Deep learning to extract the meteorological by‐catch of wildlife cameras

Microclimate—proximal climatic variation at scales of metres and minutes—can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 1; pp. e17078 - n/a
Main Authors Alison, Jamie, Payne, Stephanie, Alexander, Jake M., Bjorkman, Anne D., Clark, Vincent Ralph, Gwate, Onalenna, Huntsaar, Maria, Iseli, Evelin, Lenoir, Jonathan, Mann, Hjalte Mads Rosenstand, Steenhuisen, Sandy‐Lynn, Høye, Toke Thomas
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microclimate—proximal climatic variation at scales of metres and minutes—can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro‐scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti‐Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two‐class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open‐top chambers shortens early snow events in autumn, and (2) image‐derived sunshine marginally outperforms sensor‐derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras. Cameras and artificial intelligence are revolutionizing data collection in ecology. However, wildlife cameras capture more than just wildlife; they also tell us about the environmental challenges faced by animals and plants. We trained a deep learning model to rapidly detect sunshine, snow and hail in 2 million images. The data help us tackle questions about pollination ecology and climate warming.
AbstractList Microclimate-proximal climatic variation at scales of metres and minutes-can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro-scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two-class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open-top chambers shortens early snow events in autumn, and (2) image-derived sunshine marginally outperforms sensor-derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras.
Microclimate—proximal climatic variation at scales of metres and minutes—can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro‐scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti‐Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two‐class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open‐top chambers shortens early snow events in autumn, and (2) image‐derived sunshine marginally outperforms sensor‐derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras. Cameras and artificial intelligence are revolutionizing data collection in ecology. However, wildlife cameras capture more than just wildlife; they also tell us about the environmental challenges faced by animals and plants. We trained a deep learning model to rapidly detect sunshine, snow and hail in 2 million images. The data help us tackle questions about pollination ecology and climate warming.
Microclimate—proximal climatic variation at scales of metres and minutes—can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro-scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two-class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snow falls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open-top chambers shortens early snow events in autumn, and (2) imagederived sunshine marginally outperforms sensor-derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras.
Microclimate-proximal climatic variation at scales of metres and minutes-can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro-scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two-class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open-top chambers shortens early snow events in autumn, and (2) image-derived sunshine marginally outperforms sensor-derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras.Microclimate-proximal climatic variation at scales of metres and minutes-can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro-scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two-class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open-top chambers shortens early snow events in autumn, and (2) image-derived sunshine marginally outperforms sensor-derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras.
Author Iseli, Evelin
Mann, Hjalte Mads Rosenstand
Payne, Stephanie
Steenhuisen, Sandy‐Lynn
Alexander, Jake M.
Alison, Jamie
Clark, Vincent Ralph
Lenoir, Jonathan
Huntsaar, Maria
Høye, Toke Thomas
Bjorkman, Anne D.
Gwate, Onalenna
Author_xml – sequence: 1
  givenname: Jamie
  orcidid: 0000-0002-6787-6192
  surname: Alison
  fullname: Alison, Jamie
  email: jalison@ecos.au.dk
  organization: Aarhus University
– sequence: 2
  givenname: Stephanie
  orcidid: 0000-0002-1493-1506
  surname: Payne
  fullname: Payne, Stephanie
  organization: University of the Free State
– sequence: 3
  givenname: Jake M.
  orcidid: 0000-0003-2226-7913
  surname: Alexander
  fullname: Alexander, Jake M.
  organization: ETH Zurich
– sequence: 4
  givenname: Anne D.
  orcidid: 0000-0003-2174-7800
  surname: Bjorkman
  fullname: Bjorkman, Anne D.
  organization: Gothenburg Global Biodiversity Centre
– sequence: 5
  givenname: Vincent Ralph
  orcidid: 0000-0001-5058-0742
  surname: Clark
  fullname: Clark, Vincent Ralph
  organization: University of the Free State
– sequence: 6
  givenname: Onalenna
  orcidid: 0000-0003-0237-4316
  surname: Gwate
  fullname: Gwate, Onalenna
  organization: University of the Free State
– sequence: 7
  givenname: Maria
  surname: Huntsaar
  fullname: Huntsaar, Maria
  organization: The Arctic University of Norway (UiT)
– sequence: 8
  givenname: Evelin
  orcidid: 0000-0002-1586-8203
  surname: Iseli
  fullname: Iseli, Evelin
  organization: ETH Zurich
– sequence: 9
  givenname: Jonathan
  orcidid: 0000-0003-0638-9582
  surname: Lenoir
  fullname: Lenoir, Jonathan
  organization: Université de Picardie Jules Verne
– sequence: 10
  givenname: Hjalte Mads Rosenstand
  orcidid: 0000-0002-4768-4767
  surname: Mann
  fullname: Mann, Hjalte Mads Rosenstand
  organization: Aarhus University
– sequence: 11
  givenname: Sandy‐Lynn
  orcidid: 0000-0002-6128-0654
  surname: Steenhuisen
  fullname: Steenhuisen, Sandy‐Lynn
  organization: University of the Free State
– sequence: 12
  givenname: Toke Thomas
  orcidid: 0000-0001-5387-3284
  surname: Høye
  fullname: Høye, Toke Thomas
  organization: Aarhus University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38273582$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04506642$$DView record in HAL
https://gup.ub.gu.se/publication/335227$$DView record from Swedish Publication Index
BookMark eNqF0k1u1DAUAGALFdF2YMEFIBIbWKT1v5NlmUILGokNrC3Hecm4SuLBTiiz6xE4IyfBIaWISoA3tp6-Z-n9HKODwQ-A0FOCT0g6p62tTojCqniAjgiTIqe8kAfzW_CcYMIO0XGMVxhjRrF8hA5ZQRUTBT1C788BdlkHJgxuaLPRZ_B1DMaO2biFrIcRfPCdb501XVbtv998s2a028w32bXr6s41kFnTQzDxMXrYmC7Ck9t7hT69ffNxfZlvPly8W59tciuIKnKQBkraCFWIxjS1AdbgusbUlkpxBQwTbnBdyprXrOKyqrkkwjZGCFbUqsFshfLl33gNu6nSu-B6E_baG6fbaadTqJ10BM2YoKnOFXq1-K3p_sCXZxs9xzAXWEpOv5Bkny_WBhdHN-jBB6NJapzSjJclTeLlInbBf54gjrp30ULXmQH8FDXDHDMhccn-S2lJSsWJYnNNL-7RKz-FIbVxVgWRBZU8qWe3aqp6qO-K-TXO36Xa4GMM0NwRgvW8Kjqtiv65Ksme3rPWjWZ0fkjzd92_MtLkYf_3r_XF-vWS8QOReMv6
CitedBy_id crossref_primary_10_1016_j_cois_2025_101367
crossref_primary_10_1098_rstb_2023_0101
crossref_primary_10_1111_afe_12646
Cites_doi 10.1111/gcb.12028
10.1038/s41467‐022‐27980‐y
10.1139/as‐2020‐0056
10.1017/9781009157896.013
10.1016/j.ijforecast.2015.12.011
10.3390/ijgi8120549
10.1038/s41467‐022‐35194‐5
10.1080/04353676.2020.1856625
10.1111/2041‐210X.13627
10.1111/jzo.12849
10.1111/gcb.16426
10.1029/2020EA001604
10.3389/fpls.2022.805738
10.1002/rse2.275
10.1111/j.1751‐8369.2010.00153.x
10.1007/978-3-030-01270-0_28
10.3390/rs13112045
10.1371/journal.pone.0075715
10.1111/2041‐210X.13769
10.1111/1365‐2664.12432
10.1111/j.1365‐2311.1993.tb01075.x
10.1038/s41558‐023‐01650‐3
10.1111/gcb.14949
10.1109/WACV45572.2020.9093570
10.1029/2021WR030852
10.1111/ele.14123
10.1109/CVPR.2014.475
10.1007/s11263‐015‐0816‐y
10.1109/TPAMI.2016.2640295
10.1007/1-4020-3508-X_39
10.3390/atmos12070846
10.1126/science.243.4887.57
10.1038/s41559‐020‐1198‐2
10.1111/gcb.15123
10.1002/rse2.136
10.1016/j.agrformet.2014.08.007
10.1111/2041‐210X.13335
10.1111/bij.12534
10.1016/j.agrformet.2018.12.018
10.1126/science.aai9214
10.1111/gcb.13051
10.1002/sta4.454
10.1007/s11258‐011‐9941‐z
10.1111/gcb.12257
10.1111/geb.12974
10.1139/as-2022-0030
10.1073/pnas.1719367115
10.1111/j.1365‐2486.1997.gcb136.x
10.1111/j.1365‐2486.2004.00815.x
10.1139/as-2020-0058
10.2307/1551760
10.1145/1653771.1653789
10.1002/fee.1222
10.1088/1748‐9326/11/11/115006
10.1098/rsbl.2022.0187
10.1109/IJCNN.2013.6706740
10.1080/17550874.2016.1210262
10.1038/s41559‐020‐1185‐7
10.1073/PNAS.2002545117
10.1002/rse2.207
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
3HK
1XC
ADTPV
AOWAS
F1U
DOI 10.1111/gcb.17078
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NORA - Norwegian Open Research Archives
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

CrossRef


AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
EISSN 1365-2486
EndPage n/a
ExternalDocumentID oai_gup_ub_gu_se_335227
oai_HAL_hal_04506642v1
10037_34992
38273582
10_1111_gcb_17078
GCB17078
Genre methodAndProtocol
Journal Article
GeographicLocations Norway
South Africa
GeographicLocations_xml – name: South Africa
– name: Norway
GrantInformation_xml – fundername: Innovationsfonden
  funderid: 0156‐00022B
– fundername: Department of Science and Innovation, South Africa
  funderid: DSI/CON 0000/2021
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 20BD21_193809
– fundername: Department of Science and Innovation, South Africa
  grantid: DSI/CON 0000/2021
– fundername: Innovationsfonden
  grantid: 0156-00022B
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 20BD21_193809
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
3HK
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
WUP
1XC
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c5178-e6ae92f5785fafdae3f0dd02c97747e3014a0d96d4d3b46bd4615cfa5538d7f03
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 06:53:14 EDT 2025
Fri May 09 12:24:52 EDT 2025
Thu Oct 31 04:22:17 EDT 2024
Fri Jul 11 18:28:17 EDT 2025
Fri Jul 11 03:10:41 EDT 2025
Thu Aug 28 04:08:56 EDT 2025
Mon Jul 21 05:57:00 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Tue Aug 05 12:05:12 EDT 2025
Wed Aug 20 07:25:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords snow melt
micrometeorology
automated monitoring
time-lapse photography
Trifolium pratense
alpine ecology
proximal sensing
bees
Micrometeorology
Alpine ecology
Snow melt
Time-lapse photography
Proximal sensing
Bees
Automated monitoring
Language English
License Attribution-NonCommercial
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5178-e6ae92f5785fafdae3f0dd02c97747e3014a0d96d4d3b46bd4615cfa5538d7f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Global Change Biology
ORCID 0000-0003-2226-7913
0000-0002-6787-6192
0000-0002-4768-4767
0000-0003-0237-4316
0000-0003-0638-9582
0000-0003-2174-7800
0000-0002-6128-0654
0000-0002-1586-8203
0000-0001-5387-3284
0000-0002-1493-1506
0000-0001-5058-0742
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17078
PMID 38273582
PQID 2918168264
PQPubID 30327
PageCount 13
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_335227
hal_primary_oai_HAL_hal_04506642v1
cristin_nora_10037_34992
proquest_miscellaneous_3040356093
proquest_miscellaneous_2919741730
proquest_journals_2918168264
pubmed_primary_38273582
crossref_primary_10_1111_gcb_17078
crossref_citationtrail_10_1111_gcb_17078
wiley_primary_10_1111_gcb_17078_GCB17078
PublicationCentury 2000
PublicationDate January 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2010; 11
2014; 198–199
2023; 9
2016; 32
2022; 25
2020; 11
2013; 8
1997; 3
2017; 355
2022; 28
2013; 19
2020; 6
2020; 4
1996; 28
2017; 39
2021; 313
2010; 29
2021; 118
2019; 28
2019; 8
2021; 8
2021; 7
2011; 212
2023; 13
2021; 103
2015; 52
2009
2019; 268
2005
2016; 14
2016; 11
2004; 10
2021; 13
1993; 18
2021; 12
2015; 115
2023
2020
2022; 8
2018; 115
2015; 21
1989; 243
2022; 13
2018
2020; 26
2022; 58
2017
2015
2014
2013
2022; 11
2022; 1–13
2016; 9
2022; 18
1994; 7
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
Krogh A. (e_1_2_8_33_1) 1994; 7
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
R Core Team (e_1_2_8_51_1) 2023
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Cawley G. C. (e_1_2_8_17_1) 2010; 11
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  issue: 11
  year: 2021
  article-title: Semi‐automatic fractional snow cover monitoring from near‐surface remote sensing in grassland
  publication-title: Remote Sensing
– year: 2009
– volume: 268
  start-page: 40
  year: 2019
  end-page: 47
  article-title: Climate at ecologically relevant scales: A new temperature and soil moisture logger for long‐term microclimate measurement
  publication-title: Agricultural and Forest Meteorology
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  article-title: On over‐fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: Journal of Machine Learning Research
– volume: 4
  start-page: 927
  issue: 7
  year: 2020
  end-page: 933
  article-title: Temperature‐related biodiversity change across temperate marine and terrestrial systems
  publication-title: Nature Ecology & Evolution
– volume: 8
  issue: 5
  year: 2021
  article-title: Classification of weather phenomenon from images by using deep convolutional neural network
  publication-title: Earth and Space Science
– volume: 1–13
  start-page: 765
  year: 2022
  end-page: 777
  article-title: Automatic flower detection and phenology monitoring using time‐lapse cameras and deep learning
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 355
  issue: 6332
  year: 2017
  article-title: Biodiversity redistribution under climate change: Impacts on ecosystems and human well‐being
  publication-title: Science
– year: 2018
– start-page: 1513
  year: 2023
  end-page: 1766
– volume: 7
  start-page: 231
  year: 1994
  end-page: 238
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
– volume: 12
  start-page: 1397
  issue: 8
  year: 2021
  end-page: 1410
  article-title: On the measurement of microclimate
  publication-title: Methods in Ecology and Evolution
– volume: 9
  start-page: 237
  issue: 3
  year: 2016
  end-page: 251
  article-title: Shedding light on shade: Ecological perspectives of understorey plant life
  publication-title: Plant Ecology and Diversity
– volume: 313
  start-page: 202
  issue: 3
  year: 2021
  end-page: 207
  article-title: How reliable are motion‐triggered camera traps for detecting small mammals and birds in ecological studies?
  publication-title: Journal of Zoology
– volume: 3
  start-page: 20
  issue: Suppl. 1
  year: 1997
  end-page: 32
  article-title: Open‐top designs for manipulating field temperature in high‐latitude ecosystems
  publication-title: Global Change Biology
– volume: 11
  issue: 1
  year: 2022
  article-title: K‐fold cross‐validation for complex sample surveys
  publication-title: Stat
– volume: 26
  start-page: 1857
  issue: 3
  year: 2020
  end-page: 1872
  article-title: Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland
  publication-title: Global Change Biology
– volume: 103
  start-page: 199
  issue: 3
  year: 2021
  end-page: 222
  article-title: Periglacial landforms in the high Drakensberg, southern Africa: Morphogenetic associations with rock weathering rinds and shrub growth patterns
  publication-title: Geografiska Annaler: Series A, Physical Geography
– volume: 14
  start-page: 84
  issue: 2
  year: 2016
  end-page: 93
  article-title: Using phenocams to monitor our changing earth: Toward a global phenocam network
  publication-title: Frontiers in Ecology and the Environment
– volume: 243
  start-page: 57
  issue: 4887
  year: 1989
  end-page: 63
  article-title: Cloud‐radiative forcing and climate: Results from the earth radiation budget experiment
  publication-title: Science
– volume: 12
  issue: 7
  year: 2021
  article-title: Machine learning‐based hourly frost‐prediction system optimized for orchards using automatic weather station and digital camera image data
  publication-title: Atmosphere
– volume: 8
  issue: 12
  year: 2019
  article-title: WeatherNet: Recognising weather and visual conditions from street‐level images using deep residual learning
  publication-title: ISPRS International Journal of Geo‐Information
– volume: 198–199
  start-page: 116
  year: 2014
  end-page: 125
  article-title: Using digital camera images to analyse snowmelt and phenology of a subalpine grassland
  publication-title: Agricultural and Forest Meteorology
– volume: 58
  issue: 6
  year: 2022
  article-title: Evaluating multiple canopy‐snow unloading parameterizations in SUMMA with time‐lapse photography characterized by citizen scientists
  publication-title: Water Resources Research
– year: 2015
– volume: 6
  start-page: 129
  issue: 2
  year: 2020
  end-page: 140
  article-title: Using by‐catch data from wildlife surveys to quantify climatic parameters and timing of phenology for plants and animals using camera traps
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 21
  start-page: 4651
  issue: 12
  year: 2015
  end-page: 4661
  article-title: Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades
  publication-title: Global Change Biology
– volume: 212
  start-page: 1687
  issue: 10
  year: 2011
  end-page: 1697
  article-title: Hail impact on leaves and endophytes of the endemic threatened (Polygonaceae)
  publication-title: Plant Ecology
– volume: 13
  start-page: 346
  issue: 2
  year: 2022
  end-page: 357
  article-title: Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision
  publication-title: Methods in Ecology and Evolution
– volume: 28
  start-page: 7296
  issue: 24
  year: 2022
  end-page: 7312
  article-title: Cross‐scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
  publication-title: Global Change Biology
– volume: 9
  start-page: 1
  issue: 2
  year: 2023
  end-page: 14
  article-title: A review of open top chamber (OTC) performance across the ITEX network
  publication-title: Arctic Science
– volume: 10
  start-page: 1599
  issue: 9
  year: 2004
  end-page: 1609
  article-title: Effects of experimentally imposed climate scenarios on flowering phenology and flower production of subarctic bog species
  publication-title: Global Change Biology
– volume: 26
  start-page: 6616
  issue: 11
  year: 2020
  end-page: 6629
  article-title: SoilTemp: A global database of near‐surface temperature
  publication-title: Global Change Biology
– volume: 28
  start-page: 1578
  issue: 11
  year: 2019
  end-page: 1596
  article-title: Comparing temperature data sources for use in species distribution models: From in‐situ logging to remote sensing
  publication-title: Global Ecology and Biogeography
– volume: 115
  start-page: 731
  issue: 3
  year: 2015
  end-page: 749
  article-title: Emerging technologies for biological recording
  publication-title: Biological Journal of the Linnean Society
– volume: 8
  start-page: 786
  issue: 3
  year: 2022
  end-page: 803
  article-title: The seasonal dynamics of a high Arctic plant–visitor network: Temporal observations and responses to delayed snow melt
  publication-title: Arctic Science
– volume: 18
  year: 2022
  article-title: Moths complement bumblebee pollination of red clover: A case for day‐and‐night insect surveillance
  publication-title: Biology Letters
– start-page: 393
  year: 2005
  end-page: 400
– volume: 8
  issue: 9
  year: 2013
  article-title: High resolution measurement of light in terrestrial ecosystems using photodegrading dyes
  publication-title: PLoS ONE
– volume: 7
  start-page: 534
  issue: 3
  year: 2021
  end-page: 549
  article-title: Modelling species distribution from camera trap by‐catch using a scale‐optimized occupancy approach
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 13
  issue: 1
  year: 2022
  article-title: Growth of alpine grassland will start and stop earlier under climate warming
  publication-title: Nature Communications
– volume: 19
  start-page: 64
  issue: 1
  year: 2013
  end-page: 74
  article-title: Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth
  publication-title: Global Change Biology
– volume: 25
  start-page: 2753
  issue: 12
  year: 2022
  end-page: 2775
  article-title: Towards the fully automated monitoring of ecological communities
  publication-title: Ecology Letters
– volume: 13
  year: 2022
  article-title: Deep learning in plant phenological research: A systematic literature review
  publication-title: Frontiers in Plant Science
– volume: 4
  start-page: 1044
  issue: 8
  year: 2020
  end-page: 1059
  article-title: Species better track climate warming in the oceans than on land
  publication-title: Nature Ecology & Evolution
– volume: 11
  start-page: 303
  issue: 2
  year: 2020
  end-page: 315
  article-title: Thinking like a naturalist: Enhancing computer vision of citizen science images by harnessing contextual data
  publication-title: Methods in Ecology and Evolution
– volume: 11
  issue: 11
  year: 2016
  article-title: High Arctic flowering phenology and plant–pollinator interactions in response to delayed snow melt and simulated warming
  publication-title: Environmental Research Letters
– volume: 115
  start-page: E5716
  issue: 25
  year: 2018
  end-page: E5725
  article-title: Automatically identifying, counting, and describing wild animals in camera‐trap images with deep learning
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 2932
  issue: 10
  year: 2013
  end-page: 2939
  article-title: Microclimatic challenges in global change biology
  publication-title: Global Change Biology
– volume: 32
  start-page: 1120
  issue: 4
  year: 2016
  end-page: 1137
  article-title: Cross‐validation aggregation for combining autoregressive neural network forecasts
  publication-title: International Journal of Forecasting
– volume: 118
  start-page: 1
  issue: 2
  year: 2021
  end-page: 10
  article-title: Deep learning and computer vision will transform entomology
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 52
  start-page: 675
  issue: 3
  year: 2015
  end-page: 685
  article-title: Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes
  publication-title: Journal of Applied Ecology
– year: 2020
– year: 2023
– volume: 39
  start-page: 2510
  issue: 12
  year: 2017
  end-page: 2524
  article-title: Two‐class weather classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 13
  start-page: 484
  issue: 5
  year: 2023
  end-page: 490
  article-title: Macroclimate data overestimate range shifts of plants in response to climate change
  publication-title: Nature Climate Change
– volume: 29
  start-page: 95
  issue: 1
  year: 2010
  end-page: 109
  article-title: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems
  publication-title: Polar Research
– volume: 18
  start-page: 17
  issue: 1
  year: 1993
  end-page: 30
  article-title: Temperature and the pollinating activity of social bees
  publication-title: Ecological Entomology
– year: 2017
– volume: 28
  start-page: 196
  issue: 2
  year: 1996
  end-page: 202
  article-title: Micrometeorological impacts on insect activity and plant reproductive success in an alpine environment, Swedish Lapland
  publication-title: Arctic and Alpine Research
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 15
  article-title: Perspectives in machine learning for wildlife conservation
  publication-title: Nature Communications
– volume: 8
  start-page: 572
  issue: February
  year: 2022
  end-page: 608
  article-title: Winters are changing: Snow effects on Arctic and alpine tundra ecosystems
  publication-title: Arctic Science
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  article-title: ImageNet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
– year: 2013
– ident: e_1_2_8_13_1
  doi: 10.1111/gcb.12028
– ident: e_1_2_8_60_1
  doi: 10.1038/s41467‐022‐27980‐y
– ident: e_1_2_8_22_1
  doi: 10.1139/as‐2020‐0056
– ident: e_1_2_8_29_1
  doi: 10.1017/9781009157896.013
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ijforecast.2015.12.011
– ident: e_1_2_8_59_1
– ident: e_1_2_8_28_1
  doi: 10.3390/ijgi8120549
– ident: e_1_2_8_45_1
  doi: 10.1038/s41467‐022‐35194‐5
– ident: e_1_2_8_23_1
  doi: 10.1080/04353676.2020.1856625
– ident: e_1_2_8_40_1
  doi: 10.1111/2041‐210X.13627
– ident: e_1_2_8_48_1
  doi: 10.1111/jzo.12849
– ident: e_1_2_8_62_1
  doi: 10.1111/gcb.16426
– ident: e_1_2_8_67_1
  doi: 10.1029/2020EA001604
– ident: e_1_2_8_32_1
  doi: 10.3389/fpls.2022.805738
– ident: e_1_2_8_42_1
  doi: 10.1002/rse2.275
– ident: e_1_2_8_66_1
  doi: 10.1111/j.1751‐8369.2010.00153.x
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-030-01270-0_28
– ident: e_1_2_8_16_1
  doi: 10.3390/rs13112045
– ident: e_1_2_8_54_1
  doi: 10.1371/journal.pone.0075715
– ident: e_1_2_8_18_1
– ident: e_1_2_8_56_1
  doi: 10.1111/2041‐210X.13769
– ident: e_1_2_8_15_1
  doi: 10.1111/1365‐2664.12432
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1365‐2311.1993.tb01075.x
– ident: e_1_2_8_41_1
  doi: 10.1038/s41558‐023‐01650‐3
– ident: e_1_2_8_44_1
  doi: 10.1111/gcb.14949
– ident: e_1_2_8_8_1
  doi: 10.1109/WACV45572.2020.9093570
– ident: e_1_2_8_39_1
  doi: 10.1029/2021WR030852
– ident: e_1_2_8_11_1
  doi: 10.1111/ele.14123
– ident: e_1_2_8_37_1
  doi: 10.1109/CVPR.2014.475
– ident: e_1_2_8_55_1
  doi: 10.1007/s11263‐015‐0816‐y
– ident: e_1_2_8_38_1
  doi: 10.1109/TPAMI.2016.2640295
– ident: e_1_2_8_26_1
– ident: e_1_2_8_57_1
  doi: 10.1007/1-4020-3508-X_39
– ident: e_1_2_8_46_1
  doi: 10.3390/atmos12070846
– ident: e_1_2_8_52_1
  doi: 10.1126/science.243.4887.57
– ident: e_1_2_8_36_1
  doi: 10.1038/s41559‐020‐1198‐2
– ident: e_1_2_8_34_1
  doi: 10.1111/gcb.15123
– ident: e_1_2_8_24_1
  doi: 10.1002/rse2.136
– ident: e_1_2_8_31_1
  doi: 10.1016/j.agrformet.2014.08.007
– volume-title: R: A language and environment for statistical computing
  year: 2023
  ident: e_1_2_8_51_1
– ident: e_1_2_8_58_1
  doi: 10.1111/2041‐210X.13335
– ident: e_1_2_8_5_1
  doi: 10.1111/bij.12534
– ident: e_1_2_8_65_1
  doi: 10.1016/j.agrformet.2018.12.018
– ident: e_1_2_8_49_1
  doi: 10.1126/science.aai9214
– ident: e_1_2_8_12_1
  doi: 10.1111/gcb.13051
– ident: e_1_2_8_64_1
  doi: 10.1002/sta4.454
– ident: e_1_2_8_20_1
  doi: 10.1007/s11258‐011‐9941‐z
– volume: 7
  start-page: 231
  year: 1994
  ident: e_1_2_8_33_1
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_50_1
  doi: 10.1111/gcb.12257
– ident: e_1_2_8_35_1
  doi: 10.1111/geb.12974
– ident: e_1_2_8_25_1
  doi: 10.1139/as-2022-0030
– ident: e_1_2_8_47_1
  doi: 10.1073/pnas.1719367115
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1365‐2486.1997.gcb136.x
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365‐2486.2004.00815.x
– ident: e_1_2_8_53_1
  doi: 10.1139/as-2020-0058
– ident: e_1_2_8_10_1
  doi: 10.2307/1551760
– volume: 11
  start-page: 2079
  year: 2010
  ident: e_1_2_8_17_1
  article-title: On over‐fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_30_1
  doi: 10.1145/1653771.1653789
– ident: e_1_2_8_14_1
  doi: 10.1002/fee.1222
– ident: e_1_2_8_21_1
  doi: 10.1088/1748‐9326/11/11/115006
– ident: e_1_2_8_3_1
  doi: 10.1098/rsbl.2022.0187
– ident: e_1_2_8_6_1
  doi: 10.1109/IJCNN.2013.6706740
– ident: e_1_2_8_61_1
  doi: 10.1080/17550874.2016.1210262
– ident: e_1_2_8_4_1
  doi: 10.1038/s41559‐020‐1185‐7
– ident: e_1_2_8_27_1
  doi: 10.1073/PNAS.2002545117
– ident: e_1_2_8_63_1
  doi: 10.1002/rse2.207
SSID ssj0003206
Score 2.4515333
Snippet Microclimate—proximal climatic variation at scales of metres and minutes—can exacerbate or mitigate the impacts of climate change on biodiversity. However,...
Microclimate-proximal climatic variation at scales of metres and minutes-can exacerbate or mitigate the impacts of climate change on biodiversity. However,...
SourceID swepub
hal
cristin
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e17078
SubjectTerms Accuracy
alpine ecology
Animal learning
automated monitoring
Autumn
bees
Biodiversity
Biological Sciences
Bombus
Bumblebees
bycatch
Cameras
Classification
Climate change
Climatology
Computer vision
data collection
Deep learning
Earth Sciences
Ecology
Ekologi
Environmental impact
Environmental Sciences
Global Changes
Hail
Hailstorms
Hemispheres
Microclimate
micrometeorology
Model accuracy
Mountains
Norway
proximal sensing
Sciences of the Universe
Seasonal variations
Snow
snow melt
solar radiation
South Africa
summer
Sunlight
temperature
time-lapse photography
Trifolium pratense
Wild plants
Wildlife
Title Deep learning to extract the meteorological by‐catch of wildlife cameras
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17078
https://www.ncbi.nlm.nih.gov/pubmed/38273582
https://www.proquest.com/docview/2918168264
https://www.proquest.com/docview/2919741730
https://www.proquest.com/docview/3040356093
http://hdl.handle.net/10037/34992
https://hal.science/hal-04506642
https://gup.ub.gu.se/publication/335227
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD60BcEXL6u109YSRYovs8wkmcviU11bl6IiYqEPQkgmmW3pOrt0d4X65E_wN_pLPCdzqasWxLfdmTOQZM758p1M8h2AZ86lWZYJHaaplqEc5DrMpbShFIYIOwKj8bst3qWjE3l8mpyuwYv2LEytD9EtuFFkeLymANdm_kuQjwvTj0mrBvGX9moRIfpwLR0luK-rGYtEItTEolEVol083ZPIeQsfStXKrLR-Rnsi_yScnZroKpH1M9HRXfjU9qHegHLRXy5Mv_j6m7zjf3byHtxpGCo7qF3qPqy5qge36pqVVz3YPLw-GodmDTbMexC8Rf49vfRmbJ8NJ-dIhv2_B3D8yrkZaypUjNliynBOoPNZDPkn-9w9SB7DzNWPb98LnCLO2LRk2G47OS8dKzStn80fwsnR4cfhKGyqOIRFEmOK6lLtBrwkUZ1Sl1Y7UUbWRrwg5pk5Sul0ZAeplRb9IzVWIskqSp0gFNusjMQmbFTTym0By01qcgQQnepIukTqrLC81Dx2SNOkSQPYat6nqjCASI9ZZEpgUscDeN6-YFU06udUhGOi2iwIh1r5oQ7gaWc6qyU__mqEXtLdJ5Hu0cEbRdeQJCOPk_xLHMBu60SqgYa54oOYap0gEQ3gSXcbg5q-1OjKTZfeBvO8GNH3ZhuB8CuQrw5EAI9qB-2aI3JkpUmOvd6vPXaloePlTOGl8VLNnaIzdzzD4fFueHOH1evhS_9j-99Nd-A2Rw5Yr1jtwsbicukeI4dbmD1Y5_L9ng_Zn6JPQHc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RQguBRZKUwoYhCouWSWx8yVxKUvLUrY9oFbqBVlO7GwrlmTV3UUqJ34Cv5FfwozzURaohLjtJhPJdmae3zj2G4AXxkRxHHPlRpESrkgT5SZCaFfwjAg7AmNmd1scRcMTcXAanq7Aq_YsTK0P0S24UWRYvKYApwXpX6J8nGd9n8RqVuEGVfS2CdWHK_EoHtjKmj4PBYKNzxtdIdrH0z2KrDe3wVQuzUurZ7Qr8k_K2emJLlNZOxft34GPbS_qLSif-ot51s-__ibw-L_dvAvrDUllu7VX3YMVU_bgZl228rIHG3tXp-PQrIGHWQ-cQ6Tg1YU1YztsMDlHPmz_3YeDN8ZMWVOkYszmFcNpgY5oMaSg7HP3IDkNyy5_fPue4yxxxqqCYcP15LwwLFe0hDZ7ACf7e8eDodsUcnDz0Mcs1UTKpEFBujqFKrQyvPC09oKcyGdsKKtTnk4jLTS6SJRpgTwrL1SIaKzjwuMbsFZWpdkElmRRliCGqEh5woRCxbkOChX4BpmayCIHNpsXKkuMIZJk5rHkmNcFDrxs37DMGwF0qsMxkW0ihEMt7VA78LwzndaqH381Qjfp7pNO93B3JOka8mSkciL44juw3XqRbNBhJoPUp3InyEUdeNbdxrimjzWqNNXC2mCq5yMAX2_DEYE5UtaUO_Cw9tCuOTxBYhom2Oud2mWXGjpeTCVeGi_kzEg6dhfEODzWD6_vsHw7eG1_bP276VO4NTw-HMnRu6P3j-B2gJSwXsDahrX5xcI8Rko3z57YyP0J-AVDuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ahkC88FEYCwwwCE28pEpix0nE02hXyhgTQkzaA5Jlx043UZJqbZDGEz-B38gv4dpJMwpMQry1yY1kO-den-vY5wI8M4YnSUKlz7lkPstS6aeMaZ9RZQk7Bkbldlsc8vER2z-Oj9fgxfIsTKMP0S24Wc9w8do6-EwXvzj5JFf90GrVrMMVxoPUQnr4_kI7ikausGZIY4axJqStrJDdxtM9iqQ3d75UrkxL6yd2U-SfjLOTE11lsm4qGt2Ej8tONDtQPvXrhernX3_Td_zPXt6CGy1FJbsNpm7Dmil7cLUpWnneg829i7NxaNYGh3kPvLdIwKszZ0Z2yGB6imzY_bsD-0NjZqQtUTEhi4rgpGAPaBEkoORz96CFDFHnP759z3GOOCFVQbDdenpaGJJLu4A2vwtHo70Pg7HflnHw8zjEHNVwabKosKo6hSy0NLQItA6i3FLPxNicTgY645ppBAhXmiHLygsZYyzWSRHQTdgoq9JsAUkVVylGEMllwEzMZJLrqJBRaJCnMcU92GrfpyjRg6wgM00Exawu8uD58gWLvJU_t1U4pmKZBuFQCzfUHjztTGeN5sdfjRAl3X2r0j3ePRD2GrJkJHIs-hJ6sL0EkWhjw1xEWWiLnSAT9eBJdxu92n6qkaWpameDiV6I4fdyG4rxlyJhzagH9xqAds2hKdLSOMVe7zSIXWnopJ4JvDSpxdwIe-guSnB4HAwv77B4NXjpftz_d9PHcO3dcCQOXh--eQDXI-SDzerVNmwszmrzEPncQj1yfvsTGLhCcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+extract+the+meteorological+by-catch+of+wildlife+cameras&rft.jtitle=Global+change+biology&rft.au=Alison%2C+Jamie&rft.au=Payne%2C+Stephanie&rft.au=Alexander%2C+Jake+M.&rft.au=Bj%C3%B6rkman%2C+Anne&rft.date=2024-01-01&rft.issn=1354-1013&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1111%2Fgcb.17078&rft.externalDocID=oai_gup_ub_gu_se_335227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon