Phylodynamic analysis of the highly pathogenic avian influenza H5N8 epidemic in France, 2016–2017
In 2016–2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured‐coalescent‐based phylodynamic approach that combined viral geno...
Saved in:
Published in | Transboundary and emerging diseases Vol. 69; no. 5; pp. e1574 - e1583 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.09.2022
Wiley-Blackwell John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1865-1674 1865-1682 1865-1682 |
DOI | 10.1111/tbed.14490 |
Cover
Loading…
Abstract | In 2016–2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured‐coalescent‐based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within‐département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors—including large‐scale preventive culling and live‐duck movement bans—on viral migration rates and Ne. We showed that the large‐scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within‐département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast‐evolving livestock pathogens. |
---|---|
AbstractList | In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within-département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens.In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within-département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens. In 2016–2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured‐coalescent‐based phylodynamic approach that combined viral genomic data ( n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size ( Ne ) in each département . Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within‐ département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors—including large‐scale preventive culling and live‐duck movement bans—on viral migration rates and Ne . We showed that the large‐scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements . No relationship was found between the viral spread and duck movements between départements . The within‐ département transmission intensity was found to be weakly associated with the intensity of duck movements within départements . Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements . Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast‐evolving livestock pathogens. In 2016–2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured‐coalescent‐based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within‐département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors—including large‐scale preventive culling and live‐duck movement bans—on viral migration rates and Ne. We showed that the large‐scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within‐département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast‐evolving livestock pathogens. In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within-département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens. |
Author | Chakraborty, Debapriyo Scoizec, Axelle Grasland, Beatrice Briand, Francois‐Xavier Guinat, Claire Paul, Mathilde C. Lebouquin, Sophie Schmitz, Audrey Vergne, Timothée Müller, Nicola F. Andraud, Mathieu Niqueux, Eric Guerin, Jean‐Luc |
AuthorAffiliation | 5 French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort Ploufragan France 2 Department of Biosystems Science and Engineering ETH Zürich Mattenstrasse Basel Switzerland 3 Swiss Institute of Bioinformatics (SIB) Lausanne Switzerland 4 Vaccine and Infectious Disease Fred Hutchinson Cancer Research Centre Seattle Washington USA 1 IHAP Université de Toulouse, INRAE, ENVT Toulouse France |
AuthorAffiliation_xml | – name: 4 Vaccine and Infectious Disease Fred Hutchinson Cancer Research Centre Seattle Washington USA – name: 2 Department of Biosystems Science and Engineering ETH Zürich Mattenstrasse Basel Switzerland – name: 1 IHAP Université de Toulouse, INRAE, ENVT Toulouse France – name: 3 Swiss Institute of Bioinformatics (SIB) Lausanne Switzerland – name: 5 French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort Ploufragan France |
Author_xml | – sequence: 1 givenname: Debapriyo orcidid: 0000-0003-2777-8923 surname: Chakraborty fullname: Chakraborty, Debapriyo email: debapriyoc@gmail.com organization: Université de Toulouse, INRAE, ENVT – sequence: 2 givenname: Claire surname: Guinat fullname: Guinat, Claire organization: Swiss Institute of Bioinformatics (SIB) – sequence: 3 givenname: Nicola F. surname: Müller fullname: Müller, Nicola F. organization: Fred Hutchinson Cancer Research Centre – sequence: 4 givenname: Francois‐Xavier orcidid: 0000-0002-8094-9368 surname: Briand fullname: Briand, Francois‐Xavier organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 5 givenname: Mathieu orcidid: 0000-0003-2891-2901 surname: Andraud fullname: Andraud, Mathieu organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 6 givenname: Axelle surname: Scoizec fullname: Scoizec, Axelle organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 7 givenname: Sophie surname: Lebouquin fullname: Lebouquin, Sophie organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 8 givenname: Eric surname: Niqueux fullname: Niqueux, Eric organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 9 givenname: Audrey surname: Schmitz fullname: Schmitz, Audrey organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 10 givenname: Beatrice surname: Grasland fullname: Grasland, Beatrice organization: French Agency for Food, Environmental and Occupational Health & Safety (ANSES) Laboratory of Ploufragan‐Plouzané‐Niort – sequence: 11 givenname: Jean‐Luc surname: Guerin fullname: Guerin, Jean‐Luc organization: Université de Toulouse, INRAE, ENVT – sequence: 12 givenname: Mathilde C. surname: Paul fullname: Paul, Mathilde C. organization: Université de Toulouse, INRAE, ENVT – sequence: 13 givenname: Timothée surname: Vergne fullname: Vergne, Timothée organization: Université de Toulouse, INRAE, ENVT |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35195353$$D View this record in MEDLINE/PubMed https://anses.hal.science/anses-03659141$$DView record in HAL |
BookMark | eNqFks9u1DAQxi1URNuFCw-AInFBwBb_d3xBKqVlkVbAoZwtx5lsXGXtbZwsCifegTfkSUjYtoIVgrmMZf--zx7PHKODEAMg9JjgEzLGq66A8oRwrvE9dERyKeZE5vTgbq34ITpO6QpjibUUD9AhE0QLJtgRcp_qoYnlEOzau8wG2wzJpyxWWVdDVvtV3QzZxnZ1XEGYiK23IfOhanoIX222EB_yDDa-hEnvQ3bR2uDgZUYxkT--fR-TeojuV7ZJ8Ogmz9Dni_PLs8V8-fHd-7PT5dwJovCcgaVEFI7yUhPQWghleSFoyUFVhauIVgUrBZauEEJWFbVSjXtjCBAuZ2yGXu98N32xhtJB6FrbmE3r17YdTLTe_HkSfG1WcWu00liN3zFDL3YG9Z5scbo0NiRIBjMpNOFkS0b62c11bbzuIXVm7ZODprEBYp8MVZQRqnLO_o9KRgnXOZ9cn-6hV7Fvx75MhkRJLLjQI_Xk91LvHnvb2BHAO8C1MaUWKuN8Zzsfp8p9Ywg20-yYaXbMr9kZJc_3JLeuf4XJDv7iGxj-QZrLN-dvd5qfi6DSYQ |
CitedBy_id | crossref_primary_10_1080_03079457_2023_2236568 crossref_primary_10_1128_spectrum_01652_22 crossref_primary_10_3201_eid2902_220765 crossref_primary_10_3390_pathogens12010100 crossref_primary_10_1093_ve_vead014 |
Cites_doi | 10.1093/sysbio/syq010 10.1093/molbev/msy096 10.1038/s41893‐019‐0356‐5 10.2903/j.efsa.2021.6497 10.1038/s41467‐018‐03763‐2 10.1111/tbed.14202 10.1016/j.meegid.2015.06.014 10.1111/tbed.13858 10.1038/s41562‐017‐0189‐z 10.1080/01621459.1995.10476572 10.1093/infdis/jis757 10.1073/pnas.2105273118 10.1186/s12862‐015‐0410‐5 10.1002/ecs2.2294 10.1186/1297‐9716‐42‐81 10.1093/ve/vew007 10.1016/j.epidem.2019.03.006 10.1093/ve/vev003 10.1093/ve/vez030 10.1093/nar/gkh340 10.1038/s41564‐020‐00838‐z 10.1073/pnas.1906954117 10.1093/sysbio/syy032 10.1371/journal.pcbi.1002947 10.1016/j.pt.2019.12.013 10.2807/1560-7917.ES.2018.23.26.1700791 10.1637/11881‐042718‐ResNote.1 10.1016/j.tree.2021.04.013 10.1098/rstb.2018.0257 10.1038/s41598‐019‐47788‐z 10.1098/rstb.2010.0060 10.1093/bioinformatics/bty406 10.2807/1560‐7917.ES.2017.22.1.30434 10.1038/s41593‐020‐0660‐4 10.1101/603514 10.1371/journal.pcbi.1000505 10.3201/eid2702.202920 10.1126/science.1061020 10.1038/nature22040 10.3201/eid2603.190412 10.1371/journal.pcbi.1003537 10.1126/science.1065973 10.1098/rspb.2006.3609 10.1371/journal.pcbi.1007189 10.1371/currents.RRN1031 10.1038/s41598‐019‐42607‐x 10.1093/phe/phw002 10.1098/rstb.2014.0107 10.3389/fvets.2018.00015 10.1093/molbev/msaa015 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley‐VCH GmbH. 2022 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial |
Copyright_xml | – notice: 2022 The Authors. published by Wiley‐VCH GmbH. – notice: 2022 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 7S9 L.6 1XC VOOES 5PM |
DOI | 10.1111/tbed.14490 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
DocumentTitleAlternate | CHAKRABORTY et al |
EISSN | 1865-1682 |
EndPage | e1583 |
ExternalDocumentID | PMC9790735 oai_HAL_anses_03659141v1 35195353 10_1111_tbed_14490 TBED14490 |
Genre | article Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GrantInformation_xml | – fundername: FEDER/Région Occitanie Recherche et Sociétés 2018—AI‐TRACK – fundername: PREDYT project (Fonds de la Recherche pour l’Influenza Aviaire 2019) – fundername: the Direction Generale de l'Alimentation, Ministère de l'Agriculture et de l'Alimentation, France – fundername: the Swiss National Science Foundation – fundername: the European Union's Horizon 2020 – fundername: FEDER/Région Occitanie Recherche et Sociétés 2018-AI-TRACK – fundername: PREDYT project (Fonds de la Recherche pour l'Influenza Aviaire 2019) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X2 8-0 8-1 8-3 8-4 8-5 8G5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATCPS ATUGU AUFTA AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DWQXO EAD EAP EBC EBD EBS ECGQY EJD EMB EMK EMOBN ESX EYRJQ F00 F01 F04 F5P FEDTE G-S G.N GNUQQ GODZA GUQSH H.T H.X H13 HCIFZ HF~ HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0K M2O M7P MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PIMPY PQQKQ Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WOIKV WPGGZ WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT RPM AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 1OB 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 7S9 L.6 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5170-3ea215bc24d91e99557a4b52d4e7fbcf197b3d506cb556ff2a671977775e5c833 |
IEDL.DBID | 24P |
ISSN | 1865-1674 1865-1682 |
IngestDate | Thu Aug 21 18:40:21 EDT 2025 Fri May 09 12:07:24 EDT 2025 Fri Jul 11 18:22:01 EDT 2025 Fri Jul 11 05:31:29 EDT 2025 Sat Aug 23 12:35:52 EDT 2025 Mon Jul 21 05:59:52 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Jul 01 02:30:54 EDT 2025 Wed Jan 22 16:24:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | outbreak analytics reconstruction of viral transmission modelling infectious disease dynamics emerging infectious diseases virus evolution virus molecular epidemiology |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5170-3ea215bc24d91e99557a4b52d4e7fbcf197b3d506cb556ff2a671977775e5c833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2777-8923 0000-0002-8094-9368 0000-0003-2891-2901 0000-0001-5777-673X 0000-0002-1146-9256 0000-0002-8245-9290 0009-0006-8711-0385 0000-0003-2940-8547 0009-0008-1551-1934 0000-0001-7770-4012 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftbed.14490 |
PMID | 35195353 |
PQID | 2717605459 |
PQPubID | 38285 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9790735 hal_primary_oai_HAL_anses_03659141v1 proquest_miscellaneous_2723127843 proquest_miscellaneous_2632149841 proquest_journals_2717605459 pubmed_primary_35195353 crossref_citationtrail_10_1111_tbed_14490 crossref_primary_10_1111_tbed_14490 wiley_primary_10_1111_tbed_14490_TBED14490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin – name: Hoboken |
PublicationTitle | Transboundary and emerging diseases |
PublicationTitleAlternate | Transbound Emerg Dis |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley-Blackwell John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-Blackwell – name: John Wiley and Sons Inc |
References | 2015; 34 2021; 68 2021; 27 2010; 59 2013; 207 2019; 15 2013; 9 2004; 32 2021; 36 2015; 370 2018; 9 2001; 294 2018; 2 2018; 5 2001; 292 2017; 79 2021; 118 2019; 28 2018; 34 2014; 10 2018; 35 2015; 1 2015; 15 2021; 6 2019; 9 1995; 90 2019; 5 2019; 2 2017; 22 2010; 365 2006; 273 2020; 37 2020; 36 2018; 63 2004 2018; 23 2018; 67 2016; 2 2020 2021; 19 2011; 42 2020; 26 2020; 117 2016 2020; 23 2009; 5 2009; 1 2017; 544 2016; 9 2019; 374 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Mansley L. M. (e_1_2_9_34_1) 2004 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Müller N. F. (e_1_2_9_40_1) 2018; 34 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 R Core Team (e_1_2_9_41_1) 2020 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 Bronner A. (e_1_2_9_7_1) 2017; 79 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 32 start-page: 1792 issue: 5 year: 2004 end-page: 1797 article-title: MUSCLE: Multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Research – volume: 118 issue: 52 year: 2021 article-title: Accounting for spatial sampling patterns in Bayesian phylogeography publication-title: Proceedings of the National Academy of Sciences – volume: 2 start-page: 6 issue: 1 year: 2018 end-page: 10 article-title: Redefine statistical significance publication-title: Nature Human Behaviour – volume: 5 issue: 2 year: 2019 article-title: Inferring time‐dependent migration and coalescence patterns from genetic sequence and predictor data in structured populations publication-title: Virus Evolution – volume: 35 start-page: 1547 issue: 6 year: 2018 end-page: 1549 article-title: MEGA X: Molecular evolutionary genetics analysis across computing platforms publication-title: Molecular Biology and Evolution – volume: 36 start-page: 837 issue: 9 year: 2021 end-page: 847 article-title: What can phylodynamics bring to animal health research? publication-title: Trends in Ecology and Evolution – volume: 9 start-page: 5 issue: 1 year: 2016 end-page: 23 article-title: One Health and culling as a public health measure publication-title: Public Health Ethics – volume: 544 start-page: 309 issue: 7650 year: 2017 end-page: 315 article-title: Virus genomes reveal factors that spread and sustained the Ebola epidemic publication-title: Nature – volume: 294 start-page: 813 issue: 5543 year: 2001 end-page: 817 article-title: Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape publication-title: Science – volume: 9 issue: 7 year: 2018 article-title: Disentangling the influence of livestock vs. farm density on livestock disease epidemics publication-title: Ecosphere – volume: 90 start-page: 773 issue: 430 year: 1995 end-page: 795 article-title: Bayes factors publication-title: Journal of the American Statistical Association – volume: 67 start-page: 901 issue: 5 year: 2018 article-title: Posterior summarization in Bayesian phylogenetics using Tracer 1.7 publication-title: Systematic Biology – volume: 42 issue: 1 year: 2011 article-title: Risk based culling for highly infectious diseases of livestock publication-title: Veterinary Research – volume: 63 start-page: 246 issue: 1s year: 2018 end-page: 248 article-title: Exploring the wind‐borne spread of highly pathogenic avian influenza H5N8 during the 2016–2017 epizootic in France publication-title: Avian Diseases – volume: 273 start-page: 2467 issue: 1600 year: 2006 end-page: 2475 article-title: Key strategies for reducing spread of avian influenza among commercial poultry holdings: Lessons for transmission to humans publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 292 start-page: 1155 issue: 5519 year: 2001 end-page: 1160 article-title: The foot‐and‐mouth epidemic in Great Britain: Pattern of spread and impact of interventions publication-title: Science – volume: 26 issue: 3 year: 2020 article-title: Role of live‐duck movement networks in transmission of avian influenza, France, 2016–2017 publication-title: Emerging Infectious Diseases Journal – volume: 374 year: 2019 article-title: A brief history of bird flu publication-title: Philosophical Transactions of the Royal Society B – volume: 37 start-page: 1530 issue: 5 year: 2020 end-page: 1534 article-title: IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era publication-title: Molecular Biology and Evolution – volume: 23 start-page: 1 issue: 26 year: 2018 end-page: 10 article-title: Spatio‐temporal patterns of highly pathogenic avian influenza virus subtype H5N8 spread, France, 2016 to 2017 publication-title: Eurosurveillance – year: 2004 – volume: 117 start-page: 5949 issue: 11 year: 2020 end-page: 5954 article-title: Assessing the role of live poultry trade in community‐structured transmission of avian influenza in China publication-title: Proceedings of the National Academy of Sciences – volume: 5 issue: 10 year: 2009 article-title: Discovering the phylodynamics of RNA viruses publication-title: PLOS Computational Biology – volume: 22 issue: 1 year: 2017 article-title: Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016 publication-title: Eurosurveillance – volume: 5 year: 2018 article-title: Airborne detection of H5N8 highly pathogenic avian influenza virus genome in poultry farms, France publication-title: Frontiers in Veterinary Science – volume: 9 issue: 1 year: 2019 article-title: Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States publication-title: Scientific Reports – volume: 370 issue: 1669 year: 2015 article-title: Infectious disease transmission and contact networks in wildlife and livestock publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 36 start-page: 239 issue: 3 year: 2020 end-page: 249 article-title: Modeling pathogen dispersal in marine fish and shellfish publication-title: Trends in Parasitology – volume: 365 start-page: 1879 issue: 1548 year: 2010 end-page: 1890 article-title: Viral phylodynamics and the search for an ‘effective number of infections’ publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 59 start-page: 307 issue: 3 year: 2010 end-page: 321 article-title: New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the performance of PhyML 3.0 publication-title: Systematic Biology – volume: 19 issue: 3 year: 2021 article-title: Avian influenza overview December 2020 – February 2021 publication-title: EFSA Journal – volume: 9 start-page: 2222 issue: 1 year: 2018 article-title: Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak publication-title: Nature Communications – volume: 1 start-page: 1 issue: 1 year: 2015 end-page: 5 article-title: RDP4: Detection and analysis of recombination patterns in virus genomes publication-title: Virus Evolution – volume: 2 start-page: 834 issue: 9 year: 2019 end-page: 840 article-title: The role of movement restrictions in limiting the economic impact of livestock infections publication-title: Nature Sustainability – volume: 68 start-page: 1800 issue: 4 year: 2021 end-page: 1813 article-title: Challenges and opportunities for using national animal datasets to support foot‐and‐mouth disease control publication-title: Transboundary and Emerging Diseases – volume: 6 start-page: 112 issue: 1 year: 2021 end-page: 122 article-title: Genomic epidemiology reveals multiple introductions of SARS‐CoV‐2 from mainland Europe into Scotland publication-title: Nature Microbiology – volume: 1 year: 2009 article-title: Reconstructing the initial global spread of a human influenza pandemic publication-title: PLoS Currents – year: 2020 article-title: Adaptive parallel tempering for BEAST 2 publication-title: BioRxiv – year: 2016 – volume: 10 issue: 4 year: 2014 article-title: BEAST 2: A software platform for Bayesian evolutionary analysis publication-title: Plos Computational Biology – volume: 15 start-page: 120 issue: 1 year: 2015 article-title: Avian influenza virus exhibits distinct evolutionary dynamics in wild birds and poultry publication-title: BMC Evolutionary Biology – volume: 2 issue: 1 year: 2016 article-title: Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path‐O‐Gen) publication-title: Virus Evolution – volume: 27 start-page: 508 issue: 2 year: 2021 end-page: 516 article-title: Highly pathogenic avian influenza A (H5N8) virus spread by short‐and long‐range transmission, France, 2016–17 publication-title: Emerging Infectious Diseases – volume: 28 year: 2019 article-title: Highly pathogenic avian influenza H5N8 in south‐west France 2016–2017: A modeling study of control strategies publication-title: Epidemics – volume: 9 issue: 1 year: 2019 article-title: Duck production systems and highly pathogenic avian influenza H5N8 in France, 2016–2017 publication-title: Scientific Reports – volume: 15 issue: 8 year: 2019 article-title: Bayesian phylodynamics of avian influenza A virus H9N2 in Asia with time‐dependent predictors of migration publication-title: PLOS Computational Biology – volume: 34 start-page: 3843 issue: 22 year: 2018 end-page: 3848 article-title: MASCOT: Parameter and state inference under the marginal structured coalescent approximation publication-title: Bioinformatics – year: 2020 – volume: 68 start-page: 3151 issue: 6 year: 2021 end-page: 3155 article-title: Inferring within‐flock transmission dynamics of highly pathogenic avian influenza H5N8 virus in France, 2020 publication-title: Transboundary and Emerging Diseases – volume: 34 start-page: 267 year: 2015 end-page: 277 article-title: Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea publication-title: Infection, Genetics and Evolution – volume: 23 start-page: 788 issue: 7 year: 2020 end-page: 799 article-title: Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence publication-title: Nature Neuroscience – volume: 207 start-page: 730 issue: 5 year: 2013 end-page: 735 article-title: Genetic data provide evidence for wind‐mediated transmission of highly pathogenic avian influenza publication-title: The Journal of Infectious Diseases – volume: 79 start-page: 13 year: 2017 end-page: 17 article-title: Description de l’épisode d'influenza aviaire hautement pathogène en France en 2016–2017 publication-title: Bulletin épidémiologique, santé animale etalimentation – volume: 9 issue: 3 year: 2013 article-title: Viral phylodynamics publication-title: PLOS Computational Biology – ident: e_1_2_9_42_1 – ident: e_1_2_9_22_1 doi: 10.1093/sysbio/syq010 – ident: e_1_2_9_29_1 doi: 10.1093/molbev/msy096 – ident: e_1_2_9_48_1 doi: 10.1038/s41893‐019‐0356‐5 – ident: e_1_2_9_2_1 doi: 10.2903/j.efsa.2021.6497 – ident: e_1_2_9_11_1 doi: 10.1038/s41467‐018‐03763‐2 – ident: e_1_2_9_50_1 doi: 10.1111/tbed.14202 – ident: e_1_2_9_24_1 doi: 10.1016/j.meegid.2015.06.014 – ident: e_1_2_9_49_1 doi: 10.1111/tbed.13858 – ident: e_1_2_9_4_1 doi: 10.1038/s41562‐017‐0189‐z – ident: e_1_2_9_26_1 doi: 10.1080/01621459.1995.10476572 – ident: e_1_2_9_54_1 doi: 10.1093/infdis/jis757 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.2105273118 – ident: e_1_2_9_15_1 doi: 10.1186/s12862‐015‐0410‐5 – volume-title: Animal production in Europe: The way forward in a changing world “in‐between” Congress of the International Society for Animal Hygiene year: 2004 ident: e_1_2_9_34_1 – ident: e_1_2_9_36_1 doi: 10.1002/ecs2.2294 – ident: e_1_2_9_47_1 doi: 10.1186/1297‐9716‐42‐81 – ident: e_1_2_9_44_1 doi: 10.1093/ve/vew007 – ident: e_1_2_9_3_1 doi: 10.1016/j.epidem.2019.03.006 – ident: e_1_2_9_35_1 doi: 10.1093/ve/vev003 – ident: e_1_2_9_39_1 doi: 10.1093/ve/vez030 – ident: e_1_2_9_13_1 doi: 10.1093/nar/gkh340 – volume-title: R: A language and environment for statistical computing year: 2020 ident: e_1_2_9_41_1 – ident: e_1_2_9_10_1 doi: 10.1038/s41564‐020‐00838‐z – ident: e_1_2_9_53_1 doi: 10.1073/pnas.1906954117 – ident: e_1_2_9_43_1 doi: 10.1093/sysbio/syy032 – ident: e_1_2_9_51_1 doi: 10.1371/journal.pcbi.1002947 – ident: e_1_2_9_8_1 doi: 10.1016/j.pt.2019.12.013 – ident: e_1_2_9_19_1 doi: 10.2807/1560-7917.ES.2018.23.26.1700791 – ident: e_1_2_9_20_1 doi: 10.1637/11881‐042718‐ResNote.1 – ident: e_1_2_9_21_1 doi: 10.1016/j.tree.2021.04.013 – ident: e_1_2_9_33_1 doi: 10.1098/rstb.2018.0257 – ident: e_1_2_9_55_1 doi: 10.1038/s41598‐019‐47788‐z – ident: e_1_2_9_16_1 doi: 10.1098/rstb.2010.0060 – volume: 34 start-page: 3843 issue: 22 year: 2018 ident: e_1_2_9_40_1 article-title: MASCOT: Parameter and state inference under the marginal structured coalescent approximation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty406 – ident: e_1_2_9_46_1 doi: 10.2807/1560‐7917.ES.2017.22.1.30434 – ident: e_1_2_9_28_1 doi: 10.1038/s41593‐020‐0660‐4 – volume: 79 start-page: 13 year: 2017 ident: e_1_2_9_7_1 article-title: Description de l’épisode d'influenza aviaire hautement pathogène en France en 2016–2017 publication-title: Bulletin épidémiologique, santé animale etalimentation – ident: e_1_2_9_38_1 doi: 10.1101/603514 – ident: e_1_2_9_25_1 doi: 10.1371/journal.pcbi.1000505 – ident: e_1_2_9_6_1 doi: 10.3201/eid2702.202920 – ident: e_1_2_9_14_1 doi: 10.1126/science.1061020 – ident: e_1_2_9_12_1 doi: 10.1038/nature22040 – ident: e_1_2_9_18_1 doi: 10.3201/eid2603.190412 – ident: e_1_2_9_5_1 doi: 10.1371/journal.pcbi.1003537 – ident: e_1_2_9_27_1 doi: 10.1126/science.1065973 – ident: e_1_2_9_31_1 doi: 10.1098/rspb.2006.3609 – ident: e_1_2_9_52_1 doi: 10.1371/journal.pcbi.1007189 – ident: e_1_2_9_32_1 doi: 10.1371/currents.RRN1031 – ident: e_1_2_9_17_1 doi: 10.1038/s41598‐019‐42607‐x – ident: e_1_2_9_30_1 doi: 10.1093/phe/phw002 – ident: e_1_2_9_9_1 doi: 10.1098/rstb.2014.0107 – ident: e_1_2_9_45_1 doi: 10.3389/fvets.2018.00015 – ident: e_1_2_9_37_1 doi: 10.1093/molbev/msaa015 |
SSID | ssj0060965 |
Score | 2.3236709 |
Snippet | In 2016–2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry... In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1574 |
SubjectTerms | Animal biology Animals Aquatic birds Avian flu avian influenza Culling Disease control Disease Outbreaks - veterinary Ducks emerging infectious diseases Epidemics Epidemiology Farms France France - epidemiology Generalized linear models genomics Influenza Influenza A Virus, H5N8 Subtype - genetics Influenza in Birds Life Sciences linear models Livestock modelling infectious disease dynamics Original outbreak analytics Population genetics Population number population size Poultry Poultry Diseases Poultry farming reconstruction of viral transmission Statistical models temporal variation Veterinary medicine and animal Health viral genome virus evolution virus molecular epidemiology viruses Waterfowl |
Title | Phylodynamic analysis of the highly pathogenic avian influenza H5N8 epidemic in France, 2016–2017 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftbed.14490 https://www.ncbi.nlm.nih.gov/pubmed/35195353 https://www.proquest.com/docview/2717605459 https://www.proquest.com/docview/2632149841 https://www.proquest.com/docview/2723127843 https://anses.hal.science/anses-03659141 https://pubmed.ncbi.nlm.nih.gov/PMC9790735 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS91AEF6svvSltNpLrJUt9cXSQJPd2c1CX6wXDqIiosW3sLvZcATJEc9RaJ_8D_7D_pLObC71YBGahyRkJ5BkZnZmsjPzMbaBJs5JaYo0KO0wQNE-LYzyqVZBaOmkroEKnA-P1OhM7p_D-QL71tfCtP0hhh9upBlxviYFt276QMlnLlS0NGkwYF-i2lqS8lwe9_Owor4mFG4VClLKte-ak1Iez99758zRszElQz72NB8nTD50ZKMl2nvJXnQuJN9qef6KLYRmmS3_oLyWWFzLD7v18hXmj8cYkFct6jy3XQMSPqk5-n2cWhVf_uQESjxBOSKKW5QWftECl_yyfARHBQ8tiKzH6zzicIQvHA26-n13jwf9mp3t7Z5uj9IOViH1QDAzIli0887nsjJZMAZAW-kgr2TQtfN1huwTFXxV3gGous6t0ngNNwjgCyHesMVm0oR3jHthVE5BmwhBallYEEYoXdtMVKaWImGb_dctfddznKAvLss-9iBOlJETCfs00F61nTb-SbWBTBoIqDn2aOugRLMepiVaYzCZzG6zhK31XCw7pZyWOYauGL1JMAn7OAyjOtEaiW3C5AZpFCE3mUJmT9BodIppwRbf720rGMMDRbxDATii50Rm7onnR5qLcWzrbbTB-RYS9jkK1xMfoTz9vrsTz1b_h_g9e55T8UbMkFtji7Prm_ABXaqZW4-ag_udk_wPBW0bhg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHOCCaPlLKWBELyAikdhjx8dSWgXYXfWwRb1ZseNoK1VZ1G4rwanv0DfkSZhxsqGrokrsJat4IiWZGc9MPP4-xrYxxDkpTZEGpR0WKNqnhVE-1SoILZ3UDdAG5_FElYfy6xEc9b05tBemw4cYPriRZ8T5mhycPkhf8_KFCzWtTRqs2O9JlWtibsjlwXIiVgRsQvVWoSClZvsenZQaef5euxKP7s6oG_JmqnmzY_J6JhtD0f4j9rDPIflOp_R1die0G2zjOzW2xN21fNwvmD9m_mCGFXnd0c7zqkcg4fOGY-LHCav45CcnVuI5GhJJXKC58OOOueRXxUuYFDx0LLIez_NIxBE-cIzo6vflFR70E3a4vzfdLdOeVyH1QDwzIlQY6J3PZW2yYAyArqSDvJZBN843GepP1PBReQegmiavlMZz-IMAvhDiKVtr5214zrgXRuVUtYkQpJZFBcIIpZsqE7VppEjYu-Xbtb4HHSfuixO7LD5IEzZqImFvB9kfHdTGP6W2UUmDAKFjlzsji3E9nFkMx2AymV1kCdtaatH2Xnlmc6xdsXyTYBL2ZhhGf6JFkqoN83OUUUTdZAqZ3SKjMSumFVt8vmedYQw3FAkPBeCIXjGZlTteHWmPZxHX22iDEy4k7H00rltegp1-2vsc_23-j_Brdr-cjkd29GXy7QV7kNNOjtgut8XWFqfn4SXmVwv3KnrRH5xkHgk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEA-1gvhSav23tmrEviguuJtMsgFfqu1xanvcQyt9WzbZhCuUvdJeC_rkd_Ab-kmcyf6xR6XgvdyxmYO9nZnMzM3k92NsG0OcldIUqVfaYoGiXVoY5VKtvNDSSh2ADjgfTNT4SH45huMV9qE_C9PiQwx_uJFnxP2aHPysDtecfGF9Ta1JgwX7Xer2kX3nctrvw4pwTajcKhSkNGvfgZPSHM_f7y6FozszGoa8mWneHJi8nsjGSDRaZ2tdCsl3Wp0_YCu-2WAb32iuJR6u5Qddv_whc9MZFuR1yzrPqw6AhM8Dx7yPE1Tx6XdOpMRztCOSuEJr4SctccmPio9hUnDfksg6vM4jD4d_xzGgq98_f-GbfsSORnuHn8ZpR6uQOiCaGeErjPPW5bI2mTcGQFfSQl5Lr4N1IUP1iRreK2cBVAh5pTRewxd4cIUQj9lqM2_8U8adMCqnok14L7UsKhBGKB2qTNQmSJGwN_3TLV2HOU7UF6dlX3uQJsqoiYS9HmTPWqSNf0pto5IGAQLHHu_slxjW_UWJ0RhMJrOrLGFbvRbLzikvyhxLV6zeJJiEvRqW0Z2oR1I1fn6JMoqYm0whs1tkNCbF1LDF3_ekNYzhhiLfoQBc0Usms3THyyvNySzCehttcL-FhL2NxnXLQygPP-7txk_P_kf4Jbs33R2V-58nXzfZ_ZzOccRhuS22uji_9M8xu1rYF9GJ_gDXnR07 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylodynamic+analysis+of+the+highly+pathogenic+avian+influenza+H5N8+epidemic+in+France%2C+2016-2017&rft.jtitle=Transboundary+and+emerging+diseases&rft.au=Chakraborty%2C+Debapriyo&rft.au=Guinat%2C+Claire&rft.au=M%C3%BCller%2C+Nicola+F&rft.au=Briand%2C+Francois-Xavier&rft.date=2022-09-01&rft.eissn=1865-1682&rft.volume=69&rft.issue=5&rft.spage=e1574&rft_id=info:doi/10.1111%2Ftbed.14490&rft_id=info%3Apmid%2F35195353&rft.externalDocID=35195353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-1674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-1674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-1674&client=summon |