Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO

Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 . However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO 2 activation at the active metal...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 6082 - 10
Main Authors Wang, Qiyou, Liu, Kang, Hu, Kangman, Cai, Chao, Li, Huangjingwei, Li, Hongmei, Herran, Matias, Lu, Ying-Rui, Chan, Ting-Shan, Ma, Chao, Fu, Junwei, Zhang, Shiguo, Liang, Ying, Cortés, Emiliano, Liu, Min
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 . However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO 2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO 2 activation. As a result, for the electroreduction of CO 2 to CO in aqueous KHCO 3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO 2 concentration of only 30% in an H-type cell. In a flow cell under pure CO 2 at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm 2 with a FE above 90%. Electroreduction of CO 2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO 2 activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO 2 to CO conversion.
AbstractList Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 . However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO 2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO 2 activation. As a result, for the electroreduction of CO 2 to CO in aqueous KHCO 3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO 2 concentration of only 30% in an H-type cell. In a flow cell under pure CO 2 at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm 2 with a FE above 90%. Electroreduction of CO 2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO 2 activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO 2 to CO conversion.
Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 . However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO 2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO 2 activation. As a result, for the electroreduction of CO 2 to CO in aqueous KHCO 3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO 2 concentration of only 30% in an H-type cell. In a flow cell under pure CO 2 at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm 2 with a FE above 90%.
Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at −1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at −0.93 V versus RHE the cyano-modified catalyst enables a current density of −300 mA/cm2 with a FE above 90%.Electroreduction of CO2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO2 activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO2 to CO conversion.
Electroreduction of CO2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO2 activation, here the authors functionalize the carbon support with cyano moieties, thereby attenuating metal-substrate conjugation and improving CO2 to CO conversion.
Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%.Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%.
ArticleNumber 6082
Author Lu, Ying-Rui
Chan, Ting-Shan
Cortés, Emiliano
Hu, Kangman
Liu, Min
Liang, Ying
Zhang, Shiguo
Wang, Qiyou
Cai, Chao
Ma, Chao
Li, Hongmei
Herran, Matias
Liu, Kang
Fu, Junwei
Li, Huangjingwei
Author_xml – sequence: 1
  givenname: Qiyou
  surname: Wang
  fullname: Wang, Qiyou
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 2
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 3
  givenname: Kangman
  surname: Hu
  fullname: Hu, Kangman
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 4
  givenname: Chao
  orcidid: 0000-0002-3695-3247
  surname: Cai
  fullname: Cai, Chao
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 5
  givenname: Huangjingwei
  surname: Li
  fullname: Li, Huangjingwei
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 6
  givenname: Hongmei
  surname: Li
  fullname: Li, Hongmei
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 7
  givenname: Matias
  surname: Herran
  fullname: Herran, Matias
  organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München
– sequence: 8
  givenname: Ying-Rui
  orcidid: 0000-0002-6002-5627
  surname: Lu
  fullname: Lu, Ying-Rui
  organization: National Synchrotron Radiation Research Center
– sequence: 9
  givenname: Ting-Shan
  orcidid: 0000-0001-5220-1611
  surname: Chan
  fullname: Chan, Ting-Shan
  organization: National Synchrotron Radiation Research Center
– sequence: 10
  givenname: Chao
  orcidid: 0000-0001-8599-9340
  surname: Ma
  fullname: Ma, Chao
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 11
  givenname: Junwei
  surname: Fu
  fullname: Fu, Junwei
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
– sequence: 12
  givenname: Shiguo
  orcidid: 0000-0001-6651-2752
  surname: Zhang
  fullname: Zhang, Shiguo
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 13
  givenname: Ying
  orcidid: 0000-0002-6216-4743
  surname: Liang
  fullname: Liang, Ying
  organization: College of Food Science and Engineering, Central South University of Forestry and Technology
– sequence: 14
  givenname: Emiliano
  orcidid: 0000-0001-8248-4165
  surname: Cortés
  fullname: Cortés, Emiliano
  email: Emiliano.Cortes@lmu.de
  organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München
– sequence: 15
  givenname: Min
  orcidid: 0000-0002-9007-4817
  surname: Liu
  fullname: Liu, Min
  email: minliu@csu.edu.cn
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University
BookMark eNp9UstuHCEQHEWO4kf8Azkh5ZLLODxnmEska5WHJUu-JGfEQLNhw8IGmEj798a7VhL7YC6N6Kqi1F3n3UlMEbruHcFXBDP5sXDCh7HHlPaMDRPt8avujGJOejJSdvLf_bS7LGWD22ETkZy_6U7ZQDkZGDnr8nWtEBddfVyjLVQd-rLMpWZdAZkUN8u69VJEPiJd09YbHcIeWV92kAtYFL35BQEZ3aj7UgtyKSMIYGpOGexiDuzk0OqOoppaedu9djoUuHysF92PL5-_r771t3dfb1bXt70RZKw9kXQa7DgYDZPgMFvp9MSFBSlH6jRjcp7szB2VMFDBRjfPDBtjNCEE9ODYRXdz1LVJb9Qu-63Oe5W0V4eHlNdK5-pNADVqTbC1GmPHuOZ2clI4sJwKLt1gTdP6dNTaLfMWrIHYJhSeiD7tRP9TrdMfNYlBCkGbwIdHgZx-L1Cq2vpiIAQdIS1F0ZGKtjFJSYO-fwbdpCXHNqoHFB8n0ZbYUPSIMjmVksH9NUOwekiIOiZEtYSoQ0IUbiT5jGR8Pey3mfbhZSo7Ukv7J64h_3P1AuseUJbTRg
CitedBy_id crossref_primary_10_1021_acsami_4c18585
crossref_primary_10_1002_ange_202422775
crossref_primary_10_1002_smll_202412293
crossref_primary_10_1002_adsu_202400748
crossref_primary_10_1002_anie_202414569
crossref_primary_10_1002_cssc_202301719
crossref_primary_10_1039_D3NR04768G
crossref_primary_10_1007_s40820_023_01264_6
crossref_primary_10_1002_aenm_202400374
crossref_primary_10_1002_aenm_202400647
crossref_primary_10_1016_j_cej_2024_150051
crossref_primary_10_1002_anie_202318246
crossref_primary_10_1016_j_apcatb_2024_124206
crossref_primary_10_1021_acsami_3c11467
crossref_primary_10_1002_aenm_202402942
crossref_primary_10_1021_acs_chemmater_3c02856
crossref_primary_10_1021_acs_nanolett_5c00946
crossref_primary_10_1016_j_cej_2025_160387
crossref_primary_10_1021_acsami_4c21988
crossref_primary_10_1002_adfm_202316199
crossref_primary_10_1002_ange_202308195
crossref_primary_10_1016_j_mtener_2024_101706
crossref_primary_10_1002_anie_202421149
crossref_primary_10_1021_acscatal_4c01557
crossref_primary_10_1021_jacsau_4c00246
crossref_primary_10_1021_acs_jpcc_4c08531
crossref_primary_10_1021_acs_nanolett_4c03978
crossref_primary_10_3390_polym15112534
crossref_primary_10_1002_adfm_202401927
crossref_primary_10_1002_anie_202313597
crossref_primary_10_1016_j_scib_2024_06_014
crossref_primary_10_1016_j_comptc_2024_114651
crossref_primary_10_1039_D3TA00267E
crossref_primary_10_1002_aenm_202403624
crossref_primary_10_1002_anie_202407578
crossref_primary_10_1016_j_nanoen_2023_108967
crossref_primary_10_1002_anie_202415273
crossref_primary_10_1021_acsenergylett_3c01211
crossref_primary_10_1039_D3SE00082F
crossref_primary_10_1016_j_nanoen_2024_109873
crossref_primary_10_1002_adfm_202214658
crossref_primary_10_1002_ange_202421149
crossref_primary_10_1016_j_jcou_2024_102819
crossref_primary_10_1002_smll_202208118
crossref_primary_10_1016_j_isci_2023_108434
crossref_primary_10_1016_j_checat_2023_100862
crossref_primary_10_3390_ijms241612680
crossref_primary_10_1002_adfm_202306994
crossref_primary_10_1002_ange_202404884
crossref_primary_10_1002_aenm_202403778
crossref_primary_10_1002_smll_202404162
crossref_primary_10_1002_ange_202414569
crossref_primary_10_1002_cey2_498
crossref_primary_10_1021_jacs_4c13197
crossref_primary_10_1016_j_seppur_2023_125177
crossref_primary_10_1039_D3TA03115B
crossref_primary_10_1002_ange_202415273
crossref_primary_10_1016_j_jcis_2023_07_180
crossref_primary_10_1016_j_mcat_2025_115039
crossref_primary_10_1002_adfm_202301334
crossref_primary_10_1002_cssc_202202251
crossref_primary_10_1002_smll_202307180
crossref_primary_10_1039_D3GC03893A
crossref_primary_10_1002_anie_202404884
crossref_primary_10_1016_j_pnsc_2024_10_009
crossref_primary_10_1002_aenm_202304362
crossref_primary_10_1002_anie_202308195
crossref_primary_10_1016_j_jechem_2023_09_024
crossref_primary_10_1016_j_cej_2024_149054
crossref_primary_10_1002_adfm_202300926
crossref_primary_10_1021_acs_inorgchem_4c00843
crossref_primary_10_1021_acsami_4c02915
crossref_primary_10_1002_ange_202309351
crossref_primary_10_1016_j_jmst_2023_06_001
crossref_primary_10_1016_j_ces_2024_120297
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1002_admt_202500028
crossref_primary_10_1002_ange_202407578
crossref_primary_10_1007_s12274_023_6019_x
crossref_primary_10_1039_D4DT00495G
crossref_primary_10_1016_j_nanoen_2024_109729
crossref_primary_10_1016_j_apcatb_2023_122626
crossref_primary_10_1021_acsestwater_3c00010
crossref_primary_10_1039_D3CC04656G
crossref_primary_10_1002_adma_202300695
crossref_primary_10_1016_j_carbon_2023_118348
crossref_primary_10_1021_jacs_3c06697
crossref_primary_10_1016_j_ccr_2024_215693
crossref_primary_10_1016_j_carbon_2023_02_007
crossref_primary_10_1021_acs_nanolett_4c00306
crossref_primary_10_1016_j_cej_2025_160634
crossref_primary_10_1063_5_0234932
crossref_primary_10_1021_acssuschemeng_3c00398
crossref_primary_10_1002_ange_202307612
crossref_primary_10_1007_s40843_022_2388_0
crossref_primary_10_1016_j_esci_2023_100097
crossref_primary_10_1002_cjoc_202300372
crossref_primary_10_1021_acscatal_3c00688
crossref_primary_10_1002_smll_202310289
crossref_primary_10_1002_smll_202402867
crossref_primary_10_1002_adfm_202420994
crossref_primary_10_1002_smll_202308080
crossref_primary_10_1039_D4QI01570C
crossref_primary_10_1002_ange_202318246
crossref_primary_10_1002_smll_202401017
crossref_primary_10_1038_s41467_024_54636_w
crossref_primary_10_1002_ange_202313597
crossref_primary_10_1039_D2TA09416A
crossref_primary_10_1063_5_0195943
crossref_primary_10_1002_ange_202301767
crossref_primary_10_1016_j_microc_2024_111731
crossref_primary_10_1007_s12598_024_02795_6
crossref_primary_10_1016_j_apcatb_2024_124668
crossref_primary_10_3866_PKU_WHXB202308027
crossref_primary_10_1016_j_ces_2023_118638
crossref_primary_10_1002_adma_202303052
crossref_primary_10_1002_anie_202309351
crossref_primary_10_1021_jacs_3c09632
crossref_primary_10_1039_D3IM00109A
crossref_primary_10_1039_D3SC06863C
crossref_primary_10_1002_smll_202207219
crossref_primary_10_1002_anie_202307612
crossref_primary_10_1016_j_isci_2023_107953
crossref_primary_10_1016_j_jcat_2023_03_029
crossref_primary_10_1002_anie_202422775
crossref_primary_10_1021_jacs_4c04322
crossref_primary_10_1002_advs_202500368
crossref_primary_10_1002_anie_202301767
crossref_primary_10_3390_app13042177
crossref_primary_10_1016_j_apsusc_2023_157948
crossref_primary_10_1016_j_jechem_2025_02_017
crossref_primary_10_1021_acsnano_3c09102
Cites_doi 10.1038/s41467-018-03896-4
10.1002/adma.201605148
10.1103/PhysRevB.49.14251
10.1002/anie.201908640
10.1103/PhysRevB.46.6671
10.1039/c0ee00071j
10.1002/anie.202008787
10.1016/0927-0256(96)00008-0
10.1063/1.4865107
10.1038/s41467-021-24052-5
10.1021/acsnano.6b05488
10.1002/smsc.202000028
10.1021/jacs.9b03004
10.1002/adma.201903545
10.1002/anie.202109329
10.1016/j.cej.2021.128982
10.1149/1.1856988
10.1002/anie.202107550
10.1038/ncomms12165
10.1038/s41467-019-12510-0
10.1021/jp902871b
10.1103/PhysRevB.50.17953
10.1021/jacs.7b10462
10.1021/jacs.1c05754
10.1021/jp047349j
10.1002/anie.201914977
10.1002/adfm.201908486
10.1002/anie.201811938
10.1039/D0CS00071J
10.1021/acsenergylett.9b01015
10.1038/s41570-018-0010-1
10.1016/j.apcatb.2022.121093
10.1002/advs.201900796
10.1038/nature19060
10.1002/anie.202109373
10.1002/anie.202104494
10.1002/anie.202016219
10.1002/anie.201712451
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.87.245402
10.1002/jcc.20495
10.1039/D0EE03947K
10.1002/adfm.202111322
10.1002/anie.202113918
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-33692-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_7aa10dda00f34a4d9f85fed42548f6dc
PMC9568552
10_1038_s41467_022_33692_0
GrantInformation_xml – fundername: European Commission (EC)
  grantid: 802989
  funderid: https://doi.org/10.13039/501100000780
– fundername: ;
  grantid: 802989
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-18296d76cae954ebd8fa945de8872fa338b9db4f28e62537fbb30ccca111ea6f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:45 EDT 2025
Thu Aug 21 18:40:08 EDT 2025
Fri Jul 11 06:23:19 EDT 2025
Wed Aug 13 04:54:18 EDT 2025
Tue Jul 01 00:58:28 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 21 02:38:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-18296d76cae954ebd8fa945de8872fa338b9db4f28e62537fbb30ccca111ea6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6651-2752
0000-0001-8248-4165
0000-0002-3695-3247
0000-0001-5220-1611
0000-0002-6216-4743
0000-0002-6002-5627
0000-0001-8599-9340
0000-0002-9007-4817
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-33692-0
PMID 36241631
PQID 2724795844
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7aa10dda00f34a4d9f85fed42548f6dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9568552
proquest_miscellaneous_2725204821
proquest_journals_2724795844
crossref_primary_10_1038_s41467_022_33692_0
crossref_citationtrail_10_1038_s41467_022_33692_0
springer_journals_10_1038_s41467_022_33692_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-14
PublicationDateYYYYMMDD 2022-10-14
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Yu (CR18) 2017; 29
Wang (CR21) 2021; 60
Blöchl (CR38) 1994; 50
Zeng (CR28) 2021; 12
Jiang (CR29) 2020; 59
Fishman, Zhuang, Mathew, Dirschka, Hennig (CR45) 2013; 87
Zhang (CR26) 2019; 58
Zhang (CR16) 2016; 10
CR12
Ding (CR10) 2021; 143
Qin, Zhu, Xiao, Zhang, Shao (CR33) 2019; 4
Xue (CR6) 2018; 9
Wang (CR31) 2018; 57
Huang (CR17) 2020; 30
Wang (CR24) 2019; 58
Li (CR30) 2021; 60
Lau (CR19) 2016; 7
Fu (CR23) 2021; 415
Wang, Li, Zhang (CR4) 2018; 2
Fu (CR22) 2019; 6
Wang (CR2) 2021; 1
Chen (CR7) 2022; 306
Zhu, Jiang, Cai, Shao (CR32) 2017; 139
Perdew, Burke, Ernzerhof (CR39) 1996; 77
CR8
Zhao (CR20) 2019; 31
Nørskov (CR43) 2005; 152
Grimme (CR40) 2006; 27
Perdew (CR35) 1992; 46
Nørskov (CR42) 2004; 108
Jia (CR13) 2021; 60
Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR44) 2014; 140
Zhang, Jiao, Yang, Xie, Jiang (CR15) 2021; 60
Liu (CR3) 2016; 537
Zhou (CR25) 2009; 113
Wang (CR1) 2021; 50
Kresse, Furthmüller (CR36) 1996; 6
Hui (CR5) 2019; 141
Cao (CR9) 2021; 61
Gong (CR11) 2020; 59
Kresse, Hafner (CR34) 1994; 49
Yang (CR27) 2019; 10
Kresse, Furthmüller (CR37) 1996; 54
Ni (CR14) 2021; 60
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR41) 2010; 3
M Liu (33692_CR3) 2016; 537
C Jia (33692_CR13) 2021; 60
Q Wang (33692_CR2) 2021; 1
JP Perdew (33692_CR39) 1996; 77
VW-h Lau (33692_CR19) 2016; 7
Z Zeng (33692_CR28) 2021; 12
S Zhu (33692_CR32) 2017; 139
H Yang (33692_CR27) 2019; 10
A Wang (33692_CR4) 2018; 2
JG Zhou (33692_CR25) 2009; 113
JK Nørskov (33692_CR43) 2005; 152
M Fishman (33692_CR45) 2013; 87
G Kresse (33692_CR34) 1994; 49
JK Nørskov (33692_CR42) 2004; 108
AA Peterson (33692_CR41) 2010; 3
33692_CR12
G Wang (33692_CR1) 2021; 50
Y Zhang (33692_CR16) 2016; 10
PE Blöchl (33692_CR38) 1994; 50
Q Wang (33692_CR21) 2021; 60
Y Xue (33692_CR6) 2018; 9
YN Gong (33692_CR11) 2020; 59
J Fu (33692_CR22) 2019; 6
X Cao (33692_CR9) 2021; 61
G Kresse (33692_CR37) 1996; 54
G Kresse (33692_CR36) 1996; 6
Y Zhang (33692_CR15) 2021; 60
JP Perdew (33692_CR35) 1992; 46
L Hui (33692_CR5) 2019; 141
33692_CR8
H Yu (33692_CR18) 2017; 29
HL Jiang (33692_CR29) 2020; 59
X Qin (33692_CR33) 2019; 4
S Grimme (33692_CR40) 2006; 27
K Chen (33692_CR7) 2022; 306
X Wang (33692_CR31) 2018; 57
T Ding (33692_CR10) 2021; 143
G Zhang (33692_CR26) 2019; 58
Y Ni (33692_CR14) 2021; 60
W Wang (33692_CR24) 2019; 58
J Fu (33692_CR23) 2021; 415
D Zhao (33692_CR20) 2019; 31
S Li (33692_CR30) 2021; 60
L Huang (33692_CR17) 2020; 30
K Mathew (33692_CR44) 2014; 140
References_xml – volume: 9
  year: 2018
  ident: CR6
  article-title: Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03896-4
– volume: 29
  start-page: 1605148
  year: 2017
  ident: CR18
  article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605148
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  ident: CR34
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
  publication-title: Phy. Rev. B.
  doi: 10.1103/PhysRevB.49.14251
– volume: 58
  start-page: 16644
  year: 2019
  end-page: 16650
  ident: CR24
  article-title: Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908640
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: CR35
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.46.6671
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: CR41
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 59
  start-page: 20589
  year: 2020
  end-page: 20595
  ident: CR29
  article-title: Single-atom electrocatalysts from multivariate MOFs for highly selective reduction of CO at low pressures
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008787
– ident: CR12
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR36
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 140
  start-page: 084106
  year: 2014
  ident: CR44
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 12
  year: 2021
  ident: CR28
  article-title: Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO reduction and oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24052-5
– volume: 10
  start-page: 9036
  year: 2016
  end-page: 9043
  ident: CR16
  article-title: Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes Absorption and regeneration
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.6b05488
– volume: 1
  start-page: 2000028
  year: 2021
  ident: CR2
  article-title: Recent advances in strategies for improving the performance of CO reduction reaction on single atom catalysts
  publication-title: Small Sci.
  doi: 10.1002/smsc.202000028
– volume: 141
  start-page: 10677
  year: 2019
  end-page: 10683
  ident: CR5
  article-title: Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03004
– volume: 31
  start-page: 1903545
  year: 2019
  ident: CR20
  article-title: Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903545
– volume: 60
  start-page: 25241
  year: 2021
  end-page: 25245
  ident: CR21
  article-title: Atomically dispersed s-Block magnesium sites for electroreduction of CO to CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109329
– volume: 415
  start-page: 128982
  year: 2021
  ident: CR23
  article-title: Activation of CO on graphitic carbon nitride supported single-atom cobalt sites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128982
– volume: 152
  start-page: J23
  year: 2005
  ident: CR43
  article-title: Response to “comment on ‘trends in the exchangecurrent for hydrogen evolution’
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 60
  start-page: 22826
  year: 2021
  end-page: 22832
  ident: CR30
  article-title: Low-valence Znδ+ (0<δ<2) single-atom material as highly efficient electrocatalyst for CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107550
– ident: CR8
– volume: 7
  year: 2016
  ident: CR19
  article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12165
– volume: 10
  year: 2019
  ident: CR27
  article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12510-0
– volume: 113
  start-page: 10747
  year: 2009
  end-page: 10750
  ident: CR25
  article-title: Immobilization of RuO on carbon nanotube: an X-ray absorption near-edge structure study
  publication-title: J. Phy. Chem. C.
  doi: 10.1021/jp902871b
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR38
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.50.17953
– volume: 139
  start-page: 15664
  year: 2017
  end-page: 15667
  ident: CR32
  article-title: Direct observation on reaction intermediates and the role of bicarbonate anions in CO electrochemical reduction reaction on Cu surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10462
– volume: 143
  start-page: 11317
  year: 2021
  end-page: 11324
  ident: CR10
  article-title: Atomically precise dinuclear site active toward electrocatalytic CO reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05754
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR42
  article-title: Origin of the overpotential for oxygen reduction at a Fuel-Cell cathode
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp047349j
– volume: 59
  start-page: 2705
  year: 2020
  end-page: 2709
  ident: CR11
  article-title: Regulating the coordination environment of MOF-templated single-Atom nickel electrocatalysts for boosting CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914977
– volume: 30
  start-page: 1908486
  year: 2020
  ident: CR17
  article-title: Salt-Assisted synthesis of 2D materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908486
– volume: 58
  start-page: 3433
  year: 2019
  end-page: 3437
  ident: CR26
  article-title: Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811938
– volume: 50
  start-page: 4993
  year: 2021
  end-page: 5061
  ident: CR1
  article-title: Electrocatalysis for CO conversion: from fundamentals to value-added products
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00071J
– volume: 61
  start-page: e202113918
  year: 2021
  ident: CR9
  article-title: Atomic bridging structure of nickel–nitrogen–carbon for highly efficient electrocatalytic reduction of CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1778
  year: 2019
  end-page: 1783
  ident: CR33
  article-title: Active sites on heterogeneous single-iron-atom electrocatalysts in CO reduction reaction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01015
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: CR4
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 306
  start-page: 121093
  year: 2022
  ident: CR7
  article-title: Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO reduction reaction
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121093
– volume: 6
  start-page: 1900796
  year: 2019
  ident: CR22
  article-title: Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO to CH
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900796
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  ident: CR3
  article-title: Enhanced electrocatalytic CO reduction via field-induced reagent concentration
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 60
  start-page: 23342
  year: 2021
  end-page: 23348
  ident: CR13
  article-title: Sulfur-dopants promoted electroreduction of CO over coordinatively unsaturated Ni-N moieties
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109373
– volume: 60
  start-page: 16937
  year: 2021
  end-page: 16941
  ident: CR14
  article-title: Regulating electrocatalytic oxygen reduction activity of metal coordination polymer via d-π conjugation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104494
– volume: 60
  start-page: 7607
  year: 2021
  end-page: 7611
  ident: CR15
  article-title: Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016219
– volume: 57
  start-page: 1944
  year: 2018
  end-page: 1948
  ident: CR31
  article-title: Regulation of coordination number over single Co Sites: triggering the efficient electroreduction of CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712451
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR39
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR37
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.54.11169
– volume: 87
  start-page: 245402
  year: 2013
  ident: CR45
  article-title: Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.87.245402
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR40
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 152
  start-page: J23
  year: 2005
  ident: 33692_CR43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 58
  start-page: 16644
  year: 2019
  ident: 33692_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908640
– volume: 29
  start-page: 1605148
  year: 2017
  ident: 33692_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605148
– volume: 415
  start-page: 128982
  year: 2021
  ident: 33692_CR23
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128982
– volume: 60
  start-page: 22826
  year: 2021
  ident: 33692_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107550
– volume: 6
  start-page: 15
  year: 1996
  ident: 33692_CR36
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 60
  start-page: 25241
  year: 2021
  ident: 33692_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109329
– volume: 59
  start-page: 20589
  year: 2020
  ident: 33692_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008787
– volume: 10
  year: 2019
  ident: 33692_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12510-0
– ident: 33692_CR12
  doi: 10.1039/D0EE03947K
– volume: 31
  start-page: 1903545
  year: 2019
  ident: 33692_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903545
– volume: 306
  start-page: 121093
  year: 2022
  ident: 33692_CR7
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121093
– volume: 30
  start-page: 1908486
  year: 2020
  ident: 33692_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908486
– volume: 143
  start-page: 11317
  year: 2021
  ident: 33692_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05754
– volume: 139
  start-page: 15664
  year: 2017
  ident: 33692_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10462
– ident: 33692_CR8
  doi: 10.1002/adfm.202111322
– volume: 60
  start-page: 7607
  year: 2021
  ident: 33692_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016219
– volume: 2
  start-page: 65
  year: 2018
  ident: 33692_CR4
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 10
  start-page: 9036
  year: 2016
  ident: 33692_CR16
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.6b05488
– volume: 7
  year: 2016
  ident: 33692_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12165
– volume: 27
  start-page: 1787
  year: 2006
  ident: 33692_CR40
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 113
  start-page: 10747
  year: 2009
  ident: 33692_CR25
  publication-title: J. Phy. Chem. C.
  doi: 10.1021/jp902871b
– volume: 61
  start-page: e202113918
  year: 2021
  ident: 33692_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113918
– volume: 140
  start-page: 084106
  year: 2014
  ident: 33692_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 58
  start-page: 3433
  year: 2019
  ident: 33692_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811938
– volume: 77
  start-page: 3865
  year: 1996
  ident: 33692_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 59
  start-page: 2705
  year: 2020
  ident: 33692_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914977
– volume: 60
  start-page: 16937
  year: 2021
  ident: 33692_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104494
– volume: 537
  start-page: 382
  year: 2016
  ident: 33692_CR3
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 57
  start-page: 1944
  year: 2018
  ident: 33692_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712451
– volume: 1
  start-page: 2000028
  year: 2021
  ident: 33692_CR2
  publication-title: Small Sci.
  doi: 10.1002/smsc.202000028
– volume: 87
  start-page: 245402
  year: 2013
  ident: 33692_CR45
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.87.245402
– volume: 49
  start-page: 14251
  year: 1994
  ident: 33692_CR34
  publication-title: Phy. Rev. B.
  doi: 10.1103/PhysRevB.49.14251
– volume: 60
  start-page: 23342
  year: 2021
  ident: 33692_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109373
– volume: 108
  start-page: 17886
  year: 2004
  ident: 33692_CR42
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp047349j
– volume: 3
  start-page: 1311
  year: 2010
  ident: 33692_CR41
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 50
  start-page: 17953
  year: 1994
  ident: 33692_CR38
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.50.17953
– volume: 9
  year: 2018
  ident: 33692_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03896-4
– volume: 4
  start-page: 1778
  year: 2019
  ident: 33692_CR33
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01015
– volume: 141
  start-page: 10677
  year: 2019
  ident: 33692_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03004
– volume: 12
  year: 2021
  ident: 33692_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24052-5
– volume: 46
  start-page: 6671
  year: 1992
  ident: 33692_CR35
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.46.6671
– volume: 54
  start-page: 11169
  year: 1996
  ident: 33692_CR37
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.54.11169
– volume: 6
  start-page: 1900796
  year: 2019
  ident: 33692_CR22
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900796
– volume: 50
  start-page: 4993
  year: 2021
  ident: 33692_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00071J
SSID ssj0000391844
Score 2.6651826
Snippet Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO 2 ....
Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However,...
Electroreduction of CO2 on single atom catalysts is often hindered by electron delocalization of the metal sites. To improve CO2 activation, here the authors...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6082
SubjectTerms 140/146
147/143
639/301/299/886
639/638/161/886
639/638/675
639/638/77/887
Attenuation
Carbon
Carbon dioxide
Carbon dioxide concentration
Carbon monoxide
Catalysts
Conjugation
Dispersion
Electrocatalysts
Electron density
Electrowinning
Heavy metals
Humanities and Social Sciences
Infrared reflection
Infrared spectroscopy
Metals
multidisciplinary
Nickel
Science
Science (multidisciplinary)
Single atom catalysts
Substrates
Transition metals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMilNE1K3aZFgd4SE1tvHdPQEAJtLwnkJiRLSrdsvWXtPey_z0j2buNAm0tPBkvCkuahGWvmG4Q-KR0iISGCkyN8yVyoSwtHQSkiB_OUO9HIlOD89Zu4umXXd_zuUamvFBM2wAMPG3cmra0r721VRcos8zoqHoMHVmMqCt8k7Qtn3iNnKutgqsF1YWOWTEXVWceyTsjB61SkkMvJSZQB-ydW5tMYyScXpfn8uXyFXo6GIz4fJryPdkL7Gr0YSkmuD9DyvAfrN-F2t_f4VwCTuuxAJ2TsWQw-78_VfaYBnrUY_OwMEjBfYz9LSOFd8LidgTzPcf6ds-76DoM1i8ciOcuE75pHLyK--E5wv4DHIbq9_HJzcVWO9RTKhteyL8GV0MJL0digOQvOq2g14z6AoiHRgrPqtHcsEhXAK6IyOkerBkgM-jBYEekbtNsu2vAWYZkybAUV1oI8c2qdVo2XVlpFnLdRFKje7K1pRrDxVPNibvKlN1VmoIcBephMD1MV6GQ75vcAtfHP3p8TybY9E0x2fgHMY0bmMc8xT4GONgQ3o-x2hkjCpAbDjBXoeNsMUpeuUmwbFqvchyfIY1IXSE4YZTKhaUs7-5Hxu1OGJuekQKcblvrz8b8v-N3_WPB7tEeSCKSQHHaEdvvlKnwAq6p3H7MAPQDkWiGf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFA-6IngRP7G6SgRvWrZN89WTrIvjIqgXF_YWkiYZR8Z2nXYO89_7XiYzyyy4p0KT0I_3nbz3e4S8022IjIUIQY70JXehLi2YglJGAe6pcLJTWOD87bs8v-BfL8Vl3nAbc1rlTicmRe2HDvfIT5hiXLVgLvnHq78ldo3C09XcQuMuuVeDpcGULj37st9jQfRzWJBrZapGn4w8aYaUwt5ITLw8sEcJtv_A17yZKXnjuDRZodkj8jC7j_R0S-_H5E7on5D724aSm6dkdTqBD4zo3f2c_gngWJcjaIaEQEsh8v29nidK0EVPIdpOUAHLDfULxAsfg6f9AqR6SdOmzmacRgo-Lc2tclaI8ppWD5Ge_WB0GuDyjFzMPv88Oy9zV4WyE7WaSggoWumV7GxoBQ_O62hbLnwAdcOihZDVtd7xyHSA2KhR0bmm6oDQoBWDlbF5To76oQ8vCFVYZysbaS1ItWisa3XnlVVWM-dtlAWpd__WdBlyHDtfLE06-m602dLDAD1MooepCvJ-v-ZqC7hx6-xPSLL9TATLTjeG1dxk2TPK2rry3lZVbLjlvo1axOBBW3Edpe8KcrwjuMkSPJprfivI2_0wyB4eqNg-DOs0RyDwMasLog4Y5eCFDkf6xa-E4o11mkKwgnzYsdT1w___wS9vf9dX5AFD5saUG35MjqbVOrwGr2lyb5Jo_AODlRgD
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRf5PzCeqdE8E2LbZqvPq6Hx7GgPujBvYWkSdaVvVa23Yf9751kuys9VPCp0ExomvnITDLzC8AbVftAqQ8Y5AiXM-vL3OBSkIvA0T3lVjQyFjh_-iyurtn8ht8cAd3XwqSk_QRpmcz0Pjvsfc-SSqfc80rEjMl7cBKh2lG2T2az-df5YWclYp4rxsYKmaJSf-g8WYUSWP_Ew7ybH3nnkDStPZen8HB0GslsN8xHcOTbx3B_d43k9gmsZwN6vhGzu12QW4_udN6jPUi4swTj3R-bRZp_smwJxtgJIGC1JW4ZUcJ770i7RF1ekbSVs-2HnqAnS8YLctYR2zX17gK5-ELJ0OHjKVxffvx2cZWPdynkDS_lkGMYUQsnRWN8zZm3TgVTM-48GhkaDAaqtnaWBao8RkSVDNZWRYPsRVvojQjVMzhuu9Y_ByJjda2ohDGoy7wytlaNk0YaRa0zQWRQ7udWNyPQeLzvYqXTgXel9I4fGvmhEz90kcHbQ5-fO5iNf1J_iCw7UEaI7PSiWy_0KDJaGlMWzpmiCBUzzNVB8eAd2iimgnBNBud7hutRb3tNJWWyRqeMZfD60IwaF49RTOu7TaLhEe6YlhnIiaBMBjRtaZffE3Z3rM7knGbwbi9Svz_-9x9-8X_kZ_CARmGPiTfsHI6H9ca_RN9psK9GZfkFeIoXEA
  priority: 102
  providerName: Springer Nature
Title Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO
URI https://link.springer.com/article/10.1038/s41467-022-33692-0
https://www.proquest.com/docview/2724795844
https://www.proquest.com/docview/2725204821
https://pubmed.ncbi.nlm.nih.gov/PMC9568552
https://doaj.org/article/7aa10dda00f34a4d9f85fed42548f6dc
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB_uA8GXw09cPUsE33S1zeZrH0R65epRuFPUQt-W7Caplbp77m7B_vdO0m2lxyn4soFNwm4ymclMMvMbgJcqtY5S69DIESZmuR3EGreCWDiO6inPRSF9gPPllbiYssmMzw5gm-6om8DmVtPO55Oa1ss3v36u3yPDv9uEjKu3DQvsHvzSE-G9KQ_hGHcm6TMaXHbqfpDMSYoGDetiZ27vurc_BRj_Pd3zpufkjevTsCuN78FJp06S4Yb-9-HAlg_gzibB5Poh1MMWdWKP5l3OyQ-LY4wblBQBkZagJfx9NQ-UIYuSoPUdoAOWa2IWHj-8sYaUC-TyJQmHPOumbQjquKRLnVN71NfQu3Jk9JGStsLiEUzH519HF3GXZSEu-EC2MRoYqTBSFNqmnNncKKdTxo1F8UOdRhM2T03OHFUWbaVEujxP-gUSHqWk1cIlj-GorEr7BIj0cbciEVojl_NE56kqjNRSK5ob7UQEg-3cZkUHQe4zYSyzcBWeqGxDjwzpkQV6ZP0IXu36XG8AOP7Z-syTbNfSg2eHF1U9zzpezKTWg74xut93CdPMpE5xZw1KL6acMEUEp1uCZ9sFmVFJmUxRXWMRvNhVIy_6CxZd2moV2nAPhEwHEci9hbL3Q_s15eJbQPX2cZuc0wheb5fUn4__fcBP_6_5M7hL_WL3LjnsFI7aemWfo1bV5j04lDOJTzX-0IPj4XDyZYLl2fnVp8_4diRGvXBe0Qss9Rt0HSYY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkFDASnCBq1vEjOSBUCsuWPri0Um_Gie1l0TYpm6zQ_il-I2NvstVWoreeIiVO4mTe9sw3AG-y3DpKrcMgR5iYFXYQazQFsXAc3VNeiFL6AuejYzE6Zd_O-NkG_O1rYXxaZa8Tg6I2denXyHeopEzmaC7Zx4vfse8a5XdX-xYaS7Y4sIs_GLI1H_Y_I33fUjr8crI3iruuAnHJB7KN0aHOhZGi1DbnzBYmczpn3FgUN-o0hmxFbgrmaGYxNkilK4o0KfFDUStYLVyKz70Ft1mKltxXpg-_rtZ0PNo6TrCrzUnSbKdhQROFlPlU-ETPNfsX2gSs-bZXMzOvbM8Gqzd8APc7d5XsLvnrIWzY6hHcWTawXDyG2W6LPrdHC6_G5NyiIx83qIkC4i3BSPvXfBwoTyYVweg-QBNMF8RMPD55Yw2pJqhFpiQsIi2atiHoQ5OuNc_Mo8qGu2tH9r5T0tZ4eAKnN_K_n8JmVVf2GRDp63pFKrRGLcJTXeRZaaSWOqOF0U5EMOj_rSo7iHPfaWOqwlZ7mqklPRTSQwV6qCSCd6t7LpYAH9eO_uRJthrpwbnDiXo2Vp2sK6n1IDFGJ4lLmWYmdxl31qB2ZJkTpoxguye46jRGoy75O4LXq8so634DR1e2nocx3AMt00EEco1R1ia0fqWa_Ayo4b4ulHMawfuepS5f_v8P3rp-rq_g7ujk6FAd7h8fPId71DO6T_dh27DZzub2BXpsbfEyiAmBHzctl_8A_7dWUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ8iY4CR4Amipo5jJw8I7avaGJQJMWlvnhPbpahLRpMK9V_jr-PsJp06ib3tqVLjtE7u7uc7--53AG_TzFhKjcUgh-uQ5WYQKlwKQm4TdE-TnBfCFTh_HfHDU_b5LDnbgL9dLYxLq-ww0QO1rgq3R96ngjKR4XLJ-rZNizjZH366_B26DlLupLVrp7FUkWOz-IPhW_3xaB9l_Y7S4cGPvcOw7TAQFslANCE61xnXghfKZAkzuU6tyliiDZoetQrDtzzTObM0NRgnxMLmeRwV-NCIEEZxG-Pv3oFN4aKiHmzuHoxOvq92eBz3Ok63rdSJ4rRfM49LPoE-5i7tc2019E0D1jzd63ma1w5r_Ro4fAgPWueV7Cy17RFsmPIx3F22s1w8gdlOgx644w4vx-TCoFsf1ohLnv-WYNz9az72ekAmJcFY3xMVTBdETxxbeW00KSeIKVPit5QWdVMT9KhJ26hn5jhm_d2VJXvfKGkq_HgKp7fyxp9Br6xK8xyIcFW-POZKIaYkscqztNBCCZXSXCvLAxh071YWLeG567sxlf7gPU7lUh4S5SG9PGQUwPvVPZdLuo8bR-86ka1GOqpu_0U1G8vW8qVQahBpraLIxkwxndk0sUYjVrLUcl0EsN0JXLb4UcsrbQ_gzeoyWr47zlGlqeZ-TOJol-kgALGmKGsTWr9STn56DnFXJZokNIAPnUpd_fn_H3jr5rm-hntok_LL0ej4BdynTs9d7g_bhl4zm5uX6L41-avWTgic37Zp_gN2slvl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attenuating+metal-substrate+conjugation+in+atomically+dispersed+nickel+catalysts+for+electroreduction+of+CO2+to+CO&rft.jtitle=Nature+communications&rft.au=Wang%2C+Qiyou&rft.au=Liu%2C+Kang&rft.au=Hu%2C+Kangman&rft.au=Cai%2C+Chao&rft.date=2022-10-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33692-0&rft.externalDocID=10_1038_s41467_022_33692_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon