Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution

Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stabi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 6249 - 12
Main Authors Lyu, Fucong, Zeng, Shanshan, Jia, Zhe, Ma, Fei-Xiang, Sun, Ligang, Cheng, Lizi, Pan, Jie, Bao, Yan, Mao, Zhengyi, Bu, Yu, Li, Yang Yang, Lu, Jian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm −2 , and superior stability without performance deterioration over 600 h at current density up to 200 mA cm −2 , superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H 2 O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation. It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33725-8