Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution

Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stabi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 6249 - 12
Main Authors Lyu, Fucong, Zeng, Shanshan, Jia, Zhe, Ma, Fei-Xiang, Sun, Ligang, Cheng, Lizi, Pan, Jie, Bao, Yan, Mao, Zhengyi, Bu, Yu, Li, Yang Yang, Lu, Jian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-33725-8

Cover

Loading…
Abstract Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm −2 , and superior stability without performance deterioration over 600 h at current density up to 200 mA cm −2 , superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H 2 O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation. It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition.
AbstractList Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm −2 , and superior stability without performance deterioration over 600 h at current density up to 200 mA cm −2 , superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H 2 O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation. It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition.
It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition.
Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm-2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm-2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm-2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm-2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.
Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm −2 , and superior stability without performance deterioration over 600 h at current density up to 200 mA cm −2 , superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H 2 O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.
Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm−2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm−2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition.
ArticleNumber 6249
Author Lyu, Fucong
Sun, Ligang
Mao, Zhengyi
Lu, Jian
Jia, Zhe
Cheng, Lizi
Bu, Yu
Li, Yang Yang
Zeng, Shanshan
Ma, Fei-Xiang
Bao, Yan
Pan, Jie
Author_xml – sequence: 1
  givenname: Fucong
  orcidid: 0000-0002-8060-2372
  surname: Lyu
  fullname: Lyu, Fucong
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong
– sequence: 2
  givenname: Shanshan
  orcidid: 0000-0003-2453-3330
  surname: Zeng
  fullname: Zeng, Shanshan
  organization: Department of Material Science and Engineering, City University of Hong Kong
– sequence: 3
  givenname: Zhe
  orcidid: 0000-0002-5063-8390
  surname: Jia
  fullname: Jia, Zhe
  organization: Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, School of Materials Science and Engineering, Southeast University
– sequence: 4
  givenname: Fei-Xiang
  orcidid: 0000-0002-2449-9139
  surname: Ma
  fullname: Ma, Fei-Xiang
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong
– sequence: 5
  givenname: Ligang
  orcidid: 0000-0003-4661-5476
  surname: Sun
  fullname: Sun, Ligang
  email: sunligang@hit.edu.cn
  organization: School of Science, Harbin Institute of Technology, Department of Mechanical Engineering, City University of Hong Kong
– sequence: 6
  givenname: Lizi
  surname: Cheng
  fullname: Cheng, Lizi
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong
– sequence: 7
  givenname: Jie
  orcidid: 0000-0001-9051-9014
  surname: Pan
  fullname: Pan, Jie
  organization: Department of Material Science and Engineering, City University of Hong Kong
– sequence: 8
  givenname: Yan
  surname: Bao
  fullname: Bao, Yan
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong
– sequence: 9
  givenname: Zhengyi
  orcidid: 0000-0001-5947-7282
  surname: Mao
  fullname: Mao, Zhengyi
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Department of Mechanical Engineering, City University of Hong Kong
– sequence: 10
  givenname: Yu
  orcidid: 0000-0001-7414-0100
  surname: Bu
  fullname: Bu, Yu
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong
– sequence: 11
  givenname: Yang Yang
  orcidid: 0000-0003-4153-9558
  surname: Li
  fullname: Li, Yang Yang
  email: yangli@cityu.edu.hk
  organization: Department of Material Science and Engineering, City University of Hong Kong
– sequence: 12
  givenname: Jian
  orcidid: 0000-0001-5362-0316
  surname: Lu
  fullname: Lu, Jian
  email: jianlu@cityu.edu.hk
  organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Department of Mechanical Engineering, City University of Hong Kong, CityU-Shenzhen Futian Research Institute
BookMark eNp9Ustu1TAQjVCRKKU_wCoSGzYBP-Nkg4QqHpUqsSlry49Jrq8cu9jORf17fJuLoF3Um7HG55zxzJzXzVmIAZrmLUYfMKLDx8ww60WHCOkoFYR3w4vmnCCGOywIPfvv_qq5zHmP6qEjHhg7b9Lt79hZt0DILgbl28UFSDXu7m2KM_jOQnIHsG12YfbQqhKX3KlgdjHV7A4KpJhLWk1ZE-R2iqldfUkqF6Ur_qQTWjhEv5Za5E3zclI-w-UpXjQ_v365vfre3fz4dn31-aYzHIvSYQocT2waEee9BosxN4KMmIxGgDXaIDJphjTixk6UYd6TXlBNEWYKoTqYi-Z607VR7eVdcotK9zIqJx8SMc1SpeKMB6k4WLCT1YMyDCkzUGpR1VLCCs01rVqfNq27VS-1OoTaoX8k-vgluJ2c40GOfOhHgavA-5NAir9WyEUuLhvwXgWIa5ZEENHTQQheoe-eQPdxTXU3Gwofl3dEDRvK1PHnBJM0rqjjfGt95yVG8mgOuZlDVnPIB3PIoVLJE-rfPp4l0Y2UKzjMkP796hnWH0bk0kk
CitedBy_id crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1039_D3DT01324C
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1039_D4CY01449A
crossref_primary_10_1039_D2NR05964A
crossref_primary_10_1002_adfm_202413080
crossref_primary_10_1002_smll_202404420
crossref_primary_10_1002_ange_202404386
crossref_primary_10_20517_energymater_2024_41
crossref_primary_10_1002_smll_202403170
crossref_primary_10_1002_ange_202216837
crossref_primary_10_1021_acscatal_4c05712
crossref_primary_10_1016_j_seppur_2024_131073
crossref_primary_10_1016_j_coelec_2023_101360
crossref_primary_10_1002_smll_202311267
crossref_primary_10_1021_acs_chemrev_3c00514
crossref_primary_10_1016_j_apcatb_2024_124393
crossref_primary_10_1063_5_0140745
crossref_primary_10_1016_j_susmat_2024_e01073
crossref_primary_10_1002_anie_202316306
crossref_primary_10_1002_ejic_202300492
crossref_primary_10_1007_s40843_024_3247_8
crossref_primary_10_1016_j_heliyon_2024_e27133
crossref_primary_10_1002_smll_202306716
crossref_primary_10_1002_smll_202412729
crossref_primary_10_1002_adfm_202306889
crossref_primary_10_1016_j_seppur_2024_129066
crossref_primary_10_1038_s43246_025_00735_0
crossref_primary_10_1002_cctc_202301684
crossref_primary_10_1002_advs_202309364
crossref_primary_10_1016_j_nanoen_2024_109997
crossref_primary_10_1016_j_jcis_2024_09_056
crossref_primary_10_1039_D4RA09019E
crossref_primary_10_1002_ange_202316306
crossref_primary_10_1039_D3MH01757E
crossref_primary_10_1016_j_scitotenv_2024_173042
crossref_primary_10_1002_smll_202310327
crossref_primary_10_1002_anie_202404386
crossref_primary_10_1007_s12598_024_02786_7
crossref_primary_10_1016_j_apcatb_2024_124626
crossref_primary_10_1016_j_apcatb_2024_124548
crossref_primary_10_1021_acsami_3c18637
crossref_primary_10_1021_acs_jpcc_2c08881
crossref_primary_10_1002_adfm_202409089
crossref_primary_10_1016_j_jallcom_2024_174039
crossref_primary_10_1002_adma_202311766
crossref_primary_10_1016_j_jcis_2024_02_056
crossref_primary_10_1038_s41467_024_51022_4
crossref_primary_10_1007_s11426_024_2404_4
crossref_primary_10_1016_j_seppur_2024_129934
crossref_primary_10_1039_D4EY00205A
crossref_primary_10_1016_j_actamat_2024_120176
crossref_primary_10_3390_catal15030278
crossref_primary_10_1021_acsaenm_4c00429
crossref_primary_10_3390_molecules29184304
crossref_primary_10_1016_j_matchemphys_2023_127585
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1021_acsnano_4c05377
crossref_primary_10_1039_D4QI00959B
crossref_primary_10_1002_smll_202405784
crossref_primary_10_1002_smll_202406235
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1002_anie_202216837
crossref_primary_10_1016_j_apcatb_2023_123546
crossref_primary_10_1021_acsnano_4c01054
crossref_primary_10_1039_D4EE03150D
crossref_primary_10_1016_j_nanoms_2024_10_003
crossref_primary_10_1002_aenm_202302187
crossref_primary_10_1103_PhysRevApplied_22_044061
crossref_primary_10_1002_smll_202309249
Cites_doi 10.1002/adma.201802764
10.1016/j.pmatsci.2019.100576
10.1039/C9EE00717B
10.1038/nmat1752
10.1016/j.mtener.2021.100653
10.1039/C5CS00434A
10.1039/C9CS00869A
10.1002/smll.201502173
10.1002/adfm.201807419
10.1038/ncomms15341
10.1002/adfm.202101586
10.1016/j.pmatsci.2019.100618
10.1016/j.molstruc.2017.07.018
10.1126/science.1109157
10.1002/cssc.201601610
10.1016/j.apsusc.2016.03.083
10.1039/C5TA03949E
10.1021/acscatal.1c03441
10.1016/j.fuproc.2009.08.001
10.1039/C4CS00470A
10.1002/ange.201502228
10.1002/aenm.201902535
10.1016/j.chempr.2020.10.027
10.1002/anie.202016219
10.1002/adfm.201801527
10.1103/PhysRevB.13.5188
10.1002/adma.202006784
10.1002/adfm.202109302
10.1021/ja513120u
10.1103/PhysRevLett.77.3865
10.1002/ange.202005930
10.1103/PhysRevLett.102.245501
10.1039/C5EE03503A
10.1016/j.nanoen.2017.05.011
10.1103/PhysRevB.41.7892
10.1021/acs.chemrev.0c00594
10.1126/science.aad4998
10.1149/1.1856988
10.1002/adma.202000385
10.1038/s41929-021-00650-w
10.1039/C9TA13553G
10.1039/D1EE00248A
10.1002/adma.202103004
10.1524/zkri.220.5.567.65075
10.1016/j.mattod.2020.07.002
10.1002/smll.202105680
10.1002/anie.201808844
10.1002/adma.201803668
10.1002/smll.201805022
10.1002/jcc.20495
10.1002/adfm.201903660
10.1038/s41467-020-20314-w
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-33725-8
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_a5ededfdb8ac40ac833d03b3a7d7b5b3
PMC9586971
10_1038_s41467_022_33725_8
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Commission
  grantid: GXWD20201230155427003-20200824105236001; ZDSYS20210616110000001
  funderid: https://doi.org/10.13039/501100010877
– fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2017YFA0204403
  funderid: https://doi.org/10.13039/501100002855
– fundername: Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
  grantid: 2020A1515110236; 2022A1515011402
  funderid: https://doi.org/10.13039/501100007162
– fundername: ;
  grantid: GXWD20201230155427003-20200824105236001; ZDSYS20210616110000001
– fundername: ;
  grantid: 2020A1515110236; 2022A1515011402
– fundername: ;
  grantid: 2017YFA0204403
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-13e51f4f90556bed115c729129c7edcbc02fb40b05cdf341562673b3014a00103
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:04:04 EDT 2025
Thu Aug 21 18:39:33 EDT 2025
Fri Jul 11 09:29:42 EDT 2025
Fri Aug 08 08:40:59 EDT 2025
Thu Apr 24 23:44:04 EDT 2025
Tue Jul 01 00:58:29 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-13e51f4f90556bed115c729129c7edcbc02fb40b05cdf341562673b3014a00103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8060-2372
0000-0001-9051-9014
0000-0001-5947-7282
0000-0001-5362-0316
0000-0003-2453-3330
0000-0002-2449-9139
0000-0003-4153-9558
0000-0003-4661-5476
0000-0002-5063-8390
0000-0001-7414-0100
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-33725-8
PQID 2727100395
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a5ededfdb8ac40ac833d03b3a7d7b5b3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586971
proquest_miscellaneous_2727638775
proquest_journals_2727100395
crossref_citationtrail_10_1038_s41467_022_33725_8
crossref_primary_10_1038_s41467_022_33725_8
springer_journals_10_1038_s41467_022_33725_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-21
PublicationDateYYYYMMDD 2022-10-21
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lyu (CR36) 2019; 15
Perdew, Burke, Ernzerhof (CR50) 1996; 77
Greeley, Jaramillo, Bonde, Chorkendorff, Nørskov (CR47) 2006; 5
Chen, Qing, Zhou, Sun, Wu (CR4) 2020; 108
Sun (CR15) 2015; 127
Zheng (CR11) 2021; 14
Zhang, Jiao, Yang, Xie, Jiang (CR13) 2021; 60
Zhang, Jia, Lyu, Liang, Lu (CR38) 2019; 105
Zhou (CR12) 2021; 12
Yue (CR32) 2015; 3
Clark (CR49) 2005; 220
Liu (CR31) 2018; 28
Grimme (CR53) 2006; 27
Shi, Zhang (CR3) 2016; 45
Qi, Chhowalla, Voiry (CR10) 2020; 40
Sun (CR44) 2020; 32
Nørskov (CR48) 2005; 152
Dubal, Ballesteros, Mohite, Gómez‐Romero (CR30) 2017; 10
Zhang (CR45) 2017; 37
Li (CR46) 2018; 57
Qiu (CR25) 2009; 90
Wu (CR40) 2021; 33
Jia (CR37) 2021; 31
Zhao (CR54) 2020; 8
Jin (CR21) 2021; 4
Liao (CR1) 2019; 12
Jia (CR5) 2020; 32
Zhai (CR29) 2016; 377
Hong (CR23) 2015; 137
Zeng (CR22) 2015; 11
Zhao (CR9) 2020; 49
Liu (CR27) 2016; 9
Duan, Chen, Zhao (CR18) 2017; 8
Cheng (CR41) 2021; 20
CR19
Liang (CR7) 2018; 30
Dong (CR14) 2021; 11
El-Wahab, Said (CR24) 2005; 240
Rao, Chhetri (CR6) 2019; 31
Tan (CR28) 2017; 1148
Jiao, Zheng, Jaroniec, Qiao (CR39) 2015; 44
Tomboc, Kim, Jung, Yoon, Lee (CR42) 2022; 18
Li (CR20) 2021; 32
Chen (CR16) 2020; 10
CR26
Seh (CR17) 2017; 355
Vanderbilt (CR51) 1990; 41
Li (CR33) 2019; 29
Cheng, Ma, Sheng (CR43) 2009; 102
Wang (CR8) 2020; 120
Zhang (CR34) 2020; 132
Li (CR35) 2020; 6
Monkhorst, Pack (CR52) 1976; 13
Jacobson, Colella, Golden (CR2) 2005; 308
X Zheng (33725_CR11) 2021; 14
B Zhang (33725_CR45) 2017; 37
G Liao (33725_CR1) 2019; 12
Z Jin (33725_CR21) 2021; 4
ZW Seh (33725_CR17) 2017; 355
GM Tomboc (33725_CR42) 2022; 18
X Hong (33725_CR23) 2015; 137
S Zhang (33725_CR34) 2020; 132
JP Perdew (33725_CR50) 1996; 77
J Duan (33725_CR18) 2017; 8
X Zeng (33725_CR22) 2015; 11
Y Wang (33725_CR8) 2020; 120
D Zhao (33725_CR9) 2020; 49
B Liu (33725_CR31) 2018; 28
Z Sun (33725_CR15) 2015; 127
DP Dubal (33725_CR30) 2017; 10
Q Yue (33725_CR32) 2015; 3
S Li (33725_CR33) 2019; 29
F Lyu (33725_CR36) 2019; 15
ZP Wu (33725_CR40) 2021; 33
Y Cheng (33725_CR43) 2009; 102
Z Chen (33725_CR4) 2020; 108
K Qi (33725_CR10) 2020; 40
MA El-Wahab (33725_CR24) 2005; 240
G Chen (33725_CR16) 2020; 10
KL Zhou (33725_CR12) 2021; 12
SJ Clark (33725_CR49) 2005; 220
F Li (33725_CR46) 2018; 57
HJ Monkhorst (33725_CR52) 1976; 13
S Grimme (33725_CR53) 2006; 27
Y Zhang (33725_CR13) 2021; 60
P Dong (33725_CR14) 2021; 11
Z Jia (33725_CR5) 2020; 32
SX Liang (33725_CR7) 2018; 30
R Liu (33725_CR27) 2016; 9
B Li (33725_CR20) 2021; 32
Q Zhai (33725_CR29) 2016; 377
Z Jia (33725_CR37) 2021; 31
H Zhao (33725_CR54) 2020; 8
C Tan (33725_CR28) 2017; 1148
33725_CR26
CNR Rao (33725_CR6) 2019; 31
Y Shi (33725_CR3) 2016; 45
H Sun (33725_CR44) 2020; 32
D Vanderbilt (33725_CR51) 1990; 41
JK Nørskov (33725_CR48) 2005; 152
J Greeley (33725_CR47) 2006; 5
J Qiu (33725_CR25) 2009; 90
X Cheng (33725_CR41) 2021; 20
X Li (33725_CR35) 2020; 6
Y Jiao (33725_CR39) 2015; 44
L-C Zhang (33725_CR38) 2019; 105
MZ Jacobson (33725_CR2) 2005; 308
33725_CR19
References_xml – volume: 30
  start-page: 1802764
  year: 2018
  ident: CR7
  article-title: Compelling rejuvenated catalytic performance in metallic glasses
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802764
– volume: 105
  start-page: 100576
  year: 2019
  ident: CR38
  article-title: A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100576
– volume: 12
  start-page: 2080
  year: 2019
  end-page: 2147
  ident: CR1
  article-title: Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00717B
– volume: 5
  start-page: 909
  year: 2006
  end-page: 913
  ident: CR47
  article-title: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
  publication-title: Nat. mater.
  doi: 10.1038/nmat1752
– volume: 20
  start-page: 100653
  year: 2021
  ident: CR41
  article-title: Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100653
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: CR3
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 49
  start-page: 2215
  year: 2020
  end-page: 2264
  ident: CR9
  article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00869A
– volume: 11
  start-page: 6205
  year: 2015
  end-page: 6213
  ident: CR22
  article-title: Ice‐templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement
  publication-title: Small
  doi: 10.1002/smll.201502173
– volume: 29
  start-page: 1807419
  year: 2019
  ident: CR33
  article-title: Metal‐organic precursor–derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807419
– volume: 8
  year: 2017
  ident: CR18
  article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 31
  start-page: 2101586
  year: 2021
  ident: CR37
  article-title: A self‐supported high‐entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101586
– volume: 108
  start-page: 100618
  year: 2020
  ident: CR4
  article-title: Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100618
– volume: 1148
  start-page: 34
  year: 2017
  end-page: 39
  ident: CR28
  article-title: Self-assembly, aggregates morphology and ionic liquid crystal of polyoxometalate-based hybrid molecule: From vesicles to layered structure
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2017.07.018
– ident: CR19
– volume: 308
  start-page: 1901
  year: 2005
  end-page: 1905
  ident: CR2
  article-title: Cleaning the air and improving health with hydrogen fuel-cell vehicles
  publication-title: Science
  doi: 10.1126/science.1109157
– volume: 10
  start-page: 731
  year: 2017
  end-page: 737
  ident: CR30
  article-title: Functionalization of polypyrrole nanopipes with redox‐active polyoxometalates for high energy density supercapacitors
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601610
– volume: 377
  start-page: 17
  year: 2016
  end-page: 22
  ident: CR29
  article-title: A novel iron-containing polyoxometalate heterogeneous photocatalyst for efficient 4-chlorophennol degradation by H O at neutral pH
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.083
– volume: 3
  start-page: 16941
  year: 2015
  end-page: 16947
  ident: CR32
  article-title: MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03949E
– volume: 11
  start-page: 13266
  year: 2021
  end-page: 13279
  ident: CR14
  article-title: Platinum single atoms anchored on a covalent organic framework: boosting active sites for photocatalytic hydrogen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03441
– volume: 90
  start-page: 1538
  year: 2009
  end-page: 1542
  ident: CR25
  article-title: Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2009.08.001
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: CR39
  article-title: Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 127
  start-page: 8055
  year: 2015
  end-page: 8059
  ident: CR15
  article-title: Multistimuli‐responsive, moldable supramolecular hydrogels cross‐linked by ultrafast complexation of metal ions and biopolymers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201502228
– volume: 10
  start-page: 1902535
  year: 2020
  ident: CR16
  article-title: Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902535
– volume: 6
  start-page: 3440
  year: 2020
  end-page: 3454
  ident: CR35
  article-title: Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.027
– ident: CR26
– volume: 60
  start-page: 7607
  year: 2021
  end-page: 7611
  ident: CR13
  article-title: Rational fabrication of low‐coordinate single‐atom Ni electrocatalysts by MOFs for highly selective CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016219
– volume: 28
  start-page: 1801527
  year: 2018
  ident: CR31
  article-title: Few layered N, P dual‐doped carbon‐encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3D self‐supported integrated electrode for hydrogen evolution reaction in a wide pH range
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801527
– volume: 13
  start-page: 5188
  year: 1976
  ident: CR52
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 32
  start-page: 2006784
  year: 2020
  ident: CR44
  article-title: Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006784
– volume: 32
  start-page: 2109302
  year: 2021
  ident: CR20
  article-title: Mineral hydrogel from inorganic salts: biocompatible synthesis, all‐in‐one charge storage, and possible implications in the origin of life
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202109302
– volume: 137
  start-page: 1444
  year: 2015
  end-page: 1447
  ident: CR23
  article-title: AuAg nanosheets assembled from ultrathin AuAg nanowires
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513120u
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR50
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 132
  start-page: 13525
  year: 2020
  end-page: 13531
  ident: CR34
  article-title: Electrocatalytically active Fe‐(O‐C ) single‐atom sites for efficient reduction of nitrogen to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202005930
– volume: 12
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR12
  article-title: Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 102
  start-page: 245501
  year: 2009
  ident: CR43
  article-title: Atomic level structure in multicomponent bulk metallic glass
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.245501
– volume: 9
  start-page: 1012
  year: 2016
  end-page: 1023
  ident: CR27
  article-title: Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03503A
– volume: 37
  start-page: 74
  year: 2017
  end-page: 80
  ident: CR45
  article-title: Interface engineering: The Ni(OH) /MoS heterostructure for highly efficient alkaline hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.011
– volume: 41
  start-page: 7892
  year: 1990
  ident: CR51
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 240
  start-page: 109
  year: 2005
  end-page: 118
  ident: CR24
  article-title: Phosphomolybdic acid supported on silica gel and promoted with alkali metal ions as catalysts for the esterification of acetic acid by ethanol
  publication-title: J. Mol. Catal. A: Chem.
– volume: 120
  start-page: 12217
  year: 2020
  end-page: 12314
  ident: CR8
  article-title: Advanced electrocatalysts with single-metal-atom active sites
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00594
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: CR17
  article-title: Combining theory and experiment in electrocatalysis: Insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 152
  start-page: J23
  year: 2005
  ident: CR48
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 32
  start-page: 2000385
  year: 2020
  ident: CR5
  article-title: A Novel Multinary Intermetallic As An Active Electrocatalyst For Hydrogen Evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000385
– volume: 4
  start-page: 615
  year: 2021
  end-page: 622
  ident: CR21
  article-title: Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00650-w
– volume: 8
  start-page: 6732
  year: 2020
  end-page: 6739
  ident: CR54
  article-title: Heterostructured CoP/MoO 2 on Mo foil as high-efficiency electrocatalysts for the hydrogen evolution reaction in both acidic and alkaline media
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13553G
– volume: 14
  start-page: 2809
  year: 2021
  end-page: 2858
  ident: CR11
  article-title: Non-carbon-supported single-atom site catalysts for electrocatalysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00248A
– volume: 33
  start-page: 2103004
  year: 2021
  ident: CR40
  article-title: Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103004
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: CR49
  article-title: First principles methods using CASTEP
  publication-title: Z. f.ür. Kristallographie-Crystalline Mater.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 40
  start-page: 173
  year: 2020
  end-page: 192
  ident: CR10
  article-title: Single atom is not alone: Metal–support interactions in single-atom catalysis
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.07.002
– volume: 18
  start-page: 2105680
  year: 2022
  ident: CR42
  article-title: Modulating the local coordination environment of single‐atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction
  publication-title: Small
  doi: 10.1002/smll.202105680
– volume: 57
  start-page: 14139
  year: 2018
  end-page: 14143
  ident: CR46
  article-title: Construction of porous Mo P/Mo nanobelts as catalysts for efficient water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808844
– volume: 31
  start-page: 1803668
  year: 2019
  ident: CR6
  article-title: Borocarbonitrides as metal‐free catalysts for the hydrogen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803668
– volume: 15
  start-page: 1805022
  year: 2019
  ident: CR36
  article-title: Lamellarly stacking porous N, P Co‐Doped Mo C/C nanosheets as high performance anode for lithium‐ion batteries
  publication-title: Small
  doi: 10.1002/smll.201805022
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR53
  article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 127
  start-page: 8055
  year: 2015
  ident: 33725_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201502228
– volume: 60
  start-page: 7607
  year: 2021
  ident: 33725_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016219
– volume: 77
  start-page: 3865
  year: 1996
  ident: 33725_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 37
  start-page: 74
  year: 2017
  ident: 33725_CR45
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.011
– volume: 57
  start-page: 14139
  year: 2018
  ident: 33725_CR46
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808844
– volume: 9
  start-page: 1012
  year: 2016
  ident: 33725_CR27
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03503A
– volume: 28
  start-page: 1801527
  year: 2018
  ident: 33725_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801527
– volume: 20
  start-page: 100653
  year: 2021
  ident: 33725_CR41
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100653
– volume: 5
  start-page: 909
  year: 2006
  ident: 33725_CR47
  publication-title: Nat. mater.
  doi: 10.1038/nmat1752
– volume: 29
  start-page: 1807419
  year: 2019
  ident: 33725_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807419
– ident: 33725_CR26
  doi: 10.1002/adfm.201903660
– volume: 8
  year: 2017
  ident: 33725_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 377
  start-page: 17
  year: 2016
  ident: 33725_CR29
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.083
– volume: 11
  start-page: 13266
  year: 2021
  ident: 33725_CR14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03441
– volume: 30
  start-page: 1802764
  year: 2018
  ident: 33725_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802764
– volume: 10
  start-page: 1902535
  year: 2020
  ident: 33725_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902535
– volume: 12
  start-page: 1
  year: 2021
  ident: 33725_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 49
  start-page: 2215
  year: 2020
  ident: 33725_CR9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00869A
– volume: 44
  start-page: 2060
  year: 2015
  ident: 33725_CR39
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 102
  start-page: 245501
  year: 2009
  ident: 33725_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.245501
– volume: 120
  start-page: 12217
  year: 2020
  ident: 33725_CR8
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00594
– volume: 15
  start-page: 1805022
  year: 2019
  ident: 33725_CR36
  publication-title: Small
  doi: 10.1002/smll.201805022
– volume: 90
  start-page: 1538
  year: 2009
  ident: 33725_CR25
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2009.08.001
– volume: 32
  start-page: 2109302
  year: 2021
  ident: 33725_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202109302
– volume: 105
  start-page: 100576
  year: 2019
  ident: 33725_CR38
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100576
– volume: 31
  start-page: 2101586
  year: 2021
  ident: 33725_CR37
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101586
– volume: 10
  start-page: 731
  year: 2017
  ident: 33725_CR30
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601610
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: 33725_CR17
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 132
  start-page: 13525
  year: 2020
  ident: 33725_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202005930
– volume: 31
  start-page: 1803668
  year: 2019
  ident: 33725_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803668
– volume: 32
  start-page: 2000385
  year: 2020
  ident: 33725_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000385
– volume: 108
  start-page: 100618
  year: 2020
  ident: 33725_CR4
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100618
– volume: 4
  start-page: 615
  year: 2021
  ident: 33725_CR21
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00650-w
– volume: 18
  start-page: 2105680
  year: 2022
  ident: 33725_CR42
  publication-title: Small
  doi: 10.1002/smll.202105680
– volume: 137
  start-page: 1444
  year: 2015
  ident: 33725_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513120u
– volume: 33
  start-page: 2103004
  year: 2021
  ident: 33725_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103004
– volume: 3
  start-page: 16941
  year: 2015
  ident: 33725_CR32
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03949E
– volume: 32
  start-page: 2006784
  year: 2020
  ident: 33725_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006784
– volume: 220
  start-page: 567
  year: 2005
  ident: 33725_CR49
  publication-title: Z. f.ür. Kristallographie-Crystalline Mater.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 12
  start-page: 2080
  year: 2019
  ident: 33725_CR1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00717B
– volume: 308
  start-page: 1901
  year: 2005
  ident: 33725_CR2
  publication-title: Science
  doi: 10.1126/science.1109157
– volume: 45
  start-page: 1529
  year: 2016
  ident: 33725_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– ident: 33725_CR19
– volume: 27
  start-page: 1787
  year: 2006
  ident: 33725_CR53
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 41
  start-page: 7892
  year: 1990
  ident: 33725_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 14
  start-page: 2809
  year: 2021
  ident: 33725_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00248A
– volume: 240
  start-page: 109
  year: 2005
  ident: 33725_CR24
  publication-title: J. Mol. Catal. A: Chem.
– volume: 40
  start-page: 173
  year: 2020
  ident: 33725_CR10
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.07.002
– volume: 13
  start-page: 5188
  year: 1976
  ident: 33725_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 11
  start-page: 6205
  year: 2015
  ident: 33725_CR22
  publication-title: Small
  doi: 10.1002/smll.201502173
– volume: 8
  start-page: 6732
  year: 2020
  ident: 33725_CR54
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13553G
– volume: 1148
  start-page: 34
  year: 2017
  ident: 33725_CR28
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2017.07.018
– volume: 152
  start-page: J23
  year: 2005
  ident: 33725_CR48
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 6
  start-page: 3440
  year: 2020
  ident: 33725_CR35
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.027
SSID ssj0000391844
Score 2.621972
Snippet Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen...
It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6249
SubjectTerms 119/118
140/146
147/135
147/143
639/301/299/161
639/638/675
639/638/77/884
639/638/77/886
Adsorption
Carbon neutrality
Catalysts
Density functional theory
Dispersion
Electrocatalysts
Evolution
Fabrication
Heterostructures
Humanities and Social Sciences
Hydrogels
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Iron
Low cost
multidisciplinary
Nanostructure
Noble metals
Performance degradation
Reliability aspects
Science
Science (multidisciplinary)
Stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOglNH2QTdOiQm-tiPWy5GNaGkKhPSWQm9CzG9jYYbebkH-fkeTdxoG2l17tsS1pPmm-WWm_QeiD875NsaPggWiJ4J6TjjeWyMgkD6H1Xala8v1He3ouvl3IiwelvvKZsCoPXAfuyMoYYkjBaetFY73mPDTccauCctIVnU-IeQ-SqbIG8w5SFzH-S6bh-mglyppQDq9zxSTRk0hUBPsnLPPxGclHG6Ul_pw8R7sjccTHtcF76EnsX6CntZTk3Uu0PLsdSMhS_VVmA19dFj1pPL8Ly-FnXJAAWLuJAecfBxYRQ7J9tSLg8_mwhKvzfCxmqGqya0jBMZBZvF5Ao4A-OrAf39PjeDOi9RU6P_l69uWUjPUUiJdU5arzUdIkUpcFdFwMQAY9cGuI-F5BR51vWHKicY30IfGc2bFWwVBDFmVLPYjXaKcf-riPcAqC-ug1C4lCjI-aJmaBzFgPBEQJPUN0M7bGj2LjuebFwpRNb65N9YcBf5jiDwPPfNw-c12lNv5q_Tm7bGuZZbLLBQCPGcFj_gWeGTrcONyMc3dlGFA6mhEkZ-j99jbMuryVYvs4rKsNrFxKgY2aAGXSoOmd_nJe9Ls7qdtO0Rn6tIHU74__ucMH_6PDb9AzlqcABF9GD9EOoCq-BVb1y70rE-geh88jZw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6bVJU6K0VsV6WfApNSAiFhlISyE3o5WxgY6e73ZT8-4xk7QYHmqs1siXPaObT6xuEvjjv6zY2FDQQLRHcc9LwyhIZmeQh1L7JWUt-ntTHZ-LHuTwvC27Lcqxy7ROzow69T2vkuwwCLU03SeXe9R-Sskal3dWSQuMp2gIXrOUEbe0fnvz6vVllSfznWohyW6biencpsm_Ih9i5YpLoUUTKxP0jtPnwrOSDDdMch45eohcFQOLvg8ZfoSexe42eDSklb9-gxem_noRE2T_QbeCry8wrjWe3YdFfxDkJYHM3MeC0SDCPGCbdV0sCup_1C3g6S8dj-oFVdgVTcQygFq_m0CiAkQ7ky3s6HG-K1b5FZ0eHpwfHpORVIF5SlbLPR0lb0TaJSMfFAKDQA8aGyO8VdNT5irVOVK6SPrQ8zfBYrbhLky-b80K8Q5Ou7-J7hNsgqI9es9BSiPVR05ZZADXWAxBRQk8RXf9b4wvpeMp9MTd585trM-jDgD5M1oeBOl83da4Hyo1HpfeTyjaSiS47P-gXF6aMPmNlDDG0wUHDRGW95jxU0COrgnLS8SnaXivclDG8NPcWN0WfN8Uw-tKWiu1ivxpkwIMpBTJqZCijBo1LustZ5vFupK4bRafo29qk7j_-_w5_eLytH9Fzlowbwiuj22gC9hJ3ADf9dZ_K4LgDjkEaCA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpSqGX0CYt3SYpCvTWiFovSz6mS0IotKcEchN6ZgMbu-w2Kfn3Gcn2Foe20Ks9siXNjOeTNP4GoY_O-zrFhoIGoiWCe04aXlkiI5M8hNo3pWrJt-_1-aX4eiWvthAb_4UpSfuF0rJ8psfssM9rUVy65J5zxSTRz9DzTN2e-fLn9Xyzr5IZz7UQw_8xFdd_aDqJQYWqf4Ivn2ZHPjkiLZHn7BXaGSAjPuk7-RptxXYXveiLSD7sodXFr46ETNLfE2zg25vCJI0XD2HVXcclCWBl9zHgvC2wjBiW2bdrAtpedCu4usgJMV3PIwsTssYAY_HdEjoFwNGB_PCcFsf7wU7foMuz04v5ORkqKRAvqcr15qOkSaQmU-e4GAAGekDVEOu9goE6X7HkROUq6UPieU3HasVdXm7ZUgniLdpuuza-QzgFQX30moVEIbpHTROzAGOsB-ihhJ4hOs6t8QPNeK52sTTluJtr0-vDgD5M0YeBNp82bX70JBv_lP6SVbaRzATZ5UK3ujaDwRgrY4ghBQcdE5X1mvNQwYisCspJx2foYFS4Gbx2bRiAOZotSM7Q0eY2-Fs-RLFt7O56GfhmKQUyamIokw5N77Q3i8Lc3UhdN4rO0PFoUr9f_vcBv_8_8X30kmVjhwDL6AHaBvuJh4CcfroPxVUeAaBTFn4
  priority: 102
  providerName: Springer Nature
Title Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution
URI https://link.springer.com/article/10.1038/s41467-022-33725-8
https://www.proquest.com/docview/2727100395
https://www.proquest.com/docview/2727638775
https://pubmed.ncbi.nlm.nih.gov/PMC9586971
https://doaj.org/article/a5ededfdb8ac40ac833d03b3a7d7b5b3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY90HS9sFD_a2ebMsy7IfxkhDsxJoGVsDeRPWh5uCa6_O0i3__U6yneLSFvbigHxyJN_vfL-z5DuA91KpODcpQQ2YzI-oon5Kg8xnJmRU61ilrmrJ6Vl8Moumczbfgq7cUXsDl_eGdrae1KwuPv29Xn9Fg__SfDKefF5GztzdvnTKQ-Yn27CLnim2KD9t6b57MtMUA5qo_Xbm_q49_-TS-Pe4592dk3eWT51XmjyHZy2d9EaN_vdgy5Qv4ElTYHL9EurzP5WvbQL_JvmGd3Xpskx7i7WuqwtT-BoReGO0Z18ZFMbDEPxq6SMSFlWNrQu7WaZqcsyuMDD3kOJ6qwIHhaRSonx7ndIzNy2GX8Fscnw-PvHbKgu-YoTbWvSGkTzKU5tWRxqNFFEh40YeoDhOVKogzGUUyIApnVMb74Uxp9KGYpmrEvEadsqqNG_Ay3VElFFJqHOCnt8kJA8zpDiZQlrCo2QApLu3QrUpyG0ljEK4pXCaiEYfAvUhnD4E9vmw6fOrScDxqPSRVdlG0ibPdg1VfSFaWxQZM9roXEscWBRkKqFUBzijjGsumaQDOOwULjpAihCJHrEIYgN4tzmNtmgXWLLSVKtGBp9nnKMM7wGlN6D-mfJy4bJ6pyyJU04G8LGD1O2fPzzh_f8TP4CnoQU7Ot-QHMIO4se8RVb1Ww5hm885HpPJtyHsjkbTn1P8PTo--_4DW8fxeOjeVwydSf0DaXwm6g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYhUDBYwEJ7Aab2PngBDbMKXLaSr1ZuIlnUrTpMwwreZP8Rt5dpKpUoneek1eEjtv8fe8fA-ht9a5YRlyChoIBRHccZLzrCAyMMm9H7o8VS3ZPxiOD8XPI3m0gf52Z2HitsouJqZA7WsX58i3GQy0NJ4klZ_OfpNYNSqurnYlNBqz2A2rC0jZFh93voF-3zE2-j75OiZtVQHiJFWx9nqQtBRlHmlkbPAAiRwgTBj3nAreWZex0orMZtL5ksf8hg0VtzH1KFJVBHjvLXRbcJ5Hrn49-rGe04ls61qI9mxOxvX2QqRIlLbMc8Uk0b3xL5UJ6GHbqzszryzPplFv9ADdb-Eq_tzY10O0EapH6E5TwHL1GM0nFzXxsUBAQ-6BT08SizWervy8Pg4z4sHCz4PHcUpiFjCk-KcLApY2redwdRo349QNh-0SEn8MEBovZ9AoAK0W5Nv3VDictz7yBB3eyP9-ijarugrPEC69oC44zXxJAVkETUtWAIQqHMAeJfQA0e7fGtdSnMdKGzOTltq5No0-DOjDJH0YeOb9-pmzhuDjWukvUWVryUjOnS7U82PT-ropZPDBl95Cw0RWOM25z6BHhfLKSssHaKtTuGkjxsJc2vcAvVnfBl-PCzhFFeplIwPxUimQUT1D6TWof6c6mSbW8FzqYa7oAH3oTOry4__v8PPr2_oa3R1P9vfM3s7B7gt0j0VDh4Gd0S20CbYTXgJi-2NfJTfB6NdN--U_2ldT2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAvE1dRNsBI8ARRYzuOkweEGFu1MagmtEl7M_El66QuGQnd1L_Gr-PYcTp1Envba-Ikds7ts318PoTeKa3T0uYEJGCLKGGaRTmLi4hbypkxqc49a8mPSbp3nHw74Sdr6G9_FsalVfY-0TtqU2u3Rj6iEGiJO0nKR2VIizjcGX---B05Bim309rTaXQqcmAXVzB9az_t74Cs31M63j36uhcFhoFIcyIcD7vlpEzK3JWUUdYAPNKANiEGamGNVjqmpUpiFXNtSubmOjQVTLlpSOEZEuC999C6gKiYDdD69u7k8OdyhcfVXs-SJJzUiVk2ahPvl3wCPROUR9lKNPSkAStI92ae5o3NWh8Dx4_QRgCv-EunbY_Rmq2eoPsdneXiKWqOrurIOLqArtQHPj_zNa3xdGGa-tTOIgP6fmkNdgsUM4thwn_eRqB307qBq1OXmlN3FW3njW0xAGo8n0GnAMIqaB_eU2F7GSzmGTq-kz_-HA2qurIvEC5NQrTVGTUlAZxhM1LSAgBVoQEEiSQbItL_W6lDwXPHuzGTfuOdZbKThwR5SC8PCc98WD5z0ZX7uLX1thPZsqUr1e0v1M2pDJYvC26NNaVR0LEkLnTGmIlhRIUwQnHFhmirF7gM_qOV19o-RG-Xt8Hy3XZOUdl63rUB7ykEtBErirLSodU71dnU1xDPeZbmggzRx16lrj_-_wG_vL2vb9ADsEn5fX9ysIkeUqfnEOUp2UIDUB37CuDbH_U62AlGv-7aNP8Bbh1Zcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+mineral+hydrogel-derived+single+atoms-anchored+heterostructures+for+ultrastable+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Lyu%2C+Fucong&rft.au=Zeng%2C+Shanshan&rft.au=Jia%2C+Zhe&rft.au=Ma%2C+Fei-Xiang&rft.date=2022-10-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33725-8&rft.externalDocID=10_1038_s41467_022_33725_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon