Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution
Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stabi...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 6249 - 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.10.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-022-33725-8 |
Cover
Loading…
Abstract | Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm
−2
, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm
−2
, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H
2
O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.
It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition. |
---|---|
AbstractList | Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm
−2
, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm
−2
, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H
2
O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.
It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition. It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition. Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm-2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm-2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm-2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm-2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation. Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm −2 , and superior stability without performance deterioration over 600 h at current density up to 200 mA cm −2 , superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H 2 O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation. Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm−2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm−2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition. |
ArticleNumber | 6249 |
Author | Lyu, Fucong Sun, Ligang Mao, Zhengyi Lu, Jian Jia, Zhe Cheng, Lizi Bu, Yu Li, Yang Yang Zeng, Shanshan Ma, Fei-Xiang Bao, Yan Pan, Jie |
Author_xml | – sequence: 1 givenname: Fucong orcidid: 0000-0002-8060-2372 surname: Lyu fullname: Lyu, Fucong organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong – sequence: 2 givenname: Shanshan orcidid: 0000-0003-2453-3330 surname: Zeng fullname: Zeng, Shanshan organization: Department of Material Science and Engineering, City University of Hong Kong – sequence: 3 givenname: Zhe orcidid: 0000-0002-5063-8390 surname: Jia fullname: Jia, Zhe organization: Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, School of Materials Science and Engineering, Southeast University – sequence: 4 givenname: Fei-Xiang orcidid: 0000-0002-2449-9139 surname: Ma fullname: Ma, Fei-Xiang organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong – sequence: 5 givenname: Ligang orcidid: 0000-0003-4661-5476 surname: Sun fullname: Sun, Ligang email: sunligang@hit.edu.cn organization: School of Science, Harbin Institute of Technology, Department of Mechanical Engineering, City University of Hong Kong – sequence: 6 givenname: Lizi surname: Cheng fullname: Cheng, Lizi organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong – sequence: 7 givenname: Jie orcidid: 0000-0001-9051-9014 surname: Pan fullname: Pan, Jie organization: Department of Material Science and Engineering, City University of Hong Kong – sequence: 8 givenname: Yan surname: Bao fullname: Bao, Yan organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong – sequence: 9 givenname: Zhengyi orcidid: 0000-0001-5947-7282 surname: Mao fullname: Mao, Zhengyi organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Department of Mechanical Engineering, City University of Hong Kong – sequence: 10 givenname: Yu orcidid: 0000-0001-7414-0100 surname: Bu fullname: Bu, Yu organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong – sequence: 11 givenname: Yang Yang orcidid: 0000-0003-4153-9558 surname: Li fullname: Li, Yang Yang email: yangli@cityu.edu.hk organization: Department of Material Science and Engineering, City University of Hong Kong – sequence: 12 givenname: Jian orcidid: 0000-0001-5362-0316 surname: Lu fullname: Lu, Jian email: jianlu@cityu.edu.hk organization: Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Department of Mechanical Engineering, City University of Hong Kong, CityU-Shenzhen Futian Research Institute |
BookMark | eNp9Ustu1TAQjVCRKKU_wCoSGzYBP-Nkg4QqHpUqsSlry49Jrq8cu9jORf17fJuLoF3Um7HG55zxzJzXzVmIAZrmLUYfMKLDx8ww60WHCOkoFYR3w4vmnCCGOywIPfvv_qq5zHmP6qEjHhg7b9Lt79hZt0DILgbl28UFSDXu7m2KM_jOQnIHsG12YfbQqhKX3KlgdjHV7A4KpJhLWk1ZE-R2iqldfUkqF6Ur_qQTWjhEv5Za5E3zclI-w-UpXjQ_v365vfre3fz4dn31-aYzHIvSYQocT2waEee9BosxN4KMmIxGgDXaIDJphjTixk6UYd6TXlBNEWYKoTqYi-Z607VR7eVdcotK9zIqJx8SMc1SpeKMB6k4WLCT1YMyDCkzUGpR1VLCCs01rVqfNq27VS-1OoTaoX8k-vgluJ2c40GOfOhHgavA-5NAir9WyEUuLhvwXgWIa5ZEENHTQQheoe-eQPdxTXU3Gwofl3dEDRvK1PHnBJM0rqjjfGt95yVG8mgOuZlDVnPIB3PIoVLJE-rfPp4l0Y2UKzjMkP796hnWH0bk0kk |
CitedBy_id | crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1039_D3DT01324C crossref_primary_10_1002_advs_202403197 crossref_primary_10_1039_D4CY01449A crossref_primary_10_1039_D2NR05964A crossref_primary_10_1002_adfm_202413080 crossref_primary_10_1002_smll_202404420 crossref_primary_10_1002_ange_202404386 crossref_primary_10_20517_energymater_2024_41 crossref_primary_10_1002_smll_202403170 crossref_primary_10_1002_ange_202216837 crossref_primary_10_1021_acscatal_4c05712 crossref_primary_10_1016_j_seppur_2024_131073 crossref_primary_10_1016_j_coelec_2023_101360 crossref_primary_10_1002_smll_202311267 crossref_primary_10_1021_acs_chemrev_3c00514 crossref_primary_10_1016_j_apcatb_2024_124393 crossref_primary_10_1063_5_0140745 crossref_primary_10_1016_j_susmat_2024_e01073 crossref_primary_10_1002_anie_202316306 crossref_primary_10_1002_ejic_202300492 crossref_primary_10_1007_s40843_024_3247_8 crossref_primary_10_1016_j_heliyon_2024_e27133 crossref_primary_10_1002_smll_202306716 crossref_primary_10_1002_smll_202412729 crossref_primary_10_1002_adfm_202306889 crossref_primary_10_1016_j_seppur_2024_129066 crossref_primary_10_1038_s43246_025_00735_0 crossref_primary_10_1002_cctc_202301684 crossref_primary_10_1002_advs_202309364 crossref_primary_10_1016_j_nanoen_2024_109997 crossref_primary_10_1016_j_jcis_2024_09_056 crossref_primary_10_1039_D4RA09019E crossref_primary_10_1002_ange_202316306 crossref_primary_10_1039_D3MH01757E crossref_primary_10_1016_j_scitotenv_2024_173042 crossref_primary_10_1002_smll_202310327 crossref_primary_10_1002_anie_202404386 crossref_primary_10_1007_s12598_024_02786_7 crossref_primary_10_1016_j_apcatb_2024_124626 crossref_primary_10_1016_j_apcatb_2024_124548 crossref_primary_10_1021_acsami_3c18637 crossref_primary_10_1021_acs_jpcc_2c08881 crossref_primary_10_1002_adfm_202409089 crossref_primary_10_1016_j_jallcom_2024_174039 crossref_primary_10_1002_adma_202311766 crossref_primary_10_1016_j_jcis_2024_02_056 crossref_primary_10_1038_s41467_024_51022_4 crossref_primary_10_1007_s11426_024_2404_4 crossref_primary_10_1016_j_seppur_2024_129934 crossref_primary_10_1039_D4EY00205A crossref_primary_10_1016_j_actamat_2024_120176 crossref_primary_10_3390_catal15030278 crossref_primary_10_1021_acsaenm_4c00429 crossref_primary_10_3390_molecules29184304 crossref_primary_10_1016_j_matchemphys_2023_127585 crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1021_acsnano_4c05377 crossref_primary_10_1039_D4QI00959B crossref_primary_10_1002_smll_202405784 crossref_primary_10_1002_smll_202406235 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1002_anie_202216837 crossref_primary_10_1016_j_apcatb_2023_123546 crossref_primary_10_1021_acsnano_4c01054 crossref_primary_10_1039_D4EE03150D crossref_primary_10_1016_j_nanoms_2024_10_003 crossref_primary_10_1002_aenm_202302187 crossref_primary_10_1103_PhysRevApplied_22_044061 crossref_primary_10_1002_smll_202309249 |
Cites_doi | 10.1002/adma.201802764 10.1016/j.pmatsci.2019.100576 10.1039/C9EE00717B 10.1038/nmat1752 10.1016/j.mtener.2021.100653 10.1039/C5CS00434A 10.1039/C9CS00869A 10.1002/smll.201502173 10.1002/adfm.201807419 10.1038/ncomms15341 10.1002/adfm.202101586 10.1016/j.pmatsci.2019.100618 10.1016/j.molstruc.2017.07.018 10.1126/science.1109157 10.1002/cssc.201601610 10.1016/j.apsusc.2016.03.083 10.1039/C5TA03949E 10.1021/acscatal.1c03441 10.1016/j.fuproc.2009.08.001 10.1039/C4CS00470A 10.1002/ange.201502228 10.1002/aenm.201902535 10.1016/j.chempr.2020.10.027 10.1002/anie.202016219 10.1002/adfm.201801527 10.1103/PhysRevB.13.5188 10.1002/adma.202006784 10.1002/adfm.202109302 10.1021/ja513120u 10.1103/PhysRevLett.77.3865 10.1002/ange.202005930 10.1103/PhysRevLett.102.245501 10.1039/C5EE03503A 10.1016/j.nanoen.2017.05.011 10.1103/PhysRevB.41.7892 10.1021/acs.chemrev.0c00594 10.1126/science.aad4998 10.1149/1.1856988 10.1002/adma.202000385 10.1038/s41929-021-00650-w 10.1039/C9TA13553G 10.1039/D1EE00248A 10.1002/adma.202103004 10.1524/zkri.220.5.567.65075 10.1016/j.mattod.2020.07.002 10.1002/smll.202105680 10.1002/anie.201808844 10.1002/adma.201803668 10.1002/smll.201805022 10.1002/jcc.20495 10.1002/adfm.201903660 10.1038/s41467-020-20314-w |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-33725-8 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_a5ededfdb8ac40ac833d03b3a7d7b5b3 PMC9586971 10_1038_s41467_022_33725_8 |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Commission grantid: GXWD20201230155427003-20200824105236001; ZDSYS20210616110000001 funderid: https://doi.org/10.13039/501100010877 – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) grantid: 2017YFA0204403 funderid: https://doi.org/10.13039/501100002855 – fundername: Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province) grantid: 2020A1515110236; 2022A1515011402 funderid: https://doi.org/10.13039/501100007162 – fundername: ; grantid: GXWD20201230155427003-20200824105236001; ZDSYS20210616110000001 – fundername: ; grantid: 2020A1515110236; 2022A1515011402 – fundername: ; grantid: 2017YFA0204403 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-13e51f4f90556bed115c729129c7edcbc02fb40b05cdf341562673b3014a00103 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:04:04 EDT 2025 Thu Aug 21 18:39:33 EDT 2025 Fri Jul 11 09:29:42 EDT 2025 Fri Aug 08 08:40:59 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Tue Jul 01 00:58:29 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-13e51f4f90556bed115c729129c7edcbc02fb40b05cdf341562673b3014a00103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8060-2372 0000-0001-9051-9014 0000-0001-5947-7282 0000-0001-5362-0316 0000-0003-2453-3330 0000-0002-2449-9139 0000-0003-4153-9558 0000-0003-4661-5476 0000-0002-5063-8390 0000-0001-7414-0100 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-33725-8 |
PQID | 2727100395 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5ededfdb8ac40ac833d03b3a7d7b5b3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586971 proquest_miscellaneous_2727638775 proquest_journals_2727100395 crossref_citationtrail_10_1038_s41467_022_33725_8 crossref_primary_10_1038_s41467_022_33725_8 springer_journals_10_1038_s41467_022_33725_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-21 |
PublicationDateYYYYMMDD | 2022-10-21 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lyu (CR36) 2019; 15 Perdew, Burke, Ernzerhof (CR50) 1996; 77 Greeley, Jaramillo, Bonde, Chorkendorff, Nørskov (CR47) 2006; 5 Chen, Qing, Zhou, Sun, Wu (CR4) 2020; 108 Sun (CR15) 2015; 127 Zheng (CR11) 2021; 14 Zhang, Jiao, Yang, Xie, Jiang (CR13) 2021; 60 Zhang, Jia, Lyu, Liang, Lu (CR38) 2019; 105 Zhou (CR12) 2021; 12 Yue (CR32) 2015; 3 Clark (CR49) 2005; 220 Liu (CR31) 2018; 28 Grimme (CR53) 2006; 27 Shi, Zhang (CR3) 2016; 45 Qi, Chhowalla, Voiry (CR10) 2020; 40 Sun (CR44) 2020; 32 Nørskov (CR48) 2005; 152 Dubal, Ballesteros, Mohite, Gómez‐Romero (CR30) 2017; 10 Zhang (CR45) 2017; 37 Li (CR46) 2018; 57 Qiu (CR25) 2009; 90 Wu (CR40) 2021; 33 Jia (CR37) 2021; 31 Zhao (CR54) 2020; 8 Jin (CR21) 2021; 4 Liao (CR1) 2019; 12 Jia (CR5) 2020; 32 Zhai (CR29) 2016; 377 Hong (CR23) 2015; 137 Zeng (CR22) 2015; 11 Zhao (CR9) 2020; 49 Liu (CR27) 2016; 9 Duan, Chen, Zhao (CR18) 2017; 8 Cheng (CR41) 2021; 20 CR19 Liang (CR7) 2018; 30 Dong (CR14) 2021; 11 El-Wahab, Said (CR24) 2005; 240 Rao, Chhetri (CR6) 2019; 31 Tan (CR28) 2017; 1148 Jiao, Zheng, Jaroniec, Qiao (CR39) 2015; 44 Tomboc, Kim, Jung, Yoon, Lee (CR42) 2022; 18 Li (CR20) 2021; 32 Chen (CR16) 2020; 10 CR26 Seh (CR17) 2017; 355 Vanderbilt (CR51) 1990; 41 Li (CR33) 2019; 29 Cheng, Ma, Sheng (CR43) 2009; 102 Wang (CR8) 2020; 120 Zhang (CR34) 2020; 132 Li (CR35) 2020; 6 Monkhorst, Pack (CR52) 1976; 13 Jacobson, Colella, Golden (CR2) 2005; 308 X Zheng (33725_CR11) 2021; 14 B Zhang (33725_CR45) 2017; 37 G Liao (33725_CR1) 2019; 12 Z Jin (33725_CR21) 2021; 4 ZW Seh (33725_CR17) 2017; 355 GM Tomboc (33725_CR42) 2022; 18 X Hong (33725_CR23) 2015; 137 S Zhang (33725_CR34) 2020; 132 JP Perdew (33725_CR50) 1996; 77 J Duan (33725_CR18) 2017; 8 X Zeng (33725_CR22) 2015; 11 Y Wang (33725_CR8) 2020; 120 D Zhao (33725_CR9) 2020; 49 B Liu (33725_CR31) 2018; 28 Z Sun (33725_CR15) 2015; 127 DP Dubal (33725_CR30) 2017; 10 Q Yue (33725_CR32) 2015; 3 S Li (33725_CR33) 2019; 29 F Lyu (33725_CR36) 2019; 15 ZP Wu (33725_CR40) 2021; 33 Y Cheng (33725_CR43) 2009; 102 Z Chen (33725_CR4) 2020; 108 K Qi (33725_CR10) 2020; 40 MA El-Wahab (33725_CR24) 2005; 240 G Chen (33725_CR16) 2020; 10 KL Zhou (33725_CR12) 2021; 12 SJ Clark (33725_CR49) 2005; 220 F Li (33725_CR46) 2018; 57 HJ Monkhorst (33725_CR52) 1976; 13 S Grimme (33725_CR53) 2006; 27 Y Zhang (33725_CR13) 2021; 60 P Dong (33725_CR14) 2021; 11 Z Jia (33725_CR5) 2020; 32 SX Liang (33725_CR7) 2018; 30 R Liu (33725_CR27) 2016; 9 B Li (33725_CR20) 2021; 32 Q Zhai (33725_CR29) 2016; 377 Z Jia (33725_CR37) 2021; 31 H Zhao (33725_CR54) 2020; 8 C Tan (33725_CR28) 2017; 1148 33725_CR26 CNR Rao (33725_CR6) 2019; 31 Y Shi (33725_CR3) 2016; 45 H Sun (33725_CR44) 2020; 32 D Vanderbilt (33725_CR51) 1990; 41 JK Nørskov (33725_CR48) 2005; 152 J Greeley (33725_CR47) 2006; 5 J Qiu (33725_CR25) 2009; 90 X Cheng (33725_CR41) 2021; 20 X Li (33725_CR35) 2020; 6 Y Jiao (33725_CR39) 2015; 44 L-C Zhang (33725_CR38) 2019; 105 MZ Jacobson (33725_CR2) 2005; 308 33725_CR19 |
References_xml | – volume: 30 start-page: 1802764 year: 2018 ident: CR7 article-title: Compelling rejuvenated catalytic performance in metallic glasses publication-title: Adv. Mater. doi: 10.1002/adma.201802764 – volume: 105 start-page: 100576 year: 2019 ident: CR38 article-title: A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100576 – volume: 12 start-page: 2080 year: 2019 end-page: 2147 ident: CR1 article-title: Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00717B – volume: 5 start-page: 909 year: 2006 end-page: 913 ident: CR47 article-title: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution publication-title: Nat. mater. doi: 10.1038/nmat1752 – volume: 20 start-page: 100653 year: 2021 ident: CR41 article-title: Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100653 – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: CR3 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 49 start-page: 2215 year: 2020 end-page: 2264 ident: CR9 article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00869A – volume: 11 start-page: 6205 year: 2015 end-page: 6213 ident: CR22 article-title: Ice‐templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement publication-title: Small doi: 10.1002/smll.201502173 – volume: 29 start-page: 1807419 year: 2019 ident: CR33 article-title: Metal‐organic precursor–derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807419 – volume: 8 year: 2017 ident: CR18 article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 31 start-page: 2101586 year: 2021 ident: CR37 article-title: A self‐supported high‐entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101586 – volume: 108 start-page: 100618 year: 2020 ident: CR4 article-title: Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100618 – volume: 1148 start-page: 34 year: 2017 end-page: 39 ident: CR28 article-title: Self-assembly, aggregates morphology and ionic liquid crystal of polyoxometalate-based hybrid molecule: From vesicles to layered structure publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.07.018 – ident: CR19 – volume: 308 start-page: 1901 year: 2005 end-page: 1905 ident: CR2 article-title: Cleaning the air and improving health with hydrogen fuel-cell vehicles publication-title: Science doi: 10.1126/science.1109157 – volume: 10 start-page: 731 year: 2017 end-page: 737 ident: CR30 article-title: Functionalization of polypyrrole nanopipes with redox‐active polyoxometalates for high energy density supercapacitors publication-title: ChemSusChem doi: 10.1002/cssc.201601610 – volume: 377 start-page: 17 year: 2016 end-page: 22 ident: CR29 article-title: A novel iron-containing polyoxometalate heterogeneous photocatalyst for efficient 4-chlorophennol degradation by H O at neutral pH publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.083 – volume: 3 start-page: 16941 year: 2015 end-page: 16947 ident: CR32 article-title: MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03949E – volume: 11 start-page: 13266 year: 2021 end-page: 13279 ident: CR14 article-title: Platinum single atoms anchored on a covalent organic framework: boosting active sites for photocatalytic hydrogen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.1c03441 – volume: 90 start-page: 1538 year: 2009 end-page: 1542 ident: CR25 article-title: Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2009.08.001 – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: CR39 article-title: Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 127 start-page: 8055 year: 2015 end-page: 8059 ident: CR15 article-title: Multistimuli‐responsive, moldable supramolecular hydrogels cross‐linked by ultrafast complexation of metal ions and biopolymers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201502228 – volume: 10 start-page: 1902535 year: 2020 ident: CR16 article-title: Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902535 – volume: 6 start-page: 3440 year: 2020 end-page: 3454 ident: CR35 article-title: Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material publication-title: Chem doi: 10.1016/j.chempr.2020.10.027 – ident: CR26 – volume: 60 start-page: 7607 year: 2021 end-page: 7611 ident: CR13 article-title: Rational fabrication of low‐coordinate single‐atom Ni electrocatalysts by MOFs for highly selective CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016219 – volume: 28 start-page: 1801527 year: 2018 ident: CR31 article-title: Few layered N, P dual‐doped carbon‐encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3D self‐supported integrated electrode for hydrogen evolution reaction in a wide pH range publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801527 – volume: 13 start-page: 5188 year: 1976 ident: CR52 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 32 start-page: 2006784 year: 2020 ident: CR44 article-title: Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation publication-title: Adv. Mater. doi: 10.1002/adma.202006784 – volume: 32 start-page: 2109302 year: 2021 ident: CR20 article-title: Mineral hydrogel from inorganic salts: biocompatible synthesis, all‐in‐one charge storage, and possible implications in the origin of life publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109302 – volume: 137 start-page: 1444 year: 2015 end-page: 1447 ident: CR23 article-title: AuAg nanosheets assembled from ultrathin AuAg nanowires publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513120u – volume: 77 start-page: 3865 year: 1996 ident: CR50 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 132 start-page: 13525 year: 2020 end-page: 13531 ident: CR34 article-title: Electrocatalytically active Fe‐(O‐C ) single‐atom sites for efficient reduction of nitrogen to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202005930 – volume: 12 start-page: 1 year: 2021 end-page: 10 ident: CR12 article-title: Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction publication-title: Nat. Commun. – volume: 102 start-page: 245501 year: 2009 ident: CR43 article-title: Atomic level structure in multicomponent bulk metallic glass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – volume: 9 start-page: 1012 year: 2016 end-page: 1023 ident: CR27 article-title: Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03503A – volume: 37 start-page: 74 year: 2017 end-page: 80 ident: CR45 article-title: Interface engineering: The Ni(OH) /MoS heterostructure for highly efficient alkaline hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.011 – volume: 41 start-page: 7892 year: 1990 ident: CR51 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 240 start-page: 109 year: 2005 end-page: 118 ident: CR24 article-title: Phosphomolybdic acid supported on silica gel and promoted with alkali metal ions as catalysts for the esterification of acetic acid by ethanol publication-title: J. Mol. Catal. A: Chem. – volume: 120 start-page: 12217 year: 2020 end-page: 12314 ident: CR8 article-title: Advanced electrocatalysts with single-metal-atom active sites publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00594 – volume: 355 start-page: eaad4998 year: 2017 ident: CR17 article-title: Combining theory and experiment in electrocatalysis: Insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 152 start-page: J23 year: 2005 ident: CR48 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 32 start-page: 2000385 year: 2020 ident: CR5 article-title: A Novel Multinary Intermetallic As An Active Electrocatalyst For Hydrogen Evolution publication-title: Adv. Mater. doi: 10.1002/adma.202000385 – volume: 4 start-page: 615 year: 2021 end-page: 622 ident: CR21 article-title: Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction publication-title: Nat. Catal. doi: 10.1038/s41929-021-00650-w – volume: 8 start-page: 6732 year: 2020 end-page: 6739 ident: CR54 article-title: Heterostructured CoP/MoO 2 on Mo foil as high-efficiency electrocatalysts for the hydrogen evolution reaction in both acidic and alkaline media publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13553G – volume: 14 start-page: 2809 year: 2021 end-page: 2858 ident: CR11 article-title: Non-carbon-supported single-atom site catalysts for electrocatalysis publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00248A – volume: 33 start-page: 2103004 year: 2021 ident: CR40 article-title: Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.202103004 – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: CR49 article-title: First principles methods using CASTEP publication-title: Z. f.ür. Kristallographie-Crystalline Mater. doi: 10.1524/zkri.220.5.567.65075 – volume: 40 start-page: 173 year: 2020 end-page: 192 ident: CR10 article-title: Single atom is not alone: Metal–support interactions in single-atom catalysis publication-title: Mater. Today doi: 10.1016/j.mattod.2020.07.002 – volume: 18 start-page: 2105680 year: 2022 ident: CR42 article-title: Modulating the local coordination environment of single‐atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction publication-title: Small doi: 10.1002/smll.202105680 – volume: 57 start-page: 14139 year: 2018 end-page: 14143 ident: CR46 article-title: Construction of porous Mo P/Mo nanobelts as catalysts for efficient water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808844 – volume: 31 start-page: 1803668 year: 2019 ident: CR6 article-title: Borocarbonitrides as metal‐free catalysts for the hydrogen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201803668 – volume: 15 start-page: 1805022 year: 2019 ident: CR36 article-title: Lamellarly stacking porous N, P Co‐Doped Mo C/C nanosheets as high performance anode for lithium‐ion batteries publication-title: Small doi: 10.1002/smll.201805022 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR53 article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 127 start-page: 8055 year: 2015 ident: 33725_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201502228 – volume: 60 start-page: 7607 year: 2021 ident: 33725_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016219 – volume: 77 start-page: 3865 year: 1996 ident: 33725_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 37 start-page: 74 year: 2017 ident: 33725_CR45 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.011 – volume: 57 start-page: 14139 year: 2018 ident: 33725_CR46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808844 – volume: 9 start-page: 1012 year: 2016 ident: 33725_CR27 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03503A – volume: 28 start-page: 1801527 year: 2018 ident: 33725_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801527 – volume: 20 start-page: 100653 year: 2021 ident: 33725_CR41 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100653 – volume: 5 start-page: 909 year: 2006 ident: 33725_CR47 publication-title: Nat. mater. doi: 10.1038/nmat1752 – volume: 29 start-page: 1807419 year: 2019 ident: 33725_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807419 – ident: 33725_CR26 doi: 10.1002/adfm.201903660 – volume: 8 year: 2017 ident: 33725_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 377 start-page: 17 year: 2016 ident: 33725_CR29 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.083 – volume: 11 start-page: 13266 year: 2021 ident: 33725_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03441 – volume: 30 start-page: 1802764 year: 2018 ident: 33725_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201802764 – volume: 10 start-page: 1902535 year: 2020 ident: 33725_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902535 – volume: 12 start-page: 1 year: 2021 ident: 33725_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w – volume: 49 start-page: 2215 year: 2020 ident: 33725_CR9 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00869A – volume: 44 start-page: 2060 year: 2015 ident: 33725_CR39 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 102 start-page: 245501 year: 2009 ident: 33725_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – volume: 120 start-page: 12217 year: 2020 ident: 33725_CR8 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00594 – volume: 15 start-page: 1805022 year: 2019 ident: 33725_CR36 publication-title: Small doi: 10.1002/smll.201805022 – volume: 90 start-page: 1538 year: 2009 ident: 33725_CR25 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2009.08.001 – volume: 32 start-page: 2109302 year: 2021 ident: 33725_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109302 – volume: 105 start-page: 100576 year: 2019 ident: 33725_CR38 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100576 – volume: 31 start-page: 2101586 year: 2021 ident: 33725_CR37 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101586 – volume: 10 start-page: 731 year: 2017 ident: 33725_CR30 publication-title: ChemSusChem doi: 10.1002/cssc.201601610 – volume: 355 start-page: eaad4998 year: 2017 ident: 33725_CR17 publication-title: Science doi: 10.1126/science.aad4998 – volume: 132 start-page: 13525 year: 2020 ident: 33725_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202005930 – volume: 31 start-page: 1803668 year: 2019 ident: 33725_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201803668 – volume: 32 start-page: 2000385 year: 2020 ident: 33725_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.202000385 – volume: 108 start-page: 100618 year: 2020 ident: 33725_CR4 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100618 – volume: 4 start-page: 615 year: 2021 ident: 33725_CR21 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00650-w – volume: 18 start-page: 2105680 year: 2022 ident: 33725_CR42 publication-title: Small doi: 10.1002/smll.202105680 – volume: 137 start-page: 1444 year: 2015 ident: 33725_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513120u – volume: 33 start-page: 2103004 year: 2021 ident: 33725_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.202103004 – volume: 3 start-page: 16941 year: 2015 ident: 33725_CR32 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03949E – volume: 32 start-page: 2006784 year: 2020 ident: 33725_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.202006784 – volume: 220 start-page: 567 year: 2005 ident: 33725_CR49 publication-title: Z. f.ür. Kristallographie-Crystalline Mater. doi: 10.1524/zkri.220.5.567.65075 – volume: 12 start-page: 2080 year: 2019 ident: 33725_CR1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00717B – volume: 308 start-page: 1901 year: 2005 ident: 33725_CR2 publication-title: Science doi: 10.1126/science.1109157 – volume: 45 start-page: 1529 year: 2016 ident: 33725_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – ident: 33725_CR19 – volume: 27 start-page: 1787 year: 2006 ident: 33725_CR53 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 41 start-page: 7892 year: 1990 ident: 33725_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 14 start-page: 2809 year: 2021 ident: 33725_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00248A – volume: 240 start-page: 109 year: 2005 ident: 33725_CR24 publication-title: J. Mol. Catal. A: Chem. – volume: 40 start-page: 173 year: 2020 ident: 33725_CR10 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.07.002 – volume: 13 start-page: 5188 year: 1976 ident: 33725_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 11 start-page: 6205 year: 2015 ident: 33725_CR22 publication-title: Small doi: 10.1002/smll.201502173 – volume: 8 start-page: 6732 year: 2020 ident: 33725_CR54 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13553G – volume: 1148 start-page: 34 year: 2017 ident: 33725_CR28 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.07.018 – volume: 152 start-page: J23 year: 2005 ident: 33725_CR48 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 6 start-page: 3440 year: 2020 ident: 33725_CR35 publication-title: Chem doi: 10.1016/j.chempr.2020.10.027 |
SSID | ssj0000391844 |
Score | 2.621972 |
Snippet | Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen... It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6249 |
SubjectTerms | 119/118 140/146 147/135 147/143 639/301/299/161 639/638/675 639/638/77/884 639/638/77/886 Adsorption Carbon neutrality Catalysts Density functional theory Dispersion Electrocatalysts Evolution Fabrication Heterostructures Humanities and Social Sciences Hydrogels Hydrogen Hydrogen evolution reactions Hydrogen production Hydrogen-based energy Iron Low cost multidisciplinary Nanostructure Noble metals Performance degradation Reliability aspects Science Science (multidisciplinary) Stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOglNH2QTdOiQm-tiPWy5GNaGkKhPSWQm9CzG9jYYbebkH-fkeTdxoG2l17tsS1pPmm-WWm_QeiD875NsaPggWiJ4J6TjjeWyMgkD6H1Xala8v1He3ouvl3IiwelvvKZsCoPXAfuyMoYYkjBaetFY73mPDTccauCctIVnU-IeQ-SqbIG8w5SFzH-S6bh-mglyppQDq9zxSTRk0hUBPsnLPPxGclHG6Ul_pw8R7sjccTHtcF76EnsX6CntZTk3Uu0PLsdSMhS_VVmA19dFj1pPL8Ly-FnXJAAWLuJAecfBxYRQ7J9tSLg8_mwhKvzfCxmqGqya0jBMZBZvF5Ao4A-OrAf39PjeDOi9RU6P_l69uWUjPUUiJdU5arzUdIkUpcFdFwMQAY9cGuI-F5BR51vWHKicY30IfGc2bFWwVBDFmVLPYjXaKcf-riPcAqC-ug1C4lCjI-aJmaBzFgPBEQJPUN0M7bGj2LjuebFwpRNb65N9YcBf5jiDwPPfNw-c12lNv5q_Tm7bGuZZbLLBQCPGcFj_gWeGTrcONyMc3dlGFA6mhEkZ-j99jbMuryVYvs4rKsNrFxKgY2aAGXSoOmd_nJe9Ls7qdtO0Rn6tIHU74__ucMH_6PDb9AzlqcABF9GD9EOoCq-BVb1y70rE-geh88jZw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6bVJU6K0VsV6WfApNSAiFhlISyE3o5WxgY6e73ZT8-4xk7QYHmqs1siXPaObT6xuEvjjv6zY2FDQQLRHcc9LwyhIZmeQh1L7JWUt-ntTHZ-LHuTwvC27Lcqxy7ROzow69T2vkuwwCLU03SeXe9R-Sskal3dWSQuMp2gIXrOUEbe0fnvz6vVllSfznWohyW6biencpsm_Ih9i5YpLoUUTKxP0jtPnwrOSDDdMch45eohcFQOLvg8ZfoSexe42eDSklb9-gxem_noRE2T_QbeCry8wrjWe3YdFfxDkJYHM3MeC0SDCPGCbdV0sCup_1C3g6S8dj-oFVdgVTcQygFq_m0CiAkQ7ky3s6HG-K1b5FZ0eHpwfHpORVIF5SlbLPR0lb0TaJSMfFAKDQA8aGyO8VdNT5irVOVK6SPrQ8zfBYrbhLky-b80K8Q5Ou7-J7hNsgqI9es9BSiPVR05ZZADXWAxBRQk8RXf9b4wvpeMp9MTd585trM-jDgD5M1oeBOl83da4Hyo1HpfeTyjaSiS47P-gXF6aMPmNlDDG0wUHDRGW95jxU0COrgnLS8SnaXivclDG8NPcWN0WfN8Uw-tKWiu1ivxpkwIMpBTJqZCijBo1LustZ5vFupK4bRafo29qk7j_-_w5_eLytH9Fzlowbwiuj22gC9hJ3ADf9dZ_K4LgDjkEaCA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpSqGX0CYt3SYpCvTWiFovSz6mS0IotKcEchN6ZgMbu-w2Kfn3Gcn2Foe20Ks9siXNjOeTNP4GoY_O-zrFhoIGoiWCe04aXlkiI5M8hNo3pWrJt-_1-aX4eiWvthAb_4UpSfuF0rJ8psfssM9rUVy65J5zxSTRz9DzTN2e-fLn9Xyzr5IZz7UQw_8xFdd_aDqJQYWqf4Ivn2ZHPjkiLZHn7BXaGSAjPuk7-RptxXYXveiLSD7sodXFr46ETNLfE2zg25vCJI0XD2HVXcclCWBl9zHgvC2wjBiW2bdrAtpedCu4usgJMV3PIwsTssYAY_HdEjoFwNGB_PCcFsf7wU7foMuz04v5ORkqKRAvqcr15qOkSaQmU-e4GAAGekDVEOu9goE6X7HkROUq6UPieU3HasVdXm7ZUgniLdpuuza-QzgFQX30moVEIbpHTROzAGOsB-ihhJ4hOs6t8QPNeK52sTTluJtr0-vDgD5M0YeBNp82bX70JBv_lP6SVbaRzATZ5UK3ujaDwRgrY4ghBQcdE5X1mvNQwYisCspJx2foYFS4Gbx2bRiAOZotSM7Q0eY2-Fs-RLFt7O56GfhmKQUyamIokw5N77Q3i8Lc3UhdN4rO0PFoUr9f_vcBv_8_8X30kmVjhwDL6AHaBvuJh4CcfroPxVUeAaBTFn4 priority: 102 providerName: Springer Nature |
Title | Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution |
URI | https://link.springer.com/article/10.1038/s41467-022-33725-8 https://www.proquest.com/docview/2727100395 https://www.proquest.com/docview/2727638775 https://pubmed.ncbi.nlm.nih.gov/PMC9586971 https://doaj.org/article/a5ededfdb8ac40ac833d03b3a7d7b5b3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY90HS9sFD_a2ebMsy7IfxkhDsxJoGVsDeRPWh5uCa6_O0i3__U6yneLSFvbigHxyJN_vfL-z5DuA91KpODcpQQ2YzI-oon5Kg8xnJmRU61ilrmrJ6Vl8Moumczbfgq7cUXsDl_eGdrae1KwuPv29Xn9Fg__SfDKefF5GztzdvnTKQ-Yn27CLnim2KD9t6b57MtMUA5qo_Xbm_q49_-TS-Pe4592dk3eWT51XmjyHZy2d9EaN_vdgy5Qv4ElTYHL9EurzP5WvbQL_JvmGd3Xpskx7i7WuqwtT-BoReGO0Z18ZFMbDEPxq6SMSFlWNrQu7WaZqcsyuMDD3kOJ6qwIHhaRSonx7ndIzNy2GX8Fscnw-PvHbKgu-YoTbWvSGkTzKU5tWRxqNFFEh40YeoDhOVKogzGUUyIApnVMb74Uxp9KGYpmrEvEadsqqNG_Ay3VElFFJqHOCnt8kJA8zpDiZQlrCo2QApLu3QrUpyG0ljEK4pXCaiEYfAvUhnD4E9vmw6fOrScDxqPSRVdlG0ibPdg1VfSFaWxQZM9roXEscWBRkKqFUBzijjGsumaQDOOwULjpAihCJHrEIYgN4tzmNtmgXWLLSVKtGBp9nnKMM7wGlN6D-mfJy4bJ6pyyJU04G8LGD1O2fPzzh_f8TP4CnoQU7Ot-QHMIO4se8RVb1Ww5hm885HpPJtyHsjkbTn1P8PTo--_4DW8fxeOjeVwydSf0DaXwm6g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYhUDBYwEJ7Aab2PngBDbMKXLaSr1ZuIlnUrTpMwwreZP8Rt5dpKpUoneek1eEjtv8fe8fA-ht9a5YRlyChoIBRHccZLzrCAyMMm9H7o8VS3ZPxiOD8XPI3m0gf52Z2HitsouJqZA7WsX58i3GQy0NJ4klZ_OfpNYNSqurnYlNBqz2A2rC0jZFh93voF-3zE2-j75OiZtVQHiJFWx9nqQtBRlHmlkbPAAiRwgTBj3nAreWZex0orMZtL5ksf8hg0VtzH1KFJVBHjvLXRbcJ5Hrn49-rGe04ls61qI9mxOxvX2QqRIlLbMc8Uk0b3xL5UJ6GHbqzszryzPplFv9ADdb-Eq_tzY10O0EapH6E5TwHL1GM0nFzXxsUBAQ-6BT08SizWervy8Pg4z4sHCz4PHcUpiFjCk-KcLApY2redwdRo349QNh-0SEn8MEBovZ9AoAK0W5Nv3VDictz7yBB3eyP9-ijarugrPEC69oC44zXxJAVkETUtWAIQqHMAeJfQA0e7fGtdSnMdKGzOTltq5No0-DOjDJH0YeOb9-pmzhuDjWukvUWVryUjOnS7U82PT-ropZPDBl95Cw0RWOM25z6BHhfLKSssHaKtTuGkjxsJc2vcAvVnfBl-PCzhFFeplIwPxUimQUT1D6TWof6c6mSbW8FzqYa7oAH3oTOry4__v8PPr2_oa3R1P9vfM3s7B7gt0j0VDh4Gd0S20CbYTXgJi-2NfJTfB6NdN--U_2ldT2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAvE1dRNsBI8ARRYzuOkweEGFu1MagmtEl7M_El66QuGQnd1L_Gr-PYcTp1Envba-Ikds7ts318PoTeKa3T0uYEJGCLKGGaRTmLi4hbypkxqc49a8mPSbp3nHw74Sdr6G9_FsalVfY-0TtqU2u3Rj6iEGiJO0nKR2VIizjcGX---B05Bim309rTaXQqcmAXVzB9az_t74Cs31M63j36uhcFhoFIcyIcD7vlpEzK3JWUUdYAPNKANiEGamGNVjqmpUpiFXNtSubmOjQVTLlpSOEZEuC999C6gKiYDdD69u7k8OdyhcfVXs-SJJzUiVk2ahPvl3wCPROUR9lKNPSkAStI92ae5o3NWh8Dx4_QRgCv-EunbY_Rmq2eoPsdneXiKWqOrurIOLqArtQHPj_zNa3xdGGa-tTOIgP6fmkNdgsUM4thwn_eRqB307qBq1OXmlN3FW3njW0xAGo8n0GnAMIqaB_eU2F7GSzmGTq-kz_-HA2qurIvEC5NQrTVGTUlAZxhM1LSAgBVoQEEiSQbItL_W6lDwXPHuzGTfuOdZbKThwR5SC8PCc98WD5z0ZX7uLX1thPZsqUr1e0v1M2pDJYvC26NNaVR0LEkLnTGmIlhRIUwQnHFhmirF7gM_qOV19o-RG-Xt8Hy3XZOUdl63rUB7ykEtBErirLSodU71dnU1xDPeZbmggzRx16lrj_-_wG_vL2vb9ADsEn5fX9ysIkeUqfnEOUp2UIDUB37CuDbH_U62AlGv-7aNP8Bbh1Zcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+mineral+hydrogel-derived+single+atoms-anchored+heterostructures+for+ultrastable+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Lyu%2C+Fucong&rft.au=Zeng%2C+Shanshan&rft.au=Jia%2C+Zhe&rft.au=Ma%2C+Fei-Xiang&rft.date=2022-10-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33725-8&rft.externalDocID=10_1038_s41467_022_33725_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |