Two Bistable Switches Govern M Phase Entry
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies h...
Saved in:
Published in | Current biology Vol. 26; no. 24; pp. 3361 - 3367 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
19.12.2016
Cell Press |
Subjects | |
Online Access | Get full text |
ISSN | 0960-9822 1879-0445 1879-0445 |
DOI | 10.1016/j.cub.2016.10.022 |
Cover
Loading…
Abstract | The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2–4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations—evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry.
[Display omitted]
•Cdk1 auto-activation loop is dispensable for switch-like mitotic entry•PP2A:B55 auto-regulation creates a bistable switch•Two bistable switches provide a robust solution for mitotic entry
Mochida et al. find, using a biochemical reconstitution and mathematical simulation, that the regulation of PP2A:B55 phosphatase can create a bistable switch for mitotic phosphorylation of Cdk1 substrates. This new mechanism, together with the Cdk1 auto-activation loop, provides a robust solution for irreversible and switch-like mitotic entry. |
---|---|
AbstractList | The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2–4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations—evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. [Display omitted] •Cdk1 auto-activation loop is dispensable for switch-like mitotic entry•PP2A:B55 auto-regulation creates a bistable switch•Two bistable switches provide a robust solution for mitotic entry Mochida et al. find, using a biochemical reconstitution and mathematical simulation, that the regulation of PP2A:B55 phosphatase can create a bistable switch for mitotic phosphorylation of Cdk1 substrates. This new mechanism, together with the Cdk1 auto-activation loop, provides a robust solution for irreversible and switch-like mitotic entry. The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry.The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [ 1 , 2 ]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [ 2 , 3 , 4 ]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations—evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. • Cdk1 auto-activation loop is dispensable for switch-like mitotic entry • PP2A:B55 auto-regulation creates a bistable switch • Two bistable switches provide a robust solution for mitotic entry Mochida et al. find, using a biochemical reconstitution and mathematical simulation, that the regulation of PP2A:B55 phosphatase can create a bistable switch for mitotic phosphorylation of Cdk1 substrates. This new mechanism, together with the Cdk1 auto-activation loop, provides a robust solution for irreversible and switch-like mitotic entry. |
Author | Nagai, Takeharu Hino, Hirotsugu Novák, Béla Mochida, Satoru Rata, Scott |
AuthorAffiliation | 6 The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK 1 Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan 4 Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan 2 Institute for Medical Embryology and Genetics, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan 3 International Research Center for Medical Science, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan |
AuthorAffiliation_xml | – name: 1 Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan – name: 6 The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan – name: 2 Institute for Medical Embryology and Genetics, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan – name: 3 International Research Center for Medical Science, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan – name: 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK – name: 4 Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan |
Author_xml | – sequence: 1 givenname: Satoru surname: Mochida fullname: Mochida, Satoru email: mochida@kumamoto-u.ac.jp organization: Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan – sequence: 2 givenname: Scott surname: Rata fullname: Rata, Scott organization: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK – sequence: 3 givenname: Hirotsugu surname: Hino fullname: Hino, Hirotsugu organization: Priority Organization for Innovation and Excellence, Kumamoto University, Kyoyoto-honjo 1, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan – sequence: 4 givenname: Takeharu surname: Nagai fullname: Nagai, Takeharu organization: The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan – sequence: 5 givenname: Béla surname: Novák fullname: Novák, Béla email: bela.novak@bioch.ox.ac.uk organization: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27889260$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFLxDAQhYMouqv-AC_Sowhdk9k2aRAEFV0FRUE9hzSdulm6jSbdFf-9KauiHjxlkpn3PjJvSNZb1yIhe4yOGGX8aDYyi3IEsYz3EQVYIwNWCJnSLMvXyYBKTlNZAGyRYQgzShkUkm-SLRBFIYHTATl8fHPJmQ2dLhtMHt5sZ6YYkolbom-T2-R-qgMmF23n33fIRq2bgLuf5zZ5urx4PL9Kb-4m1-enN6nJmehSNi4YSJlpzoHVkEnDZF1VdV6hBikqkCXNgYsShQDguZAChZQVl4UQlI7H2-Rk5fuyKOdYGYxw3agXb-favyunrfrdae1UPbulyln8L9BocPBp4N3rAkOn5jYYbBrdolsExYosG-eC8Z61_5P1DflaUBwQqwHjXQgea2VspzvrerRtFKOqj0LNVIxC9VH0TzGKqGR_lF_m_2mOVxqM-11a9CoYi63Byno0naqc_Uf9AZLynpw |
CitedBy_id | crossref_primary_10_7554_eLife_26233 crossref_primary_10_1016_j_cub_2019_02_061 crossref_primary_10_1371_journal_pcbi_1011151 crossref_primary_10_1091_mbc_E22_11_0527 crossref_primary_10_1098_rstb_2020_0121 crossref_primary_10_1016_j_ceb_2020_12_003 crossref_primary_10_1074_jbc_M117_778233 crossref_primary_10_1091_mbc_E18_10_0631 crossref_primary_10_1016_j_cub_2018_10_011 crossref_primary_10_1021_acssynbio_3c00631 crossref_primary_10_1098_rsfs_2021_0089 crossref_primary_10_1016_j_heliyon_2024_e38406 crossref_primary_10_1091_mbc_e17_06_0349 crossref_primary_10_1007_s00018_023_04727_6 crossref_primary_10_1016_j_devcel_2018_05_005 crossref_primary_10_1007_s00018_019_03086_5 crossref_primary_10_1038_s41598_019_40648_w crossref_primary_10_7554_eLife_24665 crossref_primary_10_1098_rsta_2017_0376 crossref_primary_10_1103_PhysRevResearch_6_033050 crossref_primary_10_1016_j_tibs_2023_04_004 crossref_primary_10_1016_j_cub_2016_11_007 crossref_primary_10_1002_anie_202318134 crossref_primary_10_3390_cells11233794 crossref_primary_10_1242_dev_193128 crossref_primary_10_1080_15384101_2017_1371885 crossref_primary_10_1016_j_coisb_2018_02_004 crossref_primary_10_7554_eLife_59989 crossref_primary_10_1038_s41388_021_02068_x crossref_primary_10_1083_jcb_201708105 crossref_primary_10_1016_j_biosystems_2021_104478 crossref_primary_10_1098_rsfs_2022_0024 crossref_primary_10_1038_s41467_021_22124_0 crossref_primary_10_1111_gtc_13159 crossref_primary_10_3389_fcell_2022_967909 crossref_primary_10_1063_5_0199311 crossref_primary_10_1126_science_abj5028 crossref_primary_10_3390_ijms20246228 crossref_primary_10_1002_ange_202318134 crossref_primary_10_1016_j_cub_2020_11_058 crossref_primary_10_12688_f1000research_123183_3 crossref_primary_10_12688_f1000research_123183_1 crossref_primary_10_12688_f1000research_123183_2 crossref_primary_10_1126_science_aav0780 crossref_primary_10_1016_j_isci_2024_111603 crossref_primary_10_3390_cells8080814 crossref_primary_10_1002_bies_201800016 crossref_primary_10_1016_j_mbs_2024_109291 crossref_primary_10_1111_gtc_12637 crossref_primary_10_1371_journal_pone_0194769 crossref_primary_10_15252_embj_2020104419 crossref_primary_10_1371_journal_pcbi_1007733 crossref_primary_10_1016_j_cub_2018_09_059 crossref_primary_10_1016_j_devcel_2018_12_024 crossref_primary_10_1016_j_celrep_2020_107901 crossref_primary_10_1371_journal_pcbi_1009008 crossref_primary_10_1371_journal_pcbi_1008231 crossref_primary_10_1002_1873_3468_13595 crossref_primary_10_2147_OTT_S284261 crossref_primary_10_7554_eLife_64592 crossref_primary_10_1098_rsfs_2021_0075 crossref_primary_10_1002_1873_3468_13635 crossref_primary_10_1016_j_tcb_2020_04_002 crossref_primary_10_1111_jipb_13100 |
Cites_doi | 10.1242/jcs.106.4.1153 10.1111/febs.12685 10.1242/jcs.179754 10.1091/mbc.e09-07-0643 10.1128/MCB.06525-11 10.1073/pnas.0235349100 10.1016/S0092-8674(00)80994-0 10.1128/MCB.00753-10 10.1016/0092-8674(90)90504-8 10.1126/science.1195689 10.1126/science.1197048 10.1016/j.molcel.2013.09.005 10.1038/ncb2737 10.7554/eLife.01695 10.1091/mbc.e07-11-1099 10.1038/nature09543 10.1016/j.febslet.2015.02.007 10.1371/journal.pgen.1004004 10.1038/emboj.2009.228 10.1038/emboj.2009.238 10.15252/embr.201540876 10.1091/mbc.e06-12-1092 10.1038/ncb954 10.1242/jcs.178855 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. 2016 The Authors. Published by Elsevier Ltd. 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. – notice: 2016 The Authors. Published by Elsevier Ltd. 2016 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cub.2016.10.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 3367 |
ExternalDocumentID | PMC5196020 27889260 10_1016_j_cub_2016_10_022 S0960982216312076 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/MM00354X/1 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI 0SF CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c517t-13812994a6621f249c19fddf5dea297d29b05267be772265797e799d698770033 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 13:35:10 EDT 2025 Fri Jul 11 13:58:41 EDT 2025 Wed Feb 19 02:43:40 EST 2025 Tue Jul 01 01:57:01 EDT 2025 Thu Apr 24 23:44:03 EDT 2025 Fri Feb 23 02:28:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Greatwall kinase robustness PP2A threshold mitosis cyclin-dependent kinase hysteresis |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 Elsevier Ltd. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-13812994a6621f249c19fddf5dea297d29b05267be772265797e799d698770033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Present address: Department of Biochemistry, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982216312076 |
PMID | 27889260 |
PQID | 1844357163 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5196020 proquest_miscellaneous_1844357163 pubmed_primary_27889260 crossref_citationtrail_10_1016_j_cub_2016_10_022 crossref_primary_10_1016_j_cub_2016_10_022 elsevier_sciencedirect_doi_10_1016_j_cub_2016_10_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-19 |
PublicationDateYYYYMMDD | 2016-12-19 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Cell Press |
Publisher_xml | – name: Elsevier Ltd – name: Cell Press |
References | Rogers, Fey, McCloy, Parker, Mitchell, Payne, Daly, James, Caldon, Watkins (bib24) 2016; 129 Williams, Filter, Blake-Hodek, Wadzinski, Fuda, Shalloway, Goldberg (bib11) 2014; 3 Guadagno, Newport (bib22) 1996; 84 Ma, Vigneron, Robert, Strub, Cianferani, Castro, Lorca (bib23) 2016; 129 Novak, Tyson (bib2) 1993; 106 Castilho, Williams, Mochida, Zhao, Goldberg (bib9) 2009; 20 Fung, Ma, Poon (bib21) 2007; 18 Vinod, Novak (bib15) 2015; 589 Zhao, Haccard, Wang, Yu, Kuang, Jessus, Goldberg (bib18) 2008; 19 Heim, Konietzny, Mayer (bib16) 2015; 16 Yang, Ferrell (bib8) 2013; 15 Sha, Moore, Chen, Lassaletta, Yi, Tyson, Sible (bib3) 2003; 100 Blake-Hodek, Williams, Zhao, Castilho, Chen, Mao, Yamamoto, Goldberg (bib5) 2012; 32 Mochida (bib13) 2014; 281 Mochida, Maslen, Skehel, Hunt (bib7) 2010; 330 Hégarat, Vesely, Vinod, Ocasio, Peter, Gannon, Oliver, Novák, Hochegger (bib14) 2014; 10 Cundell, Bastos, Zhang, Holder, Gruneberg, Novak, Barr (bib17) 2013; 52 Pomerening, Sontag, Ferrell (bib4) 2003; 5 Mochida, Ikeo, Gannon, Hunt (bib10) 2009; 28 Solomon, Glotzer, Lee, Philippe, Kirschner (bib1) 1990; 63 Coudreuse, Nurse (bib20) 2010; 468 Gharbi-Ayachi, Labbé, Burgess, Vigneron, Strub, Brioudes, Van-Dorsselaer, Castro, Lorca (bib6) 2010; 330 Vigneron, Brioudes, Burgess, Labbé, Lorca, Castro (bib12) 2009; 28 Vigneron, Gharbi-Ayachi, Raymond, Burgess, Labbé, Labesse, Monsarrat, Lorca, Castro (bib19) 2011; 31 Coudreuse (10.1016/j.cub.2016.10.022_bib20) 2010; 468 Rogers (10.1016/j.cub.2016.10.022_bib24) 2016; 129 Blake-Hodek (10.1016/j.cub.2016.10.022_bib5) 2012; 32 Mochida (10.1016/j.cub.2016.10.022_bib13) 2014; 281 Guadagno (10.1016/j.cub.2016.10.022_bib22) 1996; 84 Gharbi-Ayachi (10.1016/j.cub.2016.10.022_bib6) 2010; 330 Mochida (10.1016/j.cub.2016.10.022_bib7) 2010; 330 Pomerening (10.1016/j.cub.2016.10.022_bib4) 2003; 5 Cundell (10.1016/j.cub.2016.10.022_bib17) 2013; 52 Fung (10.1016/j.cub.2016.10.022_bib21) 2007; 18 Vinod (10.1016/j.cub.2016.10.022_bib15) 2015; 589 Zhao (10.1016/j.cub.2016.10.022_bib18) 2008; 19 Novak (10.1016/j.cub.2016.10.022_bib2) 1993; 106 Solomon (10.1016/j.cub.2016.10.022_bib1) 1990; 63 Mochida (10.1016/j.cub.2016.10.022_bib10) 2009; 28 Vigneron (10.1016/j.cub.2016.10.022_bib12) 2009; 28 Sha (10.1016/j.cub.2016.10.022_bib3) 2003; 100 Castilho (10.1016/j.cub.2016.10.022_bib9) 2009; 20 Yang (10.1016/j.cub.2016.10.022_bib8) 2013; 15 Williams (10.1016/j.cub.2016.10.022_bib11) 2014; 3 Heim (10.1016/j.cub.2016.10.022_bib16) 2015; 16 Hégarat (10.1016/j.cub.2016.10.022_bib14) 2014; 10 Vigneron (10.1016/j.cub.2016.10.022_bib19) 2011; 31 Ma (10.1016/j.cub.2016.10.022_bib23) 2016; 129 25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71 17344473 - Mol Biol Cell. 2007 May;18(5):1861-73 24120663 - Mol Cell. 2013 Nov 7;52(3):393-405 19696736 - EMBO J. 2009 Sep 16;28(18):2777-85 26906418 - J Cell Sci. 2016 Apr 1;129(7):1329-39 19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89 12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51 21164013 - Science. 2010 Dec 17;330(6011):1670-3 24354984 - FEBS J. 2014 Feb;281(4):1159-69 22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53 21444715 - Mol Cell Biol. 2011 Jun;31(11):2262-75 27997836 - Curr Biol. 2016 Dec 19;26(24):R1272-R1274 12509509 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):975-80 8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68 24618897 - Elife. 2014 Mar 11;3:e01695 18199678 - Mol Biol Cell. 2008 Apr;19(4):1317-27 26872783 - J Cell Sci. 2016 Apr 1;129(7):1340-54 26396231 - EMBO Rep. 2015 Nov;16(11):1501-10 21179163 - Nature. 2010 Dec 23;468(7327):1074-9 21164014 - Science. 2010 Dec 17;330(6011):1673-7 2147872 - Cell. 1990 Nov 30;63(5):1013-24 8548828 - Cell. 1996 Jan 12;84(1):73-82 23624406 - Nat Cell Biol. 2013 May;15(5):519-25 24391510 - PLoS Genet. 2014 Jan;10(1):e1004004 19680222 - EMBO J. 2009 Sep 16;28(18):2786-93 |
References_xml | – volume: 63 start-page: 1013 year: 1990 end-page: 1024 ident: bib1 article-title: Cyclin activation of p34cdc2 publication-title: Cell – volume: 18 start-page: 1861 year: 2007 end-page: 1873 ident: bib21 article-title: Specialized roles of the two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor publication-title: Mol. Biol. Cell – volume: 84 start-page: 73 year: 1996 end-page: 82 ident: bib22 article-title: Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity publication-title: Cell – volume: 100 start-page: 975 year: 2003 end-page: 980 ident: bib3 article-title: Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 2786 year: 2009 end-page: 2793 ident: bib12 article-title: Greatwall maintains mitosis through regulation of PP2A publication-title: EMBO J. – volume: 281 start-page: 1159 year: 2014 end-page: 1169 ident: bib13 article-title: Regulation of α-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation publication-title: FEBS J. – volume: 5 start-page: 346 year: 2003 end-page: 351 ident: bib4 article-title: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 publication-title: Nat. Cell Biol. – volume: 129 start-page: 1340 year: 2016 end-page: 1354 ident: bib24 article-title: PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells publication-title: J. Cell Sci. – volume: 106 start-page: 1153 year: 1993 end-page: 1168 ident: bib2 article-title: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos publication-title: J. Cell Sci. – volume: 20 start-page: 4777 year: 2009 end-page: 4789 ident: bib9 article-title: The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites publication-title: Mol. Biol. Cell – volume: 3 start-page: e01695 year: 2014 ident: bib11 article-title: Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers publication-title: eLife – volume: 129 start-page: 1329 year: 2016 end-page: 1339 ident: bib23 article-title: Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1 publication-title: J. Cell Sci. – volume: 31 start-page: 2262 year: 2011 end-page: 2275 ident: bib19 article-title: Characterization of the mechanisms controlling Greatwall activity publication-title: Mol. Cell. Biol. – volume: 52 start-page: 393 year: 2013 end-page: 405 ident: bib17 article-title: The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation publication-title: Mol. Cell – volume: 19 start-page: 1317 year: 2008 end-page: 1327 ident: bib18 article-title: Roles of Greatwall kinase in the regulation of cdc25 phosphatase publication-title: Mol. Biol. Cell – volume: 15 start-page: 519 year: 2013 end-page: 525 ident: bib8 article-title: The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch publication-title: Nat. Cell Biol. – volume: 32 start-page: 1337 year: 2012 end-page: 1353 ident: bib5 article-title: Determinants for activation of the atypical AGC kinase Greatwall during M phase entry publication-title: Mol. Cell. Biol. – volume: 330 start-page: 1670 year: 2010 end-page: 1673 ident: bib7 article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis publication-title: Science – volume: 589 start-page: 667 year: 2015 end-page: 671 ident: bib15 article-title: Model scenarios for switch-like mitotic transitions publication-title: FEBS Lett. – volume: 330 start-page: 1673 year: 2010 end-page: 1677 ident: bib6 article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A publication-title: Science – volume: 468 start-page: 1074 year: 2010 end-page: 1079 ident: bib20 article-title: Driving the cell cycle with a minimal CDK control network publication-title: Nature – volume: 28 start-page: 2777 year: 2009 end-page: 2785 ident: bib10 article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts publication-title: EMBO J. – volume: 16 start-page: 1501 year: 2015 end-page: 1510 ident: bib16 article-title: Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit publication-title: EMBO Rep. – volume: 10 start-page: e1004004 year: 2014 ident: bib14 article-title: PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit publication-title: PLoS Genet. – volume: 106 start-page: 1153 year: 1993 ident: 10.1016/j.cub.2016.10.022_bib2 article-title: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos publication-title: J. Cell Sci. doi: 10.1242/jcs.106.4.1153 – volume: 281 start-page: 1159 year: 2014 ident: 10.1016/j.cub.2016.10.022_bib13 article-title: Regulation of α-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation publication-title: FEBS J. doi: 10.1111/febs.12685 – volume: 129 start-page: 1340 year: 2016 ident: 10.1016/j.cub.2016.10.022_bib24 article-title: PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells publication-title: J. Cell Sci. doi: 10.1242/jcs.179754 – volume: 20 start-page: 4777 year: 2009 ident: 10.1016/j.cub.2016.10.022_bib9 article-title: The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-07-0643 – volume: 32 start-page: 1337 year: 2012 ident: 10.1016/j.cub.2016.10.022_bib5 article-title: Determinants for activation of the atypical AGC kinase Greatwall during M phase entry publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06525-11 – volume: 100 start-page: 975 year: 2003 ident: 10.1016/j.cub.2016.10.022_bib3 article-title: Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0235349100 – volume: 84 start-page: 73 year: 1996 ident: 10.1016/j.cub.2016.10.022_bib22 article-title: Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity publication-title: Cell doi: 10.1016/S0092-8674(00)80994-0 – volume: 31 start-page: 2262 year: 2011 ident: 10.1016/j.cub.2016.10.022_bib19 article-title: Characterization of the mechanisms controlling Greatwall activity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00753-10 – volume: 63 start-page: 1013 year: 1990 ident: 10.1016/j.cub.2016.10.022_bib1 article-title: Cyclin activation of p34cdc2 publication-title: Cell doi: 10.1016/0092-8674(90)90504-8 – volume: 330 start-page: 1670 year: 2010 ident: 10.1016/j.cub.2016.10.022_bib7 article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis publication-title: Science doi: 10.1126/science.1195689 – volume: 330 start-page: 1673 year: 2010 ident: 10.1016/j.cub.2016.10.022_bib6 article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A publication-title: Science doi: 10.1126/science.1197048 – volume: 52 start-page: 393 year: 2013 ident: 10.1016/j.cub.2016.10.022_bib17 article-title: The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.09.005 – volume: 15 start-page: 519 year: 2013 ident: 10.1016/j.cub.2016.10.022_bib8 article-title: The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch publication-title: Nat. Cell Biol. doi: 10.1038/ncb2737 – volume: 3 start-page: e01695 year: 2014 ident: 10.1016/j.cub.2016.10.022_bib11 article-title: Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers publication-title: eLife doi: 10.7554/eLife.01695 – volume: 19 start-page: 1317 year: 2008 ident: 10.1016/j.cub.2016.10.022_bib18 article-title: Roles of Greatwall kinase in the regulation of cdc25 phosphatase publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-11-1099 – volume: 468 start-page: 1074 year: 2010 ident: 10.1016/j.cub.2016.10.022_bib20 article-title: Driving the cell cycle with a minimal CDK control network publication-title: Nature doi: 10.1038/nature09543 – volume: 589 start-page: 667 year: 2015 ident: 10.1016/j.cub.2016.10.022_bib15 article-title: Model scenarios for switch-like mitotic transitions publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.02.007 – volume: 10 start-page: e1004004 year: 2014 ident: 10.1016/j.cub.2016.10.022_bib14 article-title: PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004004 – volume: 28 start-page: 2786 year: 2009 ident: 10.1016/j.cub.2016.10.022_bib12 article-title: Greatwall maintains mitosis through regulation of PP2A publication-title: EMBO J. doi: 10.1038/emboj.2009.228 – volume: 28 start-page: 2777 year: 2009 ident: 10.1016/j.cub.2016.10.022_bib10 article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts publication-title: EMBO J. doi: 10.1038/emboj.2009.238 – volume: 16 start-page: 1501 year: 2015 ident: 10.1016/j.cub.2016.10.022_bib16 article-title: Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit publication-title: EMBO Rep. doi: 10.15252/embr.201540876 – volume: 18 start-page: 1861 year: 2007 ident: 10.1016/j.cub.2016.10.022_bib21 article-title: Specialized roles of the two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-12-1092 – volume: 5 start-page: 346 year: 2003 ident: 10.1016/j.cub.2016.10.022_bib4 article-title: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 publication-title: Nat. Cell Biol. doi: 10.1038/ncb954 – volume: 129 start-page: 1329 year: 2016 ident: 10.1016/j.cub.2016.10.022_bib23 article-title: Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1 publication-title: J. Cell Sci. doi: 10.1242/jcs.178855 – reference: 2147872 - Cell. 1990 Nov 30;63(5):1013-24 – reference: 24618897 - Elife. 2014 Mar 11;3:e01695 – reference: 21179163 - Nature. 2010 Dec 23;468(7327):1074-9 – reference: 18199678 - Mol Biol Cell. 2008 Apr;19(4):1317-27 – reference: 19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89 – reference: 25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71 – reference: 21164013 - Science. 2010 Dec 17;330(6011):1670-3 – reference: 21444715 - Mol Cell Biol. 2011 Jun;31(11):2262-75 – reference: 24391510 - PLoS Genet. 2014 Jan;10(1):e1004004 – reference: 19696736 - EMBO J. 2009 Sep 16;28(18):2777-85 – reference: 8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68 – reference: 12509509 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):975-80 – reference: 8548828 - Cell. 1996 Jan 12;84(1):73-82 – reference: 24354984 - FEBS J. 2014 Feb;281(4):1159-69 – reference: 12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51 – reference: 21164014 - Science. 2010 Dec 17;330(6011):1673-7 – reference: 17344473 - Mol Biol Cell. 2007 May;18(5):1861-73 – reference: 26396231 - EMBO Rep. 2015 Nov;16(11):1501-10 – reference: 24120663 - Mol Cell. 2013 Nov 7;52(3):393-405 – reference: 23624406 - Nat Cell Biol. 2013 May;15(5):519-25 – reference: 27997836 - Curr Biol. 2016 Dec 19;26(24):R1272-R1274 – reference: 26872783 - J Cell Sci. 2016 Apr 1;129(7):1340-54 – reference: 19680222 - EMBO J. 2009 Sep 16;28(18):2786-93 – reference: 22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53 – reference: 26906418 - J Cell Sci. 2016 Apr 1;129(7):1329-39 |
SSID | ssj0012896 |
Score | 2.4789314 |
Snippet | The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3361 |
SubjectTerms | Animals CDC2 Protein Kinase - genetics CDC2 Protein Kinase - metabolism Cell Cycle Checkpoints - physiology Cell Division - physiology cyclin-dependent kinase Gene Expression Regulation, Enzymologic Greatwall kinase hysteresis mitosis Models, Biological Peptides - metabolism Phosphorylation PP2A Protein Phosphatase 2 - genetics Protein Phosphatase 2 - metabolism robustness Signal Transduction - physiology threshold |
Title | Two Bistable Switches Govern M Phase Entry |
URI | https://dx.doi.org/10.1016/j.cub.2016.10.022 https://www.ncbi.nlm.nih.gov/pubmed/27889260 https://www.proquest.com/docview/1844357163 https://pubmed.ncbi.nlm.nih.gov/PMC5196020 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIngR39ZHWcGTEJtsN7vZo4qlKIr4wN6WbLKllZIWaxH_vTN5FKvYg8dsZmGZSWa-YWa_ATgJiNSEK-tZPxGeENZ52nfCS1qx7_w0Rs9I951v72TnWVx3w24NLqu7MNRWWfr-wqfn3rpcaZbabI4Hg-ZjTpaG8Q0RRcAxHUc_TEwtdImvezGrJGBCkdcrUdgj6aqymfd4JVNL3V3yjBq8OP8rNv3Gnj9bKL_FpPY6rJVgkp0X592Amss2YaUYL_m5BadPHyN2QQDRDh17_BiQhSasGK_Lbtl9H0MYu6LRItvw3L56uux45WwELwkDRRPkMTJrLWIpedDDHCoJdC9Ne2HqYq5VyrUlJhdlHcJnLkOllVNap1JHStEAtx1YykaZ2wMWqVaAlgm1I74zKyIdRhKT5jQU0o9cXAe_0opJSuJwml8xNFWH2KtBRRpSJC2hIutwOtsyLlgzFgmLStVmzvQGvfqibceVWQz-ElTniDM3mk4MJq0IAjERbNVhtzDT7BQcU36NOVwd1JwBZwJEtz3_Jhv0c9ptxLoSwfX-_457AKv0RJ0wgT6Epfe3qTtCPPNuG7B8fvPwctPIP9wvLK7wPw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IHoR39bnCp6EtbtpNtkcrVTqoyJYobew2U1ppWyLbRH_vTP7KFbRg9dkAmFmd-YbZvINwLlPpCZMGtd4MXc5N9ZVnuVuXIs86yURekZ679x6FM0XftcJOgtwXb6FobbKwvfnPj3z1sVKtdBmddTvV58zsjSMb4gofIbp-CIsIxoQ1Nd126nPSgmYUWQFS5R2SbwsbWZNXvHUUHuXuKQOL8Z-C04_wef3HsovQelmA9YLNOlc5RfehAWbbsFKPl_yYxsu2u9Dp04I0Qys8_zeJxONnXy-rtNynnoYw5wGzRbZgZebRvu66RbDEdw48CWNkMfQrBSPhGB-F5Oo2FfdJOkGiY2YkglThqhcpLGIn5kIpJJWKpUIFUpJE9x2YSkdpnYfnFDWfDRNoCwRnhkeqiAUmDUnARdeaKMKeKVWdFwwh9MAi4EuW8ReNSpSkyJpCRVZgYvZkVFOm_GXMC9Vredsr9Gt_3XsrDSLxn-CCh1RaofTscasFVEgZoK1CuzlZprdgmHOrzCJq4CcM-BMgPi253fSfi_j3UawKxBdH_zvuqew2my3HvTD7eP9IazRDrXF-OoIliZvU3uM4GZiTrKP9xPNBfHD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Bistable+Switches+Govern+M+Phase+Entry&rft.jtitle=Current+biology&rft.au=Mochida%2C+Satoru&rft.au=Rata%2C+Scott&rft.au=Hino%2C+Hirotsugu&rft.au=Nagai%2C+Takeharu&rft.date=2016-12-19&rft.pub=Elsevier+Ltd&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=26&rft.issue=24&rft.spage=3361&rft.epage=3367&rft_id=info:doi/10.1016%2Fj.cub.2016.10.022&rft.externalDocID=S0960982216312076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |