Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy

Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacan...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 1664 - 9
Main Authors Dou, Yuhai, He, Chun-Ting, Zhang, Lei, Yin, Huajie, Al-Mamun, Mohammad, Ma, Jianmin, Zhao, Huijun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.04.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe 2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe 2 -D Fe –V Co exhibits much higher catalytic activity than other defect-activated CoSe 2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co 2 site that is adjacent to the V Co -nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co 2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔE OH ) without changing ΔE O , and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions. While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe 2  for oxygen evolution reaction.
AbstractList Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe2-DFe–VCo exhibits much higher catalytic activity than other defect-activated CoSe2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co2 site that is adjacent to the VCo-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔEOH) without changing ΔEO, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe2 for oxygen evolution reaction.
While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe2 for oxygen evolution reaction.
Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe 2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe 2 -D Fe –V Co exhibits much higher catalytic activity than other defect-activated CoSe 2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co 2 site that is adjacent to the V Co -nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co 2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔE OH ) without changing ΔE O , and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.
Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe2-DFe-VCo exhibits much higher catalytic activity than other defect-activated CoSe2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co2 site that is adjacent to the VCo-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔEOH) without changing ΔEO, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe2-DFe-VCo exhibits much higher catalytic activity than other defect-activated CoSe2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co2 site that is adjacent to the VCo-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔEOH) without changing ΔEO, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.
Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe 2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe 2 -D Fe –V Co exhibits much higher catalytic activity than other defect-activated CoSe 2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co 2 site that is adjacent to the V Co -nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co 2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔE OH ) without changing ΔE O , and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions. While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe 2  for oxygen evolution reaction.
ArticleNumber 1664
Author Zhao, Huijun
Ma, Jianmin
Dou, Yuhai
Yin, Huajie
He, Chun-Ting
Zhang, Lei
Al-Mamun, Mohammad
Author_xml – sequence: 1
  givenname: Yuhai
  orcidid: 0000-0003-2549-1400
  surname: Dou
  fullname: Dou, Yuhai
  organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University
– sequence: 2
  givenname: Chun-Ting
  surname: He
  fullname: He, Chun-Ting
  organization: Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University
– sequence: 4
  givenname: Huajie
  orcidid: 0000-0002-9036-9084
  surname: Yin
  fullname: Yin, Huajie
  organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University
– sequence: 5
  givenname: Mohammad
  orcidid: 0000-0001-8201-4278
  surname: Al-Mamun
  fullname: Al-Mamun, Mohammad
  organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University
– sequence: 6
  givenname: Jianmin
  surname: Ma
  fullname: Ma, Jianmin
  organization: School of Physics and Electronics, Hunan University
– sequence: 7
  givenname: Huijun
  orcidid: 0000-0002-3028-0459
  surname: Zhao
  fullname: Zhao, Huijun
  email: h.zhao@griffith.edu.au
  organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Centre for Environmental and Energy Nanomaterials, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences
BookMark eNp9ks1u1DAUhSNUREvpC7CyxIZNwH-J7Q1SNaJQqRILumFlOc51xqOMPdhJ1Hl7kkkRtIt6Y8v-zrnXV-dtcRZigKJ4T_Angpn8nDnhtSgxxSWpuJIlflVcUMxJSQRlZ_-dz4urnHd4XkwRyfmb4pxRyislxUXx6_pwSNHYrQ8dGraAjB385Icj6v3eDyg6tIk_gSIXE4oPxw4Cgin24-BjQJM36AZQGw-L3IR2htFkrAn2-K547Uyf4epxvyzub77eb76Xdz--3W6u70pbETGUpAEwQtkaM0Glk9ZZYIIwQ6xhSrXEUFWztrGyxVA5JRvhsGSOWM4wx-yyuF1t22h2-pD83qSjjsbr00VMnTZp8LYH3SjBFVYWOLhZiY1ypJJEOmgVrQmfvb6sXoex2UNrIQzJ9E9Mn74Ev9VdnLQgtKJsaebjo0GKv0fIg977bKHvTYA4Zk2ZrKlUktUz-uEZuotjCvOkThSrRM3kTMmVsinmnMBp6wezzH6u73tNsF7SoNc06DkN-pQGvfRCn0n__uNFEVtFeYZDB-lfVy-o_gCIysbw
CitedBy_id crossref_primary_10_1039_D1DT00857A
crossref_primary_10_1016_j_cej_2021_130686
crossref_primary_10_1016_j_jallcom_2022_166586
crossref_primary_10_1002_adfm_202101239
crossref_primary_10_1016_j_cej_2020_127319
crossref_primary_10_1038_s41467_021_22996_2
crossref_primary_10_1016_j_xcrp_2022_100811
crossref_primary_10_1016_j_cej_2022_139781
crossref_primary_10_1016_j_ces_2021_117241
crossref_primary_10_1039_D0TA09946E
crossref_primary_10_1002_adfm_202200663
crossref_primary_10_1002_smll_202301279
crossref_primary_10_1039_D1TA04032D
crossref_primary_10_1039_D3CC03483F
crossref_primary_10_1002_adma_202408787
crossref_primary_10_1016_j_carbon_2023_118709
crossref_primary_10_1002_cey2_485
crossref_primary_10_1016_j_apcatb_2024_124838
crossref_primary_10_1016_j_jcis_2022_05_037
crossref_primary_10_1021_acsami_1c09084
crossref_primary_10_1016_j_jre_2024_06_035
crossref_primary_10_1002_adma_202104667
crossref_primary_10_1016_j_apcatb_2024_124157
crossref_primary_10_1007_s12274_023_5917_2
crossref_primary_10_1016_j_colsurfa_2022_130682
crossref_primary_10_1016_j_fuel_2025_134811
crossref_primary_10_1016_j_mtchem_2022_101110
crossref_primary_10_1002_aesr_202200044
crossref_primary_10_1016_j_seppur_2021_118965
crossref_primary_10_1039_D1QI01419F
crossref_primary_10_1016_j_nanoen_2024_110294
crossref_primary_10_1002_aenm_202204019
crossref_primary_10_1016_j_jechem_2021_12_028
crossref_primary_10_1002_cssc_202301779
crossref_primary_10_1016_j_apcatb_2023_122488
crossref_primary_10_1016_j_nanoms_2024_01_011
crossref_primary_10_1021_jacs_1c03510
crossref_primary_10_1016_j_enchem_2023_100104
crossref_primary_10_1016_j_nantod_2023_101883
crossref_primary_10_1039_D1TA05731F
crossref_primary_10_1016_j_gee_2022_02_014
crossref_primary_10_1021_acsaem_1c00212
crossref_primary_10_1039_D1TA08679K
crossref_primary_10_1002_adma_202405129
crossref_primary_10_1002_smll_202006766
crossref_primary_10_1002_sstr_202000067
crossref_primary_10_1039_D4NR01805B
crossref_primary_10_1016_j_jechem_2020_10_022
crossref_primary_10_1016_j_jechem_2023_01_062
crossref_primary_10_1021_acsaem_3c02299
crossref_primary_10_1021_acscatal_2c03476
crossref_primary_10_1016_j_cej_2023_141674
crossref_primary_10_1016_j_jcis_2022_01_111
crossref_primary_10_1016_j_apcatb_2020_119718
crossref_primary_10_1038_s41467_023_37597_4
crossref_primary_10_1039_D2NR02568J
crossref_primary_10_1021_acs_langmuir_4c03299
crossref_primary_10_1021_acscatal_2c06067
crossref_primary_10_1016_j_cej_2024_154235
crossref_primary_10_1016_j_jpowsour_2024_234621
crossref_primary_10_1007_s40843_022_2415_8
crossref_primary_10_1039_D1NR03283F
crossref_primary_10_1002_smll_202207096
crossref_primary_10_1021_acsami_2c14318
crossref_primary_10_1021_acscatal_2c03189
crossref_primary_10_1002_smll_202100129
crossref_primary_10_1016_j_cej_2021_131576
crossref_primary_10_1039_D2SE00886F
crossref_primary_10_1002_smll_202408792
crossref_primary_10_1016_j_inoche_2022_109918
crossref_primary_10_1039_D1CS00330E
crossref_primary_10_1039_D3QM00841J
crossref_primary_10_1016_j_ijhydene_2020_09_097
crossref_primary_10_1007_s12598_022_02168_x
crossref_primary_10_1007_s40843_020_1566_6
crossref_primary_10_1039_D1EE03610F
crossref_primary_10_1039_D0EE03500A
crossref_primary_10_1016_j_ijhydene_2023_04_271
crossref_primary_10_1021_acsanm_4c00742
crossref_primary_10_1016_j_apcatb_2024_123830
crossref_primary_10_1016_j_fuel_2024_133314
crossref_primary_10_1016_j_cej_2023_143715
crossref_primary_10_1016_j_apcatb_2020_119178
crossref_primary_10_1039_D0TA05038E
crossref_primary_10_1039_D0CC05247G
crossref_primary_10_1039_D1TA07644B
crossref_primary_10_1002_smtd_202301676
crossref_primary_10_1016_j_apsusc_2022_154950
crossref_primary_10_1016_j_ijhydene_2024_08_221
crossref_primary_10_1021_acs_inorgchem_1c00620
crossref_primary_10_1021_acssuschemeng_2c00449
crossref_primary_10_1002_adfm_202316440
crossref_primary_10_1016_j_jpowsour_2021_230946
crossref_primary_10_1039_D4SE01469C
crossref_primary_10_1016_j_xcrp_2020_100077
crossref_primary_10_1016_j_jpowsour_2024_234288
crossref_primary_10_1002_ange_202017016
crossref_primary_10_1016_j_electacta_2024_145604
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_3390_en15134645
crossref_primary_10_1002_cey2_573
crossref_primary_10_1002_smll_202002888
crossref_primary_10_1002_aenm_202302532
crossref_primary_10_1016_j_apcatb_2020_119758
crossref_primary_10_1002_smll_202202725
crossref_primary_10_1002_anie_202017016
crossref_primary_10_1016_j_jallcom_2023_169941
crossref_primary_10_1002_adfm_202417098
crossref_primary_10_1016_j_nanoen_2024_110089
crossref_primary_10_1016_j_jcis_2021_12_148
crossref_primary_10_1021_acs_inorgchem_1c00649
crossref_primary_10_1016_j_jelechem_2021_115928
crossref_primary_10_1039_D0TA10370E
crossref_primary_10_1039_D2TA05532E
crossref_primary_10_1039_D3CY00456B
crossref_primary_10_1016_j_jallcom_2022_165719
crossref_primary_10_1039_D2CC03630D
crossref_primary_10_1002_adfm_202009070
crossref_primary_10_1002_advs_202105313
crossref_primary_10_1002_celc_202201087
crossref_primary_10_1016_j_cej_2021_130165
crossref_primary_10_1039_D0TA03007D
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1007_s12274_022_5111_y
crossref_primary_10_1038_s41557_024_01598_7
crossref_primary_10_1016_j_jechem_2021_03_045
crossref_primary_10_1002_cssc_202002624
crossref_primary_10_1002_aenm_202203595
crossref_primary_10_1039_D1QI01185E
crossref_primary_10_1039_D0TA08631B
crossref_primary_10_1021_acscatal_4c03974
crossref_primary_10_1002_adfm_202301526
crossref_primary_10_1002_adfm_202209753
crossref_primary_10_1021_acs_chemrev_1c00636
crossref_primary_10_1039_D1QM00161B
crossref_primary_10_1002_ente_202301574
crossref_primary_10_1016_j_colsurfa_2024_135053
crossref_primary_10_1016_j_ensm_2023_102890
crossref_primary_10_1039_D1CC02189C
crossref_primary_10_1021_acsnano_2c11448
crossref_primary_10_1002_ange_202419083
crossref_primary_10_1016_j_cej_2021_129982
crossref_primary_10_1016_j_cjche_2021_09_026
crossref_primary_10_1016_j_ijhydene_2023_01_277
crossref_primary_10_1016_j_jallcom_2025_178588
crossref_primary_10_1002_cey2_528
crossref_primary_10_1039_D2CC02947B
crossref_primary_10_1021_acs_inorgchem_4c02603
crossref_primary_10_1038_s41467_023_36263_z
crossref_primary_10_1021_jacs_3c03214
crossref_primary_10_1002_tcr_202200149
crossref_primary_10_1016_j_ijhydene_2024_02_201
crossref_primary_10_1016_j_ccr_2025_216496
crossref_primary_10_1021_acsami_4c04160
crossref_primary_10_1002_elsa_202100052
crossref_primary_10_1016_j_cej_2022_138514
crossref_primary_10_1021_acs_analchem_1c04785
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1016_j_mtener_2022_101005
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_1016_j_apsusc_2020_148818
crossref_primary_10_1021_acsanm_2c04680
crossref_primary_10_1016_j_ijhydene_2023_10_070
crossref_primary_10_1039_D0SE01087A
crossref_primary_10_1021_acsami_2c05977
crossref_primary_10_1016_j_ijhydene_2024_01_077
crossref_primary_10_1016_j_jcis_2021_09_097
crossref_primary_10_1007_s12274_021_3444_6
crossref_primary_10_1016_j_microc_2024_111305
crossref_primary_10_1016_j_ijhydene_2023_04_247
crossref_primary_10_1016_j_jpowsour_2023_232700
crossref_primary_10_1007_s11708_024_0961_5
crossref_primary_10_1016_j_susc_2024_122691
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1039_D3EE01723K
crossref_primary_10_1016_j_jcis_2023_05_192
crossref_primary_10_1126_sciadv_adh2885
crossref_primary_10_1016_j_nanoen_2020_105531
crossref_primary_10_1016_j_xcrp_2021_100331
crossref_primary_10_1021_acs_inorgchem_4c00568
crossref_primary_10_1016_j_apcatb_2023_123391
crossref_primary_10_1002_smll_202108097
crossref_primary_10_1002_adfm_202109556
crossref_primary_10_1007_s12274_023_6104_1
crossref_primary_10_1016_j_apcatb_2022_122101
crossref_primary_10_1016_j_jallcom_2021_161929
crossref_primary_10_1080_16583655_2022_2148841
crossref_primary_10_1016_j_matchemphys_2024_129661
crossref_primary_10_1039_D2QI01470J
crossref_primary_10_1016_j_fuel_2024_132050
crossref_primary_10_1016_j_ijhydene_2024_08_296
crossref_primary_10_1007_s40820_020_00526_x
crossref_primary_10_1016_j_jmst_2021_08_083
crossref_primary_10_1016_j_cej_2023_142224
crossref_primary_10_1021_acscatal_2c02489
crossref_primary_10_1016_j_apcatb_2024_124073
crossref_primary_10_1039_D0CC05656A
crossref_primary_10_1002_advs_202200341
crossref_primary_10_1016_S1872_2067_21_63918_9
crossref_primary_10_3389_fceng_2021_703812
crossref_primary_10_1007_s11705_021_2062_x
crossref_primary_10_1016_j_mtnano_2023_100330
crossref_primary_10_1002_ange_202106857
crossref_primary_10_1039_D2QI01047J
crossref_primary_10_1039_D3CC00815K
crossref_primary_10_1016_j_electacta_2023_142891
crossref_primary_10_1016_j_cej_2023_143301
crossref_primary_10_1016_j_xcrp_2020_100232
crossref_primary_10_1002_adma_202306844
crossref_primary_10_1039_D0DT04179C
crossref_primary_10_1016_j_jcis_2025_01_005
crossref_primary_10_1021_acssuschemeng_2c02571
crossref_primary_10_1002_chem_202300398
crossref_primary_10_1021_acs_inorgchem_3c04498
crossref_primary_10_1002_anie_202419083
crossref_primary_10_1021_acsami_4c06141
crossref_primary_10_1021_acs_inorgchem_0c03771
crossref_primary_10_1016_j_jpowsour_2021_229895
crossref_primary_10_1039_D4CC00866A
crossref_primary_10_1002_anie_202106857
crossref_primary_10_1002_smll_202310396
crossref_primary_10_1016_j_aca_2024_342952
crossref_primary_10_1002_adma_202303107
crossref_primary_10_1039_D1EE02249K
crossref_primary_10_1002_smll_202205719
crossref_primary_10_1016_j_ccr_2022_214984
crossref_primary_10_1039_D1TA03604A
crossref_primary_10_1016_j_apcatb_2024_124779
crossref_primary_10_1080_14328917_2023_2213493
crossref_primary_10_1016_j_catcom_2023_106830
crossref_primary_10_1016_j_gee_2024_02_005
crossref_primary_10_1039_D0TA05117A
crossref_primary_10_1002_aenm_202100332
crossref_primary_10_1021_acsnano_3c00893
crossref_primary_10_1016_j_jallcom_2024_174987
crossref_primary_10_1016_j_cej_2024_155923
crossref_primary_10_1039_D4CC00623B
crossref_primary_10_1002_aenm_202300765
crossref_primary_10_1016_j_ensm_2021_06_043
Cites_doi 10.1021/jp711929d
10.1002/aenm.201501835
10.1002/anie.201701531
10.1021/acs.chemrev.7b00689
10.1039/c3nr00476g
10.2138/am.2010.3468
10.1021/nn500880v
10.1021/ja5085157
10.1038/s41467-017-01949-8
10.1038/s41467-019-09845-z
10.1021/jacs.8b05134
10.1021/jacs.5b03868
10.1002/anie.201609080
10.1039/C6TA09959A
10.1016/j.electacta.2018.01.211
10.1103/PhysRevB.13.5188
10.1021/acsami.7b08917
10.1126/science.aaf1525
10.1002/adma.201606793
10.1021/acs.accounts.8b00449
10.1016/j.jcis.2018.06.061
10.1038/s41467-018-04954-7
10.1021/ja211526y
10.1038/s41467-017-01872-y
10.1021/acscatal.8b01332
10.1073/pnas.1620787114
10.1038/s41929-018-0203-5
10.1038/s41929-018-0063-z
10.1002/adfm.201706008
10.1002/smll.201401423
10.1016/j.electacta.2015.05.186
10.1002/cctc.201000397
10.1021/acsami.8b16072
10.1103/PhysRevLett.77.3865
10.1021/jacs.5b00281
10.1002/anie.201505245
10.1039/C6CS00328A
10.1021/ja900506x
10.1021/jacs.7b07117
10.1016/j.nanoen.2018.12.063
10.1021/ja511559d
10.1021/ja405997s
10.1039/C4CC04922E
10.1107/S1600577518005799
10.1021/acsami.7b10402
10.1038/s41929-019-0325-4
10.1103/PhysRevB.41.7892
10.1524/zkri.220.5.567.65075
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-15498-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_b974909ce4ef4030a9f15818fed92614
PMC7125230
10_1038_s41467_020_15498_0
GrantInformation_xml – fundername: 1. Australian Research Councile (Discovery Project) DP200100965 2.Griffith University Postdoctoral Fellowship YUDOU 036 Research Internal
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-1beea79c603728f8cfce3713a1ca399d1a2963dbc8d0e5f98b7f083f1c430403
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:01 EDT 2025
Thu Aug 21 18:05:52 EDT 2025
Thu Jul 10 22:57:57 EDT 2025
Wed Aug 13 07:01:15 EDT 2025
Tue Jul 01 04:08:53 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 21 02:40:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-1beea79c603728f8cfce3713a1ca399d1a2963dbc8d0e5f98b7f083f1c430403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9036-9084
0000-0001-8201-4278
0000-0002-3028-0459
0000-0003-2549-1400
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15498-0
PMID 32245987
PQID 2386357638
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b974909ce4ef4030a9f15818fed92614
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7125230
proquest_miscellaneous_2386289836
proquest_journals_2386357638
crossref_citationtrail_10_1038_s41467_020_15498_0
crossref_primary_10_1038_s41467_020_15498_0
springer_journals_10_1038_s41467_020_15498_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-03
PublicationDateYYYYMMDD 2020-04-03
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zheng (CR13) 2018; 9
Zhang (CR8) 2017; 9
Zhang (CR26) 2017; 29
Pan, Yang, Fu, Zhang, Xu (CR4) 2013; 5
Yan (CR5) 2019; 10
Suen (CR1) 2017; 46
Zhao (CR20) 2017; 56
Gao, Yao, Yao, Yu (CR9) 2009; 131
Lesnyak, Brescia, Messina, Manna (CR16) 2015; 137
Monkhorst, Park (CR46) 1976; 13
Valdés, Qu, Kroes, Rossmeisl, Nørskov (CR48) 2008; 112
Xu (CR25) 2018; 530
Vanderbilt (CR44) 1990; 41
Burke (CR39) 2015; 137
Zhang (CR41) 2016; 352
Qiu (CR42) 2018; 28
Jin (CR3) 2018; 118
Gao (CR24) 2014; 8
Friebel (CR37) 2015; 137
Stevens (CR10) 2017; 139
Wu (CR2) 2019; 2
Perdew, Burke, Ernzerhof (CR45) 1996; 77
Zheng (CR18) 2015; 11
Xu, Cheng, Cao, Zeng (CR47) 2018; 1
Dou (CR15) 2016; 6
Guo (CR31) 2017; 56
Clark (CR43) 2005; 220
Zhou (CR19) 2017; 9
Jiang, He, Zhang, Song (CR30) 2018; 51
Gao, Xu, Jiang, Zheng, Yu (CR28) 2012; 134
Li (CR7) 2015; 174
Xiao, Lu, Zhao (CR27) 2014; 50
Gui (CR14) 2019; 57
Zhang (CR32) 2010; 95
Peng (CR6) 2018; 140
Chang, Zhang, Yu, Yu, Zhang (CR11) 2018; 10
Li (CR29) 2017; 114
Man (CR38) 2011; 3
Liang (CR23) 2015; 54
Liu (CR12) 2014; 136
Cheng (CR34) 2018; 25
Li (CR22) 2018; 265
Cao (CR35) 2019; 2
Jin (CR21) 2017; 5
Ling (CR33) 2017; 8
Bajdich, García-Mota, Vojvodic, Nørskov, Bell (CR36) 2013; 135
Zhou (CR17) 2018; 8
Smith (CR40) 2017; 8
C Guo (15498_CR31) 2017; 56
IC Man (15498_CR38) 2011; 3
M Bajdich (15498_CR36) 2013; 135
H Jin (15498_CR3) 2018; 118
T Ling (15498_CR33) 2017; 8
H Jiang (15498_CR30) 2018; 51
J-Y Zhang (15498_CR8) 2017; 9
T Wu (15498_CR2) 2019; 2
D Friebel (15498_CR37) 2015; 137
YR Zheng (15498_CR18) 2015; 11
Q Zhou (15498_CR17) 2018; 8
SJ Clark (15498_CR43) 2005; 220
A Chang (15498_CR11) 2018; 10
L Cao (15498_CR35) 2019; 2
B Zhang (15498_CR41) 2016; 352
H Xu (15498_CR47) 2018; 1
Á Valdés (15498_CR48) 2008; 112
V Lesnyak (15498_CR16) 2015; 137
Y Gui (15498_CR14) 2019; 57
Y Zhou (15498_CR19) 2017; 9
Y Dou (15498_CR15) 2016; 6
S Peng (15498_CR6) 2018; 140
C Xiao (15498_CR27) 2014; 50
H Xu (15498_CR25) 2018; 530
HJ Monkhorst (15498_CR46) 1976; 13
N Li (15498_CR29) 2017; 114
Y Liu (15498_CR12) 2014; 136
H Jin (15498_CR21) 2017; 5
JP Perdew (15498_CR45) 1996; 77
YR Zheng (15498_CR13) 2018; 9
L Zhang (15498_CR26) 2017; 29
D Vanderbilt (15498_CR44) 1990; 41
NT Suen (15498_CR1) 2017; 46
MR Gao (15498_CR9) 2009; 131
L Liang (15498_CR23) 2015; 54
MR Gao (15498_CR28) 2012; 134
X Pan (15498_CR4) 2013; 5
MS Burke (15498_CR39) 2015; 137
B Qiu (15498_CR42) 2018; 28
MR Gao (15498_CR24) 2014; 8
S Zhang (15498_CR32) 2010; 95
H Li (15498_CR7) 2015; 174
J Yan (15498_CR5) 2019; 10
MB Stevens (15498_CR10) 2017; 139
X Zhao (15498_CR20) 2017; 56
RDL Smith (15498_CR40) 2017; 8
J Li (15498_CR22) 2018; 265
J Cheng (15498_CR34) 2018; 25
References_xml – volume: 112
  start-page: 9872
  year: 2008
  end-page: 9879
  ident: CR48
  article-title: Oxidation and photo-oxidation of water on TiO surface
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711929d
– volume: 6
  start-page: 1501835
  year: 2016
  ident: CR15
  article-title: Atomic layer-by-layer Co O /graphene composite for high performance lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501835
– volume: 56
  start-page: 8539
  year: 2017
  end-page: 8543
  ident: CR31
  article-title: Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701531
– volume: 118
  start-page: 6337
  year: 2018
  end-page: 6408
  ident: CR3
  article-title: Emerging two-dimensional nanomaterials for electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00689
– volume: 5
  start-page: 3601
  year: 2013
  end-page: 3614
  ident: CR4
  article-title: Defective TiO with oxygen vacancies: synthesis, properties and photocatalytic applications
  publication-title: Nanoscale
  doi: 10.1039/c3nr00476g
– volume: 95
  start-page: 1741
  year: 2010
  end-page: 1746
  ident: CR32
  article-title: Determination of manganese valence states in (Mn , Mn ) minerals by electron energy-loss spectroscopy
  publication-title: Am. Mineral.
  doi: 10.2138/am.2010.3468
– volume: 8
  start-page: 3970
  year: 2014
  end-page: 3978
  ident: CR24
  article-title: CoSe nanobelts composite catalyst for efficient water oxidation
  publication-title: ACS Nano
  doi: 10.1021/nn500880v
– volume: 136
  start-page: 15670
  year: 2014
  end-page: 15675
  ident: CR12
  article-title: Low overpotential in vacancy-rich ultrathin CoSe nanosheets for water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5085157
– volume: 8
  year: 2017
  ident: CR40
  article-title: Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01949-8
– volume: 10
  year: 2019
  ident: CR5
  article-title: Single atom tungsten doped ultrathin α-Ni(OH) for enhanced electrocatalytic water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09845-z
– volume: 140
  start-page: 13644
  year: 2018
  end-page: 13653
  ident: CR6
  article-title: Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05134
– volume: 137
  start-page: 9315
  year: 2015
  end-page: 9323
  ident: CR16
  article-title: Cu vacancies boost cation exchange reactions in copper selenide nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03868
– volume: 56
  start-page: 328
  year: 2017
  end-page: 332
  ident: CR20
  article-title: Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201609080
– volume: 5
  start-page: 1078
  year: 2017
  end-page: 1084
  ident: CR21
  article-title: Fe incorporated α-Co(OH) nanosheets with remarkably improved activity towards the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09959A
– volume: 265
  start-page: 577
  year: 2018
  end-page: 585
  ident: CR22
  article-title: Fe-doped CoSe nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.211
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR46
  article-title: Special points for Brillouin-zone intergrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 9
  start-page: 33833
  year: 2017
  end-page: 33840
  ident: CR8
  article-title: Rational design of cobalt-iron selenides for highly efficient electrochemical water oxidation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08917
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: CR41
  article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 29
  start-page: 1606793
  year: 2017
  ident: CR26
  article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606793
– volume: 51
  start-page: 2968
  year: 2018
  end-page: 2977
  ident: CR30
  article-title: Structural self-reconstruction of catalysts in electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00449
– volume: 530
  start-page: 58
  year: 2018
  end-page: 66
  ident: CR25
  article-title: Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.06.061
– volume: 9
  year: 2018
  ident: CR13
  article-title: Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04954-7
– volume: 134
  start-page: 2930
  year: 2012
  end-page: 2933
  ident: CR28
  article-title: Water oxidation electrocatalyzed by an efficient Mn O /CoSe nanocomposite
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211526y
– volume: 8
  year: 2017
  ident: CR33
  article-title: Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01872-y
– volume: 8
  start-page: 5382
  year: 2018
  end-page: 5390
  ident: CR17
  article-title: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01332
– volume: 114
  start-page: 1486
  year: 2017
  end-page: 1491
  ident: CR29
  article-title: Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620787114
– volume: 2
  start-page: 134
  year: 2019
  ident: CR35
  article-title: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0203-5
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: CR47
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 28
  start-page: 1706008
  year: 2018
  ident: CR42
  article-title: Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706008
– volume: 11
  start-page: 182
  year: 2015
  end-page: 188
  ident: CR18
  article-title: An efficient CeO /CoSe nanobelt composite for electrochemical water oxidation
  publication-title: Small
  doi: 10.1002/smll.201401423
– volume: 174
  start-page: 297
  year: 2015
  end-page: 301
  ident: CR7
  article-title: Fe-doped CoSe nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.186
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  ident: CR38
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 10
  start-page: 41861
  year: 2018
  end-page: 41865
  ident: CR11
  article-title: Plasma-assisted synthesis of NiSe ultrathin porous nanosheets with selenium vacancies for supercapacitor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16072
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: CR43
  article-title: First principles methods using CASTEP
  publication-title: Z. Kristallogr.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR45
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 137
  start-page: 3638
  year: 2015
  end-page: 3648
  ident: CR39
  article-title: Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00281
– volume: 54
  start-page: 12004
  year: 2015
  end-page: 12008
  ident: CR23
  article-title: Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505245
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: CR1
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 131
  start-page: 7486
  year: 2009
  end-page: 7487
  ident: CR9
  article-title: Synthesis of unique ultrathin lamellar mesostructured CoSe -amine (protonated) nanobelts in a binary solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900506x
– volume: 139
  start-page: 11361
  year: 2017
  end-page: 11364
  ident: CR10
  article-title: Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07117
– volume: 57
  start-page: 371
  year: 2019
  end-page: 378
  ident: CR14
  article-title: Manipulating the assembled structure of atomically thin CoSe nanomaterials for enhanced water oxidation catalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.063
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  ident: CR37
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 135
  start-page: 13521
  year: 2013
  end-page: 13530
  ident: CR36
  article-title: Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405997s
– volume: 50
  start-page: 10122
  year: 2014
  end-page: 10125
  ident: CR27
  article-title: Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co O for enhanced oxygen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04922E
– volume: 25
  start-page: 1123
  year: 2018
  ident: CR34
  article-title: Enhanced insulating behavior in the Ir-vacant Sr Ir O system dominated by the local structure distortion
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577518005799
– volume: 9
  start-page: 30880
  year: 2017
  end-page: 30890
  ident: CR19
  article-title: Co O @(Fe-doped)Co(OH) microfibers: facile synthesis, oriented-assembly, formation mechanism, and high electrocatalytic activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10402
– volume: 2
  start-page: 763
  year: 2019
  end-page: 772
  ident: CR2
  article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: CR44
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 139
  start-page: 11361
  year: 2017
  ident: 15498_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07117
– volume: 25
  start-page: 1123
  year: 2018
  ident: 15498_CR34
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577518005799
– volume: 10
  year: 2019
  ident: 15498_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09845-z
– volume: 6
  start-page: 1501835
  year: 2016
  ident: 15498_CR15
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501835
– volume: 95
  start-page: 1741
  year: 2010
  ident: 15498_CR32
  publication-title: Am. Mineral.
  doi: 10.2138/am.2010.3468
– volume: 54
  start-page: 12004
  year: 2015
  ident: 15498_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505245
– volume: 8
  start-page: 3970
  year: 2014
  ident: 15498_CR24
  publication-title: ACS Nano
  doi: 10.1021/nn500880v
– volume: 8
  year: 2017
  ident: 15498_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01949-8
– volume: 9
  start-page: 30880
  year: 2017
  ident: 15498_CR19
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10402
– volume: 220
  start-page: 567
  year: 2005
  ident: 15498_CR43
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 530
  start-page: 58
  year: 2018
  ident: 15498_CR25
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.06.061
– volume: 265
  start-page: 577
  year: 2018
  ident: 15498_CR22
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.211
– volume: 77
  start-page: 3865
  year: 1996
  ident: 15498_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 56
  start-page: 328
  year: 2017
  ident: 15498_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201609080
– volume: 51
  start-page: 2968
  year: 2018
  ident: 15498_CR30
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00449
– volume: 118
  start-page: 6337
  year: 2018
  ident: 15498_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00689
– volume: 50
  start-page: 10122
  year: 2014
  ident: 15498_CR27
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04922E
– volume: 2
  start-page: 134
  year: 2019
  ident: 15498_CR35
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0203-5
– volume: 3
  start-page: 1159
  year: 2011
  ident: 15498_CR38
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 57
  start-page: 371
  year: 2019
  ident: 15498_CR14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.063
– volume: 1
  start-page: 339
  year: 2018
  ident: 15498_CR47
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 11
  start-page: 182
  year: 2015
  ident: 15498_CR18
  publication-title: Small
  doi: 10.1002/smll.201401423
– volume: 352
  start-page: 333
  year: 2016
  ident: 15498_CR41
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 8
  year: 2017
  ident: 15498_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01872-y
– volume: 8
  start-page: 5382
  year: 2018
  ident: 15498_CR17
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01332
– volume: 56
  start-page: 8539
  year: 2017
  ident: 15498_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701531
– volume: 174
  start-page: 297
  year: 2015
  ident: 15498_CR7
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.186
– volume: 5
  start-page: 3601
  year: 2013
  ident: 15498_CR4
  publication-title: Nanoscale
  doi: 10.1039/c3nr00476g
– volume: 2
  start-page: 763
  year: 2019
  ident: 15498_CR2
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 136
  start-page: 15670
  year: 2014
  ident: 15498_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5085157
– volume: 46
  start-page: 337
  year: 2017
  ident: 15498_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 137
  start-page: 9315
  year: 2015
  ident: 15498_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03868
– volume: 13
  start-page: 5188
  year: 1976
  ident: 15498_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 9
  year: 2018
  ident: 15498_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04954-7
– volume: 9
  start-page: 33833
  year: 2017
  ident: 15498_CR8
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08917
– volume: 41
  start-page: 7892
  year: 1990
  ident: 15498_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 140
  start-page: 13644
  year: 2018
  ident: 15498_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05134
– volume: 137
  start-page: 1305
  year: 2015
  ident: 15498_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 131
  start-page: 7486
  year: 2009
  ident: 15498_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900506x
– volume: 29
  start-page: 1606793
  year: 2017
  ident: 15498_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606793
– volume: 135
  start-page: 13521
  year: 2013
  ident: 15498_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405997s
– volume: 137
  start-page: 3638
  year: 2015
  ident: 15498_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00281
– volume: 28
  start-page: 1706008
  year: 2018
  ident: 15498_CR42
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706008
– volume: 112
  start-page: 9872
  year: 2008
  ident: 15498_CR48
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711929d
– volume: 134
  start-page: 2930
  year: 2012
  ident: 15498_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211526y
– volume: 10
  start-page: 41861
  year: 2018
  ident: 15498_CR11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16072
– volume: 5
  start-page: 1078
  year: 2017
  ident: 15498_CR21
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09959A
– volume: 114
  start-page: 1486
  year: 2017
  ident: 15498_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620787114
SSID ssj0000391844
Score 2.6663606
Snippet Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the...
While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states....
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1664
SubjectTerms 147/137
147/3
639/301/299/886
639/4077/909
639/638/161/886
639/925/357
Carbon dioxide
Catalysis
Catalysts
Catalytic activity
Chemical reactions
Cobalt
Doping
Electrochemistry
Electron states
Electronic structure
Energy
Evolution
Humanities and Social Sciences
Iron
multidisciplinary
Oxygen
Oxygen evolution reactions
Science
Science (multidisciplinary)
Transmission electron microscopy
Vacancies
Voltammetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEB5EELzIrrrYVZcI3rSYNv2RHFV8iKAXFdxTSNIJK0i76POh__1O0r63VnC97LVJaDv5JvmGZL4B2Edu0NnKpl75Mi1ya1LllUqFkrnJLdrahUThy6vq_La4uCvv3pT6CnfCenng3nBHlgiv4sphgb4gRBrls5J2GY-NIvYflUBpz3sTTMU1WCgKXYohS4YLefRUxDUhREtBlUymfLQTRcH-Ect8f0fy3UFp3H8mX2BtII7suP_gr7CE7Tqs9KUkXzfg5_EgDk6DGZE6FhIWQl0I9hBSmFjn2Wl3jTkjksq6l1fCDcPZgDs2uzdsgqyJ2VPMtA11ZjPjwtK7CTeTs5vT83Qom5C6MqunaWYRTa1cxUWdSy-ddygoFjWZM0RHmszk5HWNdbLhWHolbe2JiPnMFYJcWnyD5bZrcQtYJYqy4dbnvEaiVZU1nNhSE6pYiaxSZQLZ3ILaDZLiobLFg45H20Lq3uqarK6j1TVP4GAx5ncvqPHP3idhYhY9gxh2fEAQ0QNE9GcQSWBnPq168NAnTVQlSPHR8pPA3qKZfCscmJgWu-e-DwWkUlQJ1CM4jD5o3NLe_4oq3TVRR4rvEjicA-fvyz_-4e__44e3YTUPQA8XjMQOLE8fn3GXuNPU_ohu8gedmhNy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIn7haJYI3Dc1usrvJSWrxWQS9WKGeQj61UHbbvteH_e-dyea9sgV73Z2w2WQm85sk8xtC3kVuo3edY0mnlsnGWaaT1kxo1djGRdd7TBT-9r07_Cm_HrfHZcNtWa5VbtbEvFCH0eMe-R64FqROA3X5eHbOsGoUnq6WEhp3yb0aPA1e6VKLL9s9FmQ_V1KWXBku1N5S5pUBYybkJlOMz_xRpu2fYc2bNyVvHJdmL7R4RB4W-Ej3p_l-TO7E4Qm5PxWUvHpKfu0XinBoTAHaUUxbwOoQ9BQTmeiY6MH4IzYUoCod_16B9tC4LtpH1yeWLiINOYeK2iGAMF1bjwvwM3K0-Hx0cMhK8QTm27pfsdrFaHvtOy76RiXlk48CIlJbewugJNS2AdsLzqvAY5u0cn0COJZqLwUYtnhOdoZxiC8I7YRsA3ep4X0EcNU5ywEzBaxlJepOtxWpNyNofCEWx_oWpyYfcAtlplE3MOomj7rhFXm_bXM20WrcKv0JJ2YriZTY-cF48dsUCzMOIiPNtY8yJug_tzrVLcCRFIOGMFFWZHczrabY6dJca1VF3m5fg4XhsYkd4ng5yUBYqkRXkX6mDrMOzd8MJ38yV3cPABKivIp82CjO9cf__8Mvb-_rK_KgQRXGC0Ril-ysLi7ja8BGK_cmG8A_o7sLjA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB1CQqGX0k_qNi0K9NaaypJsS8dt6BIWmktSSE9CkqU2EOyQbJbm33cky1sc2kCu1gjLoxnpjaV5A_DBU-OdbWwZVKhLwawpVVCq5Eoyw6y3rYuJwt-Om6PvYnVWn-0Am3Jh0qX9RGmZlunpdtjna5FcOgY7kVRMlhim70WqdrTtvcVidbLa_lmJnOdSiJwhQ7n8R-fZLpTI-mcI8-79yDuHpGnvWT6FJxk0ksU4zGew4_vn8GgsI3n7An4sMjE4diYI6EhMVog1IchFTF8iQyCHw4lnBAEqGX7fos0Qv8k2Rzbnhiw96VLmFDF9h8JkY1xcdl_C6fLr6eFRmUsmlK6u2nVZWe9Nq1xDectkkC44zzEONZUzCEW6yjD0uM462VFfByVtGxCEhcoJju7MX8FuP_T-NZCGi7qjNjDaeoRUjTUUkVIXK1jxqlF1AdWkQe0ynXisanGh07E2l3rUukat66R1TQv4uO1zOZJp3Cv9JU7MVjISYacHw9VPnQ1DW4yHFFXOCx9w_NSoUNUIQoLvFAaHooD9aVp19s5rjTAl0vDh0lPAwbYZ_SoelpjeDzejDAajkjcFtDNzmA1o3tKf_0oM3S3CRoztCvg0Gc7fl___g988TPwtPGbRpOM1Ir4Pu-urG_8OEdLavs8u8QdPWgqf
  priority: 102
  providerName: Springer Nature
Title Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy
URI https://link.springer.com/article/10.1038/s41467-020-15498-0
https://www.proquest.com/docview/2386357638
https://www.proquest.com/docview/2386289836
https://pubmed.ncbi.nlm.nih.gov/PMC7125230
https://doaj.org/article/b974909ce4ef4030a9f15818fed92614
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTaC9IH6KjFEZiTcIJHES2w8IddXKVGkTYptUnizbsWFSlbCuq9b_nrOTFDoNHnhJJMeWndyd_X2x7w7gjU2UNbrUsROuiPNMq1g4IWIqeKYybTUz3lH4-KQ8Os8n02K6BX26o-4DXt1J7Xw-qfP57P3N5eoTGvzH1mWcf7jKg7l7IuQDjvEYKfwOrkzMZzQ47uB-mJmpQEKTd74zdzfdhQeo43kh_CG7P5aqENF_A4bePkR5ayc1LFDjR_CwQ5Zk2KrCY9iy9RO43-aaXD2Fb8Muejg2Joj6iPdo8IkjyMz7OJHGkVFzajOCKJY0NytULGKXnWKS5YUiY0uq4F5FVF1hZbJUxs_Nz-BsfHg2Ooq7vAqxKVK2iFNtrWLClAllGXfcOGMpklWVGoV4pUpVhmZZacOrxBZOcM0cIjWXmpyizdPnsF03tX0BpKR5USXaZQmziLtKrRKEU5VPc0XTUhQRpP0XlKaLOe5TX8xk2PumXLYCkCgAGQQgkwjertv8bCNu_LP2gRfMuqaPlh0Kmvl32Rmf1EiaRCKMza3D8SdKuLRApOJsJZBB5hHs92KVvQZKxDI-Vh_OTxG8Xj9G4_M7Kqq2zXVbBxkrp2UEbEMdNga0-aS--BHCeDPElkgAI3jXK87vzv_-wnv_3dFL2M28ovtjR3Qfthfza_sKEdVCD-AemzK88vHnAewMh5PTCd4PDk--fMXSUTkahH8Vg2BOvwA-FCK6
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDASnCCqE-flA0KlsGzp48IilZNlOzZUqpLS3S7sj-I_MuMkW20leus1cRJn_HnmG9szA_DKce2sKUzspc_jLDU6ll7KWMgq1alxprQUKHxwWIy_ZV-O8qM1-DvEwtCxykEnBkVdt5bWyLfQtFDqNITL-9NfMVWNot3VoYRGB4s9t_iNLtv03e5HHN_XaTr6NNkZx31VgdjmSTmLE-OcLqUtuCjTylfWWyfQVdOJ1Wit60SnCMra2KrmLveyMqVHnuITm6HrzwW-9gbczAQacgpMH31eLulQsvUqy_rQHC6qrWkWFBG5aJQKrYr5ivkLVQJWqO3lg5mXdmeD0Rvdg7s9W2XbHbzuw5prHsCtrn7l4iF83-4zkuPDDJkkoygJKkbBTihuirWe7bRfXcqQGbP2zwLByty8BzubH2s2cqwOIVtMNzU2ZnNtSd8_gsl1SPUxrDdt4zaAFSLLa258ykuHXK4wmiNFq6l0lkgKmUeQDBJUts9jTuU0TlTYTxeV6qSuUOoqSF3xCN4snzntsnhc2foDDcyyJWXgDhfasx-qn9DKoCMmubQucx77z7X0SY7sx7taoleaRbA5DKvq1cJUXYA4gpfL2zihaZdGN64979qgF1yJIoJyBQ4rHVq90xz_DKnBS-Sr6FRG8HYAzsXH___DT67u6wu4PZ4c7Kv93cO9p3AnJTjT2SWxCeuzs3P3DGnZzDwPk4GBuubJ9w9es0gy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81UMBIcIKojvP0AaG-Vi2FVQVFKifLdmyoVCWlu13Yn8a_YyaPrVKJ3npNnMQZfzP-xvbMALx2XDtrMhN66dMwEUaH0ksZxrIQWhhnckuBwp8n2d635ONxerwCf_tYGDpW2dvExlCXtaU18g2cWih1GsJlw3fHIg53xh_OfoVUQYp2WvtyGi1EDtziN7pv0_f7OzjWb4QY7x5t74VdhYHQplE-CyPjnM6lzXici8IX1lsXo9umI6tx5i4jLRCgpbFFyV3qZWFyj5zFRzaJEf0xvvYWrObkFI1gdWt3cvhlucBDqdeLJOkCdTj2e5o0ZokcNkqMVoR8MBk2NQMGRPfqMc0re7XNFDi-D_c67so2W7A9gBVXPYTbbTXLxSP4vtnlJ8eHGfJKRjETVJqCnVIUFas9266_OsGQJ7P6zwKhy9y8gz6bn2g2dqxsAriYrkpszObakvV_DEc3IdcnMKrqyq0By-IkLbnxgucOmV1mNEfCVlIhrTjKZBpA1EtQ2S6rORXXOFXN7npcqFbqCqWuGqkrHsDb5TNnbU6Pa1tv0cAsW1I-7uZCff5DdeqtDLplkkvrEuex_1xLH6XIhbwrJfqoSQDr_bCqzkhM1SWkA3i1vI3qTXs2unL1RdsGfeIizgLIB3AYdGh4pzr52SQKz5G9oosZwLseOJcf__8PP72-ry_hDiqe-rQ_OXgGdwWhmQ4yxeswmp1fuOfI0WbmRacNDNQN698_QY9NxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+activity+limit+of+CoSe2+for+oxygen+evolution+via+Fe+doping+and+Co+vacancy&rft.jtitle=Nature+communications&rft.au=Dou%2C+Yuhai&rft.au=He%2C+Chun-Ting&rft.au=Zhang%2C+Lei&rft.au=Yin%2C+Huajie&rft.date=2020-04-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-15498-0&rft_id=info%3Apmid%2F32245987&rft.externalDocID=PMC7125230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon