Abstract The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R: FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R: FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
AbstractList The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far‐red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as ‘the shade avoidance syndrome’ and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. Contents Summary 930 I. Introduction 931 II. Shade avoidance responses 932 III. Photoreceptor regulation of shade avoidance 932 IV. Molecular mechanisms in shade avoidance signalling 934 V. Crosstalk in shade avoidance signalling 939 VI. Future perspectives 940 Acknowledgements 940 References 940
The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
Summary930V.Crosstalk in shade avoidance signalling939I.Introduction931VI.Future perspectives940II.Shade avoidance responses932Acknowledgements940III.Photoreceptor regulation of shade avoidance932References940IV.Molecular mechanisms in shade avoidance signalling934The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R:FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R:FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far‐red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as ‘the shade avoidance syndrome’ and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. Contents Summary 930 I. Introduction 931 II. Shade avoidance responses 932 III. Photoreceptor regulation of shade avoidance 932 IV. Molecular mechanisms in shade avoidance signalling 934 V. Crosstalk in shade avoidance signalling 939 VI. Future perspectives 940 Acknowledgements 940 References 940
The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
Contents Summary 930 V. Crosstalk in shade avoidance signalling 939 I. Introduction 931 VI. Future perspectives 940 II. Shade avoidance responses 932 Acknowledgements 940 III. Photoreceptor regulation of shade avoidance 932 References 940 IV. Molecular mechanisms in shade avoidance signalling 934 Summary The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far‐red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as ‘the shade avoidance syndrome’ and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
Author Franklin, Keara A.
Author_xml – sequence: 1
  givenname: Keara A.
  surname: Franklin
  fullname: Franklin, Keara A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18537892$$D View this record in MEDLINE/PubMed
BookMark eNqNkF1LwzAUhoNM3IfiL1B25V3rSZrPC4Ux1AlDBRW8C2maYUfXzqbT7d_bujnBmy03J3Ce9w15uqiVF7lDqI8hxPW5nIaYchVIHImQAMgQCAMRLg9QZ7tooQ4AkQGn_K2Nut5PAUAxTo5QG0sWCalIB50-v5vE9QefRZqY3LpjdDgxmXcnm9lDr7c3L8NRMH68ux8OxoFlWIggIjSOE6dYbCV3YKPYmkTEKkmkEYSSiIGkllIqbcKdjcHARFpumXTYKaqiHrpY987L4mPhfKVnqbcuy0zuioXXXDGJWQQ7QSqBgqg_vAskGCingtfg-QZcxDOX6HmZzky50r9SakCuAVsW3pdu8oeAbvzrqW4060azbvzrH_96WUev_0VtWpkqLfKqNGm2T8HVuuArzdxq74f1w9OoudX5s3V-6qui3OYJwwwYVtE3hYalSA
CitedBy_id crossref_primary_10_1016_j_scienta_2019_108725
crossref_primary_10_1016_j_tplants_2012_09_008
crossref_primary_10_1016_j_flora_2019_03_003
crossref_primary_10_1016_j_tplants_2012_09_002
crossref_primary_10_3390_f14081605
crossref_primary_10_1080_17429145_2019_1689581
crossref_primary_10_1016_j_tplants_2019_07_001
crossref_primary_10_1111_nph_19885
crossref_primary_10_3389_fpls_2025_1529455
crossref_primary_10_1071_FP08218
crossref_primary_10_3390_agronomy10010110
crossref_primary_10_1146_annurev_ecolsys_110617_062622
crossref_primary_10_1139_cjb_2014_0194
crossref_primary_10_4161_psb_4_8_9179
crossref_primary_10_1016_j_scienta_2024_113787
crossref_primary_10_1242_jeb_089938
crossref_primary_10_1093_jxb_err062
crossref_primary_10_1371_journal_pone_0098465
crossref_primary_10_1111_tpj_16410
crossref_primary_10_1016_j_cropro_2024_107038
crossref_primary_10_1093_treephys_tpaa144
crossref_primary_10_3390_ijms20143599
crossref_primary_10_1111_j_1365_313X_2010_04434_x
crossref_primary_10_1016_j_landurbplan_2017_08_014
crossref_primary_10_1016_j_molp_2020_11_021
crossref_primary_10_4161_psb_23355
crossref_primary_10_1016_j_marenvres_2017_12_012
crossref_primary_10_1656_045_024_0205
crossref_primary_10_3390_ijms26072992
crossref_primary_10_3390_plants11151982
crossref_primary_10_1071_FP18279
crossref_primary_10_3389_fpls_2017_01181
crossref_primary_10_1007_s10530_024_03464_6
crossref_primary_10_1098_rspb_2011_0971
crossref_primary_10_1093_aobpla_plr031
crossref_primary_10_1093_plphys_kiab071
crossref_primary_10_15252_embj_201693907
crossref_primary_10_1016_j_molp_2020_11_016
crossref_primary_10_3389_fpls_2022_1015414
crossref_primary_10_1111_nph_14176
crossref_primary_10_1002_fes3_291
crossref_primary_10_1093_treephys_tpab005
crossref_primary_10_1038_s41477_021_00956_4
crossref_primary_10_1016_j_envexpbot_2021_104649
crossref_primary_10_1007_s11284_012_0991_z
crossref_primary_10_1016_j_scienta_2024_113553
crossref_primary_10_1007_s13580_018_0114_z
crossref_primary_10_1016_j_scienta_2015_02_036
crossref_primary_10_1016_j_fcr_2020_108054
crossref_primary_10_1111_pce_13445
crossref_primary_10_1016_j_jplph_2014_12_002
crossref_primary_10_3389_fpls_2017_00182
crossref_primary_10_1111_plb_12849
crossref_primary_10_1016_j_plaphy_2024_108931
crossref_primary_10_1051_e3sconf_202123201031
crossref_primary_10_3389_fpls_2014_00275
crossref_primary_10_1093_jxb_ers376
crossref_primary_10_1093_jxb_ert465
crossref_primary_10_1093_jxb_eraa567
crossref_primary_10_1177_1477153515622681
crossref_primary_10_1371_journal_pone_0167767
crossref_primary_10_1016_j_foreco_2011_06_043
crossref_primary_10_3390_biology13010012
crossref_primary_10_1007_s10457_021_00678_8
crossref_primary_10_1186_s40793_025_00679_5
crossref_primary_10_1371_journal_pgen_1002594
crossref_primary_10_4274_eajem_galenos_2023_80217
crossref_primary_10_1016_j_scienta_2023_112051
crossref_primary_10_1002_ecy_1934
crossref_primary_10_3390_plants11151997
crossref_primary_10_3389_fpls_2019_00169
crossref_primary_10_1590_S0100_83582012000300002
crossref_primary_10_3390_agronomy13082018
crossref_primary_10_1016_j_pbi_2016_06_011
crossref_primary_10_1016_j_actao_2022_103863
crossref_primary_10_1093_aob_mcae203
crossref_primary_10_3390_horticulturae6040109
crossref_primary_10_1016_j_envexpbot_2018_06_033
crossref_primary_10_1007_s40362_014_0022_2
crossref_primary_10_1016_j_fcr_2018_10_016
crossref_primary_10_1111_j_1365_313X_2011_04485_x
crossref_primary_10_34133_plantphenomics_0095
crossref_primary_10_1080_15592324_2020_1777372
crossref_primary_10_1111_pce_14995
crossref_primary_10_3390_plants13030452
crossref_primary_10_1111_pce_12330
crossref_primary_10_1007_s13593_015_0314_1
crossref_primary_10_1007_s00709_016_1020_9
crossref_primary_10_1016_j_scienta_2021_109995
crossref_primary_10_1016_j_tplants_2009_11_007
crossref_primary_10_3389_fpls_2019_01026
crossref_primary_10_3390_plants14060862
crossref_primary_10_1093_jxb_eru011
crossref_primary_10_1038_s41598_021_96854_y
crossref_primary_10_1016_j_ppees_2016_09_005
crossref_primary_10_1242_bio_024422
crossref_primary_10_17660_ActaHortic_2016_1134_35
crossref_primary_10_1021_acs_jafc_8b07050
crossref_primary_10_1111_nph_16040
crossref_primary_10_3389_fevo_2023_1046332
crossref_primary_10_3389_fpls_2018_01847
crossref_primary_10_1080_23818107_2018_1429302
crossref_primary_10_1021_acssuschemeng_1c07054
crossref_primary_10_1007_s00442_015_3288_4
crossref_primary_10_1016_j_cj_2024_12_005
crossref_primary_10_1038_s41598_020_75794_z
crossref_primary_10_1371_journal_pone_0313084
crossref_primary_10_1111_j_1469_8137_2009_02921_x
crossref_primary_10_3389_fpls_2019_01296
crossref_primary_10_1007_s00468_022_02292_2
crossref_primary_10_3389_fpls_2021_813092
crossref_primary_10_1111_pce_14853
crossref_primary_10_25308_aduziraat_329081
crossref_primary_10_1007_s42994_021_00038_1
crossref_primary_10_1038_s41467_019_10867_w
crossref_primary_10_1016_j_envexpbot_2022_105183
crossref_primary_10_3389_fpls_2022_973643
crossref_primary_10_1111_nph_18459
crossref_primary_10_3390_plants9111592
crossref_primary_10_1016_j_envexpbot_2023_105589
crossref_primary_10_1080_15592324_2015_1062195
crossref_primary_10_1111_j_1469_8137_2009_02934_x
crossref_primary_10_3389_frfst_2022_852155
crossref_primary_10_3390_plants12071550
crossref_primary_10_1111_j_1744_7909_2011_01081_x
crossref_primary_10_1093_jxb_ert389
crossref_primary_10_1111_j_1365_3040_2011_02474_x
crossref_primary_10_1186_s12870_023_04348_y
crossref_primary_10_1007_s11738_015_1849_0
crossref_primary_10_7717_peerj_14274
crossref_primary_10_3390_ijms231912057
crossref_primary_10_1007_s00344_021_10517_w
crossref_primary_10_1016_j_envexpbot_2023_105471
crossref_primary_10_1080_07352689_2011_615706
crossref_primary_10_1073_pnas_1403052111
crossref_primary_10_1007_s10725_015_0046_x
crossref_primary_10_1093_insilicoplants_diaa008
crossref_primary_10_3390_ijms21228742
crossref_primary_10_1016_j_pbi_2008_09_007
crossref_primary_10_1016_j_scienta_2014_02_010
crossref_primary_10_1007_s10342_012_0677_7
crossref_primary_10_4161_psb_6_1_14185
crossref_primary_10_1007_s13580_016_0071_3
crossref_primary_10_1038_nrm3088
crossref_primary_10_3390_horticulturae10101106
crossref_primary_10_1016_j_ijbiomac_2024_135234
crossref_primary_10_1186_s12870_024_05950_4
crossref_primary_10_1007_s10725_015_0032_3
crossref_primary_10_1016_j_cj_2023_03_011
crossref_primary_10_1080_23818107_2020_1857833
crossref_primary_10_1111_tpj_12203
crossref_primary_10_5937_ZemBilj2001046M
crossref_primary_10_1080_28347056_2024_2330972
crossref_primary_10_1016_j_crope_2023_11_004
crossref_primary_10_3390_biom11091283
crossref_primary_10_1016_j_bbrc_2019_05_142
crossref_primary_10_3390_plants12223800
crossref_primary_10_1104_pp_111_180661
crossref_primary_10_1038_s44264_025_00048_2
crossref_primary_10_1093_jxb_erad094
crossref_primary_10_1016_S2095_3119_17_61807_0
crossref_primary_10_1021_acs_jafc_3c05985
crossref_primary_10_1016_j_scienta_2021_110805
crossref_primary_10_1021_acs_jafc_3c06834
crossref_primary_10_1111_jac_12014
crossref_primary_10_1111_pce_13630
crossref_primary_10_1007_s00442_011_1941_0
crossref_primary_10_1016_j_tplants_2011_05_004
crossref_primary_10_1111_pce_13870
crossref_primary_10_3390_agronomy11050853
crossref_primary_10_1007_s00344_024_11397_6
crossref_primary_10_1093_jxb_eru060
crossref_primary_10_1093_pcp_pcq140
crossref_primary_10_1111_nph_12725
crossref_primary_10_1080_15592324_2016_1187356
crossref_primary_10_1016_j_scienta_2024_112863
crossref_primary_10_1186_s43014_023_00210_8
crossref_primary_10_1038_nplants_2016_25
crossref_primary_10_32615_ps_2021_057
crossref_primary_10_1111_1365_2435_13262
crossref_primary_10_1038_s41467_017_00404_y
crossref_primary_10_1080_12538078_2013_807302
crossref_primary_10_1111_pce_13720
crossref_primary_10_1016_j_envexpbot_2015_05_010
crossref_primary_10_1111_j_1365_2435_2010_01763_x
crossref_primary_10_1016_j_isci_2019_11_035
crossref_primary_10_3390_d16090512
crossref_primary_10_1073_pnas_0910446107
crossref_primary_10_3389_fpls_2022_938199
crossref_primary_10_1007_s00114_009_0604_z
crossref_primary_10_3390_horticulturae10020115
crossref_primary_10_3389_fpls_2019_00557
crossref_primary_10_3389_fpls_2021_609975
crossref_primary_10_3390_plants12183284
crossref_primary_10_3732_ajb_1200354
crossref_primary_10_3390_molecules26237405
crossref_primary_10_1371_journal_pone_0165742
crossref_primary_10_1007_s00425_013_1962_5
crossref_primary_10_1016_j_plaphy_2024_109191
crossref_primary_10_3390_plants10010096
crossref_primary_10_32615_bp_2022_039
crossref_primary_10_1111_j_1365_313X_2012_05033_x
crossref_primary_10_12791_KSBEC_2019_28_1_86
crossref_primary_10_1016_j_molp_2014_11_021
crossref_primary_10_1016_j_buildenv_2023_111052
crossref_primary_10_1016_j_fochx_2022_100323
crossref_primary_10_1089_ast_2020_2313
crossref_primary_10_1093_aob_mcac087
crossref_primary_10_1016_j_envexpbot_2024_106024
crossref_primary_10_1155_2014_501016
crossref_primary_10_1007_s13593_022_00783_7
crossref_primary_10_1371_journal_pgen_1002589
crossref_primary_10_1111_pce_13818
crossref_primary_10_3390_plants10010166
crossref_primary_10_1007_s13205_023_03709_6
crossref_primary_10_1146_annurev_arplant_59_032607_092819
crossref_primary_10_1016_j_scienta_2018_02_058
crossref_primary_10_1111_j_1600_0706_2011_20333_x
crossref_primary_10_1002_ece3_4831
crossref_primary_10_1111_j_1469_8137_2011_03952_x
crossref_primary_10_1093_aob_mcy001
crossref_primary_10_1111_j_1469_8137_2011_03733_x
crossref_primary_10_1007_s11099_016_0668_x
crossref_primary_10_1016_j_ufug_2014_05_011
crossref_primary_10_1016_j_flora_2019_02_005
crossref_primary_10_3390_agronomy10121859
crossref_primary_10_1080_1343943X_2020_1847666
crossref_primary_10_1093_jxb_erw272
crossref_primary_10_1093_jxb_eru090
crossref_primary_10_1093_jxb_ery331
crossref_primary_10_3389_fpls_2024_1492431
crossref_primary_10_4161_psb_4_9_9528
crossref_primary_10_1016_j_envexpbot_2009_06_011
crossref_primary_10_1016_S2095_3119_18_62130_6
crossref_primary_10_4161_psb_6_4_14496
crossref_primary_10_1016_j_xplc_2024_100922
crossref_primary_10_1146_annurev_arplant_042817_040226
crossref_primary_10_3390_ijms160716497
crossref_primary_10_1111_j_1469_8137_2012_04145_x
crossref_primary_10_1111_pce_12854
crossref_primary_10_3390_plants14010139
crossref_primary_10_3390_plants10050960
crossref_primary_10_1111_1365_2664_12115
crossref_primary_10_1073_pnas_1105892108
crossref_primary_10_1038_s41588_021_00882_3
crossref_primary_10_1111_j_1365_313X_2011_04745_x
crossref_primary_10_1111_nph_12407
crossref_primary_10_1073_pnas_1013457108
crossref_primary_10_1002_ppp3_10371
crossref_primary_10_1007_s00425_012_1662_6
crossref_primary_10_1016_j_xplc_2022_100416
crossref_primary_10_1093_pcp_pcad077
crossref_primary_10_3389_fpls_2023_1225895
crossref_primary_10_1111_ele_13656
crossref_primary_10_3724_SP_J_1259_2011_00338
crossref_primary_10_1016_j_scienta_2013_02_030
crossref_primary_10_1111_1365_2435_12010
crossref_primary_10_1111_j_1365_313X_2010_04360_x
crossref_primary_10_1371_journal_pone_0069431
crossref_primary_10_1002_ajb2_1732
crossref_primary_10_5338_KJEA_2020_39_4_37
crossref_primary_10_3389_freae_2024_1404958
crossref_primary_10_1093_mp_ssn086
crossref_primary_10_1371_journal_pone_0090587
crossref_primary_10_3389_fpls_2017_00386
crossref_primary_10_3389_fpls_2023_1129335
crossref_primary_10_1093_pcp_pcp028
crossref_primary_10_1104_pp_112_206607
crossref_primary_10_1016_j_foreco_2022_120683
crossref_primary_10_1105_tpc_109_072280
crossref_primary_10_1111_nph_13965
crossref_primary_10_1016_j_scienta_2022_111386
crossref_primary_10_17352_2455_815X_000157
crossref_primary_10_3390_plants9050556
crossref_primary_10_1016_j_foreco_2015_09_036
crossref_primary_10_1139_cjps_2019_0082
crossref_primary_10_1371_journal_pgen_1001100
crossref_primary_10_1016_j_envexpbot_2015_06_006
crossref_primary_10_1016_j_foreco_2021_119154
crossref_primary_10_3390_horticulturae9080907
crossref_primary_10_1111_jipb_13582
crossref_primary_10_1111_ppl_14636
crossref_primary_10_1093_aobpla_plx039
crossref_primary_10_1271_bbb_110442
crossref_primary_10_3389_fgene_2020_00154
crossref_primary_10_3389_fgene_2018_00478
crossref_primary_10_3390_horticulturae10111134
crossref_primary_10_3389_fgene_2022_891702
crossref_primary_10_1111_j_1469_8137_2012_04288_x
crossref_primary_10_1016_j_scienta_2023_112600
crossref_primary_10_1016_j_scienta_2017_02_016
crossref_primary_10_3389_fpls_2025_1544054
crossref_primary_10_1007_s13595_015_0495_4
crossref_primary_10_1038_nplants_2015_190
crossref_primary_10_1105_tpc_109_070672
crossref_primary_10_1016_j_envexpbot_2025_106133
crossref_primary_10_1016_j_crope_2022_03_009
crossref_primary_10_1093_mp_sss031
crossref_primary_10_1371_journal_pone_0170049
crossref_primary_10_1093_mp_sss030
crossref_primary_10_1007_s13580_022_00450_6
crossref_primary_10_4161_psb_20407
crossref_primary_10_3390_plants10112261
crossref_primary_10_1186_s12870_020_02556_4
crossref_primary_10_1111_pce_13905
crossref_primary_10_1186_1471_2229_12_227
crossref_primary_10_1016_j_bbagrm_2011_09_005
crossref_primary_10_1016_j_foreco_2016_04_053
crossref_primary_10_1371_journal_pone_0291601
crossref_primary_10_3390_ijms23179966
crossref_primary_10_1007_s00344_020_10066_8
crossref_primary_10_1111_j_1365_3040_2009_01936_x
crossref_primary_10_1093_jxb_erx295
crossref_primary_10_3390_f13122140
crossref_primary_10_1371_journal_pone_0034121
crossref_primary_10_1038_ncb0411_347
crossref_primary_10_1093_jxb_erae259
crossref_primary_10_3390_ijms24098378
crossref_primary_10_1093_jxb_erae137
crossref_primary_10_3389_fpls_2020_581156
crossref_primary_10_3390_plants3020223
crossref_primary_10_4161_psb_21824
crossref_primary_10_1093_treephys_tpw091
crossref_primary_10_1007_s10725_020_00581_9
crossref_primary_10_1093_jb_mvy103
crossref_primary_10_1016_S2095_3119_15_61214_X
crossref_primary_10_1111_j_1751_1097_2009_00605_x
crossref_primary_10_1007_s00344_024_11442_4
crossref_primary_10_1016_j_envexpbot_2016_05_014
crossref_primary_10_1016_j_envpol_2019_113805
crossref_primary_10_1016_j_tifs_2020_09_031
crossref_primary_10_1038_s41598_023_31466_2
crossref_primary_10_3389_fpls_2020_609977
crossref_primary_10_1007_s00468_010_0525_7
crossref_primary_10_3390_f13070996
crossref_primary_10_1071_FP12028
crossref_primary_10_1111_gfs_12634
crossref_primary_10_1007_s11056_015_9473_9
crossref_primary_10_1038_nchembio_1178
crossref_primary_10_3390_plants10112483
crossref_primary_10_1007_s11676_017_0559_4
crossref_primary_10_3390_agronomy9080458
crossref_primary_10_3389_fpls_2021_631810
crossref_primary_10_1093_jxb_erp304
crossref_primary_10_1007_s13580_016_0093_x
crossref_primary_10_1111_j_1365_313X_2012_05049_x
crossref_primary_10_1111_j_1365_3040_2009_01958_x
crossref_primary_10_1007_s00438_018_1478_6
crossref_primary_10_1016_j_envexpbot_2014_01_008
crossref_primary_10_1016_j_envexpbot_2019_03_016
crossref_primary_10_3389_fpls_2016_02021
crossref_primary_10_1111_ppl_70025
crossref_primary_10_1242_dev_130211
crossref_primary_10_17660_eJHS_2024_012
crossref_primary_10_3390_agronomy10111772
crossref_primary_10_7235_HORT_20210005
crossref_primary_10_21273_HORTSCI15200_20
crossref_primary_10_32615_ps_2024_016
crossref_primary_10_1016_j_tplants_2023_04_011
crossref_primary_10_1071_RJ14038
crossref_primary_10_3390_agronomy10081191
crossref_primary_10_1371_journal_pone_0173758
crossref_primary_10_1007_s10725_012_9729_8
crossref_primary_10_17129_botsci_2879
crossref_primary_10_1016_j_envexpbot_2024_106059
crossref_primary_10_1086_665975
crossref_primary_10_1016_j_devcel_2017_11_017
crossref_primary_10_1186_s12870_023_04570_8
crossref_primary_10_1111_jipb_12516
crossref_primary_10_1016_j_envexpbot_2012_04_013
crossref_primary_10_1111_1365_2745_12607
crossref_primary_10_1111_plb_12077
crossref_primary_10_1104_pp_111_172684
crossref_primary_10_1016_j_biosystemseng_2014_04_001
crossref_primary_10_4161_psb_23831
crossref_primary_10_1007_s11032_023_01375_3
crossref_primary_10_4161_psb_19340
crossref_primary_10_1016_j_scienta_2019_05_030
crossref_primary_10_1093_jxb_erx098
crossref_primary_10_1073_pnas_1205437109
crossref_primary_10_1111_ppl_13122
crossref_primary_10_1111_j_1365_313X_2012_04992_x
crossref_primary_10_1007_s12038_020_00070_1
crossref_primary_10_3389_fpls_2024_1386950
crossref_primary_10_1038_srep22073
crossref_primary_10_1016_j_tplants_2016_12_006
crossref_primary_10_1111_nph_20098
crossref_primary_10_3390_agronomy9080428
crossref_primary_10_4161_psb_4_7_8849
crossref_primary_10_1093_aob_mcr236
crossref_primary_10_3159_TORREY_D_23_00028_1
crossref_primary_10_3390_ijms10083547
crossref_primary_10_1038_s41598_017_16239_y
crossref_primary_10_3390_ijpb16010008
crossref_primary_10_1016_j_plantsci_2014_10_002
crossref_primary_10_1093_aob_mcz197
crossref_primary_10_1098_rstb_2018_0182
crossref_primary_10_1111_nph_13449
crossref_primary_10_1016_S2095_3119_20_63227_0
crossref_primary_10_4161_psb_7_1_18635
crossref_primary_10_3389_fpls_2023_1305182
crossref_primary_10_3389_fpls_2023_1151765
crossref_primary_10_1038_srep31673
crossref_primary_10_1093_jxb_erp345
crossref_primary_10_4161_psb_6_1_13245
crossref_primary_10_1007_s10750_015_2462_3
crossref_primary_10_1002_ecy_1573
crossref_primary_10_1007_s13580_024_00656_w
crossref_primary_10_1111_pce_15039
crossref_primary_10_1093_plphys_kiac518
crossref_primary_10_1093_mp_sss120
crossref_primary_10_3390_plants11233281
crossref_primary_10_1016_j_foreco_2016_09_045
crossref_primary_10_3389_fpls_2024_1292753
crossref_primary_10_1111_j_1469_8137_2010_03617_x
crossref_primary_10_1111_gcbb_12680
crossref_primary_10_1016_j_envexpbot_2016_12_013
crossref_primary_10_1016_j_atmosenv_2013_07_047
crossref_primary_10_1016_j_envexpbot_2020_104189
crossref_primary_10_1111_j_1469_8137_2010_03458_x
crossref_primary_10_1371_journal_pone_0109275
crossref_primary_10_1093_plphys_kiac342
crossref_primary_10_4161_psb_4_6_8586
crossref_primary_10_1371_journal_pone_0137500
crossref_primary_10_1016_j_agee_2014_05_021
crossref_primary_10_1073_pnas_2115682119
crossref_primary_10_1371_journal_pone_0178176
crossref_primary_10_1093_aob_mcr130
crossref_primary_10_1080_07352689_2010_502086
crossref_primary_10_1093_aob_mcr132
crossref_primary_10_1104_pp_112_193359
crossref_primary_10_1007_s00468_013_0923_8
crossref_primary_10_1111_j_1399_3054_2011_01476_x
crossref_primary_10_3389_fsufs_2024_1407359
crossref_primary_10_3390_ijms21155284
crossref_primary_10_1093_forestry_cpad056
crossref_primary_10_1093_jxb_erq253
crossref_primary_10_1016_j_scienta_2024_113264
crossref_primary_10_1093_mp_ssu077
crossref_primary_10_3389_fpls_2022_1053780
crossref_primary_10_1016_j_foreco_2011_11_022
crossref_primary_10_1016_j_scienta_2021_110135
crossref_primary_10_1071_FP09137
crossref_primary_10_1111_j_1365_313X_2010_04476_x
crossref_primary_10_1111_plb_13086
crossref_primary_10_1016_j_molp_2015_01_008
crossref_primary_10_1111_pce_15256
crossref_primary_10_1111_pce_15376
crossref_primary_10_1016_j_scienta_2016_10_013
crossref_primary_10_12791_KSBEC_2024_33_4_200
crossref_primary_10_1371_journal_pone_0202386
crossref_primary_10_1016_j_foreco_2016_05_045
crossref_primary_10_1016_j_envexpbot_2015_01_004
crossref_primary_10_1093_plphys_kiad546
crossref_primary_10_11623_frj_2023_31_3_07
crossref_primary_10_3390_plants13152169
crossref_primary_10_3390_su14159264
crossref_primary_10_1007_s11258_023_01386_2
crossref_primary_10_17660_ActaHortic_2019_1263_2
crossref_primary_10_1155_2015_480891
crossref_primary_10_4161_psb_5_6_11401
crossref_primary_10_3390_plants4010112
crossref_primary_10_1371_journal_pone_0062794
crossref_primary_10_1016_j_molp_2020_01_013
crossref_primary_10_1093_hr_uhac254
crossref_primary_10_3389_fpls_2022_991874
crossref_primary_10_1093_plphys_kiab112
crossref_primary_10_1093_plphys_kiab354
crossref_primary_10_1371_journal_pgen_1008748
crossref_primary_10_1038_s41467_024_49180_6
crossref_primary_10_1007_s00344_014_9454_9
crossref_primary_10_1111_nph_14217
crossref_primary_10_1111_pce_12191
crossref_primary_10_1371_journal_pone_0017275
crossref_primary_10_1660_062_123_0307
crossref_primary_10_1111_nph_13351
crossref_primary_10_32615_ps_2019_175
crossref_primary_10_3390_plants12051127
crossref_primary_10_3390_biology11010151
crossref_primary_10_3390_horticulturae9101095
crossref_primary_10_3390_su132212778
crossref_primary_10_1007_s13593_021_00735_7
crossref_primary_10_1093_mp_ssu058
crossref_primary_10_3390_plants10112405
crossref_primary_10_1093_plphys_kiab109
crossref_primary_10_1016_j_envexpbot_2019_103871
crossref_primary_10_3390_horticulturae10080795
crossref_primary_10_3390_agronomy13030857
crossref_primary_10_1007_s13580_017_0246_6
crossref_primary_10_3390_plants9080940
crossref_primary_10_1071_BT23107
crossref_primary_10_1111_tpj_14176
crossref_primary_10_1007_s11738_015_1878_8
crossref_primary_10_1186_s12870_025_06205_6
crossref_primary_10_1534_genetics_117_300071
crossref_primary_10_4161_psb_5_4_10792
crossref_primary_10_1038_s41598_023_28484_5
crossref_primary_10_1016_S2095_3119_20_63209_9
crossref_primary_10_3389_fpls_2021_729647
crossref_primary_10_1042_BST20240049
crossref_primary_10_21273_HORTTECH_20_5_873
crossref_primary_10_1073_pnas_2118866119
crossref_primary_10_3390_f13020201
crossref_primary_10_1016_j_ijbiomac_2025_139879
crossref_primary_10_1111_j_1365_3040_2012_02586_x
crossref_primary_10_1038_s41598_017_10026_5
crossref_primary_10_1111_tpj_12088
crossref_primary_10_1007_s11099_012_0071_1
crossref_primary_10_1016_j_scienta_2015_01_004
crossref_primary_10_1016_j_scienta_2020_109478
crossref_primary_10_1093_jxb_err142
crossref_primary_10_1111_tpj_15124
crossref_primary_10_1186_s12870_023_04097_y
crossref_primary_10_1016_j_scienta_2021_110455
crossref_primary_10_3389_fpls_2022_989155
crossref_primary_10_1111_j_1365_313X_2011_04815_x
crossref_primary_10_3389_fpls_2022_1050355
crossref_primary_10_1111_oik_09766
crossref_primary_10_1007_s00299_023_03119_1
crossref_primary_10_1016_j_scienta_2018_12_049
crossref_primary_10_3390_f13020308
crossref_primary_10_1104_pp_112_200733
crossref_primary_10_1111_j_1365_313X_2011_04598_x
crossref_primary_10_1093_insilicoplants_diac009
crossref_primary_10_1093_pcp_pcv135
crossref_primary_10_1093_plcell_koac352
crossref_primary_10_3390_horticulturae9050608
crossref_primary_10_3389_fpls_2014_00741
crossref_primary_10_1093_jxb_erq025
crossref_primary_10_1371_journal_pone_0029570
crossref_primary_10_3389_fpls_2017_01901
crossref_primary_10_1093_jxb_erad480
crossref_primary_10_1101_gad_187849_112
crossref_primary_10_1111_j_1438_8677_2012_00609_x
crossref_primary_10_1016_j_fcr_2019_04_019
crossref_primary_10_3389_fpls_2019_00914
crossref_primary_10_3390_plants12122324
crossref_primary_10_1007_s00442_014_2983_x
crossref_primary_10_1016_j_envexpbot_2018_07_021
crossref_primary_10_1016_j_plaphy_2022_09_010
crossref_primary_10_1093_aob_mcs045
crossref_primary_10_1111_pce_12153
crossref_primary_10_1111_jvs_12449
crossref_primary_10_1111_nph_17648
crossref_primary_10_1016_j_ecoleng_2021_106270
crossref_primary_10_17660_ActaHortic_2018_1227_74
crossref_primary_10_1093_jxb_eru510
crossref_primary_10_4161_psb_5_11_13643
crossref_primary_10_1038_emboj_2009_306
crossref_primary_10_1016_j_soilbio_2013_10_014
crossref_primary_10_1073_pnas_2105649118
crossref_primary_10_1371_journal_pone_0127905
crossref_primary_10_17221_206_2017_HORTSCI
crossref_primary_10_1104_pp_108_133496
crossref_primary_10_1016_j_indcrop_2021_114396
crossref_primary_10_21273_HORTTECH04661_20
crossref_primary_10_3390_plants11081097
crossref_primary_10_1104_pp_110_162057
crossref_primary_10_1073_pnas_1806084115
crossref_primary_10_1111_j_1365_313X_2011_04597_x
crossref_primary_10_3389_fpls_2024_1497672
crossref_primary_10_17660_ActaHortic_2018_1227_68
Cites_doi 10.1146/annurev.pp.28.060177.002035
10.1093/pcp/pcf005
10.1242/dev.126.19.4235
10.1105/tpc.105.038810
10.1073/pnas.95.12.7197
10.1111/j.1365-313X.2006.02748.x
10.2307/3869307
10.1111/1365-3040.ep11604091
10.1073/pnas.95.5.2686
10.1111/j.1469-8137.1982.tb03270.x
10.1104/pp.104.059055
10.1101/gad.3.11.1745
10.1093/jxb/erm205
10.1104/pp.107.105601
10.1105/tpc.105.035899
10.1038/nature02174
10.1104/pp.106.092254
10.1093/oxfordjournals.pcp.a078177
10.1104/pp.119.3.1083
10.1104/pp.103.034397
10.1105/tpc.010827
10.1046/j.0016-8025.2001.00812.x
10.1104/pp.104.058354
10.1104/pp.120.4.1025
10.1046/j.1365-3040.2000.00587.x
10.1105/tpc.015685
10.1046/j.1365-313x.2000.00862.x
10.1038/nature06520
10.1016/S0176-1617(11)80176-8
10.1093/oxfordjournals.molbev.a025677
10.1074/jbc.M609842200
10.1101/gad.11.23.3194
10.1126/science.284.5415.760
10.1104/pp.102.018135
10.1105/tpc.107.051508
10.1105/tpc.003293
10.1111/j.1365-313X.2004.02044.x
10.1105/tpc.020958
10.1016/S0092-8674(00)81636-0
10.1016/S0092-8674(00)80841-7
10.1105/tpc.10.9.1479
10.1073/pnas.93.8.3530
10.1093/emboj/21.10.2441
10.1111/j.1365-313X.2006.02962.x
10.1111/j.1751-1097.1977.tb09125.x
10.1105/tpc.12.11.2061
10.1104/pp.113.2.611
10.1093/treephys/26.10.1249
10.1371/journal.pgen.0020106
10.1111/j.1469-8137.1981.tb01720.x
10.1046/j.1365-313X.1995.08050653.x
10.1104/pp.107.1.131
10.17660/ActaHortic.2001.552.9
10.1104/pp.116.1.17
10.1105/tpc.104.030049
10.1034/j.1399-3054.2000.100216.x
10.1093/jxb/erm186
10.1146/annurev.cellbio.15.1.33
10.1111/j.1751-1097.1992.tb02209.x
10.1093/pcp/pch125
10.1104/pp.124.2.805
10.1111/j.1365-3040.1990.tb01084.x
10.1104/pp.102.1.269
10.1126/science.1099728
10.1046/j.1365-313X.1999.00353.x
10.1016/j.tplants.2005.11.005
10.1016/j.molcel.2006.06.011
10.1126/science.7638620
10.1104/pp.105.1.141
10.1093/pcp/pcf033
10.1111/j.1365-313X.2007.03341.x
10.1104/pp.112.1.337
10.1074/jbc.M700616200
10.1101/gad.7.3.367
10.1038/nature06448
10.1104/pp.82.2.581
10.1111/j.1469-8137.2007.02044.x
10.1046/j.1365-3040.2003.01045.x
10.1038/35073622
10.1111/j.0014-3820.2001.tb00805.x
10.1105/tpc.106.047415
10.1126/science.247.4940.329
10.1038/sj.emboj.7601890
10.1111/j.1469-8137.2007.02281.x
10.1038/nature02090
10.1104/pp.115.3.959
10.1046/j.1365-313X.2002.01488.x
10.1105/tpc.10.2.155
10.1046/j.1365-3040.1997.d01-104.x
10.1111/j.1751-1097.1990.tb01767.x
10.1146/annurev.arplant.50.1.571
10.1046/j.1365-313X.1993.04030469.x
10.1038/nature05946
10.1007/1-4020-3811-9_2
10.1105/tpc.106.042200
10.1046/j.1365-3040.1997.d01-117.x
10.1111/j.1365-313X.2005.02606.x
10.1104/pp.104.4.1311
10.1073/pnas.96.10.5832
10.2307/2390158
10.1038/262210a0
10.1111/j.1365-313X.2007.03063.x
10.1073/pnas.101137598
10.1038/nature01636
10.1534/genetics.103.026096
10.1242/dev.128.12.2291
10.1093/genetics/159.2.777
10.1105/tpc.104.025643
10.1111/j.1365-313X.2007.03122.x
10.1016/0168-9452(89)90097-6
10.1046/j.1365-313X.1996.10061127.x
10.1104/pp.105.063461
10.1104/pp.124.1.39
10.1104/pp.103.022665
10.1007/BF00043870
10.1104/pp.102.015487
10.1105/tpc.107.052142
10.1073/pnas.0407107101
10.1104/pp.104.045120
10.1038/ng.2007.3
10.1046/j.1365-313X.1996.10050859.x
10.1111/j.1365-3040.1991.tb01371.x
10.1104/pp.102.4.1179
10.1007/s00344-003-0028-5
10.1038/23500
10.1104/pp.119.3.909
10.1007/BF00582351
10.1105/tpc.014498
10.1038/nature04028
10.1046/j.1365-313X.2003.01674.x
10.1104/pp.104.038893
10.1105/tpc.107.051441
10.1105/tpc.001156
10.1105/tpc.021568
10.1126/science.1083217
10.1126/science.282.5394.1698
10.1126/science.296.5566.285
10.1016/j.tplants.2004.12.005
10.1101/gad.364005
10.1105/tpc.010332
10.1111/j.1365-3040.1995.tb00582.x
10.1093/aob/mci208
10.1007/BF00388211
10.1111/j.1751-1097.1991.tb02096.x
ContentType Journal Article
Copyright Copyright 2008 New Phytologist Trust
The Author (2008). Journal compilation © New Phytologist (2008)
Copyright_xml – notice: Copyright 2008 New Phytologist Trust
– notice: The Author (2008). Journal compilation © New Phytologist (2008)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
C1K
7S9
L.6
7X8
DOI 10.1111/j.1469-8137.2008.02507.x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Ecology Abstracts
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 944
ExternalDocumentID 18537892
10_1111_j_1469_8137_2008_02507_x
NPH2507
25150519
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZCG
ZZTAW
~02
~IA
~KM
~WT
24P
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
DOOOF
ESX
HF~
HGD
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
C1K
7S9
L.6
7X8
ID FETCH-LOGICAL-c5177-324bbde95bc86e0c3bcad7b9dd8a724235084c4448cd6ecb0a0f8c6c58e1e9493
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Jul 10 22:06:40 EDT 2025
Fri Jul 11 18:36:18 EDT 2025
Fri Jul 11 15:45:00 EDT 2025
Thu Apr 03 07:06:41 EDT 2025
Tue Jul 01 03:08:56 EDT 2025
Thu Apr 24 22:52:22 EDT 2025
Wed Jan 22 16:21:08 EST 2025
Thu Jul 03 22:52:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5177-324bbde95bc86e0c3bcad7b9dd8a724235084c4448cd6ecb0a0f8c6c58e1e9493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 18537892
PQID 21046476
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_69581530
proquest_miscellaneous_48040781
proquest_miscellaneous_21046476
pubmed_primary_18537892
crossref_primary_10_1111_j_1469_8137_2008_02507_x
crossref_citationtrail_10_1111_j_1469_8137_2008_02507_x
wiley_primary_10_1111_j_1469_8137_2008_02507_x_NPH2507
jstor_primary_25150519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2008
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: September 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2008
Publisher Blackwell Publishing
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing
– name: Blackwell Publishing Ltd
References 2004; 167
1990; 52
2002; 14
1977; 25
1977; 28
1999; 284
1978; 132
1992; 56
1997; 9
1981; 88
2001; 410
1986; 82
2004a; 38
2006; 23
2000; 14
2000; 124
2000; 12
1994; 105
2007; 174
2006; 26
1999; 50
1998; 95
1998; 10
1998; 282
1995; 9
1989; 63
2007; 19
2007; 448
1976; 262
2007; 143
1990; 247
2007; 282
1997; 20
1996; 13
2004; 45
1996; 93
2001; 55
2008; 53
1993; 102
2004; 305
2003; 299
1996; 10
1995; 8
2003; 33
2001; 552
2005; 19
2006; 46
2008; 20
2005; 96
2003; 26
2005; 10
1995; 269
2000; 101
2005; 15
2005; 17
1996; 112
2001; 159
1999; 119
2000; 180
2003; 22
1997; 113
2007; 39
1993; 7
1997; 115
2007; 145
1990; 13
1999; 17
2005; 137
2005; 138
2005; 139
1999; 120
2003; 15
1994; 25
1999; 400
1998; 117
1998; 116
1999; 126
1993; 4
1993; 5
2004; 135
1994; 104
1997; 11
2006; 18
1999; 15
2002; 43
1999; 11
1999; 96
2004b; 136
2007; 26
2001; 98
2004; 101
2006; 93
1991; 3
1987; 10
1991; 39
2002; 296
1991a; 54
2000; 23
1991; 32
2000; 24
2006; 11
2002; 32
2005; 437
1993; 3
2006; 18
2006
2001; 13
2007; 51
2006; 2
1991b; 14
1980; 150
1995; 18
2003; 133
2005; 44
2007; 58
2003; 131
2001; 128
2002; 25
2003; 426
2004; 16
1989; 3
2002; 21
1995; 107
1982; 90
2003; 423
2008; 177
2008; 451
2007; 49
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Jarillo JA (e_1_2_8_69_1) 1998; 117
Kircher S (e_1_2_8_79_1) 1999; 11
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Fairchild CD (e_1_2_8_41_1) 2000; 14
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Whitelam GC (e_1_2_8_149_1) 1993; 5
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Ballaré CL (e_1_2_8_9_1) 1987; 10
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Selby CP (e_1_2_8_126_1) 2006; 93
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
Aukerman MJ (e_1_2_8_6_1) 1997; 9
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
Parks BM (e_1_2_8_108_1) 1993; 3
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
Dill A (e_1_2_8_32_1) 2001; 159
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 93
  start-page: 8129
  year: 2006
  end-page: 8133
  article-title: A cryptochrome/photolyase class of enzymes with single‐stranded DNA‐specific photolyase activity
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 90
  start-page: 611
  year: 1982
  end-page: 618
  article-title: Photomorphogenesis in and other plant species under simulated natural canopy radiation
  publication-title: New Phytologist
– volume: 132
  start-page: 187
  year: 1978
  end-page: 193
  article-title: The function of phytochrome in the natural environment. VII. The relationship between phytochrome photo‐equilibrium and development in light‐grown
  publication-title: Planta
– volume: 25
  start-page: 53
  year: 2002
  end-page: 63
  article-title: Differential genetic variation in adaptive strategies to a common environmental signal in Arabidopsis accessions: phytochrome‐mediated shade avoidance
  publication-title: Plant, Cell & Environment
– volume: 552
  start-page: 95
  year: 2001
  end-page: 102
  article-title: Shade‐tolerant flowering plants: adaptations and horticultural implications
  publication-title: Acta Horticulturae (ISHS)
– volume: 38
  start-page: 310
  year: 2004a
  end-page: 319
  article-title: Canopy studies on ethylene‐insensitive tobacco identify ethylene as a novel element in blue light and plant‐plant signalling
  publication-title: Plant Journal
– volume: 11
  start-page: 3194
  year: 1997
  end-page: 3205
  article-title: The Arabidopsis gene defines a signaling pathway that negatively regulates gibberellin responses
  publication-title: Genes and Development
– volume: 119
  start-page: 1083
  year: 1999
  end-page: 1089
  article-title: The mechanism of rhythmic ethylene production in Sorghum: the role of phytochrome B and simulated shading
  publication-title: Plant Physiology
– volume: 284
  start-page: 760
  year: 1999
  end-page: 765
  article-title: Cryptochromes: blue light receptors for plants and animals
  publication-title: Science
– volume: 282
  start-page: 9383
  year: 2007
  end-page: 9391
  article-title: Cryptochrome blue light photoreceptors are activated through interconversions of flavin redox states
  publication-title: Journal of Biological Chemistry
– volume: 18
  start-page: 3399
  year: 2006
  end-page: 3414
  article-title: Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis
  publication-title: The Plant Cell
– volume: 58
  start-page: 3125
  year: 2007
  end-page: 3133
  article-title: Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling
  publication-title: Journal of Experimental Botany
– volume: 10
  start-page: 155
  year: 1998
  end-page: 169
  article-title: The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway
  publication-title: The Plant Cell
– volume: 145
  start-page: 1043
  year: 2007
  end-page: 1051
  article-title: Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red‐light activation
  publication-title: Plant Physiology
– volume: 113
  start-page: 611
  year: 1997
  end-page: 619
  article-title: The sorghum photoperiod sensitivity gene, encodes phytochrome B
  publication-title: Plant Physiology
– volume: 43
  start-page: 281
  year: 2002
  end-page: 289
  article-title: Expression of the At GH3a gene, and Arabidopsis homologue of the soybean GH3 gene, is regulated by phytochrome B
  publication-title: Plant Cell Physiology
– volume: 26
  start-page: 4756
  year: 2007
  end-page: 4767
  article-title: Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins
  publication-title: The EMBO Journal
– volume: 11
  start-page: 4
  year: 2006
  end-page: 7
  article-title: Degradation of negative regulators: a common theme in hormone and light signaling networks?
  publication-title: Trends in Plant Science
– volume: 15
  start-page: 2399
  year: 2003
  end-page: 2407
  article-title: Functional characterization of phytochrome interacting factor 3 in phytochrome‐mediated light signal transduction
  publication-title: The Plant Cell
– volume: 10
  start-page: 1479
  year: 1998
  end-page: 1487
  article-title: Phytochrome E influences internode elongation and flowering time in
  publication-title: The Plant Cell
– volume: 55
  start-page: 692
  year: 2001
  end-page: 702
  article-title: Adaptive divergence in plasticity in natural populations of and its consequences for performance in novel habitats
  publication-title: Evolution
– volume: 95
  start-page: 7197
  year: 1998
  end-page: 7202
  article-title: High temperature promotes auxin‐mediated hypocotyl elongation in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 124
  start-page: 805
  year: 2000
  end-page: 812
  article-title: Changes in gibberellin A levels and response during de‐etiolation of pea seedlings
  publication-title: Plant Physiology
– volume: 28
  start-page: 355
  year: 1977
  end-page: 377
  article-title: Comparative photosynthesis of sun and shade plants
  publication-title: Annual Review of Plant Physiology
– volume: 174
  start-page: 735
  year: 2007
  end-page: 741
  article-title: A new role for phytochromes in temperature‐dependent germination
  publication-title: New Phytologist
– volume: 10
  start-page: 859
  year: 1996
  end-page: 868
  article-title: Nuclear localization activity of phytochrome B
  publication-title: Plant Journal
– volume: 126
  start-page: 4235
  year: 1999
  end-page: 4245
  article-title: Shade avoidance responses are mediated by the ATHB‐2 HD‐zip protein, a negative regulator of gene expression
  publication-title: Development
– volume: 18
  start-page: 2919
  year: 2006
  end-page: 2928
  article-title: A constitutive shade‐avoidance mutant implicates TIR‐NBS‐LRR proteins in Arabidopsis photomorphogenic development
  publication-title: The Plant Cell
– volume: 117
  start-page: 719
  year: 1998
  article-title: NPL1 (accession no. AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis
  publication-title: Plant Physiology
– volume: 52
  start-page: 143
  year: 1990
  end-page: 149
  article-title: Response of light‐grown wild‐type and long hypocotyl mutant cucumber plants to end‐of‐day far‐red light
  publication-title: Photochemistry and Photobiology
– volume: 95
  start-page: 657
  year: 1998
  end-page: 667
  article-title: PIF3, a phytochrome‐interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix‐loop‐helix protein
  publication-title: Cell
– volume: 19
  start-page: 2811
  year: 2005
  end-page: 2815
  article-title: A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis
  publication-title: Genes and Development
– volume: 159
  start-page: 777
  year: 2001
  end-page: 785
  article-title: Synergistic de‐repression of gibberellin signaling by removing RGA and GAI function in
  publication-title: Genetics
– volume: 17
  start-page: 3311
  year: 2005
  end-page: 3325
  article-title: Distinct and cooperative functions of phytochromes A,B and C in the control of deetiolation and flowering in rice
  publication-title: The Plant Cell
– volume: 23
  start-page: 439
  year: 2006
  end-page: 446
  article-title: Photoactivated phytochrome induces rapid PIF3 phosphorylation as a prelude to proteosome‐mediated degradation
  publication-title: Molecular Cell
– volume: 137
  start-page: 961
  year: 2005
  end-page: 968
  article-title: Low temperature induction of Arabidopsis CBF1,2 and 3 is gated by the circadian clock
  publication-title: Plant Physiology
– volume: 101
  start-page: 319
  year: 2000
  end-page: 329
  article-title: ZEITLUPE encodes a novel clock‐associated PAS protein from Arabidopsis
  publication-title: Cell
– volume: 14
  start-page: 1514
  year: 2002
  end-page: 1544
  article-title: Nucleo‐cytoplasmic partitioning of plant photoreceptors phytochromes A,B,C,D and E is differentially regulated by light and exhibits a diurnal rhythm
  publication-title: The Plant Cell
– volume: 269
  start-page: 968
  year: 1995
  end-page: 970
  article-title: Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1
  publication-title: Science
– volume: 426
  start-page: 680
  year: 2003
  end-page: 683
  article-title: Gating of the rapid shade avoidance response by the circadian clock in plants
  publication-title: Nature
– volume: 63
  start-page: 25
  year: 1989
  end-page: 29
  article-title: Control of carbon partitioning by light quality mediated by phytochrome
  publication-title: Plant Science
– volume: 10
  start-page: 1127
  year: 1996
  end-page: 1134
  article-title: The rosette habit of is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time
  publication-title: Plant Journal
– volume: 24
  start-page: 159
  year: 2000
  end-page: 169
  article-title: The hormonal regulation of axillary bud growth in Arabidopsis
  publication-title: Plant Journal
– volume: 32
  start-page: 1011
  year: 2002
  end-page: 1022
  article-title: The HAT2 gene, a member of the HD‐Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis
  publication-title: Plant Journal
– volume: 13
  start-page: 1141
  year: 1996
  end-page: 1150
  article-title: The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms
  publication-title: Molecular Biology and Evolution
– volume: 150
  start-page: 95
  year: 1980
  end-page: 101
  article-title: Rapid photomodulation of stem extension in light‐grown L. Studies on kinetics, site of perception and photoreceptor
  publication-title: Planta
– volume: 18
  start-page: 788
  year: 1995
  end-page: 794
  article-title: Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in : weak de‐etiolation of the mutant under dense canopies
  publication-title: Plant, Cell & Environment
– volume: 9
  start-page: 1317
  year: 1997
  end-page: 132
  article-title: A deletion in the gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far‐red light sensing
  publication-title: The Plant Cell
– volume: 423
  start-page: 881
  year: 2003
  end-page: 885
  article-title: Regulation of flowering time by light quality
  publication-title: Nature
– volume: 44
  start-page: 1023
  year: 2005
  end-page: 1035
  article-title: PIF1 is regulated by light‐mediated degradation through the ubiquitin‐26S proteosome pathway to optimize photomorphogenesis of seedlings in Arabidopsis
  publication-title: Plant Journal
– volume: 56
  start-page: 607
  year: 1992
  end-page: 610
  article-title: Light‐grown plants of the cucumber long hypocotyl mutant exhibit both long‐term and rapid growth responses to irradiation with supplementary far‐red light
  publication-title: Photochemistry and Photobiology
– volume: 8
  start-page: 653
  year: 1995
  end-page: 658
  article-title: Mutations throughout an blue‐light photoreceptor impair blue‐light‐responsive anthocyanin accumulation and inhibition of hypocotyl elongation
  publication-title: Plant Journal
– volume: 39
  start-page: 119
  year: 1991
  end-page: 125
  article-title: Retention of phytochrome‐mediated shade avoidance responses in phytochrome‐deficient mutants of cucumber and tomato
  publication-title: Journal of Plant Physiology
– volume: 115
  start-page: 959
  year: 1997
  end-page: 969
  article-title: Differential patterns of expression of the Arabidopsis , and phytochrome genes.
  publication-title: Plant Physiology
– volume: 32
  start-page: 1119
  year: 1991
  end-page: 112
  article-title: Phytochrome B is not detectable in the mutant of Arabidopsis, which is deficient in responding to end‐of‐day far‐red light treatments
  publication-title: Plant and Cell Physiology
– volume: 16
  start-page: 1433
  year: 2004
  end-page: 1445
  article-title: Constitutive Photomorphogenesis 1 and multiple photoreceptors control degradation of Phytochrome Interacting Factor 3, a transcription factor required for light signalling in Arabidopsis
  publication-title: The Plant Cell
– volume: 107
  start-page: 131
  year: 1995
  end-page: 140
  article-title: Phytochromes, gibberellins, and hypocotyl growth
  publication-title: Plant Physiology
– volume: 4
  start-page: 469
  year: 1993
  end-page: 479
  article-title: The and ‐4 genes are strongly induced by far‐red‐rich light
  publication-title: Plant Journal
– volume: 299
  start-page: 1853
  year: 2003
  end-page: 1854
  article-title: Relieving DELLA restraint
  publication-title: Science
– volume: 82
  start-page: 581
  year: 1986
  end-page: 584
  article-title: Genetic regulation of development in . II. Effect of the allele mimicked by GA(3)
  publication-title: Plant Physiology
– volume: 131
  start-page: 1340
  year: 2003
  end-page: 1346
  article-title: Phytochromes B, D and E act redundantly to control multiple physiological responses in Arabidopsis
  publication-title: Plant Physiology
– volume: 116
  start-page: 17
  year: 1998
  end-page: 25
  article-title: Phytochrome B and the regulation of circadian ethylene production in sorghum
  publication-title: Plant Physiology
– volume: 5
  start-page: 757
  year: 1993
  end-page: 768
  article-title: Phytochrome A null mutants of display a wild‐type phenotype in white light
  publication-title: The Plant Cell
– volume: 16
  start-page: 3033
  year: 2004
  end-page: 3044
  article-title: A novel molecular recognition otif necessary for targeting photoactivated phytochrome signalling to specific basic helix‐loop‐helix transcription factors
  publication-title: The Plant Cell
– volume: 10
  start-page: 51
  year: 2005
  end-page: 54
  article-title: bHLH class transcription factors take centre stage in phytochrome signaling
  publication-title: Trends in Plant Science
– volume: 88
  start-page: 239
  year: 1981
  end-page: 248
  article-title: Control of development in chenopodium‐album l by shadelight – the effect of light quantity (total fluence rate) and light quality (red – far‐red ratio)
  publication-title: New Phytologist
– volume: 3
  start-page: 1263
  year: 1991
  end-page: 1274
  article-title: The long hypocotyl mutant of is deficient in phytochrome B
  publication-title: The Plant Cell
– volume: 451
  start-page: 480
  year: 2008
  end-page: 486
  article-title: A molecular framework for light and gibberellin control of cell elongation
  publication-title: Nature
– volume: 49
  start-page: 338
  year: 2007
  end-page: 353
  article-title: Subfunctionalization of phyB1 and phyB2 in the control of seedling and mature plant traits in maize
  publication-title: Plant Journal
– volume: 143
  start-page: 1163
  year: 2007
  end-page: 1172
  article-title: DELLAs contribute to plant photomorphogenesis
  publication-title: Plant Physiology
– volume: 95
  start-page: 7686
  year: 1998
  end-page: 7699
  article-title: Enhancement of blue light sensitivity of seedlings by a blue light receptor cryptochrome 2
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 14
  start-page: 1723
  year: 2002
  end-page: 1735
  article-title: Cellular and subcellular localization of phototropin 1
  publication-title: The Plant Cell
– volume: 120
  start-page: 1025
  year: 1999
  end-page: 1032
  article-title: Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis
  publication-title: Plant Physiology
– volume: 45
  start-page: 968
  year: 2004
  end-page: 975
  article-title: Degradation of phytochrome interacting factor 3 in phytochrome‐mediated signaling
  publication-title: Plant Cell Physiology
– volume: 247
  start-page: 329
  year: 1990
  end-page: 332
  article-title: Far‐red radiation reflected from adjacent leaves: an early signal of competition in plant canopies
  publication-title: Science
– volume: 410
  start-page: 592
  year: 2001
  end-page: 594
  article-title: Phototropin‐related NPL1 controls chloroplast relocation induced by blue light
  publication-title: Nature
– volume: 26
  start-page: 1229
  year: 2003
  end-page: 1234
  article-title: Ethylene is required in tobacco to successfully complete with proximate neighbours
  publication-title: Plant, Cell & Environment
– volume: 93
  start-page: 3530
  year: 1996
  end-page: 3535
  article-title: Twilight‐zone and canopy shade induction of the homeobox gene in green plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 23
  start-page: 727
  year: 2000
  end-page: 734
  article-title: Degradation of phytochrome A and the high irradiance response in Arabidopsis: a kinetic analysis
  publication-title: Plant, Cell & Environment
– volume: 11
  start-page: 1445
  year: 1999
  end-page: 1456
  article-title: Light quality‐dependent nuclear import of the plant photoreceptors phytochrome A and B
  publication-title: The Plant Cell
– volume: 10
  start-page: 551
  year: 1987
  end-page: 557
  article-title: Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 2659
  year: 2001
  end-page: 2670
  article-title: A role for LKP2 in the circadian clock of Arabidopsis
  publication-title: The Plant Cell
– volume: 101
  start-page: 16091
  year: 2004
  end-page: 16098
  article-title: The phytochrome‐interacting transcription factor, PIF3, acts early, selectively and positively in light‐induced chloroplast development
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 136
  start-page: 2928
  year: 2004b
  end-page: 2936
  article-title: Interactions between ethylene and gibberellins in phytochrome‐mediated shade avoidance responses in tobacco
  publication-title: Plant Physiology
– volume: 15
  start-page: 33
  year: 1999
  end-page: 62
  article-title: Blue‐light photoreceptors in higher plants
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 13
  start-page: 695
  year: 1990
  end-page: 707
  article-title: Phytochrome, a family of photoreceptors with multiple physiological roles
  publication-title: Plant, Cell & Environment
– volume: 53
  start-page: 312
  year: 2008
  end-page: 323
  article-title: Phytochrome‐mediated inhibition of shade avoidance involves degradation of growth‐promoting bHLH transcription factors
  publication-title: Plant Journal
– volume: 51
  start-page: 117
  year: 2007
  end-page: 126
  article-title: DELLA protein function in growth responses to canopy signals
  publication-title: Plant Journal
– volume: 426
  start-page: 302
  year: 2003
  end-page: 306
  article-title: FKF1 is essential for photoperiodic‐specific light signalling in Arabidopsis
  publication-title: Nature
– start-page: 1
  year: 2006
  end-page: 23
– volume: 22
  start-page: 134
  year: 2003
  end-page: 140
  article-title: DELLA proteins and GA signalling in Arabidopsis
  publication-title: Journal of Plant Growth Regulation
– volume: 112
  start-page: 337
  year: 1996
  end-page: 342
  article-title: Phytochrome B affects responsiveness to gibberellins in Arabidopsis
  publication-title: Plant Physiology
– volume: 138
  start-page: 1106
  year: 2005
  end-page: 1116
  article-title: The involvement of gibberellin 20‐oxidase genes in phytochrome‐regulated petiole elongation of Arabidopsis
  publication-title: Plant Physiology
– volume: 19
  start-page: 3915
  year: 2007
  end-page: 3929
  article-title: The basic helix‐loop‐helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms
  publication-title: The Plant Cell
– volume: 15
  start-page: 1998
  year: 2005
  end-page: 2006
  article-title: Cold and light control seed germination through the bHLH transcription factor SPATULA
  publication-title: Current Biology
– volume: 128
  start-page: 2291
  year: 2001
  end-page: 2299
  article-title: Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development
  publication-title: Development
– volume: 98
  start-page: 6969
  year: 2001
  end-page: 6974
  article-title: Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 26
  start-page: 1249
  year: 2006
  end-page: 1256
  article-title: Twilight far‐red treatment advances leaf bud burst of silver birch (
  publication-title: Tree Physiology
– volume: 15
  start-page: 1120
  year: 2003
  end-page: 1130
  article-title: The Arabidopsis gene encodes a putative F‐box subunit of an SCF E3 ubiquitin ligase
  publication-title: The Plant Cell
– volume: 16
  start-page: 1392
  year: 2004
  end-page: 1405
  article-title: The Arabidopsis F‐box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin‐induced degradation
  publication-title: The Plant Cell
– volume: 3
  start-page: 39
  year: 1993
  end-page: 48
  article-title: hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A
  publication-title: The Plant Cell
– volume: 296
  start-page: 285
  year: 2002
  end-page: 289
  article-title: , the Rosetta stone of flowering time?
  publication-title: Science
– volume: 282
  start-page: 1698
  year: 1998
  end-page: 1701
  article-title: Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropis
  publication-title: Science
– volume: 3
  start-page: 1745
  year: 1989
  end-page: 1757
  article-title: Novel phytochrome sequences in : structure, evolution, and differential expression of a plant regulatory photoreceptor family
  publication-title: Genes and Development
– volume: 262
  start-page: 210
  year: 1976
  end-page: 212
  article-title: Linear relationship between phytochrome photoequilibrium and growth in plants under simulated natural radiation
  publication-title: Nature
– volume: 282
  start-page: 14916
  year: 2007
  end-page: 14922
  article-title: The signalling state of Arabidopsis cryptochrome 2 contains flavin semiquinone
  publication-title: Journal of Biological Chemistry
– volume: 39
  start-page: 1410
  year: 2007
  end-page: 1413
  article-title: Light‐quality regulation of freezing tolerance in
  publication-title: Nature Genetics
– volume: 135
  start-page: 1407
  year: 2004
  end-page: 1416
  article-title: Green light stimulates early stem elongation, antagonizing light‐mediated growth inhibition
  publication-title: Plant Physiology
– volume: 25
  start-page: 539
  year: 1977
  end-page: 545
  article-title: The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight
  publication-title: Photochemistry and Photobiology
– volume: 131
  start-page: 1913
  year: 2003
  end-page: 1920
  article-title: Changes in photoperiod or temperature reveal roles for phyD and phyE
  publication-title: Plant Physiology
– volume: 102
  start-page: 269
  year: 1993
  end-page: 277
  article-title: Isolation and initial characterisation of mutants that are deficient in functional phytochrome A
  publication-title: Plant Physiology
– volume: 12
  start-page: 2061
  year: 2000
  end-page: 2073
  article-title: , a basic helix‐loop‐helix protein is required for a branch of phytochrome A signalling in Arabidopsis
  publication-title: The Plant Cell
– volume: 19
  start-page: 1209
  year: 2007
  end-page: 1220
  article-title: The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENITIVE DWARF1A gibberellin receptor of Arabidopsis
  publication-title: The Plant Cell
– volume: 167
  start-page: 1395
  year: 2004
  end-page: 1405
  article-title: Structure and expression of maize phytochrome family homologs
  publication-title: Genetics
– volume: 17
  start-page: 1120
  year: 2005
  end-page: 1127
  article-title: Phototropins promote plant growth in response to blue light in low light environments
  publication-title: The Plant Cell
– volume: 25
  start-page: 413
  year: 1994
  end-page: 427
  article-title: The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of and
  publication-title: Plant Molecular Biology
– volume: 133
  start-page: 1617
  year: 2003
  end-page: 1629
  article-title: A genomic analysis of the shade avoidance response in Arabidopsis
  publication-title: Plant Physiology
– volume: 104
  start-page: 1311
  year: 1994
  end-page: 1315
  article-title: Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of to low red/far‐red ratio
  publication-title: Plant Physiology
– volume: 9
  start-page: 655
  year: 1995
  end-page: 666
  article-title: Genetic differentiation in morphological responses to simulated foliage shade between populations of from open and woodland sites
  publication-title: Functional Ecology
– volume: 14
  start-page: 2377
  year: 2000
  end-page: 2391
  article-title: encodes a typical bHLH protein that acts in phytochrome A signal transduction
  publication-title: Genes and Development
– volume: 15
  start-page: 2816
  year: 2003
  end-page: 2825
  article-title: Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function
  publication-title: The Plant Cell
– volume: 96
  start-page: 533
  year: 2005
  end-page: 540
  article-title: New perspectives in flooding research: the use of shade avoidance and
  publication-title: Annals of Botany
– volume: 54
  start-page: 819
  year: 1991a
  end-page: 826
  article-title: Responses of light‐grown wild‐type and long‐hypocotyl mutant cucumber seedlings to natural and stimulated shade light
  publication-title: Photochemistry and Photobiology
– volume: 451
  start-page: 475
  year: 2008
  end-page: 480
  article-title: Coordinated regulation of development by light and gibberellins
  publication-title: Nature
– volume: 20
  start-page: 337
  year: 2008
  end-page: 352.
  article-title: The Arabidopsis Phytochrome‐Interacting Factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels
  publication-title: The Plant Cell
– volume: 46
  start-page: 880
  year: 2006
  end-page: 889
  article-title: Identification and characterization of Arabidopsis gibberellin receptors
  publication-title: Plant Journal
– volume: 139
  start-page: 509
  year: 2005
  end-page: 518
  article-title: Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships
  publication-title: Plant Physiology
– volume: 20
  start-page: 840
  year: 1997
  end-page: 844
  article-title: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes
  publication-title: Plant, Cell & Environment
– volume: 177
  start-page: 367
  year: 2008
  end-page: 379
  article-title: Diversification of phytochrome contributions to germination as a function of seed‐maturation environment
  publication-title: New Phytologist
– volume: 14
  start-page: 57
  year: 1991b
  end-page: 65
  article-title: Photocontrol of stem elongation in plant neighbourhoods: effects of photon fluence rate under natural conditions of radiation
  publication-title: Plant, Cell & Environment
– volume: 180
  start-page: 223
  year: 2000
  end-page: 229
  article-title: Light‐regulation of gibberellin A1 content and expression of genes coding for GA 20‐oxidase and GA 3β‐hydroxylase in etiolated pea seedlings
  publication-title: Physiologia Plantarum
– volume: 18
  start-page: 2157
  year: 2006
  end-page: 2171
  article-title: Functional profiling reveals that only a small number of phytochrome‐regulated early‐response genes in Arabidopsis are necessary for optimal deetiolation
  publication-title: The Plant Cell
– volume: 400
  start-page: 462
  year: 1999
  end-page: 466
  article-title: Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light
  publication-title: Nature
– volume: 20
  start-page: 666
  year: 1997
  end-page: 671
  article-title: Phytochrome gene diversity
  publication-title: Plant, Cell & Environment
– volume: 21
  start-page: 2441
  year: 2002
  end-page: 2450
  article-title: PIF4, a phytochrome‐interacting bHLH factor functions as a negative regulator of phytochrome B signaling in Arabidopsis
  publication-title: The EMBO Journal
– volume: 58
  start-page: 3079
  year: 2007
  end-page: 3089
  article-title: The molecular analysis of the shade avoidance syndrome in the grasses has begun
  publication-title: Journal of Experimental Botany
– volume: 102
  start-page: 1179
  year: 1993
  end-page: 1184
  article-title: Selected components of the shade‐avoidance syndrome are displayed in a normal manner in mutants of and deficient in phytochrome B
  publication-title: Plant Physiology
– volume: 43
  start-page: 58
  year: 2002
  end-page: 69
  article-title: The APRR1/TOC1 quintet implicated in circadian rhythms of : I. Characterization with APRR1‐overexpressing plants
  publication-title: Plant and Cell Physiology
– volume: 305
  start-page: 1937
  year: 2004
  end-page: 1941
  article-title: PHYTOCHROME‐INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis
  publication-title: Science
– volume: 2
  start-page: 0980
  year: 2006
  end-page: 0989
  article-title: Potent induction of flowering by elevated growth temperature
  publication-title: PLoS Genetics
– volume: 105
  start-page: 141
  year: 1994
  end-page: 149
  article-title: Photoresponses of light‐grown mutants of : phytochrome A is required for the perception of daylength extensions
  publication-title: Plant Physiology
– volume: 133
  start-page: 517
  year: 2003
  end-page: 527
  article-title: Ethylene and auxin control the Arabidopsis response to decreased light intensity
  publication-title: Plant Physiology
– volume: 96
  start-page: 5832
  year: 1999
  end-page: 5837
  article-title: : an Arabidopsis mutant perturbed in phytochrome signaling because of a T‐DNA insertion in the promoter of PIF3, a gene encoding a phytochrome‐interacting bHLH protein
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 437
  start-page: 693
  year: 2005
  end-page: 698
  article-title: encodes a soluble receptor for gibberellin
  publication-title: Nature
– volume: 448
  start-page: 358
  year: 2007
  end-page: 363
  article-title: Rhythmic growth explained by coincidence between internal and external cues
  publication-title: Nature
– volume: 17
  start-page: 63
  year: 1999
  end-page: 71
  article-title: Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis
  publication-title: Plant Journal
– volume: 119
  start-page: 909
  year: 1999
  end-page: 915
  article-title: Phytochrome D acts in the shade‐avoidance syndrome in by controlling elongation and flowering time
  publication-title: Plant Physiology
– volume: 33
  start-page: 875
  year: 2003
  end-page: 885
  article-title: Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT
  publication-title: Plant Journal
– volume: 124
  start-page: 39
  year: 2000
  end-page: 45
  article-title: , an Arabidopsis locus implicated in phytochrome A signalling
  publication-title: Plant Physiology
– volume: 50
  start-page: 571
  year: 1999
  end-page: 599
  article-title: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 7
  start-page: 367
  year: 1993
  end-page: 379
  article-title: The gene of Arabidopsis encodes a developmental regulator
  publication-title: Genes and Development
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev.pp.28.060177.002035
– ident: e_1_2_8_87_1
  doi: 10.1093/pcp/pcf005
– ident: e_1_2_8_141_1
  doi: 10.1242/dev.126.19.4235
– ident: e_1_2_8_40_1
  doi: 10.1105/tpc.105.038810
– ident: e_1_2_8_52_1
  doi: 10.1073/pnas.95.12.7197
– ident: e_1_2_8_101_1
  doi: 10.1111/j.1365-313X.2006.02748.x
– ident: e_1_2_8_140_1
  doi: 10.2307/3869307
– volume: 10
  start-page: 551
  year: 1987
  ident: e_1_2_8_9_1
  article-title: Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight
  publication-title: Plant, Cell & Environment
  doi: 10.1111/1365-3040.ep11604091
– ident: e_1_2_8_82_1
  doi: 10.1073/pnas.95.5.2686
– ident: e_1_2_8_148_1
  doi: 10.1111/j.1469-8137.1982.tb03270.x
– ident: e_1_2_8_62_1
  doi: 10.1104/pp.104.059055
– ident: e_1_2_8_128_1
  doi: 10.1101/gad.3.11.1745
– ident: e_1_2_8_72_1
  doi: 10.1093/jxb/erm205
– volume: 117
  start-page: 719
  year: 1998
  ident: e_1_2_8_69_1
  article-title: NPL1 (accession no. AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis
  publication-title: Plant Physiology
– ident: e_1_2_8_131_1
  doi: 10.1104/pp.107.105601
– ident: e_1_2_8_142_1
  doi: 10.1105/tpc.105.035899
– ident: e_1_2_8_121_1
  doi: 10.1038/nature02174
– ident: e_1_2_8_2_1
  doi: 10.1104/pp.106.092254
– ident: e_1_2_8_99_1
  doi: 10.1093/oxfordjournals.pcp.a078177
– ident: e_1_2_8_44_1
  doi: 10.1104/pp.119.3.1083
– ident: e_1_2_8_31_1
  doi: 10.1104/pp.103.034397
– ident: e_1_2_8_91_1
  doi: 10.1105/tpc.010827
– volume: 14
  start-page: 2377
  year: 2000
  ident: e_1_2_8_41_1
  article-title: HFR1 encodes a typical bHLH protein that acts in phytochrome A signal transduction
  publication-title: Genes and Development
– ident: e_1_2_8_16_1
  doi: 10.1046/j.0016-8025.2001.00812.x
– ident: e_1_2_8_47_1
  doi: 10.1104/pp.104.058354
– ident: e_1_2_8_14_1
  doi: 10.1104/pp.120.4.1025
– ident: e_1_2_8_59_1
  doi: 10.1046/j.1365-3040.2000.00587.x
– ident: e_1_2_8_3_1
  doi: 10.1105/tpc.015685
– ident: e_1_2_8_23_1
  doi: 10.1046/j.1365-313x.2000.00862.x
– ident: e_1_2_8_27_1
  doi: 10.1038/nature06520
– ident: e_1_2_8_150_1
  doi: 10.1016/S0176-1617(11)80176-8
– ident: e_1_2_8_88_1
  doi: 10.1093/oxfordjournals.molbev.a025677
– ident: e_1_2_8_17_1
  doi: 10.1074/jbc.M609842200
– ident: e_1_2_8_110_1
  doi: 10.1101/gad.11.23.3194
– ident: e_1_2_8_21_1
  doi: 10.1126/science.284.5415.760
– ident: e_1_2_8_57_1
  doi: 10.1104/pp.102.018135
– ident: e_1_2_8_75_1
  doi: 10.1105/tpc.107.051508
– ident: e_1_2_8_119_1
  doi: 10.1105/tpc.003293
– ident: e_1_2_8_114_1
  doi: 10.1111/j.1365-313X.2004.02044.x
– ident: e_1_2_8_33_1
  doi: 10.1105/tpc.020958
– ident: e_1_2_8_102_1
  doi: 10.1016/S0092-8674(00)81636-0
– ident: e_1_2_8_139_1
  doi: 10.1016/S0092-8674(00)80841-7
– ident: e_1_2_8_29_1
  doi: 10.1105/tpc.10.9.1479
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.93.8.3530
– ident: e_1_2_8_66_1
  doi: 10.1093/emboj/21.10.2441
– ident: e_1_2_8_130_1
  doi: 10.1111/j.1365-313X.2006.02962.x
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1751-1097.1977.tb09125.x
– ident: e_1_2_8_138_1
  doi: 10.1105/tpc.12.11.2061
– ident: e_1_2_8_24_1
  doi: 10.1104/pp.113.2.611
– ident: e_1_2_8_83_1
  doi: 10.1093/treephys/26.10.1249
– ident: e_1_2_8_7_1
  doi: 10.1371/journal.pgen.0020106
– ident: e_1_2_8_98_1
  doi: 10.1111/j.1469-8137.1981.tb01720.x
– ident: e_1_2_8_4_1
  doi: 10.1046/j.1365-313X.1995.08050653.x
– ident: e_1_2_8_85_1
  doi: 10.1104/pp.107.1.131
– ident: e_1_2_8_92_1
  doi: 10.17660/ActaHortic.2001.552.9
– ident: e_1_2_8_45_1
  doi: 10.1104/pp.116.1.17
– ident: e_1_2_8_143_1
  doi: 10.1105/tpc.104.030049
– ident: e_1_2_8_50_1
  doi: 10.1034/j.1399-3054.2000.100216.x
– ident: e_1_2_8_93_1
  doi: 10.1093/jxb/erm186
– ident: e_1_2_8_18_1
  doi: 10.1146/annurev.cellbio.15.1.33
– ident: e_1_2_8_135_1
  doi: 10.1111/j.1751-1097.1992.tb02209.x
– ident: e_1_2_8_107_1
  doi: 10.1093/pcp/pch125
– ident: e_1_2_8_105_1
  doi: 10.1104/pp.124.2.805
– ident: e_1_2_8_136_1
  doi: 10.1111/j.1365-3040.1990.tb01084.x
– ident: e_1_2_8_100_1
  doi: 10.1104/pp.102.1.269
– ident: e_1_2_8_65_1
  doi: 10.1126/science.1099728
– ident: e_1_2_8_37_1
  doi: 10.1046/j.1365-313X.1999.00353.x
– ident: e_1_2_8_64_1
  doi: 10.1016/j.tplants.2005.11.005
– ident: e_1_2_8_5_1
  doi: 10.1016/j.molcel.2006.06.011
– ident: e_1_2_8_81_1
  doi: 10.1126/science.7638620
– ident: e_1_2_8_71_1
  doi: 10.1104/pp.105.1.141
– ident: e_1_2_8_144_1
  doi: 10.1093/pcp/pcf033
– ident: e_1_2_8_86_1
  doi: 10.1111/j.1365-313X.2007.03341.x
– ident: e_1_2_8_115_1
  doi: 10.1104/pp.112.1.337
– ident: e_1_2_8_12_1
  doi: 10.1074/jbc.M700616200
– ident: e_1_2_8_124_1
  doi: 10.1101/gad.7.3.367
– ident: e_1_2_8_43_1
  doi: 10.1038/nature06448
– ident: e_1_2_8_106_1
  doi: 10.1104/pp.82.2.581
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1469-8137.2007.02044.x
– ident: e_1_2_8_113_1
  doi: 10.1046/j.1365-3040.2003.01045.x
– ident: e_1_2_8_70_1
  doi: 10.1038/35073622
– ident: e_1_2_8_36_1
  doi: 10.1111/j.0014-3820.2001.tb00805.x
– ident: e_1_2_8_53_1
  doi: 10.1105/tpc.106.047415
– ident: e_1_2_8_10_1
  doi: 10.1126/science.247.4940.329
– ident: e_1_2_8_117_1
  doi: 10.1038/sj.emboj.7601890
– ident: e_1_2_8_35_1
  doi: 10.1111/j.1469-8137.2007.02281.x
– ident: e_1_2_8_68_1
  doi: 10.1038/nature02090
– ident: e_1_2_8_51_1
  doi: 10.1104/pp.115.3.959
– ident: e_1_2_8_122_1
  doi: 10.1046/j.1365-313X.2002.01488.x
– volume: 11
  start-page: 1445
  year: 1999
  ident: e_1_2_8_79_1
  article-title: Light quality‐dependent nuclear import of the plant photoreceptors phytochrome A and B
  publication-title: The Plant Cell
– ident: e_1_2_8_133_1
  doi: 10.1105/tpc.10.2.155
– ident: e_1_2_8_137_1
  doi: 10.1046/j.1365-3040.1997.d01-104.x
– ident: e_1_2_8_84_1
  doi: 10.1111/j.1751-1097.1990.tb01767.x
– ident: e_1_2_8_145_1
  doi: 10.1146/annurev.arplant.50.1.571
– ident: e_1_2_8_20_1
  doi: 10.1046/j.1365-313X.1993.04030469.x
– ident: e_1_2_8_104_1
  doi: 10.1038/nature05946
– ident: e_1_2_8_123_1
  doi: 10.1007/1-4020-3811-9_2
– ident: e_1_2_8_76_1
  doi: 10.1105/tpc.106.042200
– ident: e_1_2_8_89_1
  doi: 10.1046/j.1365-3040.1997.d01-117.x
– ident: e_1_2_8_132_1
  doi: 10.1111/j.1365-313X.2005.02606.x
– volume: 5
  start-page: 757
  year: 1993
  ident: e_1_2_8_149_1
  article-title: Phytochrome A null mutants of Arabidopsis display a wild‐type phenotype in white light
  publication-title: The Plant Cell
– ident: e_1_2_8_55_1
  doi: 10.1104/pp.104.4.1311
– ident: e_1_2_8_54_1
  doi: 10.1073/pnas.96.10.5832
– ident: e_1_2_8_38_1
  doi: 10.2307/2390158
– ident: e_1_2_8_96_1
  doi: 10.1038/262210a0
– ident: e_1_2_8_109_1
  doi: 10.1111/j.1365-313X.2007.03063.x
– ident: e_1_2_8_118_1
  doi: 10.1073/pnas.101137598
– ident: e_1_2_8_22_1
  doi: 10.1038/nature01636
– ident: e_1_2_8_129_1
  doi: 10.1534/genetics.103.026096
– volume: 9
  start-page: 1317
  year: 1997
  ident: e_1_2_8_6_1
  article-title: A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far‐red light sensing
  publication-title: The Plant Cell
– ident: e_1_2_8_90_1
  doi: 10.1242/dev.128.12.2291
– volume: 159
  start-page: 777
  year: 2001
  ident: e_1_2_8_32_1
  article-title: Synergistic de‐repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1093/genetics/159.2.777
– ident: e_1_2_8_74_1
  doi: 10.1105/tpc.104.025643
– ident: e_1_2_8_34_1
  doi: 10.1111/j.1365-313X.2007.03122.x
– ident: e_1_2_8_73_1
  doi: 10.1016/0168-9452(89)90097-6
– ident: e_1_2_8_28_1
  doi: 10.1046/j.1365-313X.1996.10061127.x
– ident: e_1_2_8_60_1
  doi: 10.1104/pp.105.063461
– ident: e_1_2_8_42_1
  doi: 10.1104/pp.124.1.39
– ident: e_1_2_8_147_1
  doi: 10.1104/pp.103.022665
– ident: e_1_2_8_26_1
  doi: 10.1007/BF00043870
– ident: e_1_2_8_48_1
  doi: 10.1104/pp.102.015487
– ident: e_1_2_8_80_1
  doi: 10.1105/tpc.107.052142
– ident: e_1_2_8_94_1
  doi: 10.1073/pnas.0407107101
– ident: e_1_2_8_111_1
  doi: 10.1104/pp.104.045120
– ident: e_1_2_8_49_1
  doi: 10.1038/ng.2007.3
– ident: e_1_2_8_120_1
  doi: 10.1046/j.1365-313X.1996.10050859.x
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1365-3040.1991.tb01371.x
– ident: e_1_2_8_116_1
  doi: 10.1104/pp.102.4.1179
– ident: e_1_2_8_67_1
  doi: 10.1007/s00344-003-0028-5
– ident: e_1_2_8_103_1
  doi: 10.1038/23500
– ident: e_1_2_8_30_1
  doi: 10.1104/pp.119.3.909
– ident: e_1_2_8_95_1
  doi: 10.1007/BF00582351
– ident: e_1_2_8_77_1
  doi: 10.1105/tpc.014498
– ident: e_1_2_8_146_1
  doi: 10.1038/nature04028
– ident: e_1_2_8_56_1
  doi: 10.1046/j.1365-313X.2003.01674.x
– ident: e_1_2_8_46_1
  doi: 10.1104/pp.104.038893
– ident: e_1_2_8_151_1
  doi: 10.1105/tpc.107.051441
– ident: e_1_2_8_78_1
  doi: 10.1105/tpc.001156
– ident: e_1_2_8_13_1
  doi: 10.1105/tpc.021568
– ident: e_1_2_8_58_1
  doi: 10.1126/science.1083217
– ident: e_1_2_8_25_1
  doi: 10.1126/science.282.5394.1698
– volume: 3
  start-page: 39
  year: 1993
  ident: e_1_2_8_108_1
  article-title: hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A
  publication-title: The Plant Cell
– ident: e_1_2_8_134_1
  doi: 10.1126/science.296.5566.285
– ident: e_1_2_8_39_1
  doi: 10.1016/j.tplants.2004.12.005
– ident: e_1_2_8_127_1
  doi: 10.1101/gad.364005
– ident: e_1_2_8_125_1
  doi: 10.1105/tpc.010332
– ident: e_1_2_8_152_1
  doi: 10.1111/j.1365-3040.1995.tb00582.x
– ident: e_1_2_8_112_1
  doi: 10.1093/aob/mci208
– ident: e_1_2_8_97_1
  doi: 10.1007/BF00388211
– volume: 93
  start-page: 8129
  year: 2006
  ident: e_1_2_8_126_1
  article-title: A cryptochrome/photolyase class of enzymes with single‐stranded DNA‐specific photolyase activity
  publication-title: Proceedings of the National Academy of Sciences, USA
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1751-1097.1991.tb02096.x
SSID ssj0009562
Score 2.4970882
SecondaryResourceType review_article
Snippet The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading...
Contents Summary 930 V. Crosstalk in shade avoidance signalling 939 I. Introduction 931 VI. Future perspectives 940 II. Shade avoidance responses 932...
Summary930V.Crosstalk in shade avoidance signalling939I.Introduction931VI.Future perspectives940II.Shade avoidance...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 930
SubjectTerms abiotic stress
Adaptation, Physiological
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis - radiation effects
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
DELLA
Developmental biology
Ethylenes - metabolism
evolution
Flowering
Gene expression regulation
Genes
Gibberellins
Hypocotyls
Indoleacetic Acids - metabolism
Light
light quality
Models, Biological
monitoring
Phenotypes
Photoreceptors
Photosynthesis
Photosynthetic Reaction Center Complex Proteins - physiology
phytochrome
PIF (PHYTOCHROME INTERACTING FACTOR)
Plant growth regulators
Plant Growth Regulators - metabolism
Plant Growth Regulators - physiology
Plants
red to far‐red ratio (R : FR)
shade
shade avoidance
Signal Transduction - radiation effects
stress response
Tansley Reviews
Temperature
transcription factors
vegetation
wavelengths
Title Shade Avoidance
URI https://www.jstor.org/stable/25150519
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2008.02507.x
https://www.ncbi.nlm.nih.gov/pubmed/18537892
https://www.proquest.com/docview/21046476
https://www.proquest.com/docview/48040781
https://www.proquest.com/docview/69581530
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kePBS3xqfPXhN2SSbfRxVLMVDEbXQW9hXUSqtaCvqr3cnj2qKgoi3HHZCJrOz82Xny7cAJ5ET2peRNJRaJSEdchnq1MWhsUI4SqkVOmf59li3Ty8H6aDkP-G_MIU-xHzDDTMjX68xwZV-Xkxy3MJKeEmJ9NWctxFPInUL8dF1_EV_l8WVIDOjbFAn9Xx7o1qlKsiK38HQOqrNy1JnFUaVQwUbZdSeTXXbvC9oPf6Px2vQLNFr67SYbuuw5MYbsHw28QjzbROaN3fKupZ6mdxbnExb0O9c3J53w_LAhdCkEfeLTUy1tk6m2gjmiEm0UZZraa1QHIGXR3PU-AgKY5kzmigyFIaZVLjISSqTbWiMJ2O3Cy0jE0FQ2y5Rjmpf85xHUn6tiIkUliQ8AF693MyUauR4KMZDVvsqkRl6W56Vid5mrwFEc8vHQpHjFzbbefzmBh7VpQheAziuApr5vMJmiRq7yew5i7H5TTn7eQQVBJug0c8jmEyFrygkgJ1irnw-sEdJXMg4AJZH_NeeZL2rLl7t_dVwH1YqyguJDqAxfZq5Q4-rpvooz5gP0B0OEQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EBb3Ut8ZXe_Caskk2-ziqWKrWIlqht5B9iGJpRVtRf707eVQrCkW85bATMpmdnW93Zr8BOAisUC6MxL5UaeTTWy59FdvQ10YISyk1QmVVvm3WvKFn3bhbtAPCuzA5P8T4wA09I1uv0cHxQPq7l-MZVsSLmkgXznndAco5bPCd7a-uwi8MvCwsKZkZZd3Jsp4f3zQRq_JyxZ-A6CSuzQJTYwl6pUp5PcpDfTRUdf3-je3xn3RehkoBYGuH-YxbgRnbX4X5o4EDmW9rULm-S42tpS-De4PzaR1uGied46Zf9FzwdRxwt96EVCljZay0YJboSOnUcCWNESlH7OUAHdXOiEIbZrUiKbkVmulY2MBKKqMNmO0P-nYLalpGgiC9XZRaqlzYsw5MueUiJFIYEnEPePl3E10QkmNfjF4ysTGRCWpbtMtEbZNXD4Kx5GNOyjGFzEZmwLGAA3Yx4lcPqqVFE-damC9J-3Ywek5CzH9Tzn4fQQXBPGjw-wgmY-GCCvFgM58snx_sgBIXMvSAZSafWpOkfdnEp-2_ClZhodm5aCWt0_b5DiyWFTAk2IXZ4dPI7jmYNVT7mft8AM6eEiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4YNMYLPtH6goPXkm273cdRRYKPEKKScGu6D6LBAFEw6q93tw8UAgkx3nrYaTqdmZ2vu1-_BTjzNBOmjYQuF3Hg4i7lrgi170rFmMYYKyYSlm-TNNr4phN2Mv6T_Rcm1YeYLLjZykjma1vgQ9WdLXK7hBXQjBJpujmtGjy5igliNsNr9_4vAV7i54rMBJPONKtn7p2mWlXKVpyHQ6dhbdKX6pvQyz1K6Si96ngkqvJrRuzxf1zegmIGXyvnab5tw4ru78DaxcBAzM9dKD48xUpX4vfBs7LZtAft-tXjZcPNTlxwZehRM9v4WAileSgkIxrJQMhYUcGVYjG1yMvAOSxNCJlUREuBYtRlksiQaU9zzIMSFPqDvj6AiuQBQ1bcLog1FqbpaQOlzGThI84UCqgDNH-5kczkyO2pGC_R1GcJj6y32WGZ1tvowwFvYjlMJTmWsCkl8ZsYGFgXWvTqQDkPaGQKy-6WxH09GL9Fvt39xpQsHoEZsrug3uIRhIfMtBTkwH6aKz8PbGASZdx3gCQRX9qTqNlq2KvDvxqWYb1Vq0d3183bI9jI6S_IO4bC6HWsTwzGGonTpHi-AYcdEOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shade+avoidance&rft.jtitle=The+New+phytologist&rft.au=Franklin%2C+Keara+A&rft.date=2008-09-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=179&rft.issue=4&rft.spage=930&rft.epage=944&rft_id=info:doi/10.1111%2Fj.1469-8137.2008.02507.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon