Shade Avoidance
The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include alte...
Saved in:
Published in | The New phytologist Vol. 179; no. 4; pp. 930 - 944 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing
01.09.2008
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R: FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R: FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. |
---|---|
AbstractList | The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far‐red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as ‘the shade avoidance syndrome’ and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
Contents
Summary
930
I.
Introduction
931
II.
Shade avoidance responses
932
III.
Photoreceptor regulation of shade avoidance
932
IV.
Molecular mechanisms in shade avoidance signalling
934
V.
Crosstalk in shade avoidance signalling
939
VI.
Future perspectives
940
Acknowledgements
940
References
940 The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. Summary930V.Crosstalk in shade avoidance signalling939I.Introduction931VI.Future perspectives940II.Shade avoidance responses932Acknowledgements940III.Photoreceptor regulation of shade avoidance932References940IV.Molecular mechanisms in shade avoidance signalling934The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R:FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R:FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far‐red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as ‘the shade avoidance syndrome’ and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. Contents Summary 930 I. Introduction 931 II. Shade avoidance responses 932 III. Photoreceptor regulation of shade avoidance 932 IV. Molecular mechanisms in shade avoidance signalling 934 V. Crosstalk in shade avoidance signalling 939 VI. Future perspectives 940 Acknowledgements 940 References 940 The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. Contents Summary 930 V. Crosstalk in shade avoidance signalling 939 I. Introduction 931 VI. Future perspectives 940 II. Shade avoidance responses 932 Acknowledgements 940 III. Photoreceptor regulation of shade avoidance 932 References 940 IV. Molecular mechanisms in shade avoidance signalling 934 Summary The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far‐red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as ‘the shade avoidance syndrome’ and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment. |
Author | Franklin, Keara A. |
Author_xml | – sequence: 1 givenname: Keara A. surname: Franklin fullname: Franklin, Keara A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18537892$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkF1LwzAUhoNM3IfiL1B25V3rSZrPC4Ux1AlDBRW8C2maYUfXzqbT7d_bujnBmy03J3Ce9w15uqiVF7lDqI8hxPW5nIaYchVIHImQAMgQCAMRLg9QZ7tooQ4AkQGn_K2Nut5PAUAxTo5QG0sWCalIB50-v5vE9QefRZqY3LpjdDgxmXcnm9lDr7c3L8NRMH68ux8OxoFlWIggIjSOE6dYbCV3YKPYmkTEKkmkEYSSiIGkllIqbcKdjcHARFpumXTYKaqiHrpY987L4mPhfKVnqbcuy0zuioXXXDGJWQQ7QSqBgqg_vAskGCingtfg-QZcxDOX6HmZzky50r9SakCuAVsW3pdu8oeAbvzrqW4060azbvzrH_96WUev_0VtWpkqLfKqNGm2T8HVuuArzdxq74f1w9OoudX5s3V-6qui3OYJwwwYVtE3hYalSA |
CitedBy_id | crossref_primary_10_1016_j_scienta_2019_108725 crossref_primary_10_1016_j_tplants_2012_09_008 crossref_primary_10_1016_j_flora_2019_03_003 crossref_primary_10_1016_j_tplants_2012_09_002 crossref_primary_10_3390_f14081605 crossref_primary_10_1080_17429145_2019_1689581 crossref_primary_10_1016_j_tplants_2019_07_001 crossref_primary_10_1111_nph_19885 crossref_primary_10_3389_fpls_2025_1529455 crossref_primary_10_1071_FP08218 crossref_primary_10_3390_agronomy10010110 crossref_primary_10_1146_annurev_ecolsys_110617_062622 crossref_primary_10_1139_cjb_2014_0194 crossref_primary_10_4161_psb_4_8_9179 crossref_primary_10_1016_j_scienta_2024_113787 crossref_primary_10_1242_jeb_089938 crossref_primary_10_1093_jxb_err062 crossref_primary_10_1371_journal_pone_0098465 crossref_primary_10_1111_tpj_16410 crossref_primary_10_1016_j_cropro_2024_107038 crossref_primary_10_1093_treephys_tpaa144 crossref_primary_10_3390_ijms20143599 crossref_primary_10_1111_j_1365_313X_2010_04434_x crossref_primary_10_1016_j_landurbplan_2017_08_014 crossref_primary_10_1016_j_molp_2020_11_021 crossref_primary_10_4161_psb_23355 crossref_primary_10_1016_j_marenvres_2017_12_012 crossref_primary_10_1656_045_024_0205 crossref_primary_10_3390_ijms26072992 crossref_primary_10_3390_plants11151982 crossref_primary_10_1071_FP18279 crossref_primary_10_3389_fpls_2017_01181 crossref_primary_10_1007_s10530_024_03464_6 crossref_primary_10_1098_rspb_2011_0971 crossref_primary_10_1093_aobpla_plr031 crossref_primary_10_1093_plphys_kiab071 crossref_primary_10_15252_embj_201693907 crossref_primary_10_1016_j_molp_2020_11_016 crossref_primary_10_3389_fpls_2022_1015414 crossref_primary_10_1111_nph_14176 crossref_primary_10_1002_fes3_291 crossref_primary_10_1093_treephys_tpab005 crossref_primary_10_1038_s41477_021_00956_4 crossref_primary_10_1016_j_envexpbot_2021_104649 crossref_primary_10_1007_s11284_012_0991_z crossref_primary_10_1016_j_scienta_2024_113553 crossref_primary_10_1007_s13580_018_0114_z crossref_primary_10_1016_j_scienta_2015_02_036 crossref_primary_10_1016_j_fcr_2020_108054 crossref_primary_10_1111_pce_13445 crossref_primary_10_1016_j_jplph_2014_12_002 crossref_primary_10_3389_fpls_2017_00182 crossref_primary_10_1111_plb_12849 crossref_primary_10_1016_j_plaphy_2024_108931 crossref_primary_10_1051_e3sconf_202123201031 crossref_primary_10_3389_fpls_2014_00275 crossref_primary_10_1093_jxb_ers376 crossref_primary_10_1093_jxb_ert465 crossref_primary_10_1093_jxb_eraa567 crossref_primary_10_1177_1477153515622681 crossref_primary_10_1371_journal_pone_0167767 crossref_primary_10_1016_j_foreco_2011_06_043 crossref_primary_10_3390_biology13010012 crossref_primary_10_1007_s10457_021_00678_8 crossref_primary_10_1186_s40793_025_00679_5 crossref_primary_10_1371_journal_pgen_1002594 crossref_primary_10_4274_eajem_galenos_2023_80217 crossref_primary_10_1016_j_scienta_2023_112051 crossref_primary_10_1002_ecy_1934 crossref_primary_10_3390_plants11151997 crossref_primary_10_3389_fpls_2019_00169 crossref_primary_10_1590_S0100_83582012000300002 crossref_primary_10_3390_agronomy13082018 crossref_primary_10_1016_j_pbi_2016_06_011 crossref_primary_10_1016_j_actao_2022_103863 crossref_primary_10_1093_aob_mcae203 crossref_primary_10_3390_horticulturae6040109 crossref_primary_10_1016_j_envexpbot_2018_06_033 crossref_primary_10_1007_s40362_014_0022_2 crossref_primary_10_1016_j_fcr_2018_10_016 crossref_primary_10_1111_j_1365_313X_2011_04485_x crossref_primary_10_34133_plantphenomics_0095 crossref_primary_10_1080_15592324_2020_1777372 crossref_primary_10_1111_pce_14995 crossref_primary_10_3390_plants13030452 crossref_primary_10_1111_pce_12330 crossref_primary_10_1007_s13593_015_0314_1 crossref_primary_10_1007_s00709_016_1020_9 crossref_primary_10_1016_j_scienta_2021_109995 crossref_primary_10_1016_j_tplants_2009_11_007 crossref_primary_10_3389_fpls_2019_01026 crossref_primary_10_3390_plants14060862 crossref_primary_10_1093_jxb_eru011 crossref_primary_10_1038_s41598_021_96854_y crossref_primary_10_1016_j_ppees_2016_09_005 crossref_primary_10_1242_bio_024422 crossref_primary_10_17660_ActaHortic_2016_1134_35 crossref_primary_10_1021_acs_jafc_8b07050 crossref_primary_10_1111_nph_16040 crossref_primary_10_3389_fevo_2023_1046332 crossref_primary_10_3389_fpls_2018_01847 crossref_primary_10_1080_23818107_2018_1429302 crossref_primary_10_1021_acssuschemeng_1c07054 crossref_primary_10_1007_s00442_015_3288_4 crossref_primary_10_1016_j_cj_2024_12_005 crossref_primary_10_1038_s41598_020_75794_z crossref_primary_10_1371_journal_pone_0313084 crossref_primary_10_1111_j_1469_8137_2009_02921_x crossref_primary_10_3389_fpls_2019_01296 crossref_primary_10_1007_s00468_022_02292_2 crossref_primary_10_3389_fpls_2021_813092 crossref_primary_10_1111_pce_14853 crossref_primary_10_25308_aduziraat_329081 crossref_primary_10_1007_s42994_021_00038_1 crossref_primary_10_1038_s41467_019_10867_w crossref_primary_10_1016_j_envexpbot_2022_105183 crossref_primary_10_3389_fpls_2022_973643 crossref_primary_10_1111_nph_18459 crossref_primary_10_3390_plants9111592 crossref_primary_10_1016_j_envexpbot_2023_105589 crossref_primary_10_1080_15592324_2015_1062195 crossref_primary_10_1111_j_1469_8137_2009_02934_x crossref_primary_10_3389_frfst_2022_852155 crossref_primary_10_3390_plants12071550 crossref_primary_10_1111_j_1744_7909_2011_01081_x crossref_primary_10_1093_jxb_ert389 crossref_primary_10_1111_j_1365_3040_2011_02474_x crossref_primary_10_1186_s12870_023_04348_y crossref_primary_10_1007_s11738_015_1849_0 crossref_primary_10_7717_peerj_14274 crossref_primary_10_3390_ijms231912057 crossref_primary_10_1007_s00344_021_10517_w crossref_primary_10_1016_j_envexpbot_2023_105471 crossref_primary_10_1080_07352689_2011_615706 crossref_primary_10_1073_pnas_1403052111 crossref_primary_10_1007_s10725_015_0046_x crossref_primary_10_1093_insilicoplants_diaa008 crossref_primary_10_3390_ijms21228742 crossref_primary_10_1016_j_pbi_2008_09_007 crossref_primary_10_1016_j_scienta_2014_02_010 crossref_primary_10_1007_s10342_012_0677_7 crossref_primary_10_4161_psb_6_1_14185 crossref_primary_10_1007_s13580_016_0071_3 crossref_primary_10_1038_nrm3088 crossref_primary_10_3390_horticulturae10101106 crossref_primary_10_1016_j_ijbiomac_2024_135234 crossref_primary_10_1186_s12870_024_05950_4 crossref_primary_10_1007_s10725_015_0032_3 crossref_primary_10_1016_j_cj_2023_03_011 crossref_primary_10_1080_23818107_2020_1857833 crossref_primary_10_1111_tpj_12203 crossref_primary_10_5937_ZemBilj2001046M crossref_primary_10_1080_28347056_2024_2330972 crossref_primary_10_1016_j_crope_2023_11_004 crossref_primary_10_3390_biom11091283 crossref_primary_10_1016_j_bbrc_2019_05_142 crossref_primary_10_3390_plants12223800 crossref_primary_10_1104_pp_111_180661 crossref_primary_10_1038_s44264_025_00048_2 crossref_primary_10_1093_jxb_erad094 crossref_primary_10_1016_S2095_3119_17_61807_0 crossref_primary_10_1021_acs_jafc_3c05985 crossref_primary_10_1016_j_scienta_2021_110805 crossref_primary_10_1021_acs_jafc_3c06834 crossref_primary_10_1111_jac_12014 crossref_primary_10_1111_pce_13630 crossref_primary_10_1007_s00442_011_1941_0 crossref_primary_10_1016_j_tplants_2011_05_004 crossref_primary_10_1111_pce_13870 crossref_primary_10_3390_agronomy11050853 crossref_primary_10_1007_s00344_024_11397_6 crossref_primary_10_1093_jxb_eru060 crossref_primary_10_1093_pcp_pcq140 crossref_primary_10_1111_nph_12725 crossref_primary_10_1080_15592324_2016_1187356 crossref_primary_10_1016_j_scienta_2024_112863 crossref_primary_10_1186_s43014_023_00210_8 crossref_primary_10_1038_nplants_2016_25 crossref_primary_10_32615_ps_2021_057 crossref_primary_10_1111_1365_2435_13262 crossref_primary_10_1038_s41467_017_00404_y crossref_primary_10_1080_12538078_2013_807302 crossref_primary_10_1111_pce_13720 crossref_primary_10_1016_j_envexpbot_2015_05_010 crossref_primary_10_1111_j_1365_2435_2010_01763_x crossref_primary_10_1016_j_isci_2019_11_035 crossref_primary_10_3390_d16090512 crossref_primary_10_1073_pnas_0910446107 crossref_primary_10_3389_fpls_2022_938199 crossref_primary_10_1007_s00114_009_0604_z crossref_primary_10_3390_horticulturae10020115 crossref_primary_10_3389_fpls_2019_00557 crossref_primary_10_3389_fpls_2021_609975 crossref_primary_10_3390_plants12183284 crossref_primary_10_3732_ajb_1200354 crossref_primary_10_3390_molecules26237405 crossref_primary_10_1371_journal_pone_0165742 crossref_primary_10_1007_s00425_013_1962_5 crossref_primary_10_1016_j_plaphy_2024_109191 crossref_primary_10_3390_plants10010096 crossref_primary_10_32615_bp_2022_039 crossref_primary_10_1111_j_1365_313X_2012_05033_x crossref_primary_10_12791_KSBEC_2019_28_1_86 crossref_primary_10_1016_j_molp_2014_11_021 crossref_primary_10_1016_j_buildenv_2023_111052 crossref_primary_10_1016_j_fochx_2022_100323 crossref_primary_10_1089_ast_2020_2313 crossref_primary_10_1093_aob_mcac087 crossref_primary_10_1016_j_envexpbot_2024_106024 crossref_primary_10_1155_2014_501016 crossref_primary_10_1007_s13593_022_00783_7 crossref_primary_10_1371_journal_pgen_1002589 crossref_primary_10_1111_pce_13818 crossref_primary_10_3390_plants10010166 crossref_primary_10_1007_s13205_023_03709_6 crossref_primary_10_1146_annurev_arplant_59_032607_092819 crossref_primary_10_1016_j_scienta_2018_02_058 crossref_primary_10_1111_j_1600_0706_2011_20333_x crossref_primary_10_1002_ece3_4831 crossref_primary_10_1111_j_1469_8137_2011_03952_x crossref_primary_10_1093_aob_mcy001 crossref_primary_10_1111_j_1469_8137_2011_03733_x crossref_primary_10_1007_s11099_016_0668_x crossref_primary_10_1016_j_ufug_2014_05_011 crossref_primary_10_1016_j_flora_2019_02_005 crossref_primary_10_3390_agronomy10121859 crossref_primary_10_1080_1343943X_2020_1847666 crossref_primary_10_1093_jxb_erw272 crossref_primary_10_1093_jxb_eru090 crossref_primary_10_1093_jxb_ery331 crossref_primary_10_3389_fpls_2024_1492431 crossref_primary_10_4161_psb_4_9_9528 crossref_primary_10_1016_j_envexpbot_2009_06_011 crossref_primary_10_1016_S2095_3119_18_62130_6 crossref_primary_10_4161_psb_6_4_14496 crossref_primary_10_1016_j_xplc_2024_100922 crossref_primary_10_1146_annurev_arplant_042817_040226 crossref_primary_10_3390_ijms160716497 crossref_primary_10_1111_j_1469_8137_2012_04145_x crossref_primary_10_1111_pce_12854 crossref_primary_10_3390_plants14010139 crossref_primary_10_3390_plants10050960 crossref_primary_10_1111_1365_2664_12115 crossref_primary_10_1073_pnas_1105892108 crossref_primary_10_1038_s41588_021_00882_3 crossref_primary_10_1111_j_1365_313X_2011_04745_x crossref_primary_10_1111_nph_12407 crossref_primary_10_1073_pnas_1013457108 crossref_primary_10_1002_ppp3_10371 crossref_primary_10_1007_s00425_012_1662_6 crossref_primary_10_1016_j_xplc_2022_100416 crossref_primary_10_1093_pcp_pcad077 crossref_primary_10_3389_fpls_2023_1225895 crossref_primary_10_1111_ele_13656 crossref_primary_10_3724_SP_J_1259_2011_00338 crossref_primary_10_1016_j_scienta_2013_02_030 crossref_primary_10_1111_1365_2435_12010 crossref_primary_10_1111_j_1365_313X_2010_04360_x crossref_primary_10_1371_journal_pone_0069431 crossref_primary_10_1002_ajb2_1732 crossref_primary_10_5338_KJEA_2020_39_4_37 crossref_primary_10_3389_freae_2024_1404958 crossref_primary_10_1093_mp_ssn086 crossref_primary_10_1371_journal_pone_0090587 crossref_primary_10_3389_fpls_2017_00386 crossref_primary_10_3389_fpls_2023_1129335 crossref_primary_10_1093_pcp_pcp028 crossref_primary_10_1104_pp_112_206607 crossref_primary_10_1016_j_foreco_2022_120683 crossref_primary_10_1105_tpc_109_072280 crossref_primary_10_1111_nph_13965 crossref_primary_10_1016_j_scienta_2022_111386 crossref_primary_10_17352_2455_815X_000157 crossref_primary_10_3390_plants9050556 crossref_primary_10_1016_j_foreco_2015_09_036 crossref_primary_10_1139_cjps_2019_0082 crossref_primary_10_1371_journal_pgen_1001100 crossref_primary_10_1016_j_envexpbot_2015_06_006 crossref_primary_10_1016_j_foreco_2021_119154 crossref_primary_10_3390_horticulturae9080907 crossref_primary_10_1111_jipb_13582 crossref_primary_10_1111_ppl_14636 crossref_primary_10_1093_aobpla_plx039 crossref_primary_10_1271_bbb_110442 crossref_primary_10_3389_fgene_2020_00154 crossref_primary_10_3389_fgene_2018_00478 crossref_primary_10_3390_horticulturae10111134 crossref_primary_10_3389_fgene_2022_891702 crossref_primary_10_1111_j_1469_8137_2012_04288_x crossref_primary_10_1016_j_scienta_2023_112600 crossref_primary_10_1016_j_scienta_2017_02_016 crossref_primary_10_3389_fpls_2025_1544054 crossref_primary_10_1007_s13595_015_0495_4 crossref_primary_10_1038_nplants_2015_190 crossref_primary_10_1105_tpc_109_070672 crossref_primary_10_1016_j_envexpbot_2025_106133 crossref_primary_10_1016_j_crope_2022_03_009 crossref_primary_10_1093_mp_sss031 crossref_primary_10_1371_journal_pone_0170049 crossref_primary_10_1093_mp_sss030 crossref_primary_10_1007_s13580_022_00450_6 crossref_primary_10_4161_psb_20407 crossref_primary_10_3390_plants10112261 crossref_primary_10_1186_s12870_020_02556_4 crossref_primary_10_1111_pce_13905 crossref_primary_10_1186_1471_2229_12_227 crossref_primary_10_1016_j_bbagrm_2011_09_005 crossref_primary_10_1016_j_foreco_2016_04_053 crossref_primary_10_1371_journal_pone_0291601 crossref_primary_10_3390_ijms23179966 crossref_primary_10_1007_s00344_020_10066_8 crossref_primary_10_1111_j_1365_3040_2009_01936_x crossref_primary_10_1093_jxb_erx295 crossref_primary_10_3390_f13122140 crossref_primary_10_1371_journal_pone_0034121 crossref_primary_10_1038_ncb0411_347 crossref_primary_10_1093_jxb_erae259 crossref_primary_10_3390_ijms24098378 crossref_primary_10_1093_jxb_erae137 crossref_primary_10_3389_fpls_2020_581156 crossref_primary_10_3390_plants3020223 crossref_primary_10_4161_psb_21824 crossref_primary_10_1093_treephys_tpw091 crossref_primary_10_1007_s10725_020_00581_9 crossref_primary_10_1093_jb_mvy103 crossref_primary_10_1016_S2095_3119_15_61214_X crossref_primary_10_1111_j_1751_1097_2009_00605_x crossref_primary_10_1007_s00344_024_11442_4 crossref_primary_10_1016_j_envexpbot_2016_05_014 crossref_primary_10_1016_j_envpol_2019_113805 crossref_primary_10_1016_j_tifs_2020_09_031 crossref_primary_10_1038_s41598_023_31466_2 crossref_primary_10_3389_fpls_2020_609977 crossref_primary_10_1007_s00468_010_0525_7 crossref_primary_10_3390_f13070996 crossref_primary_10_1071_FP12028 crossref_primary_10_1111_gfs_12634 crossref_primary_10_1007_s11056_015_9473_9 crossref_primary_10_1038_nchembio_1178 crossref_primary_10_3390_plants10112483 crossref_primary_10_1007_s11676_017_0559_4 crossref_primary_10_3390_agronomy9080458 crossref_primary_10_3389_fpls_2021_631810 crossref_primary_10_1093_jxb_erp304 crossref_primary_10_1007_s13580_016_0093_x crossref_primary_10_1111_j_1365_313X_2012_05049_x crossref_primary_10_1111_j_1365_3040_2009_01958_x crossref_primary_10_1007_s00438_018_1478_6 crossref_primary_10_1016_j_envexpbot_2014_01_008 crossref_primary_10_1016_j_envexpbot_2019_03_016 crossref_primary_10_3389_fpls_2016_02021 crossref_primary_10_1111_ppl_70025 crossref_primary_10_1242_dev_130211 crossref_primary_10_17660_eJHS_2024_012 crossref_primary_10_3390_agronomy10111772 crossref_primary_10_7235_HORT_20210005 crossref_primary_10_21273_HORTSCI15200_20 crossref_primary_10_32615_ps_2024_016 crossref_primary_10_1016_j_tplants_2023_04_011 crossref_primary_10_1071_RJ14038 crossref_primary_10_3390_agronomy10081191 crossref_primary_10_1371_journal_pone_0173758 crossref_primary_10_1007_s10725_012_9729_8 crossref_primary_10_17129_botsci_2879 crossref_primary_10_1016_j_envexpbot_2024_106059 crossref_primary_10_1086_665975 crossref_primary_10_1016_j_devcel_2017_11_017 crossref_primary_10_1186_s12870_023_04570_8 crossref_primary_10_1111_jipb_12516 crossref_primary_10_1016_j_envexpbot_2012_04_013 crossref_primary_10_1111_1365_2745_12607 crossref_primary_10_1111_plb_12077 crossref_primary_10_1104_pp_111_172684 crossref_primary_10_1016_j_biosystemseng_2014_04_001 crossref_primary_10_4161_psb_23831 crossref_primary_10_1007_s11032_023_01375_3 crossref_primary_10_4161_psb_19340 crossref_primary_10_1016_j_scienta_2019_05_030 crossref_primary_10_1093_jxb_erx098 crossref_primary_10_1073_pnas_1205437109 crossref_primary_10_1111_ppl_13122 crossref_primary_10_1111_j_1365_313X_2012_04992_x crossref_primary_10_1007_s12038_020_00070_1 crossref_primary_10_3389_fpls_2024_1386950 crossref_primary_10_1038_srep22073 crossref_primary_10_1016_j_tplants_2016_12_006 crossref_primary_10_1111_nph_20098 crossref_primary_10_3390_agronomy9080428 crossref_primary_10_4161_psb_4_7_8849 crossref_primary_10_1093_aob_mcr236 crossref_primary_10_3159_TORREY_D_23_00028_1 crossref_primary_10_3390_ijms10083547 crossref_primary_10_1038_s41598_017_16239_y crossref_primary_10_3390_ijpb16010008 crossref_primary_10_1016_j_plantsci_2014_10_002 crossref_primary_10_1093_aob_mcz197 crossref_primary_10_1098_rstb_2018_0182 crossref_primary_10_1111_nph_13449 crossref_primary_10_1016_S2095_3119_20_63227_0 crossref_primary_10_4161_psb_7_1_18635 crossref_primary_10_3389_fpls_2023_1305182 crossref_primary_10_3389_fpls_2023_1151765 crossref_primary_10_1038_srep31673 crossref_primary_10_1093_jxb_erp345 crossref_primary_10_4161_psb_6_1_13245 crossref_primary_10_1007_s10750_015_2462_3 crossref_primary_10_1002_ecy_1573 crossref_primary_10_1007_s13580_024_00656_w crossref_primary_10_1111_pce_15039 crossref_primary_10_1093_plphys_kiac518 crossref_primary_10_1093_mp_sss120 crossref_primary_10_3390_plants11233281 crossref_primary_10_1016_j_foreco_2016_09_045 crossref_primary_10_3389_fpls_2024_1292753 crossref_primary_10_1111_j_1469_8137_2010_03617_x crossref_primary_10_1111_gcbb_12680 crossref_primary_10_1016_j_envexpbot_2016_12_013 crossref_primary_10_1016_j_atmosenv_2013_07_047 crossref_primary_10_1016_j_envexpbot_2020_104189 crossref_primary_10_1111_j_1469_8137_2010_03458_x crossref_primary_10_1371_journal_pone_0109275 crossref_primary_10_1093_plphys_kiac342 crossref_primary_10_4161_psb_4_6_8586 crossref_primary_10_1371_journal_pone_0137500 crossref_primary_10_1016_j_agee_2014_05_021 crossref_primary_10_1073_pnas_2115682119 crossref_primary_10_1371_journal_pone_0178176 crossref_primary_10_1093_aob_mcr130 crossref_primary_10_1080_07352689_2010_502086 crossref_primary_10_1093_aob_mcr132 crossref_primary_10_1104_pp_112_193359 crossref_primary_10_1007_s00468_013_0923_8 crossref_primary_10_1111_j_1399_3054_2011_01476_x crossref_primary_10_3389_fsufs_2024_1407359 crossref_primary_10_3390_ijms21155284 crossref_primary_10_1093_forestry_cpad056 crossref_primary_10_1093_jxb_erq253 crossref_primary_10_1016_j_scienta_2024_113264 crossref_primary_10_1093_mp_ssu077 crossref_primary_10_3389_fpls_2022_1053780 crossref_primary_10_1016_j_foreco_2011_11_022 crossref_primary_10_1016_j_scienta_2021_110135 crossref_primary_10_1071_FP09137 crossref_primary_10_1111_j_1365_313X_2010_04476_x crossref_primary_10_1111_plb_13086 crossref_primary_10_1016_j_molp_2015_01_008 crossref_primary_10_1111_pce_15256 crossref_primary_10_1111_pce_15376 crossref_primary_10_1016_j_scienta_2016_10_013 crossref_primary_10_12791_KSBEC_2024_33_4_200 crossref_primary_10_1371_journal_pone_0202386 crossref_primary_10_1016_j_foreco_2016_05_045 crossref_primary_10_1016_j_envexpbot_2015_01_004 crossref_primary_10_1093_plphys_kiad546 crossref_primary_10_11623_frj_2023_31_3_07 crossref_primary_10_3390_plants13152169 crossref_primary_10_3390_su14159264 crossref_primary_10_1007_s11258_023_01386_2 crossref_primary_10_17660_ActaHortic_2019_1263_2 crossref_primary_10_1155_2015_480891 crossref_primary_10_4161_psb_5_6_11401 crossref_primary_10_3390_plants4010112 crossref_primary_10_1371_journal_pone_0062794 crossref_primary_10_1016_j_molp_2020_01_013 crossref_primary_10_1093_hr_uhac254 crossref_primary_10_3389_fpls_2022_991874 crossref_primary_10_1093_plphys_kiab112 crossref_primary_10_1093_plphys_kiab354 crossref_primary_10_1371_journal_pgen_1008748 crossref_primary_10_1038_s41467_024_49180_6 crossref_primary_10_1007_s00344_014_9454_9 crossref_primary_10_1111_nph_14217 crossref_primary_10_1111_pce_12191 crossref_primary_10_1371_journal_pone_0017275 crossref_primary_10_1660_062_123_0307 crossref_primary_10_1111_nph_13351 crossref_primary_10_32615_ps_2019_175 crossref_primary_10_3390_plants12051127 crossref_primary_10_3390_biology11010151 crossref_primary_10_3390_horticulturae9101095 crossref_primary_10_3390_su132212778 crossref_primary_10_1007_s13593_021_00735_7 crossref_primary_10_1093_mp_ssu058 crossref_primary_10_3390_plants10112405 crossref_primary_10_1093_plphys_kiab109 crossref_primary_10_1016_j_envexpbot_2019_103871 crossref_primary_10_3390_horticulturae10080795 crossref_primary_10_3390_agronomy13030857 crossref_primary_10_1007_s13580_017_0246_6 crossref_primary_10_3390_plants9080940 crossref_primary_10_1071_BT23107 crossref_primary_10_1111_tpj_14176 crossref_primary_10_1007_s11738_015_1878_8 crossref_primary_10_1186_s12870_025_06205_6 crossref_primary_10_1534_genetics_117_300071 crossref_primary_10_4161_psb_5_4_10792 crossref_primary_10_1038_s41598_023_28484_5 crossref_primary_10_1016_S2095_3119_20_63209_9 crossref_primary_10_3389_fpls_2021_729647 crossref_primary_10_1042_BST20240049 crossref_primary_10_21273_HORTTECH_20_5_873 crossref_primary_10_1073_pnas_2118866119 crossref_primary_10_3390_f13020201 crossref_primary_10_1016_j_ijbiomac_2025_139879 crossref_primary_10_1111_j_1365_3040_2012_02586_x crossref_primary_10_1038_s41598_017_10026_5 crossref_primary_10_1111_tpj_12088 crossref_primary_10_1007_s11099_012_0071_1 crossref_primary_10_1016_j_scienta_2015_01_004 crossref_primary_10_1016_j_scienta_2020_109478 crossref_primary_10_1093_jxb_err142 crossref_primary_10_1111_tpj_15124 crossref_primary_10_1186_s12870_023_04097_y crossref_primary_10_1016_j_scienta_2021_110455 crossref_primary_10_3389_fpls_2022_989155 crossref_primary_10_1111_j_1365_313X_2011_04815_x crossref_primary_10_3389_fpls_2022_1050355 crossref_primary_10_1111_oik_09766 crossref_primary_10_1007_s00299_023_03119_1 crossref_primary_10_1016_j_scienta_2018_12_049 crossref_primary_10_3390_f13020308 crossref_primary_10_1104_pp_112_200733 crossref_primary_10_1111_j_1365_313X_2011_04598_x crossref_primary_10_1093_insilicoplants_diac009 crossref_primary_10_1093_pcp_pcv135 crossref_primary_10_1093_plcell_koac352 crossref_primary_10_3390_horticulturae9050608 crossref_primary_10_3389_fpls_2014_00741 crossref_primary_10_1093_jxb_erq025 crossref_primary_10_1371_journal_pone_0029570 crossref_primary_10_3389_fpls_2017_01901 crossref_primary_10_1093_jxb_erad480 crossref_primary_10_1101_gad_187849_112 crossref_primary_10_1111_j_1438_8677_2012_00609_x crossref_primary_10_1016_j_fcr_2019_04_019 crossref_primary_10_3389_fpls_2019_00914 crossref_primary_10_3390_plants12122324 crossref_primary_10_1007_s00442_014_2983_x crossref_primary_10_1016_j_envexpbot_2018_07_021 crossref_primary_10_1016_j_plaphy_2022_09_010 crossref_primary_10_1093_aob_mcs045 crossref_primary_10_1111_pce_12153 crossref_primary_10_1111_jvs_12449 crossref_primary_10_1111_nph_17648 crossref_primary_10_1016_j_ecoleng_2021_106270 crossref_primary_10_17660_ActaHortic_2018_1227_74 crossref_primary_10_1093_jxb_eru510 crossref_primary_10_4161_psb_5_11_13643 crossref_primary_10_1038_emboj_2009_306 crossref_primary_10_1016_j_soilbio_2013_10_014 crossref_primary_10_1073_pnas_2105649118 crossref_primary_10_1371_journal_pone_0127905 crossref_primary_10_17221_206_2017_HORTSCI crossref_primary_10_1104_pp_108_133496 crossref_primary_10_1016_j_indcrop_2021_114396 crossref_primary_10_21273_HORTTECH04661_20 crossref_primary_10_3390_plants11081097 crossref_primary_10_1104_pp_110_162057 crossref_primary_10_1073_pnas_1806084115 crossref_primary_10_1111_j_1365_313X_2011_04597_x crossref_primary_10_3389_fpls_2024_1497672 crossref_primary_10_17660_ActaHortic_2018_1227_68 |
Cites_doi | 10.1146/annurev.pp.28.060177.002035 10.1093/pcp/pcf005 10.1242/dev.126.19.4235 10.1105/tpc.105.038810 10.1073/pnas.95.12.7197 10.1111/j.1365-313X.2006.02748.x 10.2307/3869307 10.1111/1365-3040.ep11604091 10.1073/pnas.95.5.2686 10.1111/j.1469-8137.1982.tb03270.x 10.1104/pp.104.059055 10.1101/gad.3.11.1745 10.1093/jxb/erm205 10.1104/pp.107.105601 10.1105/tpc.105.035899 10.1038/nature02174 10.1104/pp.106.092254 10.1093/oxfordjournals.pcp.a078177 10.1104/pp.119.3.1083 10.1104/pp.103.034397 10.1105/tpc.010827 10.1046/j.0016-8025.2001.00812.x 10.1104/pp.104.058354 10.1104/pp.120.4.1025 10.1046/j.1365-3040.2000.00587.x 10.1105/tpc.015685 10.1046/j.1365-313x.2000.00862.x 10.1038/nature06520 10.1016/S0176-1617(11)80176-8 10.1093/oxfordjournals.molbev.a025677 10.1074/jbc.M609842200 10.1101/gad.11.23.3194 10.1126/science.284.5415.760 10.1104/pp.102.018135 10.1105/tpc.107.051508 10.1105/tpc.003293 10.1111/j.1365-313X.2004.02044.x 10.1105/tpc.020958 10.1016/S0092-8674(00)81636-0 10.1016/S0092-8674(00)80841-7 10.1105/tpc.10.9.1479 10.1073/pnas.93.8.3530 10.1093/emboj/21.10.2441 10.1111/j.1365-313X.2006.02962.x 10.1111/j.1751-1097.1977.tb09125.x 10.1105/tpc.12.11.2061 10.1104/pp.113.2.611 10.1093/treephys/26.10.1249 10.1371/journal.pgen.0020106 10.1111/j.1469-8137.1981.tb01720.x 10.1046/j.1365-313X.1995.08050653.x 10.1104/pp.107.1.131 10.17660/ActaHortic.2001.552.9 10.1104/pp.116.1.17 10.1105/tpc.104.030049 10.1034/j.1399-3054.2000.100216.x 10.1093/jxb/erm186 10.1146/annurev.cellbio.15.1.33 10.1111/j.1751-1097.1992.tb02209.x 10.1093/pcp/pch125 10.1104/pp.124.2.805 10.1111/j.1365-3040.1990.tb01084.x 10.1104/pp.102.1.269 10.1126/science.1099728 10.1046/j.1365-313X.1999.00353.x 10.1016/j.tplants.2005.11.005 10.1016/j.molcel.2006.06.011 10.1126/science.7638620 10.1104/pp.105.1.141 10.1093/pcp/pcf033 10.1111/j.1365-313X.2007.03341.x 10.1104/pp.112.1.337 10.1074/jbc.M700616200 10.1101/gad.7.3.367 10.1038/nature06448 10.1104/pp.82.2.581 10.1111/j.1469-8137.2007.02044.x 10.1046/j.1365-3040.2003.01045.x 10.1038/35073622 10.1111/j.0014-3820.2001.tb00805.x 10.1105/tpc.106.047415 10.1126/science.247.4940.329 10.1038/sj.emboj.7601890 10.1111/j.1469-8137.2007.02281.x 10.1038/nature02090 10.1104/pp.115.3.959 10.1046/j.1365-313X.2002.01488.x 10.1105/tpc.10.2.155 10.1046/j.1365-3040.1997.d01-104.x 10.1111/j.1751-1097.1990.tb01767.x 10.1146/annurev.arplant.50.1.571 10.1046/j.1365-313X.1993.04030469.x 10.1038/nature05946 10.1007/1-4020-3811-9_2 10.1105/tpc.106.042200 10.1046/j.1365-3040.1997.d01-117.x 10.1111/j.1365-313X.2005.02606.x 10.1104/pp.104.4.1311 10.1073/pnas.96.10.5832 10.2307/2390158 10.1038/262210a0 10.1111/j.1365-313X.2007.03063.x 10.1073/pnas.101137598 10.1038/nature01636 10.1534/genetics.103.026096 10.1242/dev.128.12.2291 10.1093/genetics/159.2.777 10.1105/tpc.104.025643 10.1111/j.1365-313X.2007.03122.x 10.1016/0168-9452(89)90097-6 10.1046/j.1365-313X.1996.10061127.x 10.1104/pp.105.063461 10.1104/pp.124.1.39 10.1104/pp.103.022665 10.1007/BF00043870 10.1104/pp.102.015487 10.1105/tpc.107.052142 10.1073/pnas.0407107101 10.1104/pp.104.045120 10.1038/ng.2007.3 10.1046/j.1365-313X.1996.10050859.x 10.1111/j.1365-3040.1991.tb01371.x 10.1104/pp.102.4.1179 10.1007/s00344-003-0028-5 10.1038/23500 10.1104/pp.119.3.909 10.1007/BF00582351 10.1105/tpc.014498 10.1038/nature04028 10.1046/j.1365-313X.2003.01674.x 10.1104/pp.104.038893 10.1105/tpc.107.051441 10.1105/tpc.001156 10.1105/tpc.021568 10.1126/science.1083217 10.1126/science.282.5394.1698 10.1126/science.296.5566.285 10.1016/j.tplants.2004.12.005 10.1101/gad.364005 10.1105/tpc.010332 10.1111/j.1365-3040.1995.tb00582.x 10.1093/aob/mci208 10.1007/BF00388211 10.1111/j.1751-1097.1991.tb02096.x |
ContentType | Journal Article |
Copyright | Copyright 2008 New Phytologist Trust The Author (2008). Journal compilation © New Phytologist (2008) |
Copyright_xml | – notice: Copyright 2008 New Phytologist Trust – notice: The Author (2008). Journal compilation © New Phytologist (2008) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN C1K 7S9 L.6 7X8 |
DOI | 10.1111/j.1469-8137.2008.02507.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Ecology Abstracts AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 944 |
ExternalDocumentID | 18537892 10_1111_j_1469_8137_2008_02507_x NPH2507 25150519 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZCG ZZTAW ~02 ~IA ~KM ~WT 24P AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE DOOOF ESX HF~ HGD IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE AAYXX ABGDZ ADXHL AGHNM CITATION CGR CUY CVF ECM EIF NPM 7SN C1K 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5177-324bbde95bc86e0c3bcad7b9dd8a724235084c4448cd6ecb0a0f8c6c58e1e9493 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Jul 10 22:06:40 EDT 2025 Fri Jul 11 18:36:18 EDT 2025 Fri Jul 11 15:45:00 EDT 2025 Thu Apr 03 07:06:41 EDT 2025 Tue Jul 01 03:08:56 EDT 2025 Thu Apr 24 22:52:22 EDT 2025 Wed Jan 22 16:21:08 EST 2025 Thu Jul 03 22:52:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5177-324bbde95bc86e0c3bcad7b9dd8a724235084c4448cd6ecb0a0f8c6c58e1e9493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 18537892 |
PQID | 21046476 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_69581530 proquest_miscellaneous_48040781 proquest_miscellaneous_21046476 pubmed_primary_18537892 crossref_primary_10_1111_j_1469_8137_2008_02507_x crossref_citationtrail_10_1111_j_1469_8137_2008_02507_x wiley_primary_10_1111_j_1469_8137_2008_02507_x_NPH2507 jstor_primary_25150519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2008 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: September 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing – name: Blackwell Publishing Ltd |
References | 2004; 167 1990; 52 2002; 14 1977; 25 1977; 28 1999; 284 1978; 132 1992; 56 1997; 9 1981; 88 2001; 410 1986; 82 2004a; 38 2006; 23 2000; 14 2000; 124 2000; 12 1994; 105 2007; 174 2006; 26 1999; 50 1998; 95 1998; 10 1998; 282 1995; 9 1989; 63 2007; 19 2007; 448 1976; 262 2007; 143 1990; 247 2007; 282 1997; 20 1996; 13 2004; 45 1996; 93 2001; 55 2008; 53 1993; 102 2004; 305 2003; 299 1996; 10 1995; 8 2003; 33 2001; 552 2005; 19 2006; 46 2008; 20 2005; 96 2003; 26 2005; 10 1995; 269 2000; 101 2005; 15 2005; 17 1996; 112 2001; 159 1999; 119 2000; 180 2003; 22 1997; 113 2007; 39 1993; 7 1997; 115 2007; 145 1990; 13 1999; 17 2005; 137 2005; 138 2005; 139 1999; 120 2003; 15 1994; 25 1999; 400 1998; 117 1998; 116 1999; 126 1993; 4 1993; 5 2004; 135 1994; 104 1997; 11 2006; 18 1999; 15 2002; 43 1999; 11 1999; 96 2004b; 136 2007; 26 2001; 98 2004; 101 2006; 93 1991; 3 1987; 10 1991; 39 2002; 296 1991a; 54 2000; 23 1991; 32 2000; 24 2006; 11 2002; 32 2005; 437 1993; 3 2006; 18 2006 2001; 13 2007; 51 2006; 2 1991b; 14 1980; 150 1995; 18 2003; 133 2005; 44 2007; 58 2003; 131 2001; 128 2002; 25 2003; 426 2004; 16 1989; 3 2002; 21 1995; 107 1982; 90 2003; 423 2008; 177 2008; 451 2007; 49 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Jarillo JA (e_1_2_8_69_1) 1998; 117 Kircher S (e_1_2_8_79_1) 1999; 11 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Fairchild CD (e_1_2_8_41_1) 2000; 14 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Whitelam GC (e_1_2_8_149_1) 1993; 5 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Ballaré CL (e_1_2_8_9_1) 1987; 10 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Selby CP (e_1_2_8_126_1) 2006; 93 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 Aukerman MJ (e_1_2_8_6_1) 1997; 9 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 Parks BM (e_1_2_8_108_1) 1993; 3 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 Dill A (e_1_2_8_32_1) 2001; 159 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 93 start-page: 8129 year: 2006 end-page: 8133 article-title: A cryptochrome/photolyase class of enzymes with single‐stranded DNA‐specific photolyase activity publication-title: Proceedings of the National Academy of Sciences, USA – volume: 90 start-page: 611 year: 1982 end-page: 618 article-title: Photomorphogenesis in and other plant species under simulated natural canopy radiation publication-title: New Phytologist – volume: 132 start-page: 187 year: 1978 end-page: 193 article-title: The function of phytochrome in the natural environment. VII. The relationship between phytochrome photo‐equilibrium and development in light‐grown publication-title: Planta – volume: 25 start-page: 53 year: 2002 end-page: 63 article-title: Differential genetic variation in adaptive strategies to a common environmental signal in Arabidopsis accessions: phytochrome‐mediated shade avoidance publication-title: Plant, Cell & Environment – volume: 552 start-page: 95 year: 2001 end-page: 102 article-title: Shade‐tolerant flowering plants: adaptations and horticultural implications publication-title: Acta Horticulturae (ISHS) – volume: 38 start-page: 310 year: 2004a end-page: 319 article-title: Canopy studies on ethylene‐insensitive tobacco identify ethylene as a novel element in blue light and plant‐plant signalling publication-title: Plant Journal – volume: 11 start-page: 3194 year: 1997 end-page: 3205 article-title: The Arabidopsis gene defines a signaling pathway that negatively regulates gibberellin responses publication-title: Genes and Development – volume: 119 start-page: 1083 year: 1999 end-page: 1089 article-title: The mechanism of rhythmic ethylene production in Sorghum: the role of phytochrome B and simulated shading publication-title: Plant Physiology – volume: 284 start-page: 760 year: 1999 end-page: 765 article-title: Cryptochromes: blue light receptors for plants and animals publication-title: Science – volume: 282 start-page: 9383 year: 2007 end-page: 9391 article-title: Cryptochrome blue light photoreceptors are activated through interconversions of flavin redox states publication-title: Journal of Biological Chemistry – volume: 18 start-page: 3399 year: 2006 end-page: 3414 article-title: Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis publication-title: The Plant Cell – volume: 58 start-page: 3125 year: 2007 end-page: 3133 article-title: Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling publication-title: Journal of Experimental Botany – volume: 10 start-page: 155 year: 1998 end-page: 169 article-title: The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway publication-title: The Plant Cell – volume: 145 start-page: 1043 year: 2007 end-page: 1051 article-title: Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red‐light activation publication-title: Plant Physiology – volume: 113 start-page: 611 year: 1997 end-page: 619 article-title: The sorghum photoperiod sensitivity gene, encodes phytochrome B publication-title: Plant Physiology – volume: 43 start-page: 281 year: 2002 end-page: 289 article-title: Expression of the At GH3a gene, and Arabidopsis homologue of the soybean GH3 gene, is regulated by phytochrome B publication-title: Plant Cell Physiology – volume: 26 start-page: 4756 year: 2007 end-page: 4767 article-title: Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins publication-title: The EMBO Journal – volume: 11 start-page: 4 year: 2006 end-page: 7 article-title: Degradation of negative regulators: a common theme in hormone and light signaling networks? publication-title: Trends in Plant Science – volume: 15 start-page: 2399 year: 2003 end-page: 2407 article-title: Functional characterization of phytochrome interacting factor 3 in phytochrome‐mediated light signal transduction publication-title: The Plant Cell – volume: 10 start-page: 1479 year: 1998 end-page: 1487 article-title: Phytochrome E influences internode elongation and flowering time in publication-title: The Plant Cell – volume: 55 start-page: 692 year: 2001 end-page: 702 article-title: Adaptive divergence in plasticity in natural populations of and its consequences for performance in novel habitats publication-title: Evolution – volume: 95 start-page: 7197 year: 1998 end-page: 7202 article-title: High temperature promotes auxin‐mediated hypocotyl elongation in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 124 start-page: 805 year: 2000 end-page: 812 article-title: Changes in gibberellin A levels and response during de‐etiolation of pea seedlings publication-title: Plant Physiology – volume: 28 start-page: 355 year: 1977 end-page: 377 article-title: Comparative photosynthesis of sun and shade plants publication-title: Annual Review of Plant Physiology – volume: 174 start-page: 735 year: 2007 end-page: 741 article-title: A new role for phytochromes in temperature‐dependent germination publication-title: New Phytologist – volume: 10 start-page: 859 year: 1996 end-page: 868 article-title: Nuclear localization activity of phytochrome B publication-title: Plant Journal – volume: 126 start-page: 4235 year: 1999 end-page: 4245 article-title: Shade avoidance responses are mediated by the ATHB‐2 HD‐zip protein, a negative regulator of gene expression publication-title: Development – volume: 18 start-page: 2919 year: 2006 end-page: 2928 article-title: A constitutive shade‐avoidance mutant implicates TIR‐NBS‐LRR proteins in Arabidopsis photomorphogenic development publication-title: The Plant Cell – volume: 117 start-page: 719 year: 1998 article-title: NPL1 (accession no. AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis publication-title: Plant Physiology – volume: 52 start-page: 143 year: 1990 end-page: 149 article-title: Response of light‐grown wild‐type and long hypocotyl mutant cucumber plants to end‐of‐day far‐red light publication-title: Photochemistry and Photobiology – volume: 95 start-page: 657 year: 1998 end-page: 667 article-title: PIF3, a phytochrome‐interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix‐loop‐helix protein publication-title: Cell – volume: 19 start-page: 2811 year: 2005 end-page: 2815 article-title: A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis publication-title: Genes and Development – volume: 159 start-page: 777 year: 2001 end-page: 785 article-title: Synergistic de‐repression of gibberellin signaling by removing RGA and GAI function in publication-title: Genetics – volume: 17 start-page: 3311 year: 2005 end-page: 3325 article-title: Distinct and cooperative functions of phytochromes A,B and C in the control of deetiolation and flowering in rice publication-title: The Plant Cell – volume: 23 start-page: 439 year: 2006 end-page: 446 article-title: Photoactivated phytochrome induces rapid PIF3 phosphorylation as a prelude to proteosome‐mediated degradation publication-title: Molecular Cell – volume: 137 start-page: 961 year: 2005 end-page: 968 article-title: Low temperature induction of Arabidopsis CBF1,2 and 3 is gated by the circadian clock publication-title: Plant Physiology – volume: 101 start-page: 319 year: 2000 end-page: 329 article-title: ZEITLUPE encodes a novel clock‐associated PAS protein from Arabidopsis publication-title: Cell – volume: 14 start-page: 1514 year: 2002 end-page: 1544 article-title: Nucleo‐cytoplasmic partitioning of plant photoreceptors phytochromes A,B,C,D and E is differentially regulated by light and exhibits a diurnal rhythm publication-title: The Plant Cell – volume: 269 start-page: 968 year: 1995 end-page: 970 article-title: Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1 publication-title: Science – volume: 426 start-page: 680 year: 2003 end-page: 683 article-title: Gating of the rapid shade avoidance response by the circadian clock in plants publication-title: Nature – volume: 63 start-page: 25 year: 1989 end-page: 29 article-title: Control of carbon partitioning by light quality mediated by phytochrome publication-title: Plant Science – volume: 10 start-page: 1127 year: 1996 end-page: 1134 article-title: The rosette habit of is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time publication-title: Plant Journal – volume: 24 start-page: 159 year: 2000 end-page: 169 article-title: The hormonal regulation of axillary bud growth in Arabidopsis publication-title: Plant Journal – volume: 32 start-page: 1011 year: 2002 end-page: 1022 article-title: The HAT2 gene, a member of the HD‐Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis publication-title: Plant Journal – volume: 13 start-page: 1141 year: 1996 end-page: 1150 article-title: The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms publication-title: Molecular Biology and Evolution – volume: 150 start-page: 95 year: 1980 end-page: 101 article-title: Rapid photomodulation of stem extension in light‐grown L. Studies on kinetics, site of perception and photoreceptor publication-title: Planta – volume: 18 start-page: 788 year: 1995 end-page: 794 article-title: Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in : weak de‐etiolation of the mutant under dense canopies publication-title: Plant, Cell & Environment – volume: 9 start-page: 1317 year: 1997 end-page: 132 article-title: A deletion in the gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far‐red light sensing publication-title: The Plant Cell – volume: 423 start-page: 881 year: 2003 end-page: 885 article-title: Regulation of flowering time by light quality publication-title: Nature – volume: 44 start-page: 1023 year: 2005 end-page: 1035 article-title: PIF1 is regulated by light‐mediated degradation through the ubiquitin‐26S proteosome pathway to optimize photomorphogenesis of seedlings in Arabidopsis publication-title: Plant Journal – volume: 56 start-page: 607 year: 1992 end-page: 610 article-title: Light‐grown plants of the cucumber long hypocotyl mutant exhibit both long‐term and rapid growth responses to irradiation with supplementary far‐red light publication-title: Photochemistry and Photobiology – volume: 8 start-page: 653 year: 1995 end-page: 658 article-title: Mutations throughout an blue‐light photoreceptor impair blue‐light‐responsive anthocyanin accumulation and inhibition of hypocotyl elongation publication-title: Plant Journal – volume: 39 start-page: 119 year: 1991 end-page: 125 article-title: Retention of phytochrome‐mediated shade avoidance responses in phytochrome‐deficient mutants of cucumber and tomato publication-title: Journal of Plant Physiology – volume: 115 start-page: 959 year: 1997 end-page: 969 article-title: Differential patterns of expression of the Arabidopsis , and phytochrome genes. publication-title: Plant Physiology – volume: 32 start-page: 1119 year: 1991 end-page: 112 article-title: Phytochrome B is not detectable in the mutant of Arabidopsis, which is deficient in responding to end‐of‐day far‐red light treatments publication-title: Plant and Cell Physiology – volume: 16 start-page: 1433 year: 2004 end-page: 1445 article-title: Constitutive Photomorphogenesis 1 and multiple photoreceptors control degradation of Phytochrome Interacting Factor 3, a transcription factor required for light signalling in Arabidopsis publication-title: The Plant Cell – volume: 107 start-page: 131 year: 1995 end-page: 140 article-title: Phytochromes, gibberellins, and hypocotyl growth publication-title: Plant Physiology – volume: 4 start-page: 469 year: 1993 end-page: 479 article-title: The and ‐4 genes are strongly induced by far‐red‐rich light publication-title: Plant Journal – volume: 299 start-page: 1853 year: 2003 end-page: 1854 article-title: Relieving DELLA restraint publication-title: Science – volume: 82 start-page: 581 year: 1986 end-page: 584 article-title: Genetic regulation of development in . II. Effect of the allele mimicked by GA(3) publication-title: Plant Physiology – volume: 131 start-page: 1340 year: 2003 end-page: 1346 article-title: Phytochromes B, D and E act redundantly to control multiple physiological responses in Arabidopsis publication-title: Plant Physiology – volume: 116 start-page: 17 year: 1998 end-page: 25 article-title: Phytochrome B and the regulation of circadian ethylene production in sorghum publication-title: Plant Physiology – volume: 5 start-page: 757 year: 1993 end-page: 768 article-title: Phytochrome A null mutants of display a wild‐type phenotype in white light publication-title: The Plant Cell – volume: 16 start-page: 3033 year: 2004 end-page: 3044 article-title: A novel molecular recognition otif necessary for targeting photoactivated phytochrome signalling to specific basic helix‐loop‐helix transcription factors publication-title: The Plant Cell – volume: 10 start-page: 51 year: 2005 end-page: 54 article-title: bHLH class transcription factors take centre stage in phytochrome signaling publication-title: Trends in Plant Science – volume: 88 start-page: 239 year: 1981 end-page: 248 article-title: Control of development in chenopodium‐album l by shadelight – the effect of light quantity (total fluence rate) and light quality (red – far‐red ratio) publication-title: New Phytologist – volume: 3 start-page: 1263 year: 1991 end-page: 1274 article-title: The long hypocotyl mutant of is deficient in phytochrome B publication-title: The Plant Cell – volume: 451 start-page: 480 year: 2008 end-page: 486 article-title: A molecular framework for light and gibberellin control of cell elongation publication-title: Nature – volume: 49 start-page: 338 year: 2007 end-page: 353 article-title: Subfunctionalization of phyB1 and phyB2 in the control of seedling and mature plant traits in maize publication-title: Plant Journal – volume: 143 start-page: 1163 year: 2007 end-page: 1172 article-title: DELLAs contribute to plant photomorphogenesis publication-title: Plant Physiology – volume: 95 start-page: 7686 year: 1998 end-page: 7699 article-title: Enhancement of blue light sensitivity of seedlings by a blue light receptor cryptochrome 2 publication-title: Proceedings of the National Academy of Sciences, USA – volume: 14 start-page: 1723 year: 2002 end-page: 1735 article-title: Cellular and subcellular localization of phototropin 1 publication-title: The Plant Cell – volume: 120 start-page: 1025 year: 1999 end-page: 1032 article-title: Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis publication-title: Plant Physiology – volume: 45 start-page: 968 year: 2004 end-page: 975 article-title: Degradation of phytochrome interacting factor 3 in phytochrome‐mediated signaling publication-title: Plant Cell Physiology – volume: 247 start-page: 329 year: 1990 end-page: 332 article-title: Far‐red radiation reflected from adjacent leaves: an early signal of competition in plant canopies publication-title: Science – volume: 410 start-page: 592 year: 2001 end-page: 594 article-title: Phototropin‐related NPL1 controls chloroplast relocation induced by blue light publication-title: Nature – volume: 26 start-page: 1229 year: 2003 end-page: 1234 article-title: Ethylene is required in tobacco to successfully complete with proximate neighbours publication-title: Plant, Cell & Environment – volume: 93 start-page: 3530 year: 1996 end-page: 3535 article-title: Twilight‐zone and canopy shade induction of the homeobox gene in green plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 23 start-page: 727 year: 2000 end-page: 734 article-title: Degradation of phytochrome A and the high irradiance response in Arabidopsis: a kinetic analysis publication-title: Plant, Cell & Environment – volume: 11 start-page: 1445 year: 1999 end-page: 1456 article-title: Light quality‐dependent nuclear import of the plant photoreceptors phytochrome A and B publication-title: The Plant Cell – volume: 10 start-page: 551 year: 1987 end-page: 557 article-title: Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight publication-title: Plant, Cell & Environment – volume: 13 start-page: 2659 year: 2001 end-page: 2670 article-title: A role for LKP2 in the circadian clock of Arabidopsis publication-title: The Plant Cell – volume: 101 start-page: 16091 year: 2004 end-page: 16098 article-title: The phytochrome‐interacting transcription factor, PIF3, acts early, selectively and positively in light‐induced chloroplast development publication-title: Proceedings of the National Academy of Sciences, USA – volume: 136 start-page: 2928 year: 2004b end-page: 2936 article-title: Interactions between ethylene and gibberellins in phytochrome‐mediated shade avoidance responses in tobacco publication-title: Plant Physiology – volume: 15 start-page: 33 year: 1999 end-page: 62 article-title: Blue‐light photoreceptors in higher plants publication-title: Annual Review of Cell and Developmental Biology – volume: 13 start-page: 695 year: 1990 end-page: 707 article-title: Phytochrome, a family of photoreceptors with multiple physiological roles publication-title: Plant, Cell & Environment – volume: 53 start-page: 312 year: 2008 end-page: 323 article-title: Phytochrome‐mediated inhibition of shade avoidance involves degradation of growth‐promoting bHLH transcription factors publication-title: Plant Journal – volume: 51 start-page: 117 year: 2007 end-page: 126 article-title: DELLA protein function in growth responses to canopy signals publication-title: Plant Journal – volume: 426 start-page: 302 year: 2003 end-page: 306 article-title: FKF1 is essential for photoperiodic‐specific light signalling in Arabidopsis publication-title: Nature – start-page: 1 year: 2006 end-page: 23 – volume: 22 start-page: 134 year: 2003 end-page: 140 article-title: DELLA proteins and GA signalling in Arabidopsis publication-title: Journal of Plant Growth Regulation – volume: 112 start-page: 337 year: 1996 end-page: 342 article-title: Phytochrome B affects responsiveness to gibberellins in Arabidopsis publication-title: Plant Physiology – volume: 138 start-page: 1106 year: 2005 end-page: 1116 article-title: The involvement of gibberellin 20‐oxidase genes in phytochrome‐regulated petiole elongation of Arabidopsis publication-title: Plant Physiology – volume: 19 start-page: 3915 year: 2007 end-page: 3929 article-title: The basic helix‐loop‐helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms publication-title: The Plant Cell – volume: 15 start-page: 1998 year: 2005 end-page: 2006 article-title: Cold and light control seed germination through the bHLH transcription factor SPATULA publication-title: Current Biology – volume: 128 start-page: 2291 year: 2001 end-page: 2299 article-title: Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development publication-title: Development – volume: 98 start-page: 6969 year: 2001 end-page: 6974 article-title: Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 26 start-page: 1249 year: 2006 end-page: 1256 article-title: Twilight far‐red treatment advances leaf bud burst of silver birch ( publication-title: Tree Physiology – volume: 15 start-page: 1120 year: 2003 end-page: 1130 article-title: The Arabidopsis gene encodes a putative F‐box subunit of an SCF E3 ubiquitin ligase publication-title: The Plant Cell – volume: 16 start-page: 1392 year: 2004 end-page: 1405 article-title: The Arabidopsis F‐box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin‐induced degradation publication-title: The Plant Cell – volume: 3 start-page: 39 year: 1993 end-page: 48 article-title: hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A publication-title: The Plant Cell – volume: 296 start-page: 285 year: 2002 end-page: 289 article-title: , the Rosetta stone of flowering time? publication-title: Science – volume: 282 start-page: 1698 year: 1998 end-page: 1701 article-title: Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropis publication-title: Science – volume: 3 start-page: 1745 year: 1989 end-page: 1757 article-title: Novel phytochrome sequences in : structure, evolution, and differential expression of a plant regulatory photoreceptor family publication-title: Genes and Development – volume: 262 start-page: 210 year: 1976 end-page: 212 article-title: Linear relationship between phytochrome photoequilibrium and growth in plants under simulated natural radiation publication-title: Nature – volume: 282 start-page: 14916 year: 2007 end-page: 14922 article-title: The signalling state of Arabidopsis cryptochrome 2 contains flavin semiquinone publication-title: Journal of Biological Chemistry – volume: 39 start-page: 1410 year: 2007 end-page: 1413 article-title: Light‐quality regulation of freezing tolerance in publication-title: Nature Genetics – volume: 135 start-page: 1407 year: 2004 end-page: 1416 article-title: Green light stimulates early stem elongation, antagonizing light‐mediated growth inhibition publication-title: Plant Physiology – volume: 25 start-page: 539 year: 1977 end-page: 545 article-title: The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight publication-title: Photochemistry and Photobiology – volume: 131 start-page: 1913 year: 2003 end-page: 1920 article-title: Changes in photoperiod or temperature reveal roles for phyD and phyE publication-title: Plant Physiology – volume: 102 start-page: 269 year: 1993 end-page: 277 article-title: Isolation and initial characterisation of mutants that are deficient in functional phytochrome A publication-title: Plant Physiology – volume: 12 start-page: 2061 year: 2000 end-page: 2073 article-title: , a basic helix‐loop‐helix protein is required for a branch of phytochrome A signalling in Arabidopsis publication-title: The Plant Cell – volume: 19 start-page: 1209 year: 2007 end-page: 1220 article-title: The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENITIVE DWARF1A gibberellin receptor of Arabidopsis publication-title: The Plant Cell – volume: 167 start-page: 1395 year: 2004 end-page: 1405 article-title: Structure and expression of maize phytochrome family homologs publication-title: Genetics – volume: 17 start-page: 1120 year: 2005 end-page: 1127 article-title: Phototropins promote plant growth in response to blue light in low light environments publication-title: The Plant Cell – volume: 25 start-page: 413 year: 1994 end-page: 427 article-title: The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of and publication-title: Plant Molecular Biology – volume: 133 start-page: 1617 year: 2003 end-page: 1629 article-title: A genomic analysis of the shade avoidance response in Arabidopsis publication-title: Plant Physiology – volume: 104 start-page: 1311 year: 1994 end-page: 1315 article-title: Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of to low red/far‐red ratio publication-title: Plant Physiology – volume: 9 start-page: 655 year: 1995 end-page: 666 article-title: Genetic differentiation in morphological responses to simulated foliage shade between populations of from open and woodland sites publication-title: Functional Ecology – volume: 14 start-page: 2377 year: 2000 end-page: 2391 article-title: encodes a typical bHLH protein that acts in phytochrome A signal transduction publication-title: Genes and Development – volume: 15 start-page: 2816 year: 2003 end-page: 2825 article-title: Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function publication-title: The Plant Cell – volume: 96 start-page: 533 year: 2005 end-page: 540 article-title: New perspectives in flooding research: the use of shade avoidance and publication-title: Annals of Botany – volume: 54 start-page: 819 year: 1991a end-page: 826 article-title: Responses of light‐grown wild‐type and long‐hypocotyl mutant cucumber seedlings to natural and stimulated shade light publication-title: Photochemistry and Photobiology – volume: 451 start-page: 475 year: 2008 end-page: 480 article-title: Coordinated regulation of development by light and gibberellins publication-title: Nature – volume: 20 start-page: 337 year: 2008 end-page: 352. article-title: The Arabidopsis Phytochrome‐Interacting Factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels publication-title: The Plant Cell – volume: 46 start-page: 880 year: 2006 end-page: 889 article-title: Identification and characterization of Arabidopsis gibberellin receptors publication-title: Plant Journal – volume: 139 start-page: 509 year: 2005 end-page: 518 article-title: Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships publication-title: Plant Physiology – volume: 20 start-page: 840 year: 1997 end-page: 844 article-title: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes publication-title: Plant, Cell & Environment – volume: 177 start-page: 367 year: 2008 end-page: 379 article-title: Diversification of phytochrome contributions to germination as a function of seed‐maturation environment publication-title: New Phytologist – volume: 14 start-page: 57 year: 1991b end-page: 65 article-title: Photocontrol of stem elongation in plant neighbourhoods: effects of photon fluence rate under natural conditions of radiation publication-title: Plant, Cell & Environment – volume: 180 start-page: 223 year: 2000 end-page: 229 article-title: Light‐regulation of gibberellin A1 content and expression of genes coding for GA 20‐oxidase and GA 3β‐hydroxylase in etiolated pea seedlings publication-title: Physiologia Plantarum – volume: 18 start-page: 2157 year: 2006 end-page: 2171 article-title: Functional profiling reveals that only a small number of phytochrome‐regulated early‐response genes in Arabidopsis are necessary for optimal deetiolation publication-title: The Plant Cell – volume: 400 start-page: 462 year: 1999 end-page: 466 article-title: Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light publication-title: Nature – volume: 20 start-page: 666 year: 1997 end-page: 671 article-title: Phytochrome gene diversity publication-title: Plant, Cell & Environment – volume: 21 start-page: 2441 year: 2002 end-page: 2450 article-title: PIF4, a phytochrome‐interacting bHLH factor functions as a negative regulator of phytochrome B signaling in Arabidopsis publication-title: The EMBO Journal – volume: 58 start-page: 3079 year: 2007 end-page: 3089 article-title: The molecular analysis of the shade avoidance syndrome in the grasses has begun publication-title: Journal of Experimental Botany – volume: 102 start-page: 1179 year: 1993 end-page: 1184 article-title: Selected components of the shade‐avoidance syndrome are displayed in a normal manner in mutants of and deficient in phytochrome B publication-title: Plant Physiology – volume: 43 start-page: 58 year: 2002 end-page: 69 article-title: The APRR1/TOC1 quintet implicated in circadian rhythms of : I. Characterization with APRR1‐overexpressing plants publication-title: Plant and Cell Physiology – volume: 305 start-page: 1937 year: 2004 end-page: 1941 article-title: PHYTOCHROME‐INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis publication-title: Science – volume: 2 start-page: 0980 year: 2006 end-page: 0989 article-title: Potent induction of flowering by elevated growth temperature publication-title: PLoS Genetics – volume: 105 start-page: 141 year: 1994 end-page: 149 article-title: Photoresponses of light‐grown mutants of : phytochrome A is required for the perception of daylength extensions publication-title: Plant Physiology – volume: 133 start-page: 517 year: 2003 end-page: 527 article-title: Ethylene and auxin control the Arabidopsis response to decreased light intensity publication-title: Plant Physiology – volume: 96 start-page: 5832 year: 1999 end-page: 5837 article-title: : an Arabidopsis mutant perturbed in phytochrome signaling because of a T‐DNA insertion in the promoter of PIF3, a gene encoding a phytochrome‐interacting bHLH protein publication-title: Proceedings of the National Academy of Sciences, USA – volume: 437 start-page: 693 year: 2005 end-page: 698 article-title: encodes a soluble receptor for gibberellin publication-title: Nature – volume: 448 start-page: 358 year: 2007 end-page: 363 article-title: Rhythmic growth explained by coincidence between internal and external cues publication-title: Nature – volume: 17 start-page: 63 year: 1999 end-page: 71 article-title: Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis publication-title: Plant Journal – volume: 119 start-page: 909 year: 1999 end-page: 915 article-title: Phytochrome D acts in the shade‐avoidance syndrome in by controlling elongation and flowering time publication-title: Plant Physiology – volume: 33 start-page: 875 year: 2003 end-page: 885 article-title: Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT publication-title: Plant Journal – volume: 124 start-page: 39 year: 2000 end-page: 45 article-title: , an Arabidopsis locus implicated in phytochrome A signalling publication-title: Plant Physiology – volume: 50 start-page: 571 year: 1999 end-page: 599 article-title: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 7 start-page: 367 year: 1993 end-page: 379 article-title: The gene of Arabidopsis encodes a developmental regulator publication-title: Genes and Development – ident: e_1_2_8_15_1 doi: 10.1146/annurev.pp.28.060177.002035 – ident: e_1_2_8_87_1 doi: 10.1093/pcp/pcf005 – ident: e_1_2_8_141_1 doi: 10.1242/dev.126.19.4235 – ident: e_1_2_8_40_1 doi: 10.1105/tpc.105.038810 – ident: e_1_2_8_52_1 doi: 10.1073/pnas.95.12.7197 – ident: e_1_2_8_101_1 doi: 10.1111/j.1365-313X.2006.02748.x – ident: e_1_2_8_140_1 doi: 10.2307/3869307 – volume: 10 start-page: 551 year: 1987 ident: e_1_2_8_9_1 article-title: Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight publication-title: Plant, Cell & Environment doi: 10.1111/1365-3040.ep11604091 – ident: e_1_2_8_82_1 doi: 10.1073/pnas.95.5.2686 – ident: e_1_2_8_148_1 doi: 10.1111/j.1469-8137.1982.tb03270.x – ident: e_1_2_8_62_1 doi: 10.1104/pp.104.059055 – ident: e_1_2_8_128_1 doi: 10.1101/gad.3.11.1745 – ident: e_1_2_8_72_1 doi: 10.1093/jxb/erm205 – volume: 117 start-page: 719 year: 1998 ident: e_1_2_8_69_1 article-title: NPL1 (accession no. AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis publication-title: Plant Physiology – ident: e_1_2_8_131_1 doi: 10.1104/pp.107.105601 – ident: e_1_2_8_142_1 doi: 10.1105/tpc.105.035899 – ident: e_1_2_8_121_1 doi: 10.1038/nature02174 – ident: e_1_2_8_2_1 doi: 10.1104/pp.106.092254 – ident: e_1_2_8_99_1 doi: 10.1093/oxfordjournals.pcp.a078177 – ident: e_1_2_8_44_1 doi: 10.1104/pp.119.3.1083 – ident: e_1_2_8_31_1 doi: 10.1104/pp.103.034397 – ident: e_1_2_8_91_1 doi: 10.1105/tpc.010827 – volume: 14 start-page: 2377 year: 2000 ident: e_1_2_8_41_1 article-title: HFR1 encodes a typical bHLH protein that acts in phytochrome A signal transduction publication-title: Genes and Development – ident: e_1_2_8_16_1 doi: 10.1046/j.0016-8025.2001.00812.x – ident: e_1_2_8_47_1 doi: 10.1104/pp.104.058354 – ident: e_1_2_8_14_1 doi: 10.1104/pp.120.4.1025 – ident: e_1_2_8_59_1 doi: 10.1046/j.1365-3040.2000.00587.x – ident: e_1_2_8_3_1 doi: 10.1105/tpc.015685 – ident: e_1_2_8_23_1 doi: 10.1046/j.1365-313x.2000.00862.x – ident: e_1_2_8_27_1 doi: 10.1038/nature06520 – ident: e_1_2_8_150_1 doi: 10.1016/S0176-1617(11)80176-8 – ident: e_1_2_8_88_1 doi: 10.1093/oxfordjournals.molbev.a025677 – ident: e_1_2_8_17_1 doi: 10.1074/jbc.M609842200 – ident: e_1_2_8_110_1 doi: 10.1101/gad.11.23.3194 – ident: e_1_2_8_21_1 doi: 10.1126/science.284.5415.760 – ident: e_1_2_8_57_1 doi: 10.1104/pp.102.018135 – ident: e_1_2_8_75_1 doi: 10.1105/tpc.107.051508 – ident: e_1_2_8_119_1 doi: 10.1105/tpc.003293 – ident: e_1_2_8_114_1 doi: 10.1111/j.1365-313X.2004.02044.x – ident: e_1_2_8_33_1 doi: 10.1105/tpc.020958 – ident: e_1_2_8_102_1 doi: 10.1016/S0092-8674(00)81636-0 – ident: e_1_2_8_139_1 doi: 10.1016/S0092-8674(00)80841-7 – ident: e_1_2_8_29_1 doi: 10.1105/tpc.10.9.1479 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.93.8.3530 – ident: e_1_2_8_66_1 doi: 10.1093/emboj/21.10.2441 – ident: e_1_2_8_130_1 doi: 10.1111/j.1365-313X.2006.02962.x – ident: e_1_2_8_63_1 doi: 10.1111/j.1751-1097.1977.tb09125.x – ident: e_1_2_8_138_1 doi: 10.1105/tpc.12.11.2061 – ident: e_1_2_8_24_1 doi: 10.1104/pp.113.2.611 – ident: e_1_2_8_83_1 doi: 10.1093/treephys/26.10.1249 – ident: e_1_2_8_7_1 doi: 10.1371/journal.pgen.0020106 – ident: e_1_2_8_98_1 doi: 10.1111/j.1469-8137.1981.tb01720.x – ident: e_1_2_8_4_1 doi: 10.1046/j.1365-313X.1995.08050653.x – ident: e_1_2_8_85_1 doi: 10.1104/pp.107.1.131 – ident: e_1_2_8_92_1 doi: 10.17660/ActaHortic.2001.552.9 – ident: e_1_2_8_45_1 doi: 10.1104/pp.116.1.17 – ident: e_1_2_8_143_1 doi: 10.1105/tpc.104.030049 – ident: e_1_2_8_50_1 doi: 10.1034/j.1399-3054.2000.100216.x – ident: e_1_2_8_93_1 doi: 10.1093/jxb/erm186 – ident: e_1_2_8_18_1 doi: 10.1146/annurev.cellbio.15.1.33 – ident: e_1_2_8_135_1 doi: 10.1111/j.1751-1097.1992.tb02209.x – ident: e_1_2_8_107_1 doi: 10.1093/pcp/pch125 – ident: e_1_2_8_105_1 doi: 10.1104/pp.124.2.805 – ident: e_1_2_8_136_1 doi: 10.1111/j.1365-3040.1990.tb01084.x – ident: e_1_2_8_100_1 doi: 10.1104/pp.102.1.269 – ident: e_1_2_8_65_1 doi: 10.1126/science.1099728 – ident: e_1_2_8_37_1 doi: 10.1046/j.1365-313X.1999.00353.x – ident: e_1_2_8_64_1 doi: 10.1016/j.tplants.2005.11.005 – ident: e_1_2_8_5_1 doi: 10.1016/j.molcel.2006.06.011 – ident: e_1_2_8_81_1 doi: 10.1126/science.7638620 – ident: e_1_2_8_71_1 doi: 10.1104/pp.105.1.141 – ident: e_1_2_8_144_1 doi: 10.1093/pcp/pcf033 – ident: e_1_2_8_86_1 doi: 10.1111/j.1365-313X.2007.03341.x – ident: e_1_2_8_115_1 doi: 10.1104/pp.112.1.337 – ident: e_1_2_8_12_1 doi: 10.1074/jbc.M700616200 – ident: e_1_2_8_124_1 doi: 10.1101/gad.7.3.367 – ident: e_1_2_8_43_1 doi: 10.1038/nature06448 – ident: e_1_2_8_106_1 doi: 10.1104/pp.82.2.581 – ident: e_1_2_8_61_1 doi: 10.1111/j.1469-8137.2007.02044.x – ident: e_1_2_8_113_1 doi: 10.1046/j.1365-3040.2003.01045.x – ident: e_1_2_8_70_1 doi: 10.1038/35073622 – ident: e_1_2_8_36_1 doi: 10.1111/j.0014-3820.2001.tb00805.x – ident: e_1_2_8_53_1 doi: 10.1105/tpc.106.047415 – ident: e_1_2_8_10_1 doi: 10.1126/science.247.4940.329 – ident: e_1_2_8_117_1 doi: 10.1038/sj.emboj.7601890 – ident: e_1_2_8_35_1 doi: 10.1111/j.1469-8137.2007.02281.x – ident: e_1_2_8_68_1 doi: 10.1038/nature02090 – ident: e_1_2_8_51_1 doi: 10.1104/pp.115.3.959 – ident: e_1_2_8_122_1 doi: 10.1046/j.1365-313X.2002.01488.x – volume: 11 start-page: 1445 year: 1999 ident: e_1_2_8_79_1 article-title: Light quality‐dependent nuclear import of the plant photoreceptors phytochrome A and B publication-title: The Plant Cell – ident: e_1_2_8_133_1 doi: 10.1105/tpc.10.2.155 – ident: e_1_2_8_137_1 doi: 10.1046/j.1365-3040.1997.d01-104.x – ident: e_1_2_8_84_1 doi: 10.1111/j.1751-1097.1990.tb01767.x – ident: e_1_2_8_145_1 doi: 10.1146/annurev.arplant.50.1.571 – ident: e_1_2_8_20_1 doi: 10.1046/j.1365-313X.1993.04030469.x – ident: e_1_2_8_104_1 doi: 10.1038/nature05946 – ident: e_1_2_8_123_1 doi: 10.1007/1-4020-3811-9_2 – ident: e_1_2_8_76_1 doi: 10.1105/tpc.106.042200 – ident: e_1_2_8_89_1 doi: 10.1046/j.1365-3040.1997.d01-117.x – ident: e_1_2_8_132_1 doi: 10.1111/j.1365-313X.2005.02606.x – volume: 5 start-page: 757 year: 1993 ident: e_1_2_8_149_1 article-title: Phytochrome A null mutants of Arabidopsis display a wild‐type phenotype in white light publication-title: The Plant Cell – ident: e_1_2_8_55_1 doi: 10.1104/pp.104.4.1311 – ident: e_1_2_8_54_1 doi: 10.1073/pnas.96.10.5832 – ident: e_1_2_8_38_1 doi: 10.2307/2390158 – ident: e_1_2_8_96_1 doi: 10.1038/262210a0 – ident: e_1_2_8_109_1 doi: 10.1111/j.1365-313X.2007.03063.x – ident: e_1_2_8_118_1 doi: 10.1073/pnas.101137598 – ident: e_1_2_8_22_1 doi: 10.1038/nature01636 – ident: e_1_2_8_129_1 doi: 10.1534/genetics.103.026096 – volume: 9 start-page: 1317 year: 1997 ident: e_1_2_8_6_1 article-title: A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far‐red light sensing publication-title: The Plant Cell – ident: e_1_2_8_90_1 doi: 10.1242/dev.128.12.2291 – volume: 159 start-page: 777 year: 2001 ident: e_1_2_8_32_1 article-title: Synergistic de‐repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana publication-title: Genetics doi: 10.1093/genetics/159.2.777 – ident: e_1_2_8_74_1 doi: 10.1105/tpc.104.025643 – ident: e_1_2_8_34_1 doi: 10.1111/j.1365-313X.2007.03122.x – ident: e_1_2_8_73_1 doi: 10.1016/0168-9452(89)90097-6 – ident: e_1_2_8_28_1 doi: 10.1046/j.1365-313X.1996.10061127.x – ident: e_1_2_8_60_1 doi: 10.1104/pp.105.063461 – ident: e_1_2_8_42_1 doi: 10.1104/pp.124.1.39 – ident: e_1_2_8_147_1 doi: 10.1104/pp.103.022665 – ident: e_1_2_8_26_1 doi: 10.1007/BF00043870 – ident: e_1_2_8_48_1 doi: 10.1104/pp.102.015487 – ident: e_1_2_8_80_1 doi: 10.1105/tpc.107.052142 – ident: e_1_2_8_94_1 doi: 10.1073/pnas.0407107101 – ident: e_1_2_8_111_1 doi: 10.1104/pp.104.045120 – ident: e_1_2_8_49_1 doi: 10.1038/ng.2007.3 – ident: e_1_2_8_120_1 doi: 10.1046/j.1365-313X.1996.10050859.x – ident: e_1_2_8_11_1 doi: 10.1111/j.1365-3040.1991.tb01371.x – ident: e_1_2_8_116_1 doi: 10.1104/pp.102.4.1179 – ident: e_1_2_8_67_1 doi: 10.1007/s00344-003-0028-5 – ident: e_1_2_8_103_1 doi: 10.1038/23500 – ident: e_1_2_8_30_1 doi: 10.1104/pp.119.3.909 – ident: e_1_2_8_95_1 doi: 10.1007/BF00582351 – ident: e_1_2_8_77_1 doi: 10.1105/tpc.014498 – ident: e_1_2_8_146_1 doi: 10.1038/nature04028 – ident: e_1_2_8_56_1 doi: 10.1046/j.1365-313X.2003.01674.x – ident: e_1_2_8_46_1 doi: 10.1104/pp.104.038893 – ident: e_1_2_8_151_1 doi: 10.1105/tpc.107.051441 – ident: e_1_2_8_78_1 doi: 10.1105/tpc.001156 – ident: e_1_2_8_13_1 doi: 10.1105/tpc.021568 – ident: e_1_2_8_58_1 doi: 10.1126/science.1083217 – ident: e_1_2_8_25_1 doi: 10.1126/science.282.5394.1698 – volume: 3 start-page: 39 year: 1993 ident: e_1_2_8_108_1 article-title: hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A publication-title: The Plant Cell – ident: e_1_2_8_134_1 doi: 10.1126/science.296.5566.285 – ident: e_1_2_8_39_1 doi: 10.1016/j.tplants.2004.12.005 – ident: e_1_2_8_127_1 doi: 10.1101/gad.364005 – ident: e_1_2_8_125_1 doi: 10.1105/tpc.010332 – ident: e_1_2_8_152_1 doi: 10.1111/j.1365-3040.1995.tb00582.x – ident: e_1_2_8_112_1 doi: 10.1093/aob/mci208 – ident: e_1_2_8_97_1 doi: 10.1007/BF00388211 – volume: 93 start-page: 8129 year: 2006 ident: e_1_2_8_126_1 article-title: A cryptochrome/photolyase class of enzymes with single‐stranded DNA‐specific photolyase activity publication-title: Proceedings of the National Academy of Sciences, USA – ident: e_1_2_8_8_1 doi: 10.1111/j.1751-1097.1991.tb02096.x |
SSID | ssj0009562 |
Score | 2.4970882 |
SecondaryResourceType | review_article |
Snippet | The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading... Contents Summary 930 V. Crosstalk in shade avoidance signalling 939 I. Introduction 931 VI. Future perspectives 940 II. Shade avoidance responses 932... Summary930V.Crosstalk in shade avoidance signalling939I.Introduction931VI.Future perspectives940II.Shade avoidance... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 930 |
SubjectTerms | abiotic stress Adaptation, Physiological Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis - radiation effects Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology DELLA Developmental biology Ethylenes - metabolism evolution Flowering Gene expression regulation Genes Gibberellins Hypocotyls Indoleacetic Acids - metabolism Light light quality Models, Biological monitoring Phenotypes Photoreceptors Photosynthesis Photosynthetic Reaction Center Complex Proteins - physiology phytochrome PIF (PHYTOCHROME INTERACTING FACTOR) Plant growth regulators Plant Growth Regulators - metabolism Plant Growth Regulators - physiology Plants red to far‐red ratio (R : FR) shade shade avoidance Signal Transduction - radiation effects stress response Tansley Reviews Temperature transcription factors vegetation wavelengths |
Title | Shade Avoidance |
URI | https://www.jstor.org/stable/25150519 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2008.02507.x https://www.ncbi.nlm.nih.gov/pubmed/18537892 https://www.proquest.com/docview/21046476 https://www.proquest.com/docview/48040781 https://www.proquest.com/docview/69581530 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kePBS3xqfPXhN2SSbfRxVLMVDEbXQW9hXUSqtaCvqr3cnj2qKgoi3HHZCJrOz82Xny7cAJ5ET2peRNJRaJSEdchnq1MWhsUI4SqkVOmf59li3Ty8H6aDkP-G_MIU-xHzDDTMjX68xwZV-Xkxy3MJKeEmJ9NWctxFPInUL8dF1_EV_l8WVIDOjbFAn9Xx7o1qlKsiK38HQOqrNy1JnFUaVQwUbZdSeTXXbvC9oPf6Px2vQLNFr67SYbuuw5MYbsHw28QjzbROaN3fKupZ6mdxbnExb0O9c3J53w_LAhdCkEfeLTUy1tk6m2gjmiEm0UZZraa1QHIGXR3PU-AgKY5kzmigyFIaZVLjISSqTbWiMJ2O3Cy0jE0FQ2y5Rjmpf85xHUn6tiIkUliQ8AF693MyUauR4KMZDVvsqkRl6W56Vid5mrwFEc8vHQpHjFzbbefzmBh7VpQheAziuApr5vMJmiRq7yew5i7H5TTn7eQQVBJug0c8jmEyFrygkgJ1irnw-sEdJXMg4AJZH_NeeZL2rLl7t_dVwH1YqyguJDqAxfZq5Q4-rpvooz5gP0B0OEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EBb3Ut8ZXe_Caskk2-ziqWKrWIlqht5B9iGJpRVtRf707eVQrCkW85bATMpmdnW93Zr8BOAisUC6MxL5UaeTTWy59FdvQ10YISyk1QmVVvm3WvKFn3bhbtAPCuzA5P8T4wA09I1uv0cHxQPq7l-MZVsSLmkgXznndAco5bPCd7a-uwi8MvCwsKZkZZd3Jsp4f3zQRq_JyxZ-A6CSuzQJTYwl6pUp5PcpDfTRUdf3-je3xn3RehkoBYGuH-YxbgRnbX4X5o4EDmW9rULm-S42tpS-De4PzaR1uGied46Zf9FzwdRxwt96EVCljZay0YJboSOnUcCWNESlH7OUAHdXOiEIbZrUiKbkVmulY2MBKKqMNmO0P-nYLalpGgiC9XZRaqlzYsw5MueUiJFIYEnEPePl3E10QkmNfjF4ysTGRCWpbtMtEbZNXD4Kx5GNOyjGFzEZmwLGAA3Yx4lcPqqVFE-damC9J-3Ywek5CzH9Tzn4fQQXBPGjw-wgmY-GCCvFgM58snx_sgBIXMvSAZSafWpOkfdnEp-2_ClZhodm5aCWt0_b5DiyWFTAk2IXZ4dPI7jmYNVT7mft8AM6eEiw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4YNMYLPtH6goPXkm273cdRRYKPEKKScGu6D6LBAFEw6q93tw8UAgkx3nrYaTqdmZ2vu1-_BTjzNBOmjYQuF3Hg4i7lrgi170rFmMYYKyYSlm-TNNr4phN2Mv6T_Rcm1YeYLLjZykjma1vgQ9WdLXK7hBXQjBJpujmtGjy5igliNsNr9_4vAV7i54rMBJPONKtn7p2mWlXKVpyHQ6dhbdKX6pvQyz1K6Si96ngkqvJrRuzxf1zegmIGXyvnab5tw4ru78DaxcBAzM9dKD48xUpX4vfBs7LZtAft-tXjZcPNTlxwZehRM9v4WAileSgkIxrJQMhYUcGVYjG1yMvAOSxNCJlUREuBYtRlksiQaU9zzIMSFPqDvj6AiuQBQ1bcLog1FqbpaQOlzGThI84UCqgDNH-5kczkyO2pGC_R1GcJj6y32WGZ1tvowwFvYjlMJTmWsCkl8ZsYGFgXWvTqQDkPaGQKy-6WxH09GL9Fvt39xpQsHoEZsrug3uIRhIfMtBTkwH6aKz8PbGASZdx3gCQRX9qTqNlq2KvDvxqWYb1Vq0d3183bI9jI6S_IO4bC6HWsTwzGGonTpHi-AYcdEOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shade+avoidance&rft.jtitle=The+New+phytologist&rft.au=Franklin%2C+Keara+A&rft.date=2008-09-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=179&rft.issue=4&rft.spage=930&rft.epage=944&rft_id=info:doi/10.1111%2Fj.1469-8137.2008.02507.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |