Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO
Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 . However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO 2 activation at the active metal...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 6082 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.10.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO
2
. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO
2
activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO
2
activation. As a result, for the electroreduction of CO
2
to CO in aqueous KHCO
3
electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO
2
concentration of only 30% in an H-type cell. In a flow cell under pure CO
2
at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm
2
with a FE above 90%.
Electroreduction of CO
2
on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO
2
activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO
2
to CO conversion. |
---|---|
AbstractList | Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO
2
. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO
2
activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO
2
activation. As a result, for the electroreduction of CO
2
to CO in aqueous KHCO
3
electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO
2
concentration of only 30% in an H-type cell. In a flow cell under pure CO
2
at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm
2
with a FE above 90%.
Electroreduction of CO
2
on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO
2
activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO
2
to CO conversion. Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 . However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO 2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO 2 activation. As a result, for the electroreduction of CO 2 to CO in aqueous KHCO 3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO 2 concentration of only 30% in an H-type cell. In a flow cell under pure CO 2 at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm 2 with a FE above 90%. Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm2 with a FE above 90%.Electroreduction of CO2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO2 activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO2 to CO conversion. Electroreduction of CO2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO2 activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO2 to CO conversion. Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%.Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%. |
ArticleNumber | 6082 |
Author | Lu, Ying-Rui Chan, Ting-Shan Cortés, Emiliano Hu, Kangman Liu, Min Liang, Ying Zhang, Shiguo Wang, Qiyou Cai, Chao Ma, Chao Li, Hongmei Herran, Matias Liu, Kang Fu, Junwei Li, Huangjingwei |
Author_xml | – sequence: 1 givenname: Qiyou surname: Wang fullname: Wang, Qiyou organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 2 givenname: Kang surname: Liu fullname: Liu, Kang organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 3 givenname: Kangman surname: Hu fullname: Hu, Kangman organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 4 givenname: Chao orcidid: 0000-0002-3695-3247 surname: Cai fullname: Cai, Chao organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 5 givenname: Huangjingwei surname: Li fullname: Li, Huangjingwei organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 6 givenname: Hongmei surname: Li fullname: Li, Hongmei organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 7 givenname: Matias surname: Herran fullname: Herran, Matias organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München – sequence: 8 givenname: Ying-Rui orcidid: 0000-0002-6002-5627 surname: Lu fullname: Lu, Ying-Rui organization: National Synchrotron Radiation Research Center – sequence: 9 givenname: Ting-Shan orcidid: 0000-0001-5220-1611 surname: Chan fullname: Chan, Ting-Shan organization: National Synchrotron Radiation Research Center – sequence: 10 givenname: Chao orcidid: 0000-0001-8599-9340 surname: Ma fullname: Ma, Chao organization: College of Materials Science and Engineering, Hunan University – sequence: 11 givenname: Junwei surname: Fu fullname: Fu, Junwei organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University – sequence: 12 givenname: Shiguo orcidid: 0000-0001-6651-2752 surname: Zhang fullname: Zhang, Shiguo organization: College of Materials Science and Engineering, Hunan University – sequence: 13 givenname: Ying orcidid: 0000-0002-6216-4743 surname: Liang fullname: Liang, Ying organization: College of Food Science and Engineering, Central South University of Forestry and Technology – sequence: 14 givenname: Emiliano orcidid: 0000-0001-8248-4165 surname: Cortés fullname: Cortés, Emiliano email: Emiliano.Cortes@lmu.de organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München – sequence: 15 givenname: Min orcidid: 0000-0002-9007-4817 surname: Liu fullname: Liu, Min email: minliu@csu.edu.cn organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University |
BookMark | eNp9UstuHCEQHEWO4kf8Azkh5ZLLODxnmEska5WHJUu-JGfEQLNhw8IGmEj798a7VhL7YC6N6Kqi1F3n3UlMEbruHcFXBDP5sXDCh7HHlPaMDRPt8avujGJOejJSdvLf_bS7LGWD22ETkZy_6U7ZQDkZGDnr8nWtEBddfVyjLVQd-rLMpWZdAZkUN8u69VJEPiJd09YbHcIeWV92kAtYFL35BQEZ3aj7UgtyKSMIYGpOGexiDuzk0OqOoppaedu9djoUuHysF92PL5-_r771t3dfb1bXt70RZKw9kXQa7DgYDZPgMFvp9MSFBSlH6jRjcp7szB2VMFDBRjfPDBtjNCEE9ODYRXdz1LVJb9Qu-63Oe5W0V4eHlNdK5-pNADVqTbC1GmPHuOZ2clI4sJwKLt1gTdP6dNTaLfMWrIHYJhSeiD7tRP9TrdMfNYlBCkGbwIdHgZx-L1Cq2vpiIAQdIS1F0ZGKtjFJSYO-fwbdpCXHNqoHFB8n0ZbYUPSIMjmVksH9NUOwekiIOiZEtYSoQ0IUbiT5jGR8Pey3mfbhZSo7Ukv7J64h_3P1AuseUJbTRg |
CitedBy_id | crossref_primary_10_1021_acsami_4c18585 crossref_primary_10_1002_ange_202422775 crossref_primary_10_1002_smll_202412293 crossref_primary_10_1002_adsu_202400748 crossref_primary_10_1002_anie_202414569 crossref_primary_10_1002_cssc_202301719 crossref_primary_10_1039_D3NR04768G crossref_primary_10_1007_s40820_023_01264_6 crossref_primary_10_1002_aenm_202400374 crossref_primary_10_1002_aenm_202400647 crossref_primary_10_1016_j_cej_2024_150051 crossref_primary_10_1002_anie_202318246 crossref_primary_10_1016_j_apcatb_2024_124206 crossref_primary_10_1021_acsami_3c11467 crossref_primary_10_1002_aenm_202402942 crossref_primary_10_1021_acs_chemmater_3c02856 crossref_primary_10_1021_acs_nanolett_5c00946 crossref_primary_10_1016_j_cej_2025_160387 crossref_primary_10_1021_acsami_4c21988 crossref_primary_10_1002_adfm_202316199 crossref_primary_10_1002_ange_202308195 crossref_primary_10_1016_j_mtener_2024_101706 crossref_primary_10_1002_anie_202421149 crossref_primary_10_1021_acscatal_4c01557 crossref_primary_10_1021_jacsau_4c00246 crossref_primary_10_1021_acs_jpcc_4c08531 crossref_primary_10_1021_acs_nanolett_4c03978 crossref_primary_10_3390_polym15112534 crossref_primary_10_1002_adfm_202401927 crossref_primary_10_1002_anie_202313597 crossref_primary_10_1016_j_scib_2024_06_014 crossref_primary_10_1016_j_comptc_2024_114651 crossref_primary_10_1039_D3TA00267E crossref_primary_10_1002_aenm_202403624 crossref_primary_10_1002_anie_202407578 crossref_primary_10_1016_j_nanoen_2023_108967 crossref_primary_10_1002_anie_202415273 crossref_primary_10_1021_acsenergylett_3c01211 crossref_primary_10_1039_D3SE00082F crossref_primary_10_1016_j_nanoen_2024_109873 crossref_primary_10_1002_adfm_202214658 crossref_primary_10_1002_ange_202421149 crossref_primary_10_1016_j_jcou_2024_102819 crossref_primary_10_1002_smll_202208118 crossref_primary_10_1016_j_isci_2023_108434 crossref_primary_10_1016_j_checat_2023_100862 crossref_primary_10_3390_ijms241612680 crossref_primary_10_1002_adfm_202306994 crossref_primary_10_1002_ange_202404884 crossref_primary_10_1002_aenm_202403778 crossref_primary_10_1002_smll_202404162 crossref_primary_10_1002_ange_202414569 crossref_primary_10_1002_cey2_498 crossref_primary_10_1021_jacs_4c13197 crossref_primary_10_1016_j_seppur_2023_125177 crossref_primary_10_1039_D3TA03115B crossref_primary_10_1002_ange_202415273 crossref_primary_10_1016_j_jcis_2023_07_180 crossref_primary_10_1016_j_mcat_2025_115039 crossref_primary_10_1002_adfm_202301334 crossref_primary_10_1002_cssc_202202251 crossref_primary_10_1002_smll_202307180 crossref_primary_10_1039_D3GC03893A crossref_primary_10_1002_anie_202404884 crossref_primary_10_1016_j_pnsc_2024_10_009 crossref_primary_10_1002_aenm_202304362 crossref_primary_10_1002_anie_202308195 crossref_primary_10_1016_j_jechem_2023_09_024 crossref_primary_10_1016_j_cej_2024_149054 crossref_primary_10_1002_adfm_202300926 crossref_primary_10_1021_acs_inorgchem_4c00843 crossref_primary_10_1021_acsami_4c02915 crossref_primary_10_1002_ange_202309351 crossref_primary_10_1016_j_jmst_2023_06_001 crossref_primary_10_1016_j_ces_2024_120297 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1002_admt_202500028 crossref_primary_10_1002_ange_202407578 crossref_primary_10_1007_s12274_023_6019_x crossref_primary_10_1039_D4DT00495G crossref_primary_10_1016_j_nanoen_2024_109729 crossref_primary_10_1016_j_apcatb_2023_122626 crossref_primary_10_1021_acsestwater_3c00010 crossref_primary_10_1039_D3CC04656G crossref_primary_10_1002_adma_202300695 crossref_primary_10_1016_j_carbon_2023_118348 crossref_primary_10_1021_jacs_3c06697 crossref_primary_10_1016_j_ccr_2024_215693 crossref_primary_10_1016_j_carbon_2023_02_007 crossref_primary_10_1021_acs_nanolett_4c00306 crossref_primary_10_1016_j_cej_2025_160634 crossref_primary_10_1063_5_0234932 crossref_primary_10_1021_acssuschemeng_3c00398 crossref_primary_10_1002_ange_202307612 crossref_primary_10_1007_s40843_022_2388_0 crossref_primary_10_1016_j_esci_2023_100097 crossref_primary_10_1002_cjoc_202300372 crossref_primary_10_1021_acscatal_3c00688 crossref_primary_10_1002_smll_202310289 crossref_primary_10_1002_smll_202402867 crossref_primary_10_1002_adfm_202420994 crossref_primary_10_1002_smll_202308080 crossref_primary_10_1039_D4QI01570C crossref_primary_10_1002_ange_202318246 crossref_primary_10_1002_smll_202401017 crossref_primary_10_1038_s41467_024_54636_w crossref_primary_10_1002_ange_202313597 crossref_primary_10_1039_D2TA09416A crossref_primary_10_1063_5_0195943 crossref_primary_10_1002_ange_202301767 crossref_primary_10_1016_j_microc_2024_111731 crossref_primary_10_1007_s12598_024_02795_6 crossref_primary_10_1016_j_apcatb_2024_124668 crossref_primary_10_3866_PKU_WHXB202308027 crossref_primary_10_1016_j_ces_2023_118638 crossref_primary_10_1002_adma_202303052 crossref_primary_10_1002_anie_202309351 crossref_primary_10_1021_jacs_3c09632 crossref_primary_10_1039_D3IM00109A crossref_primary_10_1039_D3SC06863C crossref_primary_10_1002_smll_202207219 crossref_primary_10_1002_anie_202307612 crossref_primary_10_1016_j_isci_2023_107953 crossref_primary_10_1016_j_jcat_2023_03_029 crossref_primary_10_1002_anie_202422775 crossref_primary_10_1021_jacs_4c04322 crossref_primary_10_1002_advs_202500368 crossref_primary_10_1002_anie_202301767 crossref_primary_10_3390_app13042177 crossref_primary_10_1016_j_apsusc_2023_157948 crossref_primary_10_1016_j_jechem_2025_02_017 crossref_primary_10_1021_acsnano_3c09102 |
Cites_doi | 10.1038/s41467-018-03896-4 10.1002/adma.201605148 10.1103/PhysRevB.49.14251 10.1002/anie.201908640 10.1103/PhysRevB.46.6671 10.1039/c0ee00071j 10.1002/anie.202008787 10.1016/0927-0256(96)00008-0 10.1063/1.4865107 10.1038/s41467-021-24052-5 10.1021/acsnano.6b05488 10.1002/smsc.202000028 10.1021/jacs.9b03004 10.1002/adma.201903545 10.1002/anie.202109329 10.1016/j.cej.2021.128982 10.1149/1.1856988 10.1002/anie.202107550 10.1038/ncomms12165 10.1038/s41467-019-12510-0 10.1021/jp902871b 10.1103/PhysRevB.50.17953 10.1021/jacs.7b10462 10.1021/jacs.1c05754 10.1021/jp047349j 10.1002/anie.201914977 10.1002/adfm.201908486 10.1002/anie.201811938 10.1039/D0CS00071J 10.1021/acsenergylett.9b01015 10.1038/s41570-018-0010-1 10.1016/j.apcatb.2022.121093 10.1002/advs.201900796 10.1038/nature19060 10.1002/anie.202109373 10.1002/anie.202104494 10.1002/anie.202016219 10.1002/anie.201712451 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.87.245402 10.1002/jcc.20495 10.1039/D0EE03947K 10.1002/adfm.202111322 10.1002/anie.202113918 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-33692-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_7aa10dda00f34a4d9f85fed42548f6dc PMC9568552 10_1038_s41467_022_33692_0 |
GrantInformation_xml | – fundername: European Commission (EC) grantid: 802989 funderid: https://doi.org/10.13039/501100000780 – fundername: ; grantid: 802989 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-18296d76cae954ebd8fa945de8872fa338b9db4f28e62537fbb30ccca111ea6f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Thu Aug 21 18:40:08 EDT 2025 Fri Jul 11 06:23:19 EDT 2025 Wed Aug 13 04:54:18 EDT 2025 Tue Jul 01 00:58:28 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 21 02:38:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-18296d76cae954ebd8fa945de8872fa338b9db4f28e62537fbb30ccca111ea6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6651-2752 0000-0001-8248-4165 0000-0002-3695-3247 0000-0001-5220-1611 0000-0002-6216-4743 0000-0002-6002-5627 0000-0001-8599-9340 0000-0002-9007-4817 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-33692-0 |
PMID | 36241631 |
PQID | 2724795844 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7aa10dda00f34a4d9f85fed42548f6dc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9568552 proquest_miscellaneous_2725204821 proquest_journals_2724795844 crossref_primary_10_1038_s41467_022_33692_0 crossref_citationtrail_10_1038_s41467_022_33692_0 springer_journals_10_1038_s41467_022_33692_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-14 |
PublicationDateYYYYMMDD | 2022-10-14 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yu (CR18) 2017; 29 Wang (CR21) 2021; 60 Blöchl (CR38) 1994; 50 Zeng (CR28) 2021; 12 Jiang (CR29) 2020; 59 Fishman, Zhuang, Mathew, Dirschka, Hennig (CR45) 2013; 87 Zhang (CR26) 2019; 58 Zhang (CR16) 2016; 10 CR12 Ding (CR10) 2021; 143 Qin, Zhu, Xiao, Zhang, Shao (CR33) 2019; 4 Xue (CR6) 2018; 9 Wang (CR31) 2018; 57 Huang (CR17) 2020; 30 Wang (CR24) 2019; 58 Li (CR30) 2021; 60 Lau (CR19) 2016; 7 Fu (CR23) 2021; 415 Wang, Li, Zhang (CR4) 2018; 2 Fu (CR22) 2019; 6 Wang (CR2) 2021; 1 Chen (CR7) 2022; 306 Zhu, Jiang, Cai, Shao (CR32) 2017; 139 Perdew, Burke, Ernzerhof (CR39) 1996; 77 CR8 Zhao (CR20) 2019; 31 Nørskov (CR43) 2005; 152 Grimme (CR40) 2006; 27 Perdew (CR35) 1992; 46 Nørskov (CR42) 2004; 108 Jia (CR13) 2021; 60 Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR44) 2014; 140 Zhang, Jiao, Yang, Xie, Jiang (CR15) 2021; 60 Liu (CR3) 2016; 537 Zhou (CR25) 2009; 113 Wang (CR1) 2021; 50 Kresse, Furthmüller (CR36) 1996; 6 Hui (CR5) 2019; 141 Cao (CR9) 2021; 61 Gong (CR11) 2020; 59 Kresse, Hafner (CR34) 1994; 49 Yang (CR27) 2019; 10 Kresse, Furthmüller (CR37) 1996; 54 Ni (CR14) 2021; 60 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR41) 2010; 3 M Liu (33692_CR3) 2016; 537 C Jia (33692_CR13) 2021; 60 Q Wang (33692_CR2) 2021; 1 JP Perdew (33692_CR39) 1996; 77 VW-h Lau (33692_CR19) 2016; 7 Z Zeng (33692_CR28) 2021; 12 S Zhu (33692_CR32) 2017; 139 H Yang (33692_CR27) 2019; 10 A Wang (33692_CR4) 2018; 2 JG Zhou (33692_CR25) 2009; 113 JK Nørskov (33692_CR43) 2005; 152 M Fishman (33692_CR45) 2013; 87 G Kresse (33692_CR34) 1994; 49 JK Nørskov (33692_CR42) 2004; 108 AA Peterson (33692_CR41) 2010; 3 33692_CR12 G Wang (33692_CR1) 2021; 50 Y Zhang (33692_CR16) 2016; 10 PE Blöchl (33692_CR38) 1994; 50 Q Wang (33692_CR21) 2021; 60 Y Xue (33692_CR6) 2018; 9 YN Gong (33692_CR11) 2020; 59 J Fu (33692_CR22) 2019; 6 X Cao (33692_CR9) 2021; 61 G Kresse (33692_CR37) 1996; 54 G Kresse (33692_CR36) 1996; 6 Y Zhang (33692_CR15) 2021; 60 JP Perdew (33692_CR35) 1992; 46 L Hui (33692_CR5) 2019; 141 33692_CR8 H Yu (33692_CR18) 2017; 29 HL Jiang (33692_CR29) 2020; 59 X Qin (33692_CR33) 2019; 4 S Grimme (33692_CR40) 2006; 27 K Chen (33692_CR7) 2022; 306 X Wang (33692_CR31) 2018; 57 T Ding (33692_CR10) 2021; 143 G Zhang (33692_CR26) 2019; 58 Y Ni (33692_CR14) 2021; 60 W Wang (33692_CR24) 2019; 58 J Fu (33692_CR23) 2021; 415 D Zhao (33692_CR20) 2019; 31 S Li (33692_CR30) 2021; 60 L Huang (33692_CR17) 2020; 30 K Mathew (33692_CR44) 2014; 140 |
References_xml | – volume: 9 year: 2018 ident: CR6 article-title: Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-018-03896-4 – volume: 29 start-page: 1605148 year: 2017 ident: CR18 article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201605148 – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: CR34 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phy. Rev. B. doi: 10.1103/PhysRevB.49.14251 – volume: 58 start-page: 16644 year: 2019 end-page: 16650 ident: CR24 article-title: Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908640 – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: CR35 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.46.6671 – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: CR41 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 59 start-page: 20589 year: 2020 end-page: 20595 ident: CR29 article-title: Single-atom electrocatalysts from multivariate MOFs for highly selective reduction of CO at low pressures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008787 – ident: CR12 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR36 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 140 start-page: 084106 year: 2014 ident: CR44 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 12 year: 2021 ident: CR28 article-title: Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO reduction and oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-021-24052-5 – volume: 10 start-page: 9036 year: 2016 end-page: 9043 ident: CR16 article-title: Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes Absorption and regeneration publication-title: ACS Nano. doi: 10.1021/acsnano.6b05488 – volume: 1 start-page: 2000028 year: 2021 ident: CR2 article-title: Recent advances in strategies for improving the performance of CO reduction reaction on single atom catalysts publication-title: Small Sci. doi: 10.1002/smsc.202000028 – volume: 141 start-page: 10677 year: 2019 end-page: 10683 ident: CR5 article-title: Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03004 – volume: 31 start-page: 1903545 year: 2019 ident: CR20 article-title: Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201903545 – volume: 60 start-page: 25241 year: 2021 end-page: 25245 ident: CR21 article-title: Atomically dispersed s-Block magnesium sites for electroreduction of CO to CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109329 – volume: 415 start-page: 128982 year: 2021 ident: CR23 article-title: Activation of CO on graphitic carbon nitride supported single-atom cobalt sites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128982 – volume: 152 start-page: J23 year: 2005 ident: CR43 article-title: Response to “comment on ‘trends in the exchangecurrent for hydrogen evolution’ publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 60 start-page: 22826 year: 2021 end-page: 22832 ident: CR30 article-title: Low-valence Znδ+ (0<δ<2) single-atom material as highly efficient electrocatalyst for CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107550 – ident: CR8 – volume: 7 year: 2016 ident: CR19 article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites publication-title: Nat. Commun. doi: 10.1038/ncomms12165 – volume: 10 year: 2019 ident: CR27 article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-12510-0 – volume: 113 start-page: 10747 year: 2009 end-page: 10750 ident: CR25 article-title: Immobilization of RuO on carbon nanotube: an X-ray absorption near-edge structure study publication-title: J. Phy. Chem. C. doi: 10.1021/jp902871b – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR38 article-title: Projector augmented-wave method publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.50.17953 – volume: 139 start-page: 15664 year: 2017 end-page: 15667 ident: CR32 article-title: Direct observation on reaction intermediates and the role of bicarbonate anions in CO electrochemical reduction reaction on Cu surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10462 – volume: 143 start-page: 11317 year: 2021 end-page: 11324 ident: CR10 article-title: Atomically precise dinuclear site active toward electrocatalytic CO reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05754 – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR42 article-title: Origin of the overpotential for oxygen reduction at a Fuel-Cell cathode publication-title: J. Phys. Chem. B. doi: 10.1021/jp047349j – volume: 59 start-page: 2705 year: 2020 end-page: 2709 ident: CR11 article-title: Regulating the coordination environment of MOF-templated single-Atom nickel electrocatalysts for boosting CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914977 – volume: 30 start-page: 1908486 year: 2020 ident: CR17 article-title: Salt-Assisted synthesis of 2D materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908486 – volume: 58 start-page: 3433 year: 2019 end-page: 3437 ident: CR26 article-title: Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811938 – volume: 50 start-page: 4993 year: 2021 end-page: 5061 ident: CR1 article-title: Electrocatalysis for CO conversion: from fundamentals to value-added products publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00071J – volume: 61 start-page: e202113918 year: 2021 ident: CR9 article-title: Atomic bridging structure of nickel–nitrogen–carbon for highly efficient electrocatalytic reduction of CO publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1778 year: 2019 end-page: 1783 ident: CR33 article-title: Active sites on heterogeneous single-iron-atom electrocatalysts in CO reduction reaction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01015 – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: CR4 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 306 start-page: 121093 year: 2022 ident: CR7 article-title: Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO reduction reaction publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2022.121093 – volume: 6 start-page: 1900796 year: 2019 ident: CR22 article-title: Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO to CH publication-title: Adv. Sci. doi: 10.1002/advs.201900796 – volume: 537 start-page: 382 year: 2016 end-page: 386 ident: CR3 article-title: Enhanced electrocatalytic CO reduction via field-induced reagent concentration publication-title: Nature doi: 10.1038/nature19060 – volume: 60 start-page: 23342 year: 2021 end-page: 23348 ident: CR13 article-title: Sulfur-dopants promoted electroreduction of CO over coordinatively unsaturated Ni-N moieties publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109373 – volume: 60 start-page: 16937 year: 2021 end-page: 16941 ident: CR14 article-title: Regulating electrocatalytic oxygen reduction activity of metal coordination polymer via d-π conjugation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104494 – volume: 60 start-page: 7607 year: 2021 end-page: 7611 ident: CR15 article-title: Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016219 – volume: 57 start-page: 1944 year: 2018 end-page: 1948 ident: CR31 article-title: Regulation of coordination number over single Co Sites: triggering the efficient electroreduction of CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712451 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR39 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR37 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 87 start-page: 245402 year: 2013 ident: CR45 article-title: Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.87.245402 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR40 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 152 start-page: J23 year: 2005 ident: 33692_CR43 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 58 start-page: 16644 year: 2019 ident: 33692_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908640 – volume: 29 start-page: 1605148 year: 2017 ident: 33692_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201605148 – volume: 415 start-page: 128982 year: 2021 ident: 33692_CR23 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128982 – volume: 60 start-page: 22826 year: 2021 ident: 33692_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107550 – volume: 6 start-page: 15 year: 1996 ident: 33692_CR36 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 60 start-page: 25241 year: 2021 ident: 33692_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109329 – volume: 59 start-page: 20589 year: 2020 ident: 33692_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008787 – volume: 10 year: 2019 ident: 33692_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12510-0 – ident: 33692_CR12 doi: 10.1039/D0EE03947K – volume: 31 start-page: 1903545 year: 2019 ident: 33692_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201903545 – volume: 306 start-page: 121093 year: 2022 ident: 33692_CR7 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2022.121093 – volume: 30 start-page: 1908486 year: 2020 ident: 33692_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908486 – volume: 143 start-page: 11317 year: 2021 ident: 33692_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05754 – volume: 139 start-page: 15664 year: 2017 ident: 33692_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10462 – ident: 33692_CR8 doi: 10.1002/adfm.202111322 – volume: 60 start-page: 7607 year: 2021 ident: 33692_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016219 – volume: 2 start-page: 65 year: 2018 ident: 33692_CR4 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 10 start-page: 9036 year: 2016 ident: 33692_CR16 publication-title: ACS Nano. doi: 10.1021/acsnano.6b05488 – volume: 7 year: 2016 ident: 33692_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms12165 – volume: 27 start-page: 1787 year: 2006 ident: 33692_CR40 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 113 start-page: 10747 year: 2009 ident: 33692_CR25 publication-title: J. Phy. Chem. C. doi: 10.1021/jp902871b – volume: 61 start-page: e202113918 year: 2021 ident: 33692_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202113918 – volume: 140 start-page: 084106 year: 2014 ident: 33692_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 58 start-page: 3433 year: 2019 ident: 33692_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811938 – volume: 77 start-page: 3865 year: 1996 ident: 33692_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 59 start-page: 2705 year: 2020 ident: 33692_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914977 – volume: 60 start-page: 16937 year: 2021 ident: 33692_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104494 – volume: 537 start-page: 382 year: 2016 ident: 33692_CR3 publication-title: Nature doi: 10.1038/nature19060 – volume: 57 start-page: 1944 year: 2018 ident: 33692_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712451 – volume: 1 start-page: 2000028 year: 2021 ident: 33692_CR2 publication-title: Small Sci. doi: 10.1002/smsc.202000028 – volume: 87 start-page: 245402 year: 2013 ident: 33692_CR45 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.87.245402 – volume: 49 start-page: 14251 year: 1994 ident: 33692_CR34 publication-title: Phy. Rev. B. doi: 10.1103/PhysRevB.49.14251 – volume: 60 start-page: 23342 year: 2021 ident: 33692_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109373 – volume: 108 start-page: 17886 year: 2004 ident: 33692_CR42 publication-title: J. Phys. Chem. B. doi: 10.1021/jp047349j – volume: 3 start-page: 1311 year: 2010 ident: 33692_CR41 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 50 start-page: 17953 year: 1994 ident: 33692_CR38 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.50.17953 – volume: 9 year: 2018 ident: 33692_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03896-4 – volume: 4 start-page: 1778 year: 2019 ident: 33692_CR33 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01015 – volume: 141 start-page: 10677 year: 2019 ident: 33692_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03004 – volume: 12 year: 2021 ident: 33692_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24052-5 – volume: 46 start-page: 6671 year: 1992 ident: 33692_CR35 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.46.6671 – volume: 54 start-page: 11169 year: 1996 ident: 33692_CR37 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 6 start-page: 1900796 year: 2019 ident: 33692_CR22 publication-title: Adv. Sci. doi: 10.1002/advs.201900796 – volume: 50 start-page: 4993 year: 2021 ident: 33692_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00071J |
SSID | ssj0000391844 |
Score | 2.6651826 |
Snippet | Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO
2
.... Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However,... Electroreduction of CO2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO2 activation, here the authors... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6082 |
SubjectTerms | 140/146 147/143 639/301/299/886 639/638/161/886 639/638/675 639/638/77/887 Attenuation Carbon Carbon dioxide Carbon dioxide concentration Carbon monoxide Catalysts Conjugation Dispersion Electrocatalysts Electron density Electrowinning Heavy metals Humanities and Social Sciences Infrared reflection Infrared spectroscopy Metals multidisciplinary Nickel Science Science (multidisciplinary) Single atom catalysts Substrates Transition metals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMilNE1K3aZFgd4SE1tvHdPQEAJtLwnkJiRLSrdsvWXtPey_z0j2buNAm0tPBkvCkuahGWvmG4Q-KR0iISGCkyN8yVyoSwtHQSkiB_OUO9HIlOD89Zu4umXXd_zuUamvFBM2wAMPG3cmra0r721VRcos8zoqHoMHVmMqCt8k7Qtn3iNnKutgqsF1YWOWTEXVWceyTsjB61SkkMvJSZQB-ydW5tMYyScXpfn8uXyFXo6GIz4fJryPdkL7Gr0YSkmuD9DyvAfrN-F2t_f4VwCTuuxAJ2TsWQw-78_VfaYBnrUY_OwMEjBfYz9LSOFd8LidgTzPcf6ds-76DoM1i8ciOcuE75pHLyK--E5wv4DHIbq9_HJzcVWO9RTKhteyL8GV0MJL0digOQvOq2g14z6AoiHRgrPqtHcsEhXAK6IyOkerBkgM-jBYEekbtNsu2vAWYZkybAUV1oI8c2qdVo2XVlpFnLdRFKje7K1pRrDxVPNibvKlN1VmoIcBephMD1MV6GQ75vcAtfHP3p8TybY9E0x2fgHMY0bmMc8xT4GONgQ3o-x2hkjCpAbDjBXoeNsMUpeuUmwbFqvchyfIY1IXSE4YZTKhaUs7-5Hxu1OGJuekQKcblvrz8b8v-N3_WPB7tEeSCKSQHHaEdvvlKnwAq6p3H7MAPQDkWiGf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFA-6IngRP7G6SgRvWrZN89WTrIvjIqgXF_YWkiYZR8Z2nXYO89_7XiYzyyy4p0KT0I_3nbz3e4S8022IjIUIQY70JXehLi2YglJGAe6pcLJTWOD87bs8v-BfL8Vl3nAbc1rlTicmRe2HDvfIT5hiXLVgLvnHq78ldo3C09XcQuMuuVeDpcGULj37st9jQfRzWJBrZapGn4w8aYaUwt5ITLw8sEcJtv_A17yZKXnjuDRZodkj8jC7j_R0S-_H5E7on5D724aSm6dkdTqBD4zo3f2c_gngWJcjaIaEQEsh8v29nidK0EVPIdpOUAHLDfULxAsfg6f9AqR6SdOmzmacRgo-Lc2tclaI8ppWD5Ge_WB0GuDyjFzMPv88Oy9zV4WyE7WaSggoWumV7GxoBQ_O62hbLnwAdcOihZDVtd7xyHSA2KhR0bmm6oDQoBWDlbF5To76oQ8vCFVYZysbaS1ItWisa3XnlVVWM-dtlAWpd__WdBlyHDtfLE06-m602dLDAD1MooepCvJ-v-ZqC7hx6-xPSLL9TATLTjeG1dxk2TPK2rry3lZVbLjlvo1axOBBW3Edpe8KcrwjuMkSPJprfivI2_0wyB4eqNg-DOs0RyDwMasLog4Y5eCFDkf6xa-E4o11mkKwgnzYsdT1w___wS9vf9dX5AFD5saUG35MjqbVOrwGr2lyb5Jo_AODlRgD priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRf5PzCeqdE8E2LbZqvPq6Hx7GgPujBvYWkSdaVvVa23Yf9751kuys9VPCp0ExomvnITDLzC8AbVftAqQ8Y5AiXM-vL3OBSkIvA0T3lVjQyFjh_-iyurtn8ht8cAd3XwqSk_QRpmcz0Pjvsfc-SSqfc80rEjMl7cBKh2lG2T2az-df5YWclYp4rxsYKmaJSf-g8WYUSWP_Ew7ybH3nnkDStPZen8HB0GslsN8xHcOTbx3B_d43k9gmsZwN6vhGzu12QW4_udN6jPUi4swTj3R-bRZp_smwJxtgJIGC1JW4ZUcJ770i7RF1ekbSVs-2HnqAnS8YLctYR2zX17gK5-ELJ0OHjKVxffvx2cZWPdynkDS_lkGMYUQsnRWN8zZm3TgVTM-48GhkaDAaqtnaWBao8RkSVDNZWRYPsRVvojQjVMzhuu9Y_ByJjda2ohDGoy7wytlaNk0YaRa0zQWRQ7udWNyPQeLzvYqXTgXel9I4fGvmhEz90kcHbQ5-fO5iNf1J_iCw7UEaI7PSiWy_0KDJaGlMWzpmiCBUzzNVB8eAd2iimgnBNBud7hutRb3tNJWWyRqeMZfD60IwaF49RTOu7TaLhEe6YlhnIiaBMBjRtaZffE3Z3rM7knGbwbi9Svz_-9x9-8X_kZ_CARmGPiTfsHI6H9ca_RN9psK9GZfkFeIoXEA priority: 102 providerName: Springer Nature |
Title | Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO |
URI | https://link.springer.com/article/10.1038/s41467-022-33692-0 https://www.proquest.com/docview/2724795844 https://www.proquest.com/docview/2725204821 https://pubmed.ncbi.nlm.nih.gov/PMC9568552 https://doaj.org/article/7aa10dda00f34a4d9f85fed42548f6dc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB_uA8GXw09cPUsE33S1zeZrH0R65epRuFPUQt-W7Caplbp77m7B_vdO0m2lxyn4soFNwm4ymclMMvMbgJcqtY5S69DIESZmuR3EGreCWDiO6inPRSF9gPPllbiYssmMzw5gm-6om8DmVtPO55Oa1ss3v36u3yPDv9uEjKu3DQvsHvzSE-G9KQ_hGHcm6TMaXHbqfpDMSYoGDetiZ27vurc_BRj_Pd3zpufkjevTsCuN78FJp06S4Yb-9-HAlg_gzibB5Poh1MMWdWKP5l3OyQ-LY4wblBQBkZagJfx9NQ-UIYuSoPUdoAOWa2IWHj-8sYaUC-TyJQmHPOumbQjquKRLnVN71NfQu3Jk9JGStsLiEUzH519HF3GXZSEu-EC2MRoYqTBSFNqmnNncKKdTxo1F8UOdRhM2T03OHFUWbaVEujxP-gUSHqWk1cIlj-GorEr7BIj0cbciEVojl_NE56kqjNRSK5ob7UQEg-3cZkUHQe4zYSyzcBWeqGxDjwzpkQV6ZP0IXu36XG8AOP7Z-syTbNfSg2eHF1U9zzpezKTWg74xut93CdPMpE5xZw1KL6acMEUEp1uCZ9sFmVFJmUxRXWMRvNhVIy_6CxZd2moV2nAPhEwHEci9hbL3Q_s15eJbQPX2cZuc0wheb5fUn4__fcBP_6_5M7hL_WL3LjnsFI7aemWfo1bV5j04lDOJTzX-0IPj4XDyZYLl2fnVp8_4diRGvXBe0Qss9Rt0HSYY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkFDASnCBq1vEjOSBUCsuWPri0Um_Gie1l0TYpm6zQ_il-I2NvstVWoreeIiVO4mTe9sw3AG-y3DpKrcMgR5iYFXYQazQFsXAc3VNeiFL6AuejYzE6Zd_O-NkG_O1rYXxaZa8Tg6I2denXyHeopEzmaC7Zx4vfse8a5XdX-xYaS7Y4sIs_GLI1H_Y_I33fUjr8crI3iruuAnHJB7KN0aHOhZGi1DbnzBYmczpn3FgUN-o0hmxFbgrmaGYxNkilK4o0KfFDUStYLVyKz70Ft1mKltxXpg-_rtZ0PNo6TrCrzUnSbKdhQROFlPlU-ETPNfsX2gSs-bZXMzOvbM8Gqzd8APc7d5XsLvnrIWzY6hHcWTawXDyG2W6LPrdHC6_G5NyiIx83qIkC4i3BSPvXfBwoTyYVweg-QBNMF8RMPD55Yw2pJqhFpiQsIi2atiHoQ5OuNc_Mo8qGu2tH9r5T0tZ4eAKnN_K_n8JmVVf2GRDp63pFKrRGLcJTXeRZaaSWOqOF0U5EMOj_rSo7iHPfaWOqwlZ7mqklPRTSQwV6qCSCd6t7LpYAH9eO_uRJthrpwbnDiXo2Vp2sK6n1IDFGJ4lLmWYmdxl31qB2ZJkTpoxguye46jRGoy75O4LXq8so634DR1e2nocx3AMt00EEco1R1ia0fqWa_Ayo4b4ulHMawfuepS5f_v8P3rp-rq_g7ujk6FAd7h8fPId71DO6T_dh27DZzub2BXpsbfEyiAmBHzctl_8A_7dWUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ8iY4CR4Amipo5jJw8I7avaGJQJMWlvnhPbpahLRpMK9V_jr-PsJp06ib3tqVLjtE7u7uc7--53AG_TzFhKjcUgh-uQ5WYQKlwKQm4TdE-TnBfCFTh_HfHDU_b5LDnbgL9dLYxLq-ww0QO1rgq3R96ngjKR4XLJ-rZNizjZH366_B26DlLupLVrp7FUkWOz-IPhW_3xaB9l_Y7S4cGPvcOw7TAQFslANCE61xnXghfKZAkzuU6tyliiDZoetQrDtzzTObM0NRgnxMLmeRwV-NCIEEZxG-Pv3oFN4aKiHmzuHoxOvq92eBz3Ok63rdSJ4rRfM49LPoE-5i7tc2019E0D1jzd63ma1w5r_Ro4fAgPWueV7Cy17RFsmPIx3F22s1w8gdlOgx644w4vx-TCoFsf1ohLnv-WYNz9az72ekAmJcFY3xMVTBdETxxbeW00KSeIKVPit5QWdVMT9KhJ26hn5jhm_d2VJXvfKGkq_HgKp7fyxp9Br6xK8xyIcFW-POZKIaYkscqztNBCCZXSXCvLAxh071YWLeG567sxlf7gPU7lUh4S5SG9PGQUwPvVPZdLuo8bR-86ka1GOqpu_0U1G8vW8qVQahBpraLIxkwxndk0sUYjVrLUcl0EsN0JXLb4UcsrbQ_gzeoyWr47zlGlqeZ-TOJol-kgALGmKGsTWr9STn56DnFXJZokNIAPnUpd_fn_H3jr5rm-hntok_LL0ej4BdynTs9d7g_bhl4zm5uX6L41-avWTgic37Zp_gN2slvl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attenuating+metal-substrate+conjugation+in+atomically+dispersed+nickel+catalysts+for+electroreduction+of+CO2+to+CO&rft.jtitle=Nature+communications&rft.au=Wang%2C+Qiyou&rft.au=Liu%2C+Kang&rft.au=Hu%2C+Kangman&rft.au=Cai%2C+Chao&rft.date=2022-10-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33692-0&rft.externalDocID=10_1038_s41467_022_33692_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |