Two Bistable Switches Govern M Phase Entry

The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies h...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 26; no. 24; pp. 3361 - 3367
Main Authors Mochida, Satoru, Rata, Scott, Hino, Hirotsugu, Nagai, Takeharu, Novák, Béla
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 19.12.2016
Cell Press
Subjects
Online AccessGet full text
ISSN0960-9822
1879-0445
1879-0445
DOI10.1016/j.cub.2016.10.022

Cover

Loading…
Abstract The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2–4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations—evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. [Display omitted] •Cdk1 auto-activation loop is dispensable for switch-like mitotic entry•PP2A:B55 auto-regulation creates a bistable switch•Two bistable switches provide a robust solution for mitotic entry Mochida et al. find, using a biochemical reconstitution and mathematical simulation, that the regulation of PP2A:B55 phosphatase can create a bistable switch for mitotic phosphorylation of Cdk1 substrates. This new mechanism, together with the Cdk1 auto-activation loop, provides a robust solution for irreversible and switch-like mitotic entry.
AbstractList The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry.
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2–4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations—evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. [Display omitted] •Cdk1 auto-activation loop is dispensable for switch-like mitotic entry•PP2A:B55 auto-regulation creates a bistable switch•Two bistable switches provide a robust solution for mitotic entry Mochida et al. find, using a biochemical reconstitution and mathematical simulation, that the regulation of PP2A:B55 phosphatase can create a bistable switch for mitotic phosphorylation of Cdk1 substrates. This new mechanism, together with the Cdk1 auto-activation loop, provides a robust solution for irreversible and switch-like mitotic entry.
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry.The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry.
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [ 1 , 2 ]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [ 2 , 3 , 4 ]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations—evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. • Cdk1 auto-activation loop is dispensable for switch-like mitotic entry • PP2A:B55 auto-regulation creates a bistable switch • Two bistable switches provide a robust solution for mitotic entry Mochida et al. find, using a biochemical reconstitution and mathematical simulation, that the regulation of PP2A:B55 phosphatase can create a bistable switch for mitotic phosphorylation of Cdk1 substrates. This new mechanism, together with the Cdk1 auto-activation loop, provides a robust solution for irreversible and switch-like mitotic entry.
Author Nagai, Takeharu
Hino, Hirotsugu
Novák, Béla
Mochida, Satoru
Rata, Scott
AuthorAffiliation 6 The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
1 Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
4 Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
2 Institute for Medical Embryology and Genetics, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
3 International Research Center for Medical Science, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
AuthorAffiliation_xml – name: 1 Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
– name: 6 The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
– name: 2 Institute for Medical Embryology and Genetics, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
– name: 3 International Research Center for Medical Science, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
– name: 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
– name: 4 Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Author_xml – sequence: 1
  givenname: Satoru
  surname: Mochida
  fullname: Mochida, Satoru
  email: mochida@kumamoto-u.ac.jp
  organization: Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
– sequence: 2
  givenname: Scott
  surname: Rata
  fullname: Rata, Scott
  organization: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
– sequence: 3
  givenname: Hirotsugu
  surname: Hino
  fullname: Hino, Hirotsugu
  organization: Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
– sequence: 4
  givenname: Takeharu
  surname: Nagai
  fullname: Nagai, Takeharu
  organization: The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
– sequence: 5
  givenname: Béla
  surname: Novák
  fullname: Novák, Béla
  email: bela.novak@bioch.ox.ac.uk
  organization: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27889260$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFLxDAQhYMouqv-AC_Sowhdk9k2aRAEFV0FRUE9hzSdulm6jSbdFf-9KauiHjxlkpn3PjJvSNZb1yIhe4yOGGX8aDYyi3IEsYz3EQVYIwNWCJnSLMvXyYBKTlNZAGyRYQgzShkUkm-SLRBFIYHTATl8fHPJmQ2dLhtMHt5sZ6YYkolbom-T2-R-qgMmF23n33fIRq2bgLuf5zZ5urx4PL9Kb-4m1-enN6nJmehSNi4YSJlpzoHVkEnDZF1VdV6hBikqkCXNgYsShQDguZAChZQVl4UQlI7H2-Rk5fuyKOdYGYxw3agXb-favyunrfrdae1UPbulyln8L9BocPBp4N3rAkOn5jYYbBrdolsExYosG-eC8Z61_5P1DflaUBwQqwHjXQgea2VspzvrerRtFKOqj0LNVIxC9VH0TzGKqGR_lF_m_2mOVxqM-11a9CoYi63Byno0naqc_Uf9AZLynpw
CitedBy_id crossref_primary_10_7554_eLife_26233
crossref_primary_10_1016_j_cub_2019_02_061
crossref_primary_10_1371_journal_pcbi_1011151
crossref_primary_10_1091_mbc_E22_11_0527
crossref_primary_10_1098_rstb_2020_0121
crossref_primary_10_1016_j_ceb_2020_12_003
crossref_primary_10_1074_jbc_M117_778233
crossref_primary_10_1091_mbc_E18_10_0631
crossref_primary_10_1016_j_cub_2018_10_011
crossref_primary_10_1021_acssynbio_3c00631
crossref_primary_10_1098_rsfs_2021_0089
crossref_primary_10_1016_j_heliyon_2024_e38406
crossref_primary_10_1091_mbc_e17_06_0349
crossref_primary_10_1007_s00018_023_04727_6
crossref_primary_10_1016_j_devcel_2018_05_005
crossref_primary_10_1007_s00018_019_03086_5
crossref_primary_10_1038_s41598_019_40648_w
crossref_primary_10_7554_eLife_24665
crossref_primary_10_1098_rsta_2017_0376
crossref_primary_10_1103_PhysRevResearch_6_033050
crossref_primary_10_1016_j_tibs_2023_04_004
crossref_primary_10_1016_j_cub_2016_11_007
crossref_primary_10_1002_anie_202318134
crossref_primary_10_3390_cells11233794
crossref_primary_10_1242_dev_193128
crossref_primary_10_1080_15384101_2017_1371885
crossref_primary_10_1016_j_coisb_2018_02_004
crossref_primary_10_7554_eLife_59989
crossref_primary_10_1038_s41388_021_02068_x
crossref_primary_10_1083_jcb_201708105
crossref_primary_10_1016_j_biosystems_2021_104478
crossref_primary_10_1098_rsfs_2022_0024
crossref_primary_10_1038_s41467_021_22124_0
crossref_primary_10_1111_gtc_13159
crossref_primary_10_3389_fcell_2022_967909
crossref_primary_10_1063_5_0199311
crossref_primary_10_1126_science_abj5028
crossref_primary_10_3390_ijms20246228
crossref_primary_10_1002_ange_202318134
crossref_primary_10_1016_j_cub_2020_11_058
crossref_primary_10_12688_f1000research_123183_3
crossref_primary_10_12688_f1000research_123183_1
crossref_primary_10_12688_f1000research_123183_2
crossref_primary_10_1126_science_aav0780
crossref_primary_10_1016_j_isci_2024_111603
crossref_primary_10_3390_cells8080814
crossref_primary_10_1002_bies_201800016
crossref_primary_10_1016_j_mbs_2024_109291
crossref_primary_10_1111_gtc_12637
crossref_primary_10_1371_journal_pone_0194769
crossref_primary_10_15252_embj_2020104419
crossref_primary_10_1371_journal_pcbi_1007733
crossref_primary_10_1016_j_cub_2018_09_059
crossref_primary_10_1016_j_devcel_2018_12_024
crossref_primary_10_1016_j_celrep_2020_107901
crossref_primary_10_1371_journal_pcbi_1009008
crossref_primary_10_1371_journal_pcbi_1008231
crossref_primary_10_1002_1873_3468_13595
crossref_primary_10_2147_OTT_S284261
crossref_primary_10_7554_eLife_64592
crossref_primary_10_1098_rsfs_2021_0075
crossref_primary_10_1002_1873_3468_13635
crossref_primary_10_1016_j_tcb_2020_04_002
crossref_primary_10_1111_jipb_13100
Cites_doi 10.1242/jcs.106.4.1153
10.1111/febs.12685
10.1242/jcs.179754
10.1091/mbc.e09-07-0643
10.1128/MCB.06525-11
10.1073/pnas.0235349100
10.1016/S0092-8674(00)80994-0
10.1128/MCB.00753-10
10.1016/0092-8674(90)90504-8
10.1126/science.1195689
10.1126/science.1197048
10.1016/j.molcel.2013.09.005
10.1038/ncb2737
10.7554/eLife.01695
10.1091/mbc.e07-11-1099
10.1038/nature09543
10.1016/j.febslet.2015.02.007
10.1371/journal.pgen.1004004
10.1038/emboj.2009.228
10.1038/emboj.2009.238
10.15252/embr.201540876
10.1091/mbc.e06-12-1092
10.1038/ncb954
10.1242/jcs.178855
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
2016 The Authors. Published by Elsevier Ltd. 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
– notice: 2016 The Authors. Published by Elsevier Ltd. 2016 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cub.2016.10.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 3367
ExternalDocumentID PMC5196020
27889260
10_1016_j_cub_2016_10_022
S0960982216312076
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/MM00354X/1
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
SEW
UHS
XIH
XPP
Y6R
ZGI
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c517t-13812994a6621f249c19fddf5dea297d29b05267be772265797e799d698770033
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Thu Aug 21 13:35:10 EDT 2025
Fri Jul 11 13:58:41 EDT 2025
Wed Feb 19 02:43:40 EST 2025
Tue Jul 01 01:57:01 EDT 2025
Thu Apr 24 23:44:03 EDT 2025
Fri Feb 23 02:28:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Greatwall kinase
robustness
PP2A
threshold
mitosis
cyclin-dependent kinase
hysteresis
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 Elsevier Ltd. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-13812994a6621f249c19fddf5dea297d29b05267be772265797e799d698770033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Present address: Department of Biochemistry, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960982216312076
PMID 27889260
PQID 1844357163
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5196020
proquest_miscellaneous_1844357163
pubmed_primary_27889260
crossref_citationtrail_10_1016_j_cub_2016_10_022
crossref_primary_10_1016_j_cub_2016_10_022
elsevier_sciencedirect_doi_10_1016_j_cub_2016_10_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-19
PublicationDateYYYYMMDD 2016-12-19
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2016
Publisher Elsevier Ltd
Cell Press
Publisher_xml – name: Elsevier Ltd
– name: Cell Press
References Rogers, Fey, McCloy, Parker, Mitchell, Payne, Daly, James, Caldon, Watkins (bib24) 2016; 129
Williams, Filter, Blake-Hodek, Wadzinski, Fuda, Shalloway, Goldberg (bib11) 2014; 3
Guadagno, Newport (bib22) 1996; 84
Ma, Vigneron, Robert, Strub, Cianferani, Castro, Lorca (bib23) 2016; 129
Novak, Tyson (bib2) 1993; 106
Castilho, Williams, Mochida, Zhao, Goldberg (bib9) 2009; 20
Fung, Ma, Poon (bib21) 2007; 18
Vinod, Novak (bib15) 2015; 589
Zhao, Haccard, Wang, Yu, Kuang, Jessus, Goldberg (bib18) 2008; 19
Heim, Konietzny, Mayer (bib16) 2015; 16
Yang, Ferrell (bib8) 2013; 15
Sha, Moore, Chen, Lassaletta, Yi, Tyson, Sible (bib3) 2003; 100
Blake-Hodek, Williams, Zhao, Castilho, Chen, Mao, Yamamoto, Goldberg (bib5) 2012; 32
Mochida (bib13) 2014; 281
Mochida, Maslen, Skehel, Hunt (bib7) 2010; 330
Hégarat, Vesely, Vinod, Ocasio, Peter, Gannon, Oliver, Novák, Hochegger (bib14) 2014; 10
Cundell, Bastos, Zhang, Holder, Gruneberg, Novak, Barr (bib17) 2013; 52
Pomerening, Sontag, Ferrell (bib4) 2003; 5
Mochida, Ikeo, Gannon, Hunt (bib10) 2009; 28
Solomon, Glotzer, Lee, Philippe, Kirschner (bib1) 1990; 63
Coudreuse, Nurse (bib20) 2010; 468
Gharbi-Ayachi, Labbé, Burgess, Vigneron, Strub, Brioudes, Van-Dorsselaer, Castro, Lorca (bib6) 2010; 330
Vigneron, Brioudes, Burgess, Labbé, Lorca, Castro (bib12) 2009; 28
Vigneron, Gharbi-Ayachi, Raymond, Burgess, Labbé, Labesse, Monsarrat, Lorca, Castro (bib19) 2011; 31
Coudreuse (10.1016/j.cub.2016.10.022_bib20) 2010; 468
Rogers (10.1016/j.cub.2016.10.022_bib24) 2016; 129
Blake-Hodek (10.1016/j.cub.2016.10.022_bib5) 2012; 32
Mochida (10.1016/j.cub.2016.10.022_bib13) 2014; 281
Guadagno (10.1016/j.cub.2016.10.022_bib22) 1996; 84
Gharbi-Ayachi (10.1016/j.cub.2016.10.022_bib6) 2010; 330
Mochida (10.1016/j.cub.2016.10.022_bib7) 2010; 330
Pomerening (10.1016/j.cub.2016.10.022_bib4) 2003; 5
Cundell (10.1016/j.cub.2016.10.022_bib17) 2013; 52
Fung (10.1016/j.cub.2016.10.022_bib21) 2007; 18
Vinod (10.1016/j.cub.2016.10.022_bib15) 2015; 589
Zhao (10.1016/j.cub.2016.10.022_bib18) 2008; 19
Novak (10.1016/j.cub.2016.10.022_bib2) 1993; 106
Solomon (10.1016/j.cub.2016.10.022_bib1) 1990; 63
Mochida (10.1016/j.cub.2016.10.022_bib10) 2009; 28
Vigneron (10.1016/j.cub.2016.10.022_bib12) 2009; 28
Sha (10.1016/j.cub.2016.10.022_bib3) 2003; 100
Castilho (10.1016/j.cub.2016.10.022_bib9) 2009; 20
Yang (10.1016/j.cub.2016.10.022_bib8) 2013; 15
Williams (10.1016/j.cub.2016.10.022_bib11) 2014; 3
Heim (10.1016/j.cub.2016.10.022_bib16) 2015; 16
Hégarat (10.1016/j.cub.2016.10.022_bib14) 2014; 10
Vigneron (10.1016/j.cub.2016.10.022_bib19) 2011; 31
Ma (10.1016/j.cub.2016.10.022_bib23) 2016; 129
25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71
17344473 - Mol Biol Cell. 2007 May;18(5):1861-73
24120663 - Mol Cell. 2013 Nov 7;52(3):393-405
19696736 - EMBO J. 2009 Sep 16;28(18):2777-85
26906418 - J Cell Sci. 2016 Apr 1;129(7):1329-39
19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89
12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51
21164013 - Science. 2010 Dec 17;330(6011):1670-3
24354984 - FEBS J. 2014 Feb;281(4):1159-69
22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53
21444715 - Mol Cell Biol. 2011 Jun;31(11):2262-75
27997836 - Curr Biol. 2016 Dec 19;26(24):R1272-R1274
12509509 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):975-80
8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68
24618897 - Elife. 2014 Mar 11;3:e01695
18199678 - Mol Biol Cell. 2008 Apr;19(4):1317-27
26872783 - J Cell Sci. 2016 Apr 1;129(7):1340-54
26396231 - EMBO Rep. 2015 Nov;16(11):1501-10
21179163 - Nature. 2010 Dec 23;468(7327):1074-9
21164014 - Science. 2010 Dec 17;330(6011):1673-7
2147872 - Cell. 1990 Nov 30;63(5):1013-24
8548828 - Cell. 1996 Jan 12;84(1):73-82
23624406 - Nat Cell Biol. 2013 May;15(5):519-25
24391510 - PLoS Genet. 2014 Jan;10(1):e1004004
19680222 - EMBO J. 2009 Sep 16;28(18):2786-93
References_xml – volume: 63
  start-page: 1013
  year: 1990
  end-page: 1024
  ident: bib1
  article-title: Cyclin activation of p34cdc2
  publication-title: Cell
– volume: 18
  start-page: 1861
  year: 2007
  end-page: 1873
  ident: bib21
  article-title: Specialized roles of the two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor
  publication-title: Mol. Biol. Cell
– volume: 84
  start-page: 73
  year: 1996
  end-page: 82
  ident: bib22
  article-title: Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity
  publication-title: Cell
– volume: 100
  start-page: 975
  year: 2003
  end-page: 980
  ident: bib3
  article-title: Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 2786
  year: 2009
  end-page: 2793
  ident: bib12
  article-title: Greatwall maintains mitosis through regulation of PP2A
  publication-title: EMBO J.
– volume: 281
  start-page: 1159
  year: 2014
  end-page: 1169
  ident: bib13
  article-title: Regulation of α-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation
  publication-title: FEBS J.
– volume: 5
  start-page: 346
  year: 2003
  end-page: 351
  ident: bib4
  article-title: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2
  publication-title: Nat. Cell Biol.
– volume: 129
  start-page: 1340
  year: 2016
  end-page: 1354
  ident: bib24
  article-title: PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells
  publication-title: J. Cell Sci.
– volume: 106
  start-page: 1153
  year: 1993
  end-page: 1168
  ident: bib2
  article-title: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos
  publication-title: J. Cell Sci.
– volume: 20
  start-page: 4777
  year: 2009
  end-page: 4789
  ident: bib9
  article-title: The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites
  publication-title: Mol. Biol. Cell
– volume: 3
  start-page: e01695
  year: 2014
  ident: bib11
  article-title: Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers
  publication-title: eLife
– volume: 129
  start-page: 1329
  year: 2016
  end-page: 1339
  ident: bib23
  article-title: Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1
  publication-title: J. Cell Sci.
– volume: 31
  start-page: 2262
  year: 2011
  end-page: 2275
  ident: bib19
  article-title: Characterization of the mechanisms controlling Greatwall activity
  publication-title: Mol. Cell. Biol.
– volume: 52
  start-page: 393
  year: 2013
  end-page: 405
  ident: bib17
  article-title: The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation
  publication-title: Mol. Cell
– volume: 19
  start-page: 1317
  year: 2008
  end-page: 1327
  ident: bib18
  article-title: Roles of Greatwall kinase in the regulation of cdc25 phosphatase
  publication-title: Mol. Biol. Cell
– volume: 15
  start-page: 519
  year: 2013
  end-page: 525
  ident: bib8
  article-title: The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch
  publication-title: Nat. Cell Biol.
– volume: 32
  start-page: 1337
  year: 2012
  end-page: 1353
  ident: bib5
  article-title: Determinants for activation of the atypical AGC kinase Greatwall during M phase entry
  publication-title: Mol. Cell. Biol.
– volume: 330
  start-page: 1670
  year: 2010
  end-page: 1673
  ident: bib7
  article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis
  publication-title: Science
– volume: 589
  start-page: 667
  year: 2015
  end-page: 671
  ident: bib15
  article-title: Model scenarios for switch-like mitotic transitions
  publication-title: FEBS Lett.
– volume: 330
  start-page: 1673
  year: 2010
  end-page: 1677
  ident: bib6
  article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A
  publication-title: Science
– volume: 468
  start-page: 1074
  year: 2010
  end-page: 1079
  ident: bib20
  article-title: Driving the cell cycle with a minimal CDK control network
  publication-title: Nature
– volume: 28
  start-page: 2777
  year: 2009
  end-page: 2785
  ident: bib10
  article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts
  publication-title: EMBO J.
– volume: 16
  start-page: 1501
  year: 2015
  end-page: 1510
  ident: bib16
  article-title: Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit
  publication-title: EMBO Rep.
– volume: 10
  start-page: e1004004
  year: 2014
  ident: bib14
  article-title: PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit
  publication-title: PLoS Genet.
– volume: 106
  start-page: 1153
  year: 1993
  ident: 10.1016/j.cub.2016.10.022_bib2
  article-title: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.106.4.1153
– volume: 281
  start-page: 1159
  year: 2014
  ident: 10.1016/j.cub.2016.10.022_bib13
  article-title: Regulation of α-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation
  publication-title: FEBS J.
  doi: 10.1111/febs.12685
– volume: 129
  start-page: 1340
  year: 2016
  ident: 10.1016/j.cub.2016.10.022_bib24
  article-title: PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.179754
– volume: 20
  start-page: 4777
  year: 2009
  ident: 10.1016/j.cub.2016.10.022_bib9
  article-title: The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-07-0643
– volume: 32
  start-page: 1337
  year: 2012
  ident: 10.1016/j.cub.2016.10.022_bib5
  article-title: Determinants for activation of the atypical AGC kinase Greatwall during M phase entry
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06525-11
– volume: 100
  start-page: 975
  year: 2003
  ident: 10.1016/j.cub.2016.10.022_bib3
  article-title: Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0235349100
– volume: 84
  start-page: 73
  year: 1996
  ident: 10.1016/j.cub.2016.10.022_bib22
  article-title: Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80994-0
– volume: 31
  start-page: 2262
  year: 2011
  ident: 10.1016/j.cub.2016.10.022_bib19
  article-title: Characterization of the mechanisms controlling Greatwall activity
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00753-10
– volume: 63
  start-page: 1013
  year: 1990
  ident: 10.1016/j.cub.2016.10.022_bib1
  article-title: Cyclin activation of p34cdc2
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90504-8
– volume: 330
  start-page: 1670
  year: 2010
  ident: 10.1016/j.cub.2016.10.022_bib7
  article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis
  publication-title: Science
  doi: 10.1126/science.1195689
– volume: 330
  start-page: 1673
  year: 2010
  ident: 10.1016/j.cub.2016.10.022_bib6
  article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A
  publication-title: Science
  doi: 10.1126/science.1197048
– volume: 52
  start-page: 393
  year: 2013
  ident: 10.1016/j.cub.2016.10.022_bib17
  article-title: The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.09.005
– volume: 15
  start-page: 519
  year: 2013
  ident: 10.1016/j.cub.2016.10.022_bib8
  article-title: The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2737
– volume: 3
  start-page: e01695
  year: 2014
  ident: 10.1016/j.cub.2016.10.022_bib11
  article-title: Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers
  publication-title: eLife
  doi: 10.7554/eLife.01695
– volume: 19
  start-page: 1317
  year: 2008
  ident: 10.1016/j.cub.2016.10.022_bib18
  article-title: Roles of Greatwall kinase in the regulation of cdc25 phosphatase
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-11-1099
– volume: 468
  start-page: 1074
  year: 2010
  ident: 10.1016/j.cub.2016.10.022_bib20
  article-title: Driving the cell cycle with a minimal CDK control network
  publication-title: Nature
  doi: 10.1038/nature09543
– volume: 589
  start-page: 667
  year: 2015
  ident: 10.1016/j.cub.2016.10.022_bib15
  article-title: Model scenarios for switch-like mitotic transitions
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.02.007
– volume: 10
  start-page: e1004004
  year: 2014
  ident: 10.1016/j.cub.2016.10.022_bib14
  article-title: PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004004
– volume: 28
  start-page: 2786
  year: 2009
  ident: 10.1016/j.cub.2016.10.022_bib12
  article-title: Greatwall maintains mitosis through regulation of PP2A
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.228
– volume: 28
  start-page: 2777
  year: 2009
  ident: 10.1016/j.cub.2016.10.022_bib10
  article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.238
– volume: 16
  start-page: 1501
  year: 2015
  ident: 10.1016/j.cub.2016.10.022_bib16
  article-title: Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201540876
– volume: 18
  start-page: 1861
  year: 2007
  ident: 10.1016/j.cub.2016.10.022_bib21
  article-title: Specialized roles of the two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-12-1092
– volume: 5
  start-page: 346
  year: 2003
  ident: 10.1016/j.cub.2016.10.022_bib4
  article-title: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb954
– volume: 129
  start-page: 1329
  year: 2016
  ident: 10.1016/j.cub.2016.10.022_bib23
  article-title: Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.178855
– reference: 2147872 - Cell. 1990 Nov 30;63(5):1013-24
– reference: 24618897 - Elife. 2014 Mar 11;3:e01695
– reference: 21179163 - Nature. 2010 Dec 23;468(7327):1074-9
– reference: 18199678 - Mol Biol Cell. 2008 Apr;19(4):1317-27
– reference: 19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89
– reference: 25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71
– reference: 21164013 - Science. 2010 Dec 17;330(6011):1670-3
– reference: 21444715 - Mol Cell Biol. 2011 Jun;31(11):2262-75
– reference: 24391510 - PLoS Genet. 2014 Jan;10(1):e1004004
– reference: 19696736 - EMBO J. 2009 Sep 16;28(18):2777-85
– reference: 8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68
– reference: 12509509 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):975-80
– reference: 8548828 - Cell. 1996 Jan 12;84(1):73-82
– reference: 24354984 - FEBS J. 2014 Feb;281(4):1159-69
– reference: 12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51
– reference: 21164014 - Science. 2010 Dec 17;330(6011):1673-7
– reference: 17344473 - Mol Biol Cell. 2007 May;18(5):1861-73
– reference: 26396231 - EMBO Rep. 2015 Nov;16(11):1501-10
– reference: 24120663 - Mol Cell. 2013 Nov 7;52(3):393-405
– reference: 23624406 - Nat Cell Biol. 2013 May;15(5):519-25
– reference: 27997836 - Curr Biol. 2016 Dec 19;26(24):R1272-R1274
– reference: 26872783 - J Cell Sci. 2016 Apr 1;129(7):1340-54
– reference: 19680222 - EMBO J. 2009 Sep 16;28(18):2786-93
– reference: 22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53
– reference: 26906418 - J Cell Sci. 2016 Apr 1;129(7):1329-39
SSID ssj0012896
Score 2.4789314
Snippet The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3361
SubjectTerms Animals
CDC2 Protein Kinase - genetics
CDC2 Protein Kinase - metabolism
Cell Cycle Checkpoints - physiology
Cell Division - physiology
cyclin-dependent kinase
Gene Expression Regulation, Enzymologic
Greatwall kinase
hysteresis
mitosis
Models, Biological
Peptides - metabolism
Phosphorylation
PP2A
Protein Phosphatase 2 - genetics
Protein Phosphatase 2 - metabolism
robustness
Signal Transduction - physiology
threshold
Title Two Bistable Switches Govern M Phase Entry
URI https://dx.doi.org/10.1016/j.cub.2016.10.022
https://www.ncbi.nlm.nih.gov/pubmed/27889260
https://www.proquest.com/docview/1844357163
https://pubmed.ncbi.nlm.nih.gov/PMC5196020
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIngR39ZHWcGTEJtsN7vZo4qlKIr4wN6WbLKllZIWaxH_vTN5FKvYg8dsZmGZSWa-YWa_ATgJiNSEK-tZPxGeENZ52nfCS1qx7_w0Rs9I951v72TnWVx3w24NLqu7MNRWWfr-wqfn3rpcaZbabI4Hg-ZjTpaG8Q0RRcAxHUc_TEwtdImvezGrJGBCkdcrUdgj6aqymfd4JVNL3V3yjBq8OP8rNv3Gnj9bKL_FpPY6rJVgkp0X592Amss2YaUYL_m5BadPHyN2QQDRDh17_BiQhSasGK_Lbtl9H0MYu6LRItvw3L56uux45WwELwkDRRPkMTJrLWIpedDDHCoJdC9Ne2HqYq5VyrUlJhdlHcJnLkOllVNap1JHStEAtx1YykaZ2wMWqVaAlgm1I74zKyIdRhKT5jQU0o9cXAe_0opJSuJwml8xNFWH2KtBRRpSJC2hIutwOtsyLlgzFgmLStVmzvQGvfqibceVWQz-ElTniDM3mk4MJq0IAjERbNVhtzDT7BQcU36NOVwd1JwBZwJEtz3_Jhv0c9ptxLoSwfX-_457AKv0RJ0wgT6Epfe3qTtCPPNuG7B8fvPwctPIP9wvLK7wPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IHoR39bnCp6EtbtpNtkcrVTqoyJYobew2U1ppWyLbRH_vTP7KFbRg9dkAmFmd-YbZvINwLlPpCZMGtd4MXc5N9ZVnuVuXIs86yURekZ679x6FM0XftcJOgtwXb6FobbKwvfnPj3z1sVKtdBmddTvV58zsjSMb4gofIbp-CIsIxoQ1Nd126nPSgmYUWQFS5R2SbwsbWZNXvHUUHuXuKQOL8Z-C04_wef3HsovQelmA9YLNOlc5RfehAWbbsFKPl_yYxsu2u9Dp04I0Qys8_zeJxONnXy-rtNynnoYw5wGzRbZgZebRvu66RbDEdw48CWNkMfQrBSPhGB-F5Oo2FfdJOkGiY2YkglThqhcpLGIn5kIpJJWKpUIFUpJE9x2YSkdpnYfnFDWfDRNoCwRnhkeqiAUmDUnARdeaKMKeKVWdFwwh9MAi4EuW8ReNSpSkyJpCRVZgYvZkVFOm_GXMC9Vredsr9Gt_3XsrDSLxn-CCh1RaofTscasFVEgZoK1CuzlZprdgmHOrzCJq4CcM-BMgPi253fSfi_j3UawKxBdH_zvuqew2my3HvTD7eP9IazRDrXF-OoIliZvU3uM4GZiTrKP9xPNBfHD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Bistable+Switches+Govern+M+Phase+Entry&rft.jtitle=Current+biology&rft.au=Mochida%2C+Satoru&rft.au=Rata%2C+Scott&rft.au=Hino%2C+Hirotsugu&rft.au=Nagai%2C+Takeharu&rft.date=2016-12-19&rft.pub=Elsevier+Ltd&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=26&rft.issue=24&rft.spage=3361&rft.epage=3367&rft_id=info:doi/10.1016%2Fj.cub.2016.10.022&rft.externalDocID=S0960982216312076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon