Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy
Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacan...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 1664 - 9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.04.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe
2
nanobelts for /coxygen evolution catalysis, and the resulted CoSe
2
-D
Fe
–V
Co
exhibits much higher catalytic activity than other defect-activated CoSe
2
and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co
2
site that is adjacent to the V
Co
-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co
2
to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔE
OH
) without changing ΔE
O
, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.
While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe
2
for oxygen evolution reaction. |
---|---|
AbstractList | Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe2-DFe–VCo exhibits much higher catalytic activity than other defect-activated CoSe2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co2 site that is adjacent to the VCo-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔEOH) without changing ΔEO, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe2 for oxygen evolution reaction. While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe2 for oxygen evolution reaction. Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe 2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe 2 -D Fe –V Co exhibits much higher catalytic activity than other defect-activated CoSe 2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co 2 site that is adjacent to the V Co -nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co 2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔE OH ) without changing ΔE O , and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions. Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe2-DFe-VCo exhibits much higher catalytic activity than other defect-activated CoSe2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co2 site that is adjacent to the VCo-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔEOH) without changing ΔEO, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions.Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe2-DFe-VCo exhibits much higher catalytic activity than other defect-activated CoSe2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co2 site that is adjacent to the VCo-nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔEOH) without changing ΔEO, and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions. Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the electronic structure, and therefore optimal electronic states are hard to be achieved. In this work, we incorporate both Fe dopants and Co vacancies into atomically thin CoSe 2 nanobelts for /coxygen evolution catalysis, and the resulted CoSe 2 -D Fe –V Co exhibits much higher catalytic activity than other defect-activated CoSe 2 and previously reported FeCo compounds. Deep characterizations and theoretical calculations identify the most active center of Co 2 site that is adjacent to the V Co -nearest surface Fe site. Fe doping and Co vacancy synergistically tune the electronic states of Co 2 to a near-optimal value, resulting in greatly decreased binding energy of OH* (ΔE OH ) without changing ΔE O , and consequently lowering the catalytic overpotential. The proper combination of multiple defect structures is promising to unlock the catalytic power of different catalysts for various electrochemical reactions. While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states. Here, authors demonstrate that Fe doping and Co vacancy work synergistically to approach the activity limit of CoSe 2 for oxygen evolution reaction. |
ArticleNumber | 1664 |
Author | Zhao, Huijun Ma, Jianmin Dou, Yuhai Yin, Huajie He, Chun-Ting Zhang, Lei Al-Mamun, Mohammad |
Author_xml | – sequence: 1 givenname: Yuhai orcidid: 0000-0003-2549-1400 surname: Dou fullname: Dou, Yuhai organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University – sequence: 2 givenname: Chun-Ting surname: He fullname: He, Chun-Ting organization: Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University – sequence: 4 givenname: Huajie orcidid: 0000-0002-9036-9084 surname: Yin fullname: Yin, Huajie organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University – sequence: 5 givenname: Mohammad orcidid: 0000-0001-8201-4278 surname: Al-Mamun fullname: Al-Mamun, Mohammad organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University – sequence: 6 givenname: Jianmin surname: Ma fullname: Ma, Jianmin organization: School of Physics and Electronics, Hunan University – sequence: 7 givenname: Huijun orcidid: 0000-0002-3028-0459 surname: Zhao fullname: Zhao, Huijun email: h.zhao@griffith.edu.au organization: Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Centre for Environmental and Energy Nanomaterials, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences |
BookMark | eNp9ks1u1DAUhSNUREvpC7CyxIZNwH-J7Q1SNaJQqRILumFlOc51xqOMPdhJ1Hl7kkkRtIt6Y8v-zrnXV-dtcRZigKJ4T_Angpn8nDnhtSgxxSWpuJIlflVcUMxJSQRlZ_-dz4urnHd4XkwRyfmb4pxRyislxUXx6_pwSNHYrQ8dGraAjB385Icj6v3eDyg6tIk_gSIXE4oPxw4Cgin24-BjQJM36AZQGw-L3IR2htFkrAn2-K547Uyf4epxvyzub77eb76Xdz--3W6u70pbETGUpAEwQtkaM0Glk9ZZYIIwQ6xhSrXEUFWztrGyxVA5JRvhsGSOWM4wx-yyuF1t22h2-pD83qSjjsbr00VMnTZp8LYH3SjBFVYWOLhZiY1ypJJEOmgVrQmfvb6sXoex2UNrIQzJ9E9Mn74Ev9VdnLQgtKJsaebjo0GKv0fIg977bKHvTYA4Zk2ZrKlUktUz-uEZuotjCvOkThSrRM3kTMmVsinmnMBp6wezzH6u73tNsF7SoNc06DkN-pQGvfRCn0n__uNFEVtFeYZDB-lfVy-o_gCIysbw |
CitedBy_id | crossref_primary_10_1039_D1DT00857A crossref_primary_10_1016_j_cej_2021_130686 crossref_primary_10_1016_j_jallcom_2022_166586 crossref_primary_10_1002_adfm_202101239 crossref_primary_10_1016_j_cej_2020_127319 crossref_primary_10_1038_s41467_021_22996_2 crossref_primary_10_1016_j_xcrp_2022_100811 crossref_primary_10_1016_j_cej_2022_139781 crossref_primary_10_1016_j_ces_2021_117241 crossref_primary_10_1039_D0TA09946E crossref_primary_10_1002_adfm_202200663 crossref_primary_10_1002_smll_202301279 crossref_primary_10_1039_D1TA04032D crossref_primary_10_1039_D3CC03483F crossref_primary_10_1002_adma_202408787 crossref_primary_10_1016_j_carbon_2023_118709 crossref_primary_10_1002_cey2_485 crossref_primary_10_1016_j_apcatb_2024_124838 crossref_primary_10_1016_j_jcis_2022_05_037 crossref_primary_10_1021_acsami_1c09084 crossref_primary_10_1016_j_jre_2024_06_035 crossref_primary_10_1002_adma_202104667 crossref_primary_10_1016_j_apcatb_2024_124157 crossref_primary_10_1007_s12274_023_5917_2 crossref_primary_10_1016_j_colsurfa_2022_130682 crossref_primary_10_1016_j_fuel_2025_134811 crossref_primary_10_1016_j_mtchem_2022_101110 crossref_primary_10_1002_aesr_202200044 crossref_primary_10_1016_j_seppur_2021_118965 crossref_primary_10_1039_D1QI01419F crossref_primary_10_1016_j_nanoen_2024_110294 crossref_primary_10_1002_aenm_202204019 crossref_primary_10_1016_j_jechem_2021_12_028 crossref_primary_10_1002_cssc_202301779 crossref_primary_10_1016_j_apcatb_2023_122488 crossref_primary_10_1016_j_nanoms_2024_01_011 crossref_primary_10_1021_jacs_1c03510 crossref_primary_10_1016_j_enchem_2023_100104 crossref_primary_10_1016_j_nantod_2023_101883 crossref_primary_10_1039_D1TA05731F crossref_primary_10_1016_j_gee_2022_02_014 crossref_primary_10_1021_acsaem_1c00212 crossref_primary_10_1039_D1TA08679K crossref_primary_10_1002_adma_202405129 crossref_primary_10_1002_smll_202006766 crossref_primary_10_1002_sstr_202000067 crossref_primary_10_1039_D4NR01805B crossref_primary_10_1016_j_jechem_2020_10_022 crossref_primary_10_1016_j_jechem_2023_01_062 crossref_primary_10_1021_acsaem_3c02299 crossref_primary_10_1021_acscatal_2c03476 crossref_primary_10_1016_j_cej_2023_141674 crossref_primary_10_1016_j_jcis_2022_01_111 crossref_primary_10_1016_j_apcatb_2020_119718 crossref_primary_10_1038_s41467_023_37597_4 crossref_primary_10_1039_D2NR02568J crossref_primary_10_1021_acs_langmuir_4c03299 crossref_primary_10_1021_acscatal_2c06067 crossref_primary_10_1016_j_cej_2024_154235 crossref_primary_10_1016_j_jpowsour_2024_234621 crossref_primary_10_1007_s40843_022_2415_8 crossref_primary_10_1039_D1NR03283F crossref_primary_10_1002_smll_202207096 crossref_primary_10_1021_acsami_2c14318 crossref_primary_10_1021_acscatal_2c03189 crossref_primary_10_1002_smll_202100129 crossref_primary_10_1016_j_cej_2021_131576 crossref_primary_10_1039_D2SE00886F crossref_primary_10_1002_smll_202408792 crossref_primary_10_1016_j_inoche_2022_109918 crossref_primary_10_1039_D1CS00330E crossref_primary_10_1039_D3QM00841J crossref_primary_10_1016_j_ijhydene_2020_09_097 crossref_primary_10_1007_s12598_022_02168_x crossref_primary_10_1007_s40843_020_1566_6 crossref_primary_10_1039_D1EE03610F crossref_primary_10_1039_D0EE03500A crossref_primary_10_1016_j_ijhydene_2023_04_271 crossref_primary_10_1021_acsanm_4c00742 crossref_primary_10_1016_j_apcatb_2024_123830 crossref_primary_10_1016_j_fuel_2024_133314 crossref_primary_10_1016_j_cej_2023_143715 crossref_primary_10_1016_j_apcatb_2020_119178 crossref_primary_10_1039_D0TA05038E crossref_primary_10_1039_D0CC05247G crossref_primary_10_1039_D1TA07644B crossref_primary_10_1002_smtd_202301676 crossref_primary_10_1016_j_apsusc_2022_154950 crossref_primary_10_1016_j_ijhydene_2024_08_221 crossref_primary_10_1021_acs_inorgchem_1c00620 crossref_primary_10_1021_acssuschemeng_2c00449 crossref_primary_10_1002_adfm_202316440 crossref_primary_10_1016_j_jpowsour_2021_230946 crossref_primary_10_1039_D4SE01469C crossref_primary_10_1016_j_xcrp_2020_100077 crossref_primary_10_1016_j_jpowsour_2024_234288 crossref_primary_10_1002_ange_202017016 crossref_primary_10_1016_j_electacta_2024_145604 crossref_primary_10_1002_aenm_202202317 crossref_primary_10_3390_en15134645 crossref_primary_10_1002_cey2_573 crossref_primary_10_1002_smll_202002888 crossref_primary_10_1002_aenm_202302532 crossref_primary_10_1016_j_apcatb_2020_119758 crossref_primary_10_1002_smll_202202725 crossref_primary_10_1002_anie_202017016 crossref_primary_10_1016_j_jallcom_2023_169941 crossref_primary_10_1002_adfm_202417098 crossref_primary_10_1016_j_nanoen_2024_110089 crossref_primary_10_1016_j_jcis_2021_12_148 crossref_primary_10_1021_acs_inorgchem_1c00649 crossref_primary_10_1016_j_jelechem_2021_115928 crossref_primary_10_1039_D0TA10370E crossref_primary_10_1039_D2TA05532E crossref_primary_10_1039_D3CY00456B crossref_primary_10_1016_j_jallcom_2022_165719 crossref_primary_10_1039_D2CC03630D crossref_primary_10_1002_adfm_202009070 crossref_primary_10_1002_advs_202105313 crossref_primary_10_1002_celc_202201087 crossref_primary_10_1016_j_cej_2021_130165 crossref_primary_10_1039_D0TA03007D crossref_primary_10_1039_D3TA04947G crossref_primary_10_1007_s12274_022_5111_y crossref_primary_10_1038_s41557_024_01598_7 crossref_primary_10_1016_j_jechem_2021_03_045 crossref_primary_10_1002_cssc_202002624 crossref_primary_10_1002_aenm_202203595 crossref_primary_10_1039_D1QI01185E crossref_primary_10_1039_D0TA08631B crossref_primary_10_1021_acscatal_4c03974 crossref_primary_10_1002_adfm_202301526 crossref_primary_10_1002_adfm_202209753 crossref_primary_10_1021_acs_chemrev_1c00636 crossref_primary_10_1039_D1QM00161B crossref_primary_10_1002_ente_202301574 crossref_primary_10_1016_j_colsurfa_2024_135053 crossref_primary_10_1016_j_ensm_2023_102890 crossref_primary_10_1039_D1CC02189C crossref_primary_10_1021_acsnano_2c11448 crossref_primary_10_1002_ange_202419083 crossref_primary_10_1016_j_cej_2021_129982 crossref_primary_10_1016_j_cjche_2021_09_026 crossref_primary_10_1016_j_ijhydene_2023_01_277 crossref_primary_10_1016_j_jallcom_2025_178588 crossref_primary_10_1002_cey2_528 crossref_primary_10_1039_D2CC02947B crossref_primary_10_1021_acs_inorgchem_4c02603 crossref_primary_10_1038_s41467_023_36263_z crossref_primary_10_1021_jacs_3c03214 crossref_primary_10_1002_tcr_202200149 crossref_primary_10_1016_j_ijhydene_2024_02_201 crossref_primary_10_1016_j_ccr_2025_216496 crossref_primary_10_1021_acsami_4c04160 crossref_primary_10_1002_elsa_202100052 crossref_primary_10_1016_j_cej_2022_138514 crossref_primary_10_1021_acs_analchem_1c04785 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1016_j_mtener_2022_101005 crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_1016_j_apsusc_2020_148818 crossref_primary_10_1021_acsanm_2c04680 crossref_primary_10_1016_j_ijhydene_2023_10_070 crossref_primary_10_1039_D0SE01087A crossref_primary_10_1021_acsami_2c05977 crossref_primary_10_1016_j_ijhydene_2024_01_077 crossref_primary_10_1016_j_jcis_2021_09_097 crossref_primary_10_1007_s12274_021_3444_6 crossref_primary_10_1016_j_microc_2024_111305 crossref_primary_10_1016_j_ijhydene_2023_04_247 crossref_primary_10_1016_j_jpowsour_2023_232700 crossref_primary_10_1007_s11708_024_0961_5 crossref_primary_10_1016_j_susc_2024_122691 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1039_D3EE01723K crossref_primary_10_1016_j_jcis_2023_05_192 crossref_primary_10_1126_sciadv_adh2885 crossref_primary_10_1016_j_nanoen_2020_105531 crossref_primary_10_1016_j_xcrp_2021_100331 crossref_primary_10_1021_acs_inorgchem_4c00568 crossref_primary_10_1016_j_apcatb_2023_123391 crossref_primary_10_1002_smll_202108097 crossref_primary_10_1002_adfm_202109556 crossref_primary_10_1007_s12274_023_6104_1 crossref_primary_10_1016_j_apcatb_2022_122101 crossref_primary_10_1016_j_jallcom_2021_161929 crossref_primary_10_1080_16583655_2022_2148841 crossref_primary_10_1016_j_matchemphys_2024_129661 crossref_primary_10_1039_D2QI01470J crossref_primary_10_1016_j_fuel_2024_132050 crossref_primary_10_1016_j_ijhydene_2024_08_296 crossref_primary_10_1007_s40820_020_00526_x crossref_primary_10_1016_j_jmst_2021_08_083 crossref_primary_10_1016_j_cej_2023_142224 crossref_primary_10_1021_acscatal_2c02489 crossref_primary_10_1016_j_apcatb_2024_124073 crossref_primary_10_1039_D0CC05656A crossref_primary_10_1002_advs_202200341 crossref_primary_10_1016_S1872_2067_21_63918_9 crossref_primary_10_3389_fceng_2021_703812 crossref_primary_10_1007_s11705_021_2062_x crossref_primary_10_1016_j_mtnano_2023_100330 crossref_primary_10_1002_ange_202106857 crossref_primary_10_1039_D2QI01047J crossref_primary_10_1039_D3CC00815K crossref_primary_10_1016_j_electacta_2023_142891 crossref_primary_10_1016_j_cej_2023_143301 crossref_primary_10_1016_j_xcrp_2020_100232 crossref_primary_10_1002_adma_202306844 crossref_primary_10_1039_D0DT04179C crossref_primary_10_1016_j_jcis_2025_01_005 crossref_primary_10_1021_acssuschemeng_2c02571 crossref_primary_10_1002_chem_202300398 crossref_primary_10_1021_acs_inorgchem_3c04498 crossref_primary_10_1002_anie_202419083 crossref_primary_10_1021_acsami_4c06141 crossref_primary_10_1021_acs_inorgchem_0c03771 crossref_primary_10_1016_j_jpowsour_2021_229895 crossref_primary_10_1039_D4CC00866A crossref_primary_10_1002_anie_202106857 crossref_primary_10_1002_smll_202310396 crossref_primary_10_1016_j_aca_2024_342952 crossref_primary_10_1002_adma_202303107 crossref_primary_10_1039_D1EE02249K crossref_primary_10_1002_smll_202205719 crossref_primary_10_1016_j_ccr_2022_214984 crossref_primary_10_1039_D1TA03604A crossref_primary_10_1016_j_apcatb_2024_124779 crossref_primary_10_1080_14328917_2023_2213493 crossref_primary_10_1016_j_catcom_2023_106830 crossref_primary_10_1016_j_gee_2024_02_005 crossref_primary_10_1039_D0TA05117A crossref_primary_10_1002_aenm_202100332 crossref_primary_10_1021_acsnano_3c00893 crossref_primary_10_1016_j_jallcom_2024_174987 crossref_primary_10_1016_j_cej_2024_155923 crossref_primary_10_1039_D4CC00623B crossref_primary_10_1002_aenm_202300765 crossref_primary_10_1016_j_ensm_2021_06_043 |
Cites_doi | 10.1021/jp711929d 10.1002/aenm.201501835 10.1002/anie.201701531 10.1021/acs.chemrev.7b00689 10.1039/c3nr00476g 10.2138/am.2010.3468 10.1021/nn500880v 10.1021/ja5085157 10.1038/s41467-017-01949-8 10.1038/s41467-019-09845-z 10.1021/jacs.8b05134 10.1021/jacs.5b03868 10.1002/anie.201609080 10.1039/C6TA09959A 10.1016/j.electacta.2018.01.211 10.1103/PhysRevB.13.5188 10.1021/acsami.7b08917 10.1126/science.aaf1525 10.1002/adma.201606793 10.1021/acs.accounts.8b00449 10.1016/j.jcis.2018.06.061 10.1038/s41467-018-04954-7 10.1021/ja211526y 10.1038/s41467-017-01872-y 10.1021/acscatal.8b01332 10.1073/pnas.1620787114 10.1038/s41929-018-0203-5 10.1038/s41929-018-0063-z 10.1002/adfm.201706008 10.1002/smll.201401423 10.1016/j.electacta.2015.05.186 10.1002/cctc.201000397 10.1021/acsami.8b16072 10.1103/PhysRevLett.77.3865 10.1021/jacs.5b00281 10.1002/anie.201505245 10.1039/C6CS00328A 10.1021/ja900506x 10.1021/jacs.7b07117 10.1016/j.nanoen.2018.12.063 10.1021/ja511559d 10.1021/ja405997s 10.1039/C4CC04922E 10.1107/S1600577518005799 10.1021/acsami.7b10402 10.1038/s41929-019-0325-4 10.1103/PhysRevB.41.7892 10.1524/zkri.220.5.567.65075 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-15498-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_b974909ce4ef4030a9f15818fed92614 PMC7125230 10_1038_s41467_020_15498_0 |
GrantInformation_xml | – fundername: 1. Australian Research Councile (Discovery Project) DP200100965 2.Griffith University Postdoctoral Fellowship YUDOU 036 Research Internal – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-1beea79c603728f8cfce3713a1ca399d1a2963dbc8d0e5f98b7f083f1c430403 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:01 EDT 2025 Thu Aug 21 18:05:52 EDT 2025 Thu Jul 10 22:57:57 EDT 2025 Wed Aug 13 07:01:15 EDT 2025 Tue Jul 01 04:08:53 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-1beea79c603728f8cfce3713a1ca399d1a2963dbc8d0e5f98b7f083f1c430403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9036-9084 0000-0001-8201-4278 0000-0002-3028-0459 0000-0003-2549-1400 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15498-0 |
PMID | 32245987 |
PQID | 2386357638 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b974909ce4ef4030a9f15818fed92614 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7125230 proquest_miscellaneous_2386289836 proquest_journals_2386357638 crossref_citationtrail_10_1038_s41467_020_15498_0 crossref_primary_10_1038_s41467_020_15498_0 springer_journals_10_1038_s41467_020_15498_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-03 |
PublicationDateYYYYMMDD | 2020-04-03 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zheng (CR13) 2018; 9 Zhang (CR8) 2017; 9 Zhang (CR26) 2017; 29 Pan, Yang, Fu, Zhang, Xu (CR4) 2013; 5 Yan (CR5) 2019; 10 Suen (CR1) 2017; 46 Zhao (CR20) 2017; 56 Gao, Yao, Yao, Yu (CR9) 2009; 131 Lesnyak, Brescia, Messina, Manna (CR16) 2015; 137 Monkhorst, Park (CR46) 1976; 13 Valdés, Qu, Kroes, Rossmeisl, Nørskov (CR48) 2008; 112 Xu (CR25) 2018; 530 Vanderbilt (CR44) 1990; 41 Burke (CR39) 2015; 137 Zhang (CR41) 2016; 352 Qiu (CR42) 2018; 28 Jin (CR3) 2018; 118 Gao (CR24) 2014; 8 Friebel (CR37) 2015; 137 Stevens (CR10) 2017; 139 Wu (CR2) 2019; 2 Perdew, Burke, Ernzerhof (CR45) 1996; 77 Zheng (CR18) 2015; 11 Xu, Cheng, Cao, Zeng (CR47) 2018; 1 Dou (CR15) 2016; 6 Guo (CR31) 2017; 56 Clark (CR43) 2005; 220 Zhou (CR19) 2017; 9 Jiang, He, Zhang, Song (CR30) 2018; 51 Gao, Xu, Jiang, Zheng, Yu (CR28) 2012; 134 Li (CR7) 2015; 174 Xiao, Lu, Zhao (CR27) 2014; 50 Gui (CR14) 2019; 57 Zhang (CR32) 2010; 95 Peng (CR6) 2018; 140 Chang, Zhang, Yu, Yu, Zhang (CR11) 2018; 10 Li (CR29) 2017; 114 Man (CR38) 2011; 3 Liang (CR23) 2015; 54 Liu (CR12) 2014; 136 Cheng (CR34) 2018; 25 Li (CR22) 2018; 265 Cao (CR35) 2019; 2 Jin (CR21) 2017; 5 Ling (CR33) 2017; 8 Bajdich, García-Mota, Vojvodic, Nørskov, Bell (CR36) 2013; 135 Zhou (CR17) 2018; 8 Smith (CR40) 2017; 8 C Guo (15498_CR31) 2017; 56 IC Man (15498_CR38) 2011; 3 M Bajdich (15498_CR36) 2013; 135 H Jin (15498_CR3) 2018; 118 T Ling (15498_CR33) 2017; 8 H Jiang (15498_CR30) 2018; 51 J-Y Zhang (15498_CR8) 2017; 9 T Wu (15498_CR2) 2019; 2 D Friebel (15498_CR37) 2015; 137 YR Zheng (15498_CR18) 2015; 11 Q Zhou (15498_CR17) 2018; 8 SJ Clark (15498_CR43) 2005; 220 A Chang (15498_CR11) 2018; 10 L Cao (15498_CR35) 2019; 2 B Zhang (15498_CR41) 2016; 352 H Xu (15498_CR47) 2018; 1 Á Valdés (15498_CR48) 2008; 112 V Lesnyak (15498_CR16) 2015; 137 Y Gui (15498_CR14) 2019; 57 Y Zhou (15498_CR19) 2017; 9 Y Dou (15498_CR15) 2016; 6 S Peng (15498_CR6) 2018; 140 C Xiao (15498_CR27) 2014; 50 H Xu (15498_CR25) 2018; 530 HJ Monkhorst (15498_CR46) 1976; 13 N Li (15498_CR29) 2017; 114 Y Liu (15498_CR12) 2014; 136 H Jin (15498_CR21) 2017; 5 JP Perdew (15498_CR45) 1996; 77 YR Zheng (15498_CR13) 2018; 9 L Zhang (15498_CR26) 2017; 29 D Vanderbilt (15498_CR44) 1990; 41 NT Suen (15498_CR1) 2017; 46 MR Gao (15498_CR9) 2009; 131 L Liang (15498_CR23) 2015; 54 MR Gao (15498_CR28) 2012; 134 X Pan (15498_CR4) 2013; 5 MS Burke (15498_CR39) 2015; 137 B Qiu (15498_CR42) 2018; 28 MR Gao (15498_CR24) 2014; 8 S Zhang (15498_CR32) 2010; 95 H Li (15498_CR7) 2015; 174 J Yan (15498_CR5) 2019; 10 MB Stevens (15498_CR10) 2017; 139 X Zhao (15498_CR20) 2017; 56 RDL Smith (15498_CR40) 2017; 8 J Li (15498_CR22) 2018; 265 J Cheng (15498_CR34) 2018; 25 |
References_xml | – volume: 112 start-page: 9872 year: 2008 end-page: 9879 ident: CR48 article-title: Oxidation and photo-oxidation of water on TiO surface publication-title: J. Phys. Chem. C doi: 10.1021/jp711929d – volume: 6 start-page: 1501835 year: 2016 ident: CR15 article-title: Atomic layer-by-layer Co O /graphene composite for high performance lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501835 – volume: 56 start-page: 8539 year: 2017 end-page: 8543 ident: CR31 article-title: Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701531 – volume: 118 start-page: 6337 year: 2018 end-page: 6408 ident: CR3 article-title: Emerging two-dimensional nanomaterials for electrocatalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00689 – volume: 5 start-page: 3601 year: 2013 end-page: 3614 ident: CR4 article-title: Defective TiO with oxygen vacancies: synthesis, properties and photocatalytic applications publication-title: Nanoscale doi: 10.1039/c3nr00476g – volume: 95 start-page: 1741 year: 2010 end-page: 1746 ident: CR32 article-title: Determination of manganese valence states in (Mn , Mn ) minerals by electron energy-loss spectroscopy publication-title: Am. Mineral. doi: 10.2138/am.2010.3468 – volume: 8 start-page: 3970 year: 2014 end-page: 3978 ident: CR24 article-title: CoSe nanobelts composite catalyst for efficient water oxidation publication-title: ACS Nano doi: 10.1021/nn500880v – volume: 136 start-page: 15670 year: 2014 end-page: 15675 ident: CR12 article-title: Low overpotential in vacancy-rich ultrathin CoSe nanosheets for water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5085157 – volume: 8 year: 2017 ident: CR40 article-title: Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides publication-title: Nat. Commun. doi: 10.1038/s41467-017-01949-8 – volume: 10 year: 2019 ident: CR5 article-title: Single atom tungsten doped ultrathin α-Ni(OH) for enhanced electrocatalytic water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-09845-z – volume: 140 start-page: 13644 year: 2018 end-page: 13653 ident: CR6 article-title: Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05134 – volume: 137 start-page: 9315 year: 2015 end-page: 9323 ident: CR16 article-title: Cu vacancies boost cation exchange reactions in copper selenide nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03868 – volume: 56 start-page: 328 year: 2017 end-page: 332 ident: CR20 article-title: Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609080 – volume: 5 start-page: 1078 year: 2017 end-page: 1084 ident: CR21 article-title: Fe incorporated α-Co(OH) nanosheets with remarkably improved activity towards the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09959A – volume: 265 start-page: 577 year: 2018 end-page: 585 ident: CR22 article-title: Fe-doped CoSe nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.211 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR46 article-title: Special points for Brillouin-zone intergrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 9 start-page: 33833 year: 2017 end-page: 33840 ident: CR8 article-title: Rational design of cobalt-iron selenides for highly efficient electrochemical water oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08917 – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: CR41 article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 29 start-page: 1606793 year: 2017 ident: CR26 article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201606793 – volume: 51 start-page: 2968 year: 2018 end-page: 2977 ident: CR30 article-title: Structural self-reconstruction of catalysts in electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00449 – volume: 530 start-page: 58 year: 2018 end-page: 66 ident: CR25 article-title: Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.06.061 – volume: 9 year: 2018 ident: CR13 article-title: Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-018-04954-7 – volume: 134 start-page: 2930 year: 2012 end-page: 2933 ident: CR28 article-title: Water oxidation electrocatalyzed by an efficient Mn O /CoSe nanocomposite publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211526y – volume: 8 year: 2017 ident: CR33 article-title: Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering publication-title: Nat. Commun. doi: 10.1038/s41467-017-01872-y – volume: 8 start-page: 5382 year: 2018 end-page: 5390 ident: CR17 article-title: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.8b01332 – volume: 114 start-page: 1486 year: 2017 end-page: 1491 ident: CR29 article-title: Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620787114 – volume: 2 start-page: 134 year: 2019 ident: CR35 article-title: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution publication-title: Nat. Catal. doi: 10.1038/s41929-018-0203-5 – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: CR47 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 28 start-page: 1706008 year: 2018 ident: CR42 article-title: Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706008 – volume: 11 start-page: 182 year: 2015 end-page: 188 ident: CR18 article-title: An efficient CeO /CoSe nanobelt composite for electrochemical water oxidation publication-title: Small doi: 10.1002/smll.201401423 – volume: 174 start-page: 297 year: 2015 end-page: 301 ident: CR7 article-title: Fe-doped CoSe nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.186 – volume: 3 start-page: 1159 year: 2011 end-page: 1165 ident: CR38 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 10 start-page: 41861 year: 2018 end-page: 41865 ident: CR11 article-title: Plasma-assisted synthesis of NiSe ultrathin porous nanosheets with selenium vacancies for supercapacitor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16072 – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: CR43 article-title: First principles methods using CASTEP publication-title: Z. Kristallogr. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR45 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 137 start-page: 3638 year: 2015 end-page: 3648 ident: CR39 article-title: Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00281 – volume: 54 start-page: 12004 year: 2015 end-page: 12008 ident: CR23 article-title: Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505245 – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: CR1 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 131 start-page: 7486 year: 2009 end-page: 7487 ident: CR9 article-title: Synthesis of unique ultrathin lamellar mesostructured CoSe -amine (protonated) nanobelts in a binary solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900506x – volume: 139 start-page: 11361 year: 2017 end-page: 11364 ident: CR10 article-title: Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 57 start-page: 371 year: 2019 end-page: 378 ident: CR14 article-title: Manipulating the assembled structure of atomically thin CoSe nanomaterials for enhanced water oxidation catalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.063 – volume: 137 start-page: 1305 year: 2015 end-page: 1313 ident: CR37 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 135 start-page: 13521 year: 2013 end-page: 13530 ident: CR36 article-title: Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405997s – volume: 50 start-page: 10122 year: 2014 end-page: 10125 ident: CR27 article-title: Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co O for enhanced oxygen evolution publication-title: Chem. Commun. doi: 10.1039/C4CC04922E – volume: 25 start-page: 1123 year: 2018 ident: CR34 article-title: Enhanced insulating behavior in the Ir-vacant Sr Ir O system dominated by the local structure distortion publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577518005799 – volume: 9 start-page: 30880 year: 2017 end-page: 30890 ident: CR19 article-title: Co O @(Fe-doped)Co(OH) microfibers: facile synthesis, oriented-assembly, formation mechanism, and high electrocatalytic activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10402 – volume: 2 start-page: 763 year: 2019 end-page: 772 ident: CR2 article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: CR44 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 139 start-page: 11361 year: 2017 ident: 15498_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 25 start-page: 1123 year: 2018 ident: 15498_CR34 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577518005799 – volume: 10 year: 2019 ident: 15498_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09845-z – volume: 6 start-page: 1501835 year: 2016 ident: 15498_CR15 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501835 – volume: 95 start-page: 1741 year: 2010 ident: 15498_CR32 publication-title: Am. Mineral. doi: 10.2138/am.2010.3468 – volume: 54 start-page: 12004 year: 2015 ident: 15498_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505245 – volume: 8 start-page: 3970 year: 2014 ident: 15498_CR24 publication-title: ACS Nano doi: 10.1021/nn500880v – volume: 8 year: 2017 ident: 15498_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01949-8 – volume: 9 start-page: 30880 year: 2017 ident: 15498_CR19 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10402 – volume: 220 start-page: 567 year: 2005 ident: 15498_CR43 publication-title: Z. Kristallogr. doi: 10.1524/zkri.220.5.567.65075 – volume: 530 start-page: 58 year: 2018 ident: 15498_CR25 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.06.061 – volume: 265 start-page: 577 year: 2018 ident: 15498_CR22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.211 – volume: 77 start-page: 3865 year: 1996 ident: 15498_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 56 start-page: 328 year: 2017 ident: 15498_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609080 – volume: 51 start-page: 2968 year: 2018 ident: 15498_CR30 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00449 – volume: 118 start-page: 6337 year: 2018 ident: 15498_CR3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00689 – volume: 50 start-page: 10122 year: 2014 ident: 15498_CR27 publication-title: Chem. Commun. doi: 10.1039/C4CC04922E – volume: 2 start-page: 134 year: 2019 ident: 15498_CR35 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0203-5 – volume: 3 start-page: 1159 year: 2011 ident: 15498_CR38 publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 57 start-page: 371 year: 2019 ident: 15498_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.063 – volume: 1 start-page: 339 year: 2018 ident: 15498_CR47 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 11 start-page: 182 year: 2015 ident: 15498_CR18 publication-title: Small doi: 10.1002/smll.201401423 – volume: 352 start-page: 333 year: 2016 ident: 15498_CR41 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 8 year: 2017 ident: 15498_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01872-y – volume: 8 start-page: 5382 year: 2018 ident: 15498_CR17 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01332 – volume: 56 start-page: 8539 year: 2017 ident: 15498_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701531 – volume: 174 start-page: 297 year: 2015 ident: 15498_CR7 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.186 – volume: 5 start-page: 3601 year: 2013 ident: 15498_CR4 publication-title: Nanoscale doi: 10.1039/c3nr00476g – volume: 2 start-page: 763 year: 2019 ident: 15498_CR2 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 136 start-page: 15670 year: 2014 ident: 15498_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5085157 – volume: 46 start-page: 337 year: 2017 ident: 15498_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 137 start-page: 9315 year: 2015 ident: 15498_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03868 – volume: 13 start-page: 5188 year: 1976 ident: 15498_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 9 year: 2018 ident: 15498_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04954-7 – volume: 9 start-page: 33833 year: 2017 ident: 15498_CR8 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08917 – volume: 41 start-page: 7892 year: 1990 ident: 15498_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 140 start-page: 13644 year: 2018 ident: 15498_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05134 – volume: 137 start-page: 1305 year: 2015 ident: 15498_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 131 start-page: 7486 year: 2009 ident: 15498_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900506x – volume: 29 start-page: 1606793 year: 2017 ident: 15498_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201606793 – volume: 135 start-page: 13521 year: 2013 ident: 15498_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405997s – volume: 137 start-page: 3638 year: 2015 ident: 15498_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00281 – volume: 28 start-page: 1706008 year: 2018 ident: 15498_CR42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706008 – volume: 112 start-page: 9872 year: 2008 ident: 15498_CR48 publication-title: J. Phys. Chem. C doi: 10.1021/jp711929d – volume: 134 start-page: 2930 year: 2012 ident: 15498_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211526y – volume: 10 start-page: 41861 year: 2018 ident: 15498_CR11 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16072 – volume: 5 start-page: 1078 year: 2017 ident: 15498_CR21 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09959A – volume: 114 start-page: 1486 year: 2017 ident: 15498_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620787114 |
SSID | ssj0000391844 |
Score | 2.6663606 |
Snippet | Electronic structure engineering lies at the heart of efficient catalyst design. Most previous studies, however, utilize only one technique to modulate the... While electronic-structure engineering lies at the heart of catalyst design, most previous studies utilize only one technique to tune the electronic states.... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1664 |
SubjectTerms | 147/137 147/3 639/301/299/886 639/4077/909 639/638/161/886 639/925/357 Carbon dioxide Catalysis Catalysts Catalytic activity Chemical reactions Cobalt Doping Electrochemistry Electron states Electronic structure Energy Evolution Humanities and Social Sciences Iron multidisciplinary Oxygen Oxygen evolution reactions Science Science (multidisciplinary) Transmission electron microscopy Vacancies Voltammetry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEB5EELzIrrrYVZcI3rSYNv2RHFV8iKAXFdxTSNIJK0i76POh__1O0r63VnC97LVJaDv5JvmGZL4B2Edu0NnKpl75Mi1ya1LllUqFkrnJLdrahUThy6vq_La4uCvv3pT6CnfCenng3nBHlgiv4sphgb4gRBrls5J2GY-NIvYflUBpz3sTTMU1WCgKXYohS4YLefRUxDUhREtBlUymfLQTRcH-Ect8f0fy3UFp3H8mX2BtII7suP_gr7CE7Tqs9KUkXzfg5_EgDk6DGZE6FhIWQl0I9hBSmFjn2Wl3jTkjksq6l1fCDcPZgDs2uzdsgqyJ2VPMtA11ZjPjwtK7CTeTs5vT83Qom5C6MqunaWYRTa1cxUWdSy-ddygoFjWZM0RHmszk5HWNdbLhWHolbe2JiPnMFYJcWnyD5bZrcQtYJYqy4dbnvEaiVZU1nNhSE6pYiaxSZQLZ3ILaDZLiobLFg45H20Lq3uqarK6j1TVP4GAx5ncvqPHP3idhYhY9gxh2fEAQ0QNE9GcQSWBnPq168NAnTVQlSPHR8pPA3qKZfCscmJgWu-e-DwWkUlQJ1CM4jD5o3NLe_4oq3TVRR4rvEjicA-fvyz_-4e__44e3YTUPQA8XjMQOLE8fn3GXuNPU_ohu8gedmhNy priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIn7haJYI3Dc1usrvJSWrxWQS9WKGeQj61UHbbvteH_e-dyea9sgV73Z2w2WQm85sk8xtC3kVuo3edY0mnlsnGWaaT1kxo1djGRdd7TBT-9r07_Cm_HrfHZcNtWa5VbtbEvFCH0eMe-R64FqROA3X5eHbOsGoUnq6WEhp3yb0aPA1e6VKLL9s9FmQ_V1KWXBku1N5S5pUBYybkJlOMz_xRpu2fYc2bNyVvHJdmL7R4RB4W-Ej3p_l-TO7E4Qm5PxWUvHpKfu0XinBoTAHaUUxbwOoQ9BQTmeiY6MH4IzYUoCod_16B9tC4LtpH1yeWLiINOYeK2iGAMF1bjwvwM3K0-Hx0cMhK8QTm27pfsdrFaHvtOy76RiXlk48CIlJbewugJNS2AdsLzqvAY5u0cn0COJZqLwUYtnhOdoZxiC8I7YRsA3ep4X0EcNU5ywEzBaxlJepOtxWpNyNofCEWx_oWpyYfcAtlplE3MOomj7rhFXm_bXM20WrcKv0JJ2YriZTY-cF48dsUCzMOIiPNtY8yJug_tzrVLcCRFIOGMFFWZHczrabY6dJca1VF3m5fg4XhsYkd4ng5yUBYqkRXkX6mDrMOzd8MJ38yV3cPABKivIp82CjO9cf__8Mvb-_rK_KgQRXGC0Ril-ysLi7ja8BGK_cmG8A_o7sLjA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB1CQqGX0k_qNi0K9NaaypJsS8dt6BIWmktSSE9CkqU2EOyQbJbm33cky1sc2kCu1gjLoxnpjaV5A_DBU-OdbWwZVKhLwawpVVCq5Eoyw6y3rYuJwt-Om6PvYnVWn-0Am3Jh0qX9RGmZlunpdtjna5FcOgY7kVRMlhim70WqdrTtvcVidbLa_lmJnOdSiJwhQ7n8R-fZLpTI-mcI8-79yDuHpGnvWT6FJxk0ksU4zGew4_vn8GgsI3n7An4sMjE4diYI6EhMVog1IchFTF8iQyCHw4lnBAEqGX7fos0Qv8k2Rzbnhiw96VLmFDF9h8JkY1xcdl_C6fLr6eFRmUsmlK6u2nVZWe9Nq1xDectkkC44zzEONZUzCEW6yjD0uM462VFfByVtGxCEhcoJju7MX8FuP_T-NZCGi7qjNjDaeoRUjTUUkVIXK1jxqlF1AdWkQe0ynXisanGh07E2l3rUukat66R1TQv4uO1zOZJp3Cv9JU7MVjISYacHw9VPnQ1DW4yHFFXOCx9w_NSoUNUIQoLvFAaHooD9aVp19s5rjTAl0vDh0lPAwbYZ_SoelpjeDzejDAajkjcFtDNzmA1o3tKf_0oM3S3CRoztCvg0Gc7fl___g988TPwtPGbRpOM1Ir4Pu-urG_8OEdLavs8u8QdPWgqf priority: 102 providerName: Springer Nature |
Title | Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy |
URI | https://link.springer.com/article/10.1038/s41467-020-15498-0 https://www.proquest.com/docview/2386357638 https://www.proquest.com/docview/2386289836 https://pubmed.ncbi.nlm.nih.gov/PMC7125230 https://doaj.org/article/b974909ce4ef4030a9f15818fed92614 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTaC9IH6KjFEZiTcIJHES2w8IddXKVGkTYptUnizbsWFSlbCuq9b_nrOTFDoNHnhJJMeWndyd_X2x7w7gjU2UNbrUsROuiPNMq1g4IWIqeKYybTUz3lH4-KQ8Os8n02K6BX26o-4DXt1J7Xw-qfP57P3N5eoTGvzH1mWcf7jKg7l7IuQDjvEYKfwOrkzMZzQ47uB-mJmpQEKTd74zdzfdhQeo43kh_CG7P5aqENF_A4bePkR5ayc1LFDjR_CwQ5Zk2KrCY9iy9RO43-aaXD2Fb8Muejg2Joj6iPdo8IkjyMz7OJHGkVFzajOCKJY0NytULGKXnWKS5YUiY0uq4F5FVF1hZbJUxs_Nz-BsfHg2Ooq7vAqxKVK2iFNtrWLClAllGXfcOGMpklWVGoV4pUpVhmZZacOrxBZOcM0cIjWXmpyizdPnsF03tX0BpKR5USXaZQmziLtKrRKEU5VPc0XTUhQRpP0XlKaLOe5TX8xk2PumXLYCkCgAGQQgkwjertv8bCNu_LP2gRfMuqaPlh0Kmvl32Rmf1EiaRCKMza3D8SdKuLRApOJsJZBB5hHs92KVvQZKxDI-Vh_OTxG8Xj9G4_M7Kqq2zXVbBxkrp2UEbEMdNga0-aS--BHCeDPElkgAI3jXK87vzv_-wnv_3dFL2M28ovtjR3Qfthfza_sKEdVCD-AemzK88vHnAewMh5PTCd4PDk--fMXSUTkahH8Vg2BOvwA-FCK6 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDASnCCqE-flA0KlsGzp48IilZNlOzZUqpLS3S7sj-I_MuMkW20leus1cRJn_HnmG9szA_DKce2sKUzspc_jLDU6ll7KWMgq1alxprQUKHxwWIy_ZV-O8qM1-DvEwtCxykEnBkVdt5bWyLfQtFDqNITL-9NfMVWNot3VoYRGB4s9t_iNLtv03e5HHN_XaTr6NNkZx31VgdjmSTmLE-OcLqUtuCjTylfWWyfQVdOJ1Wit60SnCMra2KrmLveyMqVHnuITm6HrzwW-9gbczAQacgpMH31eLulQsvUqy_rQHC6qrWkWFBG5aJQKrYr5ivkLVQJWqO3lg5mXdmeD0Rvdg7s9W2XbHbzuw5prHsCtrn7l4iF83-4zkuPDDJkkoygJKkbBTihuirWe7bRfXcqQGbP2zwLByty8BzubH2s2cqwOIVtMNzU2ZnNtSd8_gsl1SPUxrDdt4zaAFSLLa258ykuHXK4wmiNFq6l0lkgKmUeQDBJUts9jTuU0TlTYTxeV6qSuUOoqSF3xCN4snzntsnhc2foDDcyyJWXgDhfasx-qn9DKoCMmubQucx77z7X0SY7sx7taoleaRbA5DKvq1cJUXYA4gpfL2zihaZdGN64979qgF1yJIoJyBQ4rHVq90xz_DKnBS-Sr6FRG8HYAzsXH___DT67u6wu4PZ4c7Kv93cO9p3AnJTjT2SWxCeuzs3P3DGnZzDwPk4GBuubJ9w9es0gy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81UMBIcIKojvP0AaG-Vi2FVQVFKifLdmyoVCWlu13Yn8a_YyaPrVKJ3npNnMQZfzP-xvbMALx2XDtrMhN66dMwEUaH0ksZxrIQWhhnckuBwp8n2d635ONxerwCf_tYGDpW2dvExlCXtaU18g2cWih1GsJlw3fHIg53xh_OfoVUQYp2WvtyGi1EDtziN7pv0_f7OzjWb4QY7x5t74VdhYHQplE-CyPjnM6lzXici8IX1lsXo9umI6tx5i4jLRCgpbFFyV3qZWFyj5zFRzaJEf0xvvYWrObkFI1gdWt3cvhlucBDqdeLJOkCdTj2e5o0ZokcNkqMVoR8MBk2NQMGRPfqMc0re7XNFDi-D_c67so2W7A9gBVXPYTbbTXLxSP4vtnlJ8eHGfJKRjETVJqCnVIUFas9266_OsGQJ7P6zwKhy9y8gz6bn2g2dqxsAriYrkpszObakvV_DEc3IdcnMKrqyq0By-IkLbnxgucOmV1mNEfCVlIhrTjKZBpA1EtQ2S6rORXXOFXN7npcqFbqCqWuGqkrHsDb5TNnbU6Pa1tv0cAsW1I-7uZCff5DdeqtDLplkkvrEuex_1xLH6XIhbwrJfqoSQDr_bCqzkhM1SWkA3i1vI3qTXs2unL1RdsGfeIizgLIB3AYdGh4pzr52SQKz5G9oosZwLseOJcf__8PP72-ry_hDiqe-rQ_OXgGdwWhmQ4yxeswmp1fuOfI0WbmRacNDNQN698_QY9NxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+activity+limit+of+CoSe2+for+oxygen+evolution+via+Fe+doping+and+Co+vacancy&rft.jtitle=Nature+communications&rft.au=Dou%2C+Yuhai&rft.au=He%2C+Chun-Ting&rft.au=Zhang%2C+Lei&rft.au=Yin%2C+Huajie&rft.date=2020-04-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-15498-0&rft_id=info%3Apmid%2F32245987&rft.externalDocID=PMC7125230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |