922020ScTEn.705m5992M1:CAS:528:DC%2BC1MXisVSktrbJ10.1016/j.scitotenv.2019.13599231841928
– reference: BradfordMAThermal adaptation of soil microbial respiration to elevated temperatureEcol. Lett.2008111316132710.1111/j.1461-0248.2008.01251.x19046360
– reference: Ciais, P., Sabine, C., Bala, G., Bopp, L. & Brovkin, V. Carbon and other biogeochemical cycles. In: Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 465–570 (2013).
– reference: Garcia-PalaciosPAre there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspectiveGlob. Change Biol.201521159016002015GCBio..21.1590G10.1111/gcb.12788
– reference: SinsabaughRLPhenol oxidase, peroxidase and organic matter dynamics of soilSoil Biol. Biochem.2010423914041:CAS:528:DC%2BC3cXhtVaqt74%3D10.1016/j.soilbio.2009.10.014
– volume: 11
  start-page: 1316
  year: 2008
  ident: 97231_CR8
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01251.x
– volume: 43
  start-page: 313
  year: 2012
  ident: 97231_CR18
  publication-title: Annu. Rev. Eco. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 24
  start-page: 4816
  year: 2018
  ident: 97231_CR23
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14394
– volume: 177
  start-page: 209
  year: 2008
  ident: 97231_CR43
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02237.x
– volume: 20
  start-page: 3229
  year: 2014
  ident: 97231_CR4
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12620
– volume: 705
  start-page: 135992
  year: 2020
  ident: 97231_CR24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135992
– volume: 21
  start-page: 1590
  year: 2015
  ident: 97231_CR9
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12788
– volume: 26
  start-page: 713
  year: 2017
  ident: 97231_CR32
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12576
– volume: 4
  start-page: 333
  year: 2013
  ident: 97231_CR2
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00333
– volume: 540
  start-page: 104
  year: 2016
  ident: 97231_CR34
  publication-title: Nature
  doi: 10.1038/nature20150
– volume: 646
  start-page: 290
  year: 2019
  ident: 97231_CR45
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.296
– volume: 34
  start-page: 1309
  year: 2002
  ident: 97231_CR46
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/s0038-0717(02)00074-3
– volume: 121
  start-page: 287
  year: 2014
  ident: 97231_CR22
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-0030-y
– volume: 26
  start-page: 1944
  year: 2020
  ident: 97231_CR10
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14986
– volume: 199
  start-page: 431
  year: 2013
  ident: 97231_CR37
  publication-title: New Phytol.
  doi: 10.1111/nph.12252
– volume: 462
  start-page: 795
  year: 2009
  ident: 97231_CR17
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 135
  start-page: 184
  year: 2019
  ident: 97231_CR35
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.04.020
– volume: 101
  start-page: 32
  year: 2016
  ident: 97231_CR31
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.003
– ident: 97231_CR1
  doi: 10.1017/CBO9781107415324.015
– volume: 194
  start-page: 775
  year: 2012
  ident: 97231_CR6
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04095.x
– volume: 58
  start-page: 109
  year: 2020
  ident: 97231_CR36
  publication-title: Soil Res.
  doi: 10.1071/sr19114
– volume: 94
  start-page: 726
  year: 2013
  ident: 97231_CR3
  publication-title: Ecology
  doi: 10.2307/23436275
– volume: 107
  start-page: 32
  year: 2017
  ident: 97231_CR40
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.026
– volume: 17
  start-page: 3392
  year: 2011
  ident: 97231_CR42
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02496.x
– volume: 151
  start-page: 56
  year: 2013
  ident: 97231_CR41
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2013.07.006
– volume: 22
  start-page: 3157
  year: 2016
  ident: 97231_CR12
  publication-title: Glob. Chang Biol.
  doi: 10.1111/gcb.13253
– volume: 58
  start-page: 216
  year: 2013
  ident: 97231_CR14
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.11.009
– volume: 12
  start-page: e0189908
  year: 2017
  ident: 97231_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189908
– volume-title: Identification of the Taxonomic Class of a Soil
  year: 2014
  ident: 97231_CR44
  doi: 10.1007/978-94-007-7420-9_5
– volume: 14
  start-page: 4815
  year: 2017
  ident: 97231_CR19
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-4815-2017
– year: 2020
  ident: 97231_CR33
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15218
– volume: 343
  start-page: 10
  year: 2019
  ident: 97231_CR20
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.017
– volume: 358
  start-page: 41
  year: 2017
  ident: 97231_CR38
  publication-title: Science
  doi: 10.1126/science.aap7325
– volume: 110
  start-page: 68
  year: 2017
  ident: 97231_CR27
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.03.002
– volume: 22
  start-page: 934
  year: 2016
  ident: 97231_CR30
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13125
– volume: 93
  start-page: 1
  year: 2016
  ident: 97231_CR16
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.10.019
– volume: 26
  start-page: 3698
  year: 2020
  ident: 97231_CR28
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15077
– volume: 123
  start-page: 21
  year: 2018
  ident: 97231_CR13
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.05.001
– volume: 358
  start-page: 101
  year: 2017
  ident: 97231_CR5
  publication-title: Science
  doi: 10.1126/science.aan2874
– volume: 18
  start-page: 2681
  year: 2012
  ident: 97231_CR39
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02745.x
– volume: 42
  start-page: 391
  year: 2010
  ident: 97231_CR15
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.10.014
– volume: 193
  start-page: 696
  year: 2012
  ident: 97231_CR29
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03967.x
– volume: 146
  start-page: 107816
  year: 2020
  ident: 97231_CR25
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107816
– year: 2020
  ident: 97231_CR11
  publication-title: Glob. Chang Biol.
  doi: 10.1111/gcb.15290
– volume: 112
  start-page: 90
  year: 2017
  ident: 97231_CR7
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.04.020
– volume: 2
  start-page: 106
  year: 2011
  ident: 97231_CR26
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1331
SSID ssj0000529419
Score 2.358937
Snippet The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under...
Abstract The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C)...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18542
SubjectTerms 631/45/607/1164
631/45/607/1167
631/45/607/731
704/47/4113
Acclimation
Acclimatization
Agricultural land
Climate change
Climate effects
Continuous cropping
Decomposition
Enzymatic activity
Fertilization
Global warming
Humanities and Social Sciences
Hydrolase
Lignin
Microbial activity
Microorganisms
Mineralization
multidisciplinary
Nitrogen
Organic matter
Phosphorus
Science
Science (multidisciplinary)
Soil microorganisms
Soils
Winter wheat
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSkhcEL8iUJCRuFGrG9tJ7CNUVBVCFQcq9WY5_mlXWiVod6ulL8Ez8Cw8GTNOdmkqARduUewkdvyNZ0ae-QbgTdWWXoWgeCS2W6XQ3XGC5ErWMiodUcXkANnT-uRMfTyvzm-U-qKYsIEeePhxh3UZS1VpfBVqk4Q7KTo0tS9dmYJpQ5vzyFHn3XCmBlZvYVRpxiyZmdSHK9RUlE1GEQkNGjW8mmiiTNg_sTJvx0jeOijN-uf4AdwfDUf2bhjwQ7gTu0dwdyglef0Yvn_quwtO-yzbOIpvufj5w3WBocQuewQJSxRAvRizLpnLYRzsiB-wU86o42fuPEUF45Ps8jos0eVdxdzSf5uHfO1zpQl0rdm8YxsimliyDW3mDLHcUy0wSr5iq36-eAJnxx--HJ3wsdYC91XZrDkxlcVZm4yrKm8iqnHZeCNllMELoxtTu2CS8MZEKaJofEqqSRrtpRBa5YV8Cntd38VnwGISws-c1CF55Zxp0QYI6BdFgd4TOvIFlNv_bv1IRE71MBY2H4hLbYe1srhWNq-VrQp4u3vm60DD8dfe72k5dz2JQjvfQGDZEVj2X8AqYH8LBjvK9criBocgRpWuCni9a0aJpGMW18X-KvdRaAaj5VtAMwHRZEDTlm5-mbm98c1ay1kBB1u4_f74nyf8_H9M-AXcEyQeVB-j2Ye99fIqvkSLa92-ysL1CyhlKGo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbx2AvY1fmrRsa7G0VjSU5sp5GW1bKGGUPK-RNyLqkgWC3dkrWH7H_vHMUJcWF9S1YkmP73HU-nUPIl6opnfResoDVbqWEcMdylCsxFUHWAUxMAsieT88u5I9ZNcsbbkOGVW51YlLUvnO4R34IrAXLQZnKb1fXDLtGYXY1t9B4TJ5g6TKEdKmZ2u2xYBZLljqflZmI-nAAe4VnyhCXoMC1YdXIHqWy_SNf8z5S8l66NFmh0xfkeXYf6dGG3i_Jo9C-Ik83DSVvX5O_P7t2zlDb0rVFlMuc2tZTENu-A06hEVHUy3z0ktqE5aAn7ICeszTxF7MOocG48PLW9xD3DiGNdH8WPv12qd0ExNd00dI1Vpvo6Ro1OoUv1GFDMDyBRYdusXxDLk6__z45Y7nhAnNVqVYMy5WFSRO1rSqnA9hyoZwWIgjvuK6VnlqvI3daB8EDVy5GqWINTpP3jXRcvCV7bdeGd4SGyLmbWFH76KS1ugFHwENwFDiEUBDNF6TcfnbjcjVybIqxNCkrLmqzIZUBUplEKlMV5OtuzdWmFseDs4-RmruZWEc7Xej6ucliaaZlKGVVA6OCrxLBTkO4PHWlLaPXjW9UQfa3vGCycA_mjhUL8nk3DGKJuRbbhu4mzZHgC4P7WxA14qHRA41H2sVlKvANd65rMSnIwZbb7v78_y_8_uFn_UCeceR7bH-h9sneqr8JH8GhWjWfktT8A73ZH1Y
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEB_OE8EX8S9WT4ngm1fcJmmbPOricYgcPnhwbyHNn72FpZXuHut9CT-Dn8VP5ky2Xemhgm9LM-l2NzOZmeY3vwF4XTaFk97LPBDbrZSY7lhOdiUqEaQK6GISQPasOj2XHy_KiwPgYy1MAu0nSsu0TY_osLdrdDRUDEaAghpjkry8BbeJup20el7N9-9V6ORKFnqoj5kJ9YepEx-UqPon8eVNdOSNI9LkeU7uw70hZGTvdg_5AA5C-xDu7JpIXj-C75-6dpHTDsu2lpAti58_bOsZ2mrfoXqwSNDp1VBvyWwCcLB5fszOckaCn3PrCA-MM9nlte8x2V2HNNJ9W_r02aUeE5hUs2XLtkQx0bMtbeMMtbijLmBUdsXW3XL1GM5PPnyZn-ZDl4XclUW9yYmjLMyaqG1ZOh3QgYvaaSGC8I5rVevKeh250zoIHnjtYpR1VBgped9Ix8UTOGy7NjwFFiLnbmaF8tFJa3WD3t9jRhQ45k2YwmdQjP-7cQMFOXXCWJl0FC6U2a2VwbUyaa1MmcGb_ZyvOwKOf0q_p-XcSxJ5drrQ9QszKJOpilDIUqF2YoAS0Tljjly5whbR68Y3dQZHozKYwaLXBrc2VF905jKDV_thtEU6YLFt6K6SjMQAGGPeDOqJEk0eaDrSLi8TqzfeWSkxy-B4VLffX_73H_zs_8Sfw11OhkA9MOojONz0V-EFRlWb5mUyo1-_zh5n
  priority: 102
  providerName: Springer Nature
Title Long-term warming and nitrogen fertilization affect C-, N- and P-acquiring hydrolase and oxidase activities in winter wheat monocropping soil
URI https://link.springer.com/article/10.1038/s41598-021-97231-5
https://www.proquest.com/docview/2573632844
https://www.proquest.com/docview/2574405508
https://pubmed.ncbi.nlm.nih.gov/PMC8448830
https://doaj.org/article/61e1458e03024f7185496c1a1fd9bdb7
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBf9w2AvY3-Zty5osLfVWyzJlvUwRhpaSthC2RbIm5ElOQ0Eu3NS0nyJfYZ9ln2y3cl2Rko32FOMdYpj3Z3ud9H9IeRNnEdGWCtCh9VuhQB3RzPUK55wJ1IHJsYHyI6T84kYTePpHunaHbULuLzTtcN-UpN68e7m--YjKPyHJmU8fb8EI4SJYhhsIAGvhPE-OQTLJFFRP7dwv6n1zZSIVJs7c_fUHfvky_jvYM_bkZO3jk-9VTp7SB60cJIOGv4_InuufEzuNQ0mN0_Ij09VOQtx96VrjVEvs18_dWkp6HFdgejQAsOqF20uJtU-uIMOw2M6DikSXoTaYKwwzKSXG1vDai2dH6lu5tZfG99_AhxuOi_pGstP1HSNWzwFCa-wQximZNFlNV88JZOz02_D87DtwBCaOJKrEOuXuX5eKB3HRjkw7lwaxbnj1jCVSpVoqwpmlHKcOSZNUQhZpICirM2FYfwZOSir0j0n1BWMmb7mqS2M0FrlgAwseEuOgU8F7n1Aom7dM9OWJ8cuGYvMH5PzNGt4lQGvMs-rLA7I2-2cq6Y4xz-pT5CdW0osrO1vVPUsa_U0SyIXiTgFyQXwUoDhBv85MZGOCqtym8uAHHXCkHXCmsG2B6INhl4E5PV2GPQUD1906aprTyMAHAMeDojcEaKdH7Q7Us4vfcVv-OY05f2AHHfi9ufhf3_hF_9H_pLcZ6gI2B9DHpGDVX3tXgHiWuU9si-nskcOB4PR1xF8npyOL77A3WEy7Pl_MXpe0X4Dik4t5A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqRBcUHkJQ4FFghO1Gq_XrwNCtLRKaYgq1Eq9LevddRopsouTKs2P4K_wG5lZ26lSid56i7y7jpN5feN5AXyI8kALY4RvqdutEOjuKE5yFcahFalFE-MSZEfx4Ex8P4_ON-BvVwtDaZWdTnSK2lSa3pHvImvhcVSm4svlb5-mRlF0tRuh0bDFsV0u0GWbfT76hvT9yPnhwen-wG-nCvg6CpK5Tz25bD8vMhVFOrNosMJEo1tvQ6M5euBZrExWcJ1lNuSWJ7ooRFKkiAyMyYWmRgeo8jdFiK5MDzb3DkYnP1dvdShuJoKsrc7ph-nuDC0kVbFRJkSCYMqP1iygGxSwhm5v52beCtA6u3e4BY9bwMq-Nhz2BDZs-RQeNCMsl8_gz7Aqxz7pd7ZQlFczZqo0DBVFXSFvsoLytqdtsSdTLnuE7fs7bOS7jSe-0pSMTAcvlqZGT3tm3Up1PTHus3YDLtCjZ5OSLai_Rc0WZEMY0qSiEWRU88Vm1WT6HM7uhRgvoFdWpX0JzBac674KU1NooVSWI_Qw6I5Zjk6bzbkHQfe3S932P6cxHFPp4vBhKhtSSSSVdKSSkQefVmcum-4fd-7eI2qudlLnbnehqseyVQQyDmwgohRFA9FRgcgAHfRYByooTJabPPFgu-MF2aqTmbxhfg_er5ZREVB0R5W2unJ7BKJvBNweJGs8tPZA6yvl5MK1FMc7p2nY92Cn47abL___D35197O-g4eD0x9DOTwaHb-GR5xkgIZvJNvQm9dX9g3CuXn-tpUhBr_uW2z_AZWdXbE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRSAuqLyE2wKLBCdqJV6vvfYBIWiJWlpFPVApt2W9jzRSZJc4VciP4A_x65hZ26lcid56i7y7jpN5feN5EfI-KSLNjeGhxW63nIO7oxjKVZzGlmcWTIxPkB2nxxf8-ySZbJG_XS0MplV2OtEralNpfEc-ANaC46BM-cC1aRHnR6PPV79CnCCFkdZunEbDIqd2vQL3rf50cgS0_sDY6NuPw-OwnTAQ6iQSyxD7c9lh4XKVJDq3YLxiocHFt7HRDLzxPFUmd0znuY2ZZUI7x4XLACUYU3CNTQ9A_T8QcRKhjImJ2LzfwQgaj_K2TmcYZ4MabCXWs2FOhABYFSY9W-hHBvRw7u0szVuhWm8BRzvkSQtd6ZeG156SLVs-Iw-bYZbr5-TPWVVOQ9T0dKUww2ZKVWkoqIxFBVxKHWZwz9uyT6p8Hgk9DA_oOPQbz0OlMS0ZD16uzQJ87tr6ler3zPjP2o-6AN-ezkq6wk4XC7pCa0KBIhUOI8PqL1pXs_kLcnEvpHhJtsuqtK8ItY4xPVRxZpzmSuUFgBADjpll4L7ZggUk6v52qdtO6DiQYy59RD7OZEMqCaSSnlQyCcjHzZmrpg_Inbu_IjU3O7GHt79QLaayVQkyjWzEkwyEBHCSA4wArnqqIxU5kxemEAHZ73hBtoqlljdiEJB3m2VQCRjnUaWtrv0eDjgcoHdARI-Heg_UXylnl765ONw5y-JhQA46brv58v__4N27n_UteQTCKs9Oxqd75DFDEcApHGKfbC8X1_Y14Lpl8cYLECU_71ti_wHlqGCB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+warming%C2%A0and+nitrogen+fertilization+affect+C-%2C+N-+and+P-acquiring+hydrolase+and+oxidase+activities+in+winter+wheat+monocropping+soil&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Chuang&rft.au=Dong%2C+Wenxu&rft.au=Manevski%2C+Kiril&rft.au=Hu%2C+Wenpei&rft.date=2021-09-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-97231-5&rft.externalDocID=10_1038_s41598_021_97231_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon