Bacterial volatile compound-based tools for crop management and quality

Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their ear...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 26; no. 9; pp. 968 - 983
Main Authors Cellini, Antonio, Spinelli, Francesco, Donati, Irene, Ryu, Choong-Min, Kloepper, Joseph W.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment. Plant-associated bacteria interact with their environment through the exchange of chemicals, including volatile compounds. Innovative agricultural technologies may exploit the inherent advantages of bacterial airborne signals, including diffusibility, independence from water availability and physical connection, and absence of pesticide residuals.Volatile compounds resulting from plant–pathogen interactions allow nondestructive disease diagnosis on bulk samples of asymptomatic plant material.Volatile compounds, expressing a direct biocidal activity, interfering with signalling, or stimulating plant host defences, contribute to the biological control of pests and pathogens.Bacterial volatile compounds modulate plant hormones enhancing plant growth, stress tolerance, crop quality, aroma and nutraceutical characteristics, and reduce post-harvest losses.
AbstractList Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.
Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.
Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment. Plant-associated bacteria interact with their environment through the exchange of chemicals, including volatile compounds. Innovative agricultural technologies may exploit the inherent advantages of bacterial airborne signals, including diffusibility, independence from water availability and physical connection, and absence of pesticide residuals.Volatile compounds resulting from plant–pathogen interactions allow nondestructive disease diagnosis on bulk samples of asymptomatic plant material.Volatile compounds, expressing a direct biocidal activity, interfering with signalling, or stimulating plant host defences, contribute to the biological control of pests and pathogens.Bacterial volatile compounds modulate plant hormones enhancing plant growth, stress tolerance, crop quality, aroma and nutraceutical characteristics, and reduce post-harvest losses.
Author Ryu, Choong-Min
Kloepper, Joseph W.
Cellini, Antonio
Donati, Irene
Spinelli, Francesco
Author_xml – sequence: 1
  givenname: Antonio
  surname: Cellini
  fullname: Cellini, Antonio
  organization: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0003-3870-1227
  surname: Spinelli
  fullname: Spinelli, Francesco
  email: francesco.spinelli3@unibo.it
  organization: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
– sequence: 3
  givenname: Irene
  surname: Donati
  fullname: Donati, Irene
  organization: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
– sequence: 4
  givenname: Choong-Min
  orcidid: 0000-0002-7276-1189
  surname: Ryu
  fullname: Ryu, Choong-Min
  organization: Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
– sequence: 5
  givenname: Joseph W.
  surname: Kloepper
  fullname: Kloepper, Joseph W.
  organization: Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
BookMark eNqFkUFr3DAQhUVJoUnan1Aw5NKLXclaWTI5lDakSSDQS3sWY2lctMiSI8mB_Pto2Zxy2dPM4XuPmfcuyFmIAQn5ymjHKBu-77uyeggldz3tWUdFR-nwgZwzJVW747I_qzsfaMu4Ep_IRc57Sqlkajgnd7_AFEwOfPMcPRTnsTFxWeMWbDtBRtuUGH1u5pgak-LaLBDgPy4YSgPBNk8beFdePpOPM_iMX97mJfn3-_bvzX37-Ofu4ebnY2sEG0prxY5y4Fz1E8y9qfeMOIM1fOI9zhOX0hrAUU1AJzobKw0YNQ1cWYtyoopfkm9H3zXFpw1z0YvLBn39H-OWdT_wgY_jyPhpVNRsqJKCVfTqHbqPWwr1kUrJ3U4oJWWlro9UzSHnhLM2rtTIYigJnNeM6kMfeq_f-tCHPjQVuvZR1eKdek1ugfRyUvfjqMMa67PDpLNxGAxal9AUbaM74fAK4OWrYw
CitedBy_id crossref_primary_10_1007_s11103_025_01566_w
crossref_primary_10_1016_j_foodcont_2023_110211
crossref_primary_10_1093_jxb_erab520
crossref_primary_10_3390_plants11030386
crossref_primary_10_3389_fagro_2022_849911
crossref_primary_10_3389_fpls_2023_1279896
crossref_primary_10_1128_msphere_00324_23
crossref_primary_10_1007_s10526_023_10212_7
crossref_primary_10_3390_toxins15010045
crossref_primary_10_3390_plants12173094
crossref_primary_10_1002_jcp_30889
crossref_primary_10_3389_fmicb_2022_826827
crossref_primary_10_3389_fhort_2024_1394041
crossref_primary_10_3390_bios12040239
crossref_primary_10_3390_microorganisms10010069
crossref_primary_10_1016_j_scitotenv_2022_157123
crossref_primary_10_1016_j_micres_2024_127611
crossref_primary_10_1016_j_scienta_2023_111901
crossref_primary_10_3390_horticulturae9020193
crossref_primary_10_1016_j_foodres_2025_116053
crossref_primary_10_1016_j_postharvbio_2021_111742
crossref_primary_10_1093_jambio_lxad037
crossref_primary_10_5423_RPD_2022_28_1_1
crossref_primary_10_1016_j_cois_2023_101151
crossref_primary_10_1021_acsnano_2c04457
crossref_primary_10_1016_j_plaphy_2025_109830
crossref_primary_10_1016_j_cropro_2025_107114
crossref_primary_10_1080_17429145_2022_2107243
crossref_primary_10_1128_aem_02317_21
crossref_primary_10_3389_fmicb_2022_1050901
crossref_primary_10_3390_plants11192486
crossref_primary_10_3390_microorganisms10071286
crossref_primary_10_1128_spectrum_04346_22
crossref_primary_10_3390_microorganisms9081617
crossref_primary_10_1016_j_envadv_2024_100513
crossref_primary_10_5458_bag_12_3_165
crossref_primary_10_1111_1749_4877_12911
crossref_primary_10_3389_fmicb_2022_826635
crossref_primary_10_1016_j_biotechadv_2022_108078
crossref_primary_10_1002_advs_202400207
crossref_primary_10_1111_1541_4337_13151
Cites_doi 10.1021/jf8020305
10.1007/s10340-016-0768-1
10.1111/j.1744-7348.2005.00036.x
10.1111/j.1472-765X.2007.02147.x
10.3390/app7010085
10.1038/35002669
10.1007/s13593-014-0246-1
10.3389/fpls.2018.01473
10.1038/ncomms1347
10.3390/s140915939
10.3390/agronomy10060794
10.1094/PHYTO.2004.94.5.419
10.1104/pp.103.026583
10.1002/jobm.201600188
10.1002/cbdv.201400342
10.1016/j.micres.2017.12.014
10.1016/j.tim.2016.12.002
10.3389/fpls.2018.00090
10.1002/anie.201906326
10.1007/s00425-005-1523-7
10.1023/B:EJPP.0000021058.81491.f8
10.3389/fpls.2014.00550
10.1007/s10886-013-0306-z
10.1007/s11694-017-9537-y
10.1371/journal.pbio.2001793
10.1021/jf403436t
10.1094/PDIS.2002.86.2.131
10.1016/j.biocontrol.2009.11.010
10.1094/MPMI-21-8-1067
10.1016/j.compag.2010.02.007
10.1104/pp.16.01584
10.1111/pce.12220
10.1099/mic.0.000451
10.1128/AEM.02341-10
10.1111/aab.12272
10.3389/fmicb.2017.00171
10.1016/j.plaphy.2011.07.016
10.1016/j.fm.2020.103502
10.1111/1574-6976.12019
10.1016/j.plaphy.2016.01.026
10.1155/2014/125704
10.1016/j.biocontrol.2013.02.004
10.1002/ps.3301
10.3389/fmicb.2015.01295
10.3389/fmicb.2015.00701
10.1002/ps.4040
10.1111/j.1574-6941.2010.00942.x
10.1046/j.1365-3059.1999.00357.x
10.1111/j.1574-6976.2009.00204.x
10.1128/AEM.01357-12
10.1186/s40168-018-0436-1
10.1016/j.tplants.2015.01.004
10.3389/fmicb.2018.00456
10.1016/j.cropro.2017.09.002
10.1111/mpp.12180
10.3233/JBR-180340
10.1007/s12275-013-2586-y
10.1111/1462-2920.12560
10.1016/j.ijfoodmicro.2018.04.034
10.1002/jsfa.9125
10.1007/s11103-017-0694-5
10.1002/ps.4102
10.1016/j.postharvbio.2010.06.003
10.1094/PHYTO-09-16-0330-RVW
10.1111/mpp.12494
10.1016/j.soilbio.2004.10.021
10.1007/s00709-013-0506-y
10.3389/fmicb.2016.00196
10.1073/pnas.0730845100
10.1111/nph.16282
10.1016/j.tplants.2017.05.009
10.1007/s00468-015-1321-1
10.3103/S0891416814040077
10.1094/PHYTO-01-17-0032-R
10.1016/j.aca.2010.02.017
10.1128/AEM.02999-14
10.1016/j.ijfoodmicro.2014.03.012
10.1007/s11104-014-2131-8
10.1016/j.micres.2016.05.014
10.1094/MPMI-19-0924
10.1021/jf049148i
10.1111/j.1365-313X.2008.03593.x
10.1039/C4CC10393A
10.1007/s00468-011-0667-2
10.1021/jf050533x
10.1111/j.1365-2672.2010.04891.x
10.1007/s00344-014-9453-x
10.1021/jf100393w
10.1111/pce.12759
10.1016/j.lwt.2010.11.036
10.1111/pce.13011
10.1094/PHYTO.2001.91.5.511
10.1073/pnas.1007276107
10.1111/tpj.12666
10.1093/nar/gkx1016
10.1088/1361-6501/ab5417
10.1094/MPMI-23-8-1097
10.1111/1574-6968.12088
10.1111/pce.13629
10.1016/j.biocontrol.2011.10.014
10.3389/fmicb.2016.01971
10.1021/acs.jafc.9b00289
10.1016/j.tree.2009.09.010
10.3389/fpls.2018.00114
10.1016/j.niox.2016.04.002
10.1016/j.biocontrol.2008.05.015
10.1111/j.1758-2229.2011.00284.x
10.1038/s41396-018-0072-6
10.17660/ActaHortic.2017.1155.34
10.3390/chemosensors6040045
10.1111/mpp.12095
10.4161/cib.3.2.10584
10.3390/molecules23020358
10.1371/journal.pbio.2000322
10.1038/s41598-017-04922-z
10.1007/s10886-012-0135-5
10.1016/j.pestbp.2019.02.019
10.1038/s41598-018-21544-1
10.1016/j.micres.2018.01.002
10.1016/j.jplph.2014.03.018
10.3389/fmicb.2016.01838
10.1016/j.rhisph.2016.07.001
10.1016/j.talanta.2014.04.057
10.1111/j.1365-294X.2012.05752.x
10.1186/1745-6150-5-30
10.1016/j.plaphy.2013.09.011
10.1016/j.plaphy.2020.08.020
10.1007/s10886-013-0317-9
10.1007/s11274-011-0817-0
10.3390/s17112596
10.1007/s13199-010-0066-2
10.1111/jam.13667
10.1007/s10725-018-00473-z
10.1016/j.pbi.2017.01.004
10.1094/PHYTO-11-11-0312
10.1186/s40168-019-0775-6
10.1242/jeb.099648
10.1073/pnas.1405641111
10.1016/j.fm.2017.01.006
10.1039/b507392h
10.1111/j.1462-2920.2011.02582.x
10.1094/MPMI-21-6-0737
10.1186/s40168-018-0445-0
10.1021/acs.jafc.8b03010
10.1007/s00344-019-10020-3
10.1016/j.postharvbio.2017.09.003
10.1016/j.postharvbio.2015.12.028
10.1038/s41477-019-0476-y
10.3389/fmicb.2017.01638
10.3389/fmicb.2020.00142
10.1021/ac403469y
10.1371/journal.pone.0022974
10.1016/j.micres.2018.11.009
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Sep 2021
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2021
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.tplants.2021.05.006
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Virology and AIDS Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 983
ExternalDocumentID 10_1016_j_tplants_2021_05_006
S1360138521001242
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c516t-d5403a3382baf2c3859efadc3b32efb377dcae98ba0b0fcd7cac8b638dde7b083
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Fri Jul 11 08:57:03 EDT 2025
Thu Jul 10 22:20:52 EDT 2025
Wed Aug 13 07:44:10 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Tue Jul 01 00:57:57 EDT 2025
Fri Feb 23 02:43:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords VOC-based diagnosis
biological control
abiotic stress tolerance
plant growth-promoting bacteria
crop protection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-d5403a3382baf2c3859efadc3b32efb377dcae98ba0b0fcd7cac8b638dde7b083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3870-1227
0000-0002-7276-1189
OpenAccessLink https://hdl.handle.net/11585/829792
PQID 2574458877
PQPubID 2045386
PageCount 16
ParticipantIDs proquest_miscellaneous_2636399913
proquest_miscellaneous_2543708751
proquest_journals_2574458877
crossref_citationtrail_10_1016_j_tplants_2021_05_006
crossref_primary_10_1016_j_tplants_2021_05_006
elsevier_sciencedirect_doi_10_1016_j_tplants_2021_05_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Trends in plant science
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Weingart (bb0350) 2001; 91
Lee, Lee (bb0330) 2010; 34
Lanteigne (bb0255) 2012; 102
Tyc (bb0020) 2017; 25
Pothakos (bb0725) 2014; 178
Guevara-Avendaño (bb0225) 2019; 219
Deshmukh (bb0780) 2016; 1
Xu (bb0620) 2015; 12
Kushalappa (bb0095) 2002; 86
Effmert (bb0035) 2012; 38
Rybakova (bb0215) 2017; 8
Velázquez-Becerra (bb0190) 2013; 250
Zhang (bb0235) 2019; 67
Sinha (bb0750) 2017; 11
Sun (bb0135) 2020; 31
Ravanbakhsh (bb0540) 2018; 6
Blasioli (bb0110) 2010; 672
Ryu (bb0575) 2004; 134
Lee (bb0335) 2015; 17
van Agtmaal (bb0030) 2015; 6
Jiang (bb0370) 2019; 87
Nasopoulou (bb0440) 2014; 171
Niu (bb0660) 2010; 107
Li (bb0490) 2012; 61
Kong (bb0580) 2018; 9
Ryu (bb0340) 2003; 100
Wei, Jousset (bb0045) 2017; 22
Santoro (bb0425) 2011; 49
Martinelli (bb0065) 2015; 35
Venturi (bb0305) 2010; 5
Banchio (bb0420) 2009; 57
Wilson (bb0755) 2004; 94
Cellini (bb0075) 2016; 168
Liu (bb0470) 2018; 98
Sharifi, Ryu (bb0275) 2016; 7
Zhang (bb0385) 2008; 56
Hernández-Calderón (bb0395) 2018; 96
Palma (bb0150) 2018; 8
Hassani (bb0290) 2018; 6
Sánchez‐López (bb0355) 2016; 39
Hermenau (bb0550) 2019; 58
Arasimowicz-Jelonek, Floryszak-Wieczorek (bb0545) 2014; 15
Li (bb0740) 2011; 44
Hamby, Becher (bb0665) 2016; 89
Zhang (bb0685) 2010; 23
Chernin (bb0315) 2011; 3
Ioannidis (bb0735) 2018; 279
Tahir (bb0365) 2017; 8
Bailly, Weisskopf (bb0155) 2017; 8
Wang (bb0485) 2013; 341
Creus (bb0555) 2005; 221
Wang (bb0195) 2013; 51
Zhang (bb0695) 2008; 21
Dillon (bb0640) 2000; 403
Han (bb0585) 2006; 19
Yuan (bb0185) 2012; 78
Zhou (bb0430) 2016; 101
Zheng (bb0455) 2013; 65
Ledger (bb0705) 2016; 7
Hann (bb0570) 2014; 5
Gao (bb0465) 2018; 9
Jakobson (bb0515) 2016; 14
McGenity (bb0715) 2018; 12
Cellini (bb0070) 2017; 17
Verginer (bb0500) 2010; 58
Xie (bb0265) 2018; 19
Lyu (bb0240) 2020; 11
Gutiérrez-Luna (bb0415) 2010; 51
Backer (bb0510) 2018; 9
Dandurishvili (bb0250) 2011; 110
Yamasaki, Cohen (bb0565) 2016; 55–56
Rutolo (bb0760) 2014; 14
Lemfack (bb0015) 2018; 46
Mazzola, Freilich (bb0165) 2017; 107
Fernando (bb0280) 2005; 37
Cofer (bb0605) 2018; 66
Wang (bb0390) 2017; 7
Heil, Karban (bb0160) 2010; 25
Rudrappa (bb0600) 2010; 3
Vaishnav (bb0700) 2016; 56
Sangiorgio (bb0410) 2020; 10
Helman, Chernin (bb0310) 2015; 16
Bailly (bb0375) 2014; 80
Farag (bb0615) 2013; 38
Cappellari, L.d.R. and Banchio, E. (bb0690) 2020; 39
Lantz (bb0710) 2019; 42
Wallingford (bb0635) 2016; 72
Perpetuini (bb0765) 2019; 9
Kanchiswamy (bb0405) 2015; 20
Marquez-Villavicencio (bb0590) 2011; 6
Rajaofera (bb0230) 2019; 156
Popova (bb0200) 2014; 2014
Leroy (bb0650) 2011; 2
Rutolo (bb0130) 2016; 116
Sinha (bb0745) 2018; 135
Venu (bb0630) 2014; 217
Sankaran (bb0060) 2010; 72
Bhattacharyya (bb0360) 2015; 34
Wan (bb0475) 2008; 46
Arrebola (bb0445) 2010; 53
Biondi (bb0125) 2014; 129
Chen (bb0450) 2018; 108
Verginer (bb0435) 2010; 74
Xing (bb0220) 2018; 23
Garbeva, Weisskopf (bb0400) 2020; 226
Farine (bb0645) 2017; 7
Cho (bb0680) 2008; 21
Blasioli (bb0120) 2014; 62
Werbrouck (bb0730) 2017; 1155
Vikram (bb0080) 2006; 148
Fincheira, Quiroz (bb0345) 2018; 208
Piechulla (bb0175) 2017; 40
Hadapad (bb0675) 2016; 72
D’Alessandro (bb0655) 2014; 37
Mukherjee, Corpas (bb0560) 2020; 155
de Lacy Costello (bb0090) 1999; 48
Spinelli (bb0595) 2012; 26
Blom (bb0010) 2011; 13
Rho (bb0525) 2018; 13
Kilani-Feki (bb0180) 2012; 28
Gabriel (bb0285) 2018; 124
Morris (bb0295) 2013; 37
Calvo (bb0505) 2014; 383
Abanda-Nkpwatt, Schwab (bb0775) 2004; 52
De Vrieze (bb0205) 2015; 6
Rajer (bb0260) 2017; 163
Colman (bb0670) 2012; 21
Zhang, Hartung (bb0105) 2005; 53
Iqbal (bb0380) 2013; 73
Gotor-Vila (bb0460) 2017; 64
Ye (bb0245) 2020; 91
Aksenov (bb0100) 2014; 86
Schulz, Dickschat (bb0005) 2007; 24
Busby (bb0170) 2017; 15
Hunziker (bb0210) 2015; 81
Kviatkovski (bb0325) 2015; 51
Cellini (bb0115) 2016; 30
Raza (bb0270) 2016; 192
Xue, Ahring (bb0720) 2011; 77
Feron (bb0770) 2007; 45
Sharifi, Ryu (bb0055) 2020
Plyuta (bb0320) 2014; 29
Wilson (bb0140) 2018; 6
Mee (bb0300) 2014; 111
Chen (bb0535) 2020; 8
Gopal, Gupta (bb0040) 2016; 7
Boukaew (bb0495) 2018; 103
Huang (bb0610) 2012; 68
Li (bb0480) 2010; 58
Rath (bb0025) 2018; 208
Davis (bb0625) 2013; 39
Li (bb0145) 2019; 5
Nascimento (bb0530) 2018; 9
Prithiviraj (bb0085) 2004; 110
Kroll (bb0050) 2017; 36
Piechulla (bb0520) 2017; 173
Verginer (10.1016/j.tplants.2021.05.006_bb0435) 2010; 74
Lee (10.1016/j.tplants.2021.05.006_bb0330) 2010; 34
Zheng (10.1016/j.tplants.2021.05.006_bb0455) 2013; 65
Morris (10.1016/j.tplants.2021.05.006_bb0295) 2013; 37
Feron (10.1016/j.tplants.2021.05.006_bb0770) 2007; 45
Chen (10.1016/j.tplants.2021.05.006_bb0450) 2018; 108
Leroy (10.1016/j.tplants.2021.05.006_bb0650) 2011; 2
Hernández-Calderón (10.1016/j.tplants.2021.05.006_bb0395) 2018; 96
Werbrouck (10.1016/j.tplants.2021.05.006_bb0730) 2017; 1155
Sankaran (10.1016/j.tplants.2021.05.006_bb0060) 2010; 72
Boukaew (10.1016/j.tplants.2021.05.006_bb0495) 2018; 103
Yamasaki (10.1016/j.tplants.2021.05.006_bb0565) 2016; 55–56
Prithiviraj (10.1016/j.tplants.2021.05.006_bb0085) 2004; 110
Xie (10.1016/j.tplants.2021.05.006_bb0265) 2018; 19
Gopal (10.1016/j.tplants.2021.05.006_bb0040) 2016; 7
Mee (10.1016/j.tplants.2021.05.006_bb0300) 2014; 111
Li (10.1016/j.tplants.2021.05.006_bb0480) 2010; 58
Venturi (10.1016/j.tplants.2021.05.006_bb0305) 2010; 5
Plyuta (10.1016/j.tplants.2021.05.006_bb0320) 2014; 29
Chernin (10.1016/j.tplants.2021.05.006_bb0315) 2011; 3
Wang (10.1016/j.tplants.2021.05.006_bb0390) 2017; 7
Ledger (10.1016/j.tplants.2021.05.006_bb0705) 2016; 7
Banchio (10.1016/j.tplants.2021.05.006_bb0420) 2009; 57
Sánchez‐López (10.1016/j.tplants.2021.05.006_bb0355) 2016; 39
Pothakos (10.1016/j.tplants.2021.05.006_bb0725) 2014; 178
Kong (10.1016/j.tplants.2021.05.006_bb0580) 2018; 9
Effmert (10.1016/j.tplants.2021.05.006_bb0035) 2012; 38
Arrebola (10.1016/j.tplants.2021.05.006_bb0445) 2010; 53
Cellini (10.1016/j.tplants.2021.05.006_bb0070) 2017; 17
Cellini (10.1016/j.tplants.2021.05.006_bb0115) 2016; 30
Kanchiswamy (10.1016/j.tplants.2021.05.006_bb0405) 2015; 20
van Agtmaal (10.1016/j.tplants.2021.05.006_bb0030) 2015; 6
Heil (10.1016/j.tplants.2021.05.006_bb0160) 2010; 25
Li (10.1016/j.tplants.2021.05.006_bb0145) 2019; 5
Gotor-Vila (10.1016/j.tplants.2021.05.006_bb0460) 2017; 64
Hadapad (10.1016/j.tplants.2021.05.006_bb0675) 2016; 72
Kroll (10.1016/j.tplants.2021.05.006_bb0050) 2017; 36
Lyu (10.1016/j.tplants.2021.05.006_bb0240) 2020; 11
Hann (10.1016/j.tplants.2021.05.006_bb0570) 2014; 5
Velázquez-Becerra (10.1016/j.tplants.2021.05.006_bb0190) 2013; 250
Rho (10.1016/j.tplants.2021.05.006_bb0525) 2018; 13
Wei (10.1016/j.tplants.2021.05.006_bb0045) 2017; 22
Cho (10.1016/j.tplants.2021.05.006_bb0680) 2008; 21
Nasopoulou (10.1016/j.tplants.2021.05.006_bb0440) 2014; 171
Han (10.1016/j.tplants.2021.05.006_bb0585) 2006; 19
Zhou (10.1016/j.tplants.2021.05.006_bb0430) 2016; 101
Sinha (10.1016/j.tplants.2021.05.006_bb0750) 2017; 11
Ioannidis (10.1016/j.tplants.2021.05.006_bb0735) 2018; 279
Aksenov (10.1016/j.tplants.2021.05.006_bb0100) 2014; 86
Wang (10.1016/j.tplants.2021.05.006_bb0485) 2013; 341
Blasioli (10.1016/j.tplants.2021.05.006_bb0110) 2010; 672
Hermenau (10.1016/j.tplants.2021.05.006_bb0550) 2019; 58
Tyc (10.1016/j.tplants.2021.05.006_bb0020) 2017; 25
Lee (10.1016/j.tplants.2021.05.006_bb0335) 2015; 17
Blasioli (10.1016/j.tplants.2021.05.006_bb0120) 2014; 62
Li (10.1016/j.tplants.2021.05.006_bb0490) 2012; 61
Hamby (10.1016/j.tplants.2021.05.006_bb0665) 2016; 89
Creus (10.1016/j.tplants.2021.05.006_bb0555) 2005; 221
Iqbal (10.1016/j.tplants.2021.05.006_bb0380) 2013; 73
Zhang (10.1016/j.tplants.2021.05.006_bb0105) 2005; 53
Santoro (10.1016/j.tplants.2021.05.006_bb0425) 2011; 49
Wang (10.1016/j.tplants.2021.05.006_bb0195) 2013; 51
Sangiorgio (10.1016/j.tplants.2021.05.006_bb0410) 2020; 10
Zhang (10.1016/j.tplants.2021.05.006_bb0695) 2008; 21
Popova (10.1016/j.tplants.2021.05.006_bb0200) 2014; 2014
Li (10.1016/j.tplants.2021.05.006_bb0740) 2011; 44
Busby (10.1016/j.tplants.2021.05.006_bb0170) 2017; 15
Vaishnav (10.1016/j.tplants.2021.05.006_bb0700) 2016; 56
Verginer (10.1016/j.tplants.2021.05.006_bb0500) 2010; 58
Marquez-Villavicencio (10.1016/j.tplants.2021.05.006_bb0590) 2011; 6
Sharifi (10.1016/j.tplants.2021.05.006_bb0055) 2020
Martinelli (10.1016/j.tplants.2021.05.006_bb0065) 2015; 35
Palma (10.1016/j.tplants.2021.05.006_bb0150) 2018; 8
Wilson (10.1016/j.tplants.2021.05.006_bb0140) 2018; 6
Mukherjee (10.1016/j.tplants.2021.05.006_bb0560) 2020; 155
Zhang (10.1016/j.tplants.2021.05.006_bb0235) 2019; 67
Guevara-Avendaño (10.1016/j.tplants.2021.05.006_bb0225) 2019; 219
Wan (10.1016/j.tplants.2021.05.006_bb0475) 2008; 46
Mazzola (10.1016/j.tplants.2021.05.006_bb0165) 2017; 107
Perpetuini (10.1016/j.tplants.2021.05.006_bb0765) 2019; 9
Blom (10.1016/j.tplants.2021.05.006_bb0010) 2011; 13
Kviatkovski (10.1016/j.tplants.2021.05.006_bb0325) 2015; 51
Venu (10.1016/j.tplants.2021.05.006_bb0630) 2014; 217
Raza (10.1016/j.tplants.2021.05.006_bb0270) 2016; 192
Schulz (10.1016/j.tplants.2021.05.006_bb0005) 2007; 24
Wallingford (10.1016/j.tplants.2021.05.006_bb0635) 2016; 72
Garbeva (10.1016/j.tplants.2021.05.006_bb0400) 2020; 226
Vikram (10.1016/j.tplants.2021.05.006_bb0080) 2006; 148
Rajaofera (10.1016/j.tplants.2021.05.006_bb0230) 2019; 156
Cellini (10.1016/j.tplants.2021.05.006_bb0075) 2016; 168
Rybakova (10.1016/j.tplants.2021.05.006_bb0215) 2017; 8
Rajer (10.1016/j.tplants.2021.05.006_bb0260) 2017; 163
Rudrappa (10.1016/j.tplants.2021.05.006_bb0600) 2010; 3
Bhattacharyya (10.1016/j.tplants.2021.05.006_bb0360) 2015; 34
Nascimento (10.1016/j.tplants.2021.05.006_bb0530) 2018; 9
Biondi (10.1016/j.tplants.2021.05.006_bb0125) 2014; 129
Lemfack (10.1016/j.tplants.2021.05.006_bb0015) 2018; 46
Helman (10.1016/j.tplants.2021.05.006_bb0310) 2015; 16
Cofer (10.1016/j.tplants.2021.05.006_bb0605) 2018; 66
Gabriel (10.1016/j.tplants.2021.05.006_bb0285) 2018; 124
Zhang (10.1016/j.tplants.2021.05.006_bb0385) 2008; 56
Jakobson (10.1016/j.tplants.2021.05.006_bb0515) 2016; 14
Huang (10.1016/j.tplants.2021.05.006_bb0610) 2012; 68
Lanteigne (10.1016/j.tplants.2021.05.006_bb0255) 2012; 102
Zhang (10.1016/j.tplants.2021.05.006_bb0685) 2010; 23
Ravanbakhsh (10.1016/j.tplants.2021.05.006_bb0540) 2018; 6
Colman (10.1016/j.tplants.2021.05.006_bb0670) 2012; 21
Kushalappa (10.1016/j.tplants.2021.05.006_bb0095) 2002; 86
Tahir (10.1016/j.tplants.2021.05.006_bb0365) 2017; 8
Sharifi (10.1016/j.tplants.2021.05.006_bb0275) 2016; 7
Farag (10.1016/j.tplants.2021.05.006_bb0615) 2013; 38
Farine (10.1016/j.tplants.2021.05.006_bb0645) 2017; 7
Fincheira (10.1016/j.tplants.2021.05.006_bb0345) 2018; 208
Davis (10.1016/j.tplants.2021.05.006_bb0625) 2013; 39
McGenity (10.1016/j.tplants.2021.05.006_bb0715) 2018; 12
Cappellari, L.d.R. and Banchio, E. (10.1016/j.tplants.2021.05.006_bb0690) 2020; 39
Xu (10.1016/j.tplants.2021.05.006_bb0620) 2015; 12
Sun (10.1016/j.tplants.2021.05.006_bb0135) 2020; 31
Chen (10.1016/j.tplants.2021.05.006_bb0535) 2020; 8
Fernando (10.1016/j.tplants.2021.05.006_bb0280) 2005; 37
Yuan (10.1016/j.tplants.2021.05.006_bb0185) 2012; 78
Calvo (10.1016/j.tplants.2021.05.006_bb0505) 2014; 383
Liu (10.1016/j.tplants.2021.05.006_bb0470) 2018; 98
Dillon (10.1016/j.tplants.2021.05.006_bb0640) 2000; 403
Hunziker (10.1016/j.tplants.2021.05.006_bb0210) 2015; 81
D’Alessandro (10.1016/j.tplants.2021.05.006_bb0655) 2014; 37
Ryu (10.1016/j.tplants.2021.05.006_bb0340) 2003; 100
Piechulla (10.1016/j.tplants.2021.05.006_bb0175) 2017; 40
Piechulla (10.1016/j.tplants.2021.05.006_bb0520) 2017; 173
Arasimowicz-Jelonek (10.1016/j.tplants.2021.05.006_bb0545) 2014; 15
De Vrieze (10.1016/j.tplants.2021.05.006_bb0205) 2015; 6
Hassani (10.1016/j.tplants.2021.05.006_bb0290) 2018; 6
Sinha (10.1016/j.tplants.2021.05.006_bb0745) 2018; 135
Jiang (10.1016/j.tplants.2021.05.006_bb0370) 2019; 87
de Lacy Costello (10.1016/j.tplants.2021.05.006_bb0090) 1999; 48
Dandurishvili (10.1016/j.tplants.2021.05.006_bb0250) 2011; 110
Lantz (10.1016/j.tplants.2021.05.006_bb0710) 2019; 42
Bailly (10.1016/j.tplants.2021.05.006_bb0155) 2017; 8
Weingart (10.1016/j.tplants.2021.05.006_bb0350) 2001; 91
Xing (10.1016/j.tplants.2021.05.006_bb0220) 2018; 23
Ye (10.1016/j.tplants.2021.05.006_bb0245) 2020; 91
Spinelli (10.1016/j.tplants.2021.05.006_bb0595) 2012; 26
Niu (10.1016/j.tplants.2021.05.006_bb0660) 2010; 107
Abanda-Nkpwatt (10.1016/j.tplants.2021.05.006_bb0775) 2004; 52
Bailly (10.1016/j.tplants.2021.05.006_bb0375) 2014; 80
Ryu (10.1016/j.tplants.2021.05.006_bb0575) 2004; 134
Gao (10.1016/j.tplants.2021.05.006_bb0465) 2018; 9
Xue (10.1016/j.tplants.2021.05.006_bb0720) 2011; 77
Gutiérrez-Luna (10.1016/j.tplants.2021.05.006_bb0415) 2010; 51
Kilani-Feki (10.1016/j.tplants.2021.05.006_bb0180) 2012; 28
Backer (10.1016/j.tplants.2021.05.006_bb0510) 2018; 9
Rutolo (10.1016/j.tplants.2021.05.006_bb0760) 2014; 14
Wilson (10.1016/j.tplants.2021.05.006_bb0755) 2004; 94
Rutolo (10.1016/j.tplants.2021.05.006_bb0130) 2016; 116
Deshmukh (10.1016/j.tplants.2021.05.006_bb0780) 2016; 1
Rath (10.1016/j.tplants.2021.05.006_bb0025) 2018; 208
References_xml – volume: 8
  start-page: 171
  year: 2017
  ident: bb0365
  article-title: Plant growth promotion by volatile organic compounds produced by
  publication-title: Front. Microbiol.
– volume: 107
  start-page: 16631
  year: 2010
  end-page: 16636
  ident: bb0660
  article-title: A Trojan horse mechanism of bacterial pathogenesis against nematodes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 89
  start-page: 621
  year: 2016
  end-page: 630
  ident: bb0665
  article-title: Current knowledge of interactions between
  publication-title: J. Pest. Sci.
– volume: 21
  start-page: 5124
  year: 2012
  end-page: 5137
  ident: bb0670
  article-title: Do diet and taxonomy influence insect gut bacterial communities?
  publication-title: Mol. Ecol.
– volume: 86
  start-page: 131
  year: 2002
  end-page: 137
  ident: bb0095
  article-title: Volatile fingerprinting (SPME-GC FID) to detect and discriminate diseases of potato tubers
  publication-title: Plant Dis.
– volume: 40
  start-page: 2042
  year: 2017
  end-page: 2067
  ident: bb0175
  article-title: Effects of discrete bioactive microbial volatiles on plants and fungi
  publication-title: Plant Cell Environ.
– volume: 81
  start-page: 821
  year: 2015
  end-page: 830
  ident: bb0210
  article-title: Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of
  publication-title: Appl. Environ. Microbiol.
– volume: 25
  start-page: 137
  year: 2010
  end-page: 144
  ident: bb0160
  article-title: Explaining evolution of plant communication by airborne signals
  publication-title: Trends Ecol. Evol.
– volume: 68
  start-page: 1306
  year: 2012
  end-page: 1310
  ident: bb0610
  article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by
  publication-title: Pest Manag. Sci.
– volume: 56
  start-page: 264
  year: 2008
  end-page: 273
  ident: bb0385
  article-title: Soil bacteria augment
  publication-title: Plant J.
– volume: 1
  start-page: 53
  year: 2016
  end-page: 57
  ident: bb0780
  article-title: Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety
  publication-title: Rhizosphere
– volume: 16
  start-page: 316
  year: 2015
  end-page: 329
  ident: bb0310
  article-title: Silencing the mob: disrupting quorum sensing as a means to fight plant disease
  publication-title: Mol. Plant Pathol.
– volume: 24
  start-page: 814
  year: 2007
  end-page: 842
  ident: bb0005
  article-title: Bacterial volatiles: the smell of small organisms
  publication-title: Nat. Prod. Rep.
– volume: 38
  start-page: 665
  year: 2012
  end-page: 703
  ident: bb0035
  article-title: Volatile mediated interactions between bacteria and fungi in the soil
  publication-title: J. Chem. Ecol.
– volume: 34
  start-page: 426
  year: 2010
  end-page: 444
  ident: bb0330
  article-title: Indole as an intercellular signal in microbial communities
  publication-title: FEMS Microbiol. Rev.
– volume: 134
  start-page: 1017
  year: 2004
  end-page: 1026
  ident: bb0575
  article-title: Bacterial volatiles induce systemic resistance in
  publication-title: Plant Physiol.
– volume: 37
  start-page: 384
  year: 2013
  end-page: 406
  ident: bb0295
  article-title: Microbial syntrophy: interaction for the common good
  publication-title: FEMS Microbiol. Rev.
– volume: 168
  start-page: 409
  year: 2016
  end-page: 420
  ident: bb0075
  article-title: Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose
  publication-title: Ann. Appl. Biol.
– volume: 6
  start-page: 701
  year: 2015
  ident: bb0030
  article-title: Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles
  publication-title: Front. Microbiol.
– volume: 9
  start-page: 1473
  year: 2018
  ident: bb0510
  article-title: Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front. Plant Sci.
– volume: 12
  start-page: 931
  year: 2018
  end-page: 941
  ident: bb0715
  article-title: Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth
  publication-title: ISME J
– volume: 1155
  start-page: 239
  year: 2017
  end-page: 244
  ident: bb0730
  article-title: Volatile indicators of contamination in tissue cultures
  publication-title: Acta Hortic.
– volume: 80
  start-page: 758
  year: 2014
  end-page: 771
  ident: bb0375
  article-title: The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling
  publication-title: Plant J.
– volume: 341
  start-page: 45
  year: 2013
  end-page: 51
  ident: bb0485
  article-title: Antifungal activity of volatile organic compounds from
  publication-title: FEMS Microbiol. Lett.
– volume: 78
  start-page: 5942
  year: 2012
  end-page: 5944
  ident: bb0185
  article-title: Antifungal activity of
  publication-title: Appl. Environ. Microbiol.
– volume: 23
  start-page: 1097
  year: 2010
  end-page: 1104
  ident: bb0685
  article-title: Choline and osmotic-stress tolerance induced in
  publication-title: Mol. Plant-Microbe Interact.
– volume: 58
  start-page: 13024
  year: 2019
  end-page: 13029
  ident: bb0550
  article-title: Genomics‐driven discovery of NO‐donating diazeniumdiolate siderophores in diverse plant‐associated bacteria
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 71
  year: 2017
  end-page: 78
  ident: bb0050
  article-title: Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding
  publication-title: Curr. Opin. Plant Biol.
– volume: 72
  start-page: 1222
  year: 2016
  end-page: 1230
  ident: bb0675
  article-title: Diversity of bacterial communities in the midgut of
  publication-title: Pest Manag. Sci.
– volume: 9
  start-page: 114
  year: 2018
  ident: bb0530
  article-title: Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions
  publication-title: Front. Plant Sci.
– volume: 11
  start-page: 1578
  year: 2017
  end-page: 1585
  ident: bb0750
  article-title: FAIMS based sensing of
  publication-title: J. Food Meas. Charact.
– volume: 20
  start-page: 206
  year: 2015
  end-page: 211
  ident: bb0405
  article-title: Bioprospecting bacterial and fungal volatiles for sustainable agriculture
  publication-title: Trends Plant Sci.
– volume: 58
  start-page: 8344
  year: 2010
  end-page: 8350
  ident: bb0500
  article-title: Production of volatile metabolites by grape-associated microorganisms
  publication-title: J. Agric. Food Chem.
– volume: 56
  start-page: 1274
  year: 2016
  end-page: 1288
  ident: bb0700
  article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside
  publication-title: J. Basic Microbiol.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 15
  ident: bb0205
  article-title: Volatile organic compounds from native potato-associated
  publication-title: Front. Microbiol.
– volume: 86
  start-page: 2481
  year: 2014
  end-page: 2488
  ident: bb0100
  article-title: Detection of huanglongbing disease using differential mobility spectrometry
  publication-title: Anal. Chem.
– volume: 171
  start-page: 1099
  year: 2014
  end-page: 1105
  ident: bb0440
  article-title: Localization of strawberry (
  publication-title: J. Plant Physiol.
– volume: 383
  start-page: 3
  year: 2014
  end-page: 41
  ident: bb0505
  article-title: Agricultural uses of plant biostimulants
  publication-title: Plant Soil
– volume: 7
  start-page: 6062
  year: 2017
  ident: bb0645
  article-title: Maternally-transmitted microbiota affects odor emission and preference in
  publication-title: Sci. Rep.
– volume: 2
  start-page: 348
  year: 2011
  ident: bb0650
  article-title: Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies
  publication-title: Nat. Commun.
– volume: 94
  start-page: 419
  year: 2004
  end-page: 431
  ident: bb0755
  article-title: Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes
  publication-title: Phytopathology
– volume: 25
  start-page: 280
  year: 2017
  end-page: 292
  ident: bb0020
  article-title: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria
  publication-title: Trends Microbiol.
– volume: 6
  year: 2011
  ident: bb0590
  article-title: The 3-hydroxy-2-butanone pathway is required for
  publication-title: PLoS ONE
– volume: 129
  start-page: 422
  year: 2014
  end-page: 430
  ident: bb0125
  article-title: Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale
  publication-title: Talanta
– volume: 163
  start-page: 523
  year: 2017
  end-page: 530
  ident: bb0260
  article-title: Volatile organic compounds produced by a soil-isolate,
  publication-title: Microbiology
– volume: 91
  start-page: 103502
  year: 2020
  ident: bb0245
  article-title: Biocidal effects of volatile organic compounds produced by the myxobacterium
  publication-title: Food Microbiol.
– volume: 221
  start-page: 297
  year: 2005
  end-page: 303
  ident: bb0555
  article-title: Nitric oxide is involved in the
  publication-title: Planta
– volume: 5
  start-page: 30
  year: 2010
  ident: bb0305
  article-title: Locality versus globality in bacterial signalling: can local communication stabilize bacterial communities?
  publication-title: Biol. Direct
– volume: 208
  start-page: 76
  year: 2018
  end-page: 84
  ident: bb0025
  article-title: Volatiles produced by
  publication-title: Microbiol. Res.
– volume: 6
  start-page: 45
  year: 2018
  ident: bb0140
  article-title: Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases
  publication-title: Chemosensors
– volume: 279
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0735
  article-title: Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce
  publication-title: Int. J. Food Microbiol.
– volume: 3
  start-page: 698
  year: 2011
  end-page: 704
  ident: bb0315
  article-title: Quorum-sensing quenching by rhizobacterial volatiles
  publication-title: Environ. Microbiol. Rep.
– volume: 62
  start-page: 337
  year: 2014
  end-page: 347
  ident: bb0120
  article-title: Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples
  publication-title: J. Agric. Food Chem.
– volume: 178
  start-page: 120
  year: 2014
  end-page: 129
  ident: bb0725
  article-title: Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species:
  publication-title: Int. J. Food Microbiol.
– start-page: 317
  year: 2020
  end-page: 336
  ident: bb0055
  article-title: Formulation and agricultural application of bacterial volatile compounds
  publication-title: Bacterial Volatile Compounds as Mediators of Airborne Interactions
– volume: 7
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0275
  article-title: Are bacterial volatile compounds poisonous odors to a fungal pathogen
  publication-title: Front. Microbiol.
– volume: 9
  start-page: 90
  year: 2018
  ident: bb0580
  article-title: Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 49
  year: 2018
  end-page: 58
  ident: bb0265
  article-title: Antibacterial effects of volatiles produced by
  publication-title: Mol. Plant Pathol.
– volume: 21
  start-page: 737
  year: 2008
  end-page: 744
  ident: bb0695
  article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1
  publication-title: Mol. Plant-Microbe Interact.
– volume: 9
  start-page: 227
  year: 2019
  end-page: 247
  ident: bb0765
  article-title: Genetic and functional characterization of the bacterial community on fruit of three raspberry (
  publication-title: J. Berry Res.
– volume: 77
  start-page: 2399
  year: 2011
  end-page: 2405
  ident: bb0720
  article-title: Enhancing isoprene production by genetic modification of the 1-deoxy-D-xylulose-5-phosphate pathway in
  publication-title: Appl. Environ. Microbiol.
– volume: 192
  start-page: 103
  year: 2016
  end-page: 113
  ident: bb0270
  article-title: Volatile organic compounds produced by
  publication-title: Microbiol. Res.
– volume: 5
  start-page: 550
  year: 2014
  ident: bb0570
  article-title: Methanol and ethanol modulate responses to danger-and microbe-associated molecular patterns
  publication-title: Front. Plant Sci.
– volume: 37
  start-page: 955
  year: 2005
  end-page: 964
  ident: bb0280
  article-title: Identification and use of potential bacterial organic antifungal volatiles in biocontrol
  publication-title: Soil Biol. Biochem.
– volume: 100
  start-page: 4927
  year: 2003
  end-page: 4932
  ident: bb0340
  article-title: Bacterial volatiles promote growth in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 66
  start-page: 11197
  year: 2018
  end-page: 11208
  ident: bb0605
  article-title: From acetoin to ( Z )-3-hexen-1-ol: the diversity of volatile organic compounds that induce plant responses
  publication-title: J. Agric. Food Chem.
– volume: 31
  year: 2020
  ident: bb0135
  article-title: Discriminative power of independent component analysis applied to an electronic nose
  publication-title: Meas. Sci. Technol.
– volume: 45
  start-page: 29
  year: 2007
  end-page: 35
  ident: bb0770
  article-title: Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone
  publication-title: Lett. Appl. Microbiol.
– volume: 102
  start-page: 967
  year: 2012
  end-page: 973
  ident: bb0255
  article-title: Production of DAPG and HCN by
  publication-title: Phytopathology
– volume: 226
  start-page: 32
  year: 2020
  end-page: 43
  ident: bb0400
  article-title: Airborne medicine: bacterial volatiles and their influence on plant health
  publication-title: New Phytol.
– volume: 148
  start-page: 17
  year: 2006
  end-page: 26
  ident: bb0080
  article-title: Metabolic fingerprinting to discriminate diseases of stored carrots
  publication-title: Ann. Appl. Biol.
– volume: 58
  start-page: 157
  year: 2010
  end-page: 165
  ident: bb0480
  article-title: Fumigant activity of volatiles of
  publication-title: Postharvest Biol. Technol.
– volume: 110
  start-page: 341
  year: 2011
  end-page: 352
  ident: bb0250
  article-title: Broad-range antagonistic rhizobacteria
  publication-title: J. Appl. Microbiol.
– volume: 111
  start-page: E2149
  year: 2014
  end-page: E2156
  ident: bb0300
  article-title: Syntrophic exchange in synthetic microbial communities
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 52
  start-page: 5939
  year: 2004
  end-page: 5942
  ident: bb0775
  article-title: Microbial transformation of aliphatic aldehydes by
  publication-title: J. Agric. Food Chem.
– volume: 124
  start-page: 1024
  year: 2018
  end-page: 1031
  ident: bb0285
  article-title: Biomimicry of volatile-based microbial control for managing emerging fungal pathogens
  publication-title: J. Appl. Microbiol.
– volume: 28
  start-page: 275
  year: 2012
  end-page: 281
  ident: bb0180
  article-title: Correlation between synthesis variation of 2-alkylquinolones and the antifungal activity of a
  publication-title: World J. Microbiol. Biotechnol.
– volume: 98
  start-page: 5756
  year: 2018
  end-page: 5763
  ident: bb0470
  article-title: Antagonistic activities of volatiles produced by two
  publication-title: J. Sci. Food Agric.
– volume: 13
  year: 2018
  ident: bb0525
  article-title: Estimating microbial respiratory CO
  publication-title: Plant Signal. Behav.
– volume: 6
  start-page: 52
  year: 2018
  ident: bb0540
  article-title: Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences
  publication-title: Microbiome
– volume: 8
  start-page: 1294
  year: 2017
  ident: bb0215
  article-title: Aerial warfare: a volatile dialogue between the plant pathogen
  publication-title: Plant Sci.
– volume: 110
  start-page: 371
  year: 2004
  end-page: 377
  ident: bb0085
  article-title: Volatile metabolite profiling for the discrimination of onion bulbs infected by
  publication-title: Eur. J. Plant Pathol.
– volume: 103
  start-page: 1
  year: 2018
  end-page: 8
  ident: bb0495
  article-title: Fumigant activity of volatile compounds of
  publication-title: Crop Prot.
– volume: 53
  start-page: 5134
  year: 2005
  end-page: 5137
  ident: bb0105
  article-title: Phenylacetaldehyde O-methyloxime: a volatile compound produced by grapefruit leaves infected with the citrus canker pathogen,
  publication-title: J. Agric. Food Chem.
– volume: 17
  start-page: 1234
  year: 2015
  end-page: 1244
  ident: bb0335
  article-title: The multifaceted roles of the interspecies signalling molecule indole in
  publication-title: Environ. Microbiol.
– volume: 30
  start-page: 795
  year: 2016
  end-page: 806
  ident: bb0115
  article-title: Characterization of volatile organic compounds emitted by kiwifruit plants infected with
  publication-title: Trees
– volume: 51
  start-page: 3258
  year: 2015
  end-page: 3261
  ident: bb0325
  article-title: activates the quorum sensing LuxR response regulator through secretion of 2-aminoacetophenone
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1
  year: 2016
  end-page: 25
  ident: bb0515
  article-title: Natural variation in
  publication-title: PLoS Biol.
– volume: 12
  start-page: 1415
  year: 2015
  end-page: 1421
  ident: bb0620
  article-title: Effect of volatile organic compounds from bacteria on nematodes
  publication-title: Chem. Biodivers.
– volume: 108
  start-page: 1253
  year: 2018
  end-page: 1262
  ident: bb0450
  article-title: Antagonistic activity and the mechanism of
  publication-title: Phytopathology
– volume: 42
  start-page: 2808
  year: 2019
  end-page: 2826
  ident: bb0710
  article-title: Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression
  publication-title: Plant Cell Environ.
– volume: 22
  start-page: 555
  year: 2017
  end-page: 558
  ident: bb0045
  article-title: Plant breeding goes microbial
  publication-title: Trends Plant Sci.
– volume: 672
  start-page: 20
  year: 2010
  end-page: 24
  ident: bb0110
  article-title: Electronic nose as an innovative tool for the diagnosis of grapevine crown gall
  publication-title: Anal. Chim. Acta
– volume: 7
  start-page: 85
  year: 2017
  ident: bb0390
  article-title: Enhanced iron and selenium uptake in plants by volatile emissions of
  publication-title: Appl. Sci.
– volume: 39
  start-page: 840
  year: 2013
  end-page: 859
  ident: bb0625
  article-title: Microbial volatile emissions as insect semiochemicals
  publication-title: J. Chem. Ecol.
– volume: 403
  start-page: 851
  year: 2000
  ident: bb0640
  article-title: Exploitation of gut bacteria in the locust
  publication-title: Nature
– volume: 156
  start-page: 170
  year: 2019
  end-page: 176
  ident: bb0230
  article-title: Volatile organic compounds of
  publication-title: Pestic. Biochem. Physiol.
– volume: 91
  start-page: 511
  year: 2001
  end-page: 518
  ident: bb0350
  article-title: The role of ethylene production in virulence of
  publication-title: Phytopathology
– volume: 13
  start-page: 3047
  year: 2011
  end-page: 3058
  ident: bb0010
  article-title: Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions
  publication-title: Environ. Microbiol.
– volume: 53
  start-page: 122
  year: 2010
  end-page: 128
  ident: bb0445
  article-title: Effect of volatile compounds produced by
  publication-title: Biol. Control
– volume: 9
  start-page: 456
  year: 2018
  ident: bb0465
  article-title: Research on volatile organic compounds from
  publication-title: Front. Microbiol.
– volume: 34
  start-page: 158
  year: 2015
  end-page: 168
  ident: bb0360
  article-title: Volatile indole produced by rhizobacterium
  publication-title: J. Plant Growth Regul.
– volume: 250
  start-page: 1251
  year: 2013
  end-page: 1262
  ident: bb0190
  article-title: The rhizobacterium
  publication-title: Protoplasma
– volume: 11
  start-page: 1
  year: 2020
  end-page: 17
  ident: bb0240
  article-title: High efficacy of the volatile organic compounds of
  publication-title: Front. Microbiol.
– volume: 155
  start-page: 800
  year: 2020
  end-page: 814
  ident: bb0560
  article-title: Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome
  publication-title: Plant Physiol. Biochem.
– volume: 26
  start-page: 141
  year: 2012
  end-page: 152
  ident: bb0595
  article-title: Emission of volatile compounds by
  publication-title: Trees
– volume: 51
  start-page: 477
  year: 2013
  end-page: 483
  ident: bb0195
  article-title: Fumigant activity of volatiles from
  publication-title: J. Microbiol.
– volume: 3
  start-page: 130
  year: 2010
  end-page: 138
  ident: bb0600
  article-title: The rhizobacterial elicitor acetoin induces systemic resistance in
  publication-title: Commun. Integr. Biol.
– volume: 217
  start-page: 1346
  year: 2014
  end-page: 1352
  ident: bb0630
  article-title: Social attraction mediated by fruit flies’ microbiome
  publication-title: J. Exp. Biol.
– volume: 23
  start-page: 358
  year: 2018
  ident: bb0220
  article-title: Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen
  publication-title: Molecules
– volume: 19
  start-page: 924
  year: 2006
  end-page: 930
  ident: bb0585
  article-title: GacS-dependent production of 2R,3R-butanediol by
  publication-title: Mol. Plant-Microbe Interact.
– volume: 8
  start-page: 4
  year: 2020
  ident: bb0535
  article-title: Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants
  publication-title: Microbiome
– volume: 135
  start-page: 83
  year: 2018
  end-page: 92
  ident: bb0745
  article-title: FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions
  publication-title: Postharvest Biol. Technol.
– volume: 64
  start-page: 219
  year: 2017
  end-page: 225
  ident: bb0460
  article-title: Antifungal effect of volatile organic compounds produced by
  publication-title: Food Microbiol.
– volume: 35
  start-page: 1
  year: 2015
  end-page: 25
  ident: bb0065
  article-title: Advanced methods of plant disease detection. A review
  publication-title: Agron. Sustain. Dev.
– volume: 173
  start-page: 1529
  year: 2017
  ident: bb0520
  article-title: Considering microbial CO
  publication-title: Plant Physiol.
– volume: 7
  start-page: 1838
  year: 2016
  ident: bb0705
  article-title: Volatile-mediated effects predominate in
  publication-title: Front. Microbiol.
– volume: 51
  start-page: 75
  year: 2010
  end-page: 83
  ident: bb0415
  article-title: Plant growth-promoting rhizobacteria modulate root-system architecture in
  publication-title: Symbiosis
– volume: 87
  start-page: 317
  year: 2019
  end-page: 328
  ident: bb0370
  article-title: Volatile organic compounds emitted by
  publication-title: J. Plant Growth Regul.
– volume: 8
  start-page: 1638
  year: 2017
  ident: bb0155
  article-title: Mining the volatilomes of plant-associated microbiota for new biocontrol solutions
  publication-title: Front. Microbiol.
– volume: 101
  start-page: 132
  year: 2016
  end-page: 140
  ident: bb0430
  article-title: Volatiles released by endophytic
  publication-title: Plant Physiol. Biochem.
– volume: 72
  start-page: 701
  year: 2016
  end-page: 706
  ident: bb0635
  article-title: Behavioral response of spotted-wing drosophila,
  publication-title: Pest Manag. Sci.
– volume: 6
  start-page: 58
  year: 2018
  ident: bb0290
  article-title: Microbial interactions within the plant holobiont
  publication-title: Microbiome
– volume: 39
  start-page: 2592
  year: 2016
  end-page: 2608
  ident: bb0355
  article-title: Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action
  publication-title: Plant Cell Environ.
– volume: 67
  start-page: 3702
  year: 2019
  end-page: 3710
  ident: bb0235
  article-title: Volatile organic compounds produced by
  publication-title: J. Agric. Food Chem.
– volume: 116
  start-page: 50
  year: 2016
  end-page: 58
  ident: bb0130
  article-title: Early identification of potato storage disease using an array of metal-oxide based gas sensors
  publication-title: Postharvest Biol. Technol.
– volume: 2014
  start-page: 125704
  year: 2014
  ident: bb0200
  article-title: Inhibitory and toxic effects of volatiles emitted by strains of
  publication-title: Biomed. Res. Int.
– volume: 7
  start-page: 1971
  year: 2016
  ident: bb0040
  article-title: Microbiome selection could spur next-generation plant breeding strategies
  publication-title: Front. Microbiol.
– volume: 10
  start-page: 794
  year: 2020
  ident: bb0410
  article-title: Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops
  publication-title: Agronomy
– volume: 61
  start-page: 113
  year: 2012
  end-page: 120
  ident: bb0490
  article-title: Effects of volatile substances of
  publication-title: Biol. Control
– volume: 96
  start-page: 291
  year: 2018
  end-page: 304
  ident: bb0395
  article-title: Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in
  publication-title: Plant Mol. Biol.
– volume: 73
  start-page: 128
  year: 2013
  end-page: 138
  ident: bb0380
  article-title: Current understanding on ethylene signaling in plants: the influence of nutrient availability
  publication-title: Plant Physiol. Biochem.
– volume: 21
  start-page: 1067
  year: 2008
  end-page: 1075
  ident: bb0680
  article-title: 2R,3R-butanediol, a bacterial volatile produced by
  publication-title: Mol. Plant-Microbe Interact.
– volume: 8
  start-page: 3360
  year: 2018
  ident: bb0150
  article-title: Machine learning for the metaanalyses of microbial pathogens’ volatile signatures
  publication-title: Sci. Rep.
– volume: 29
  start-page: 167
  year: 2014
  end-page: 171
  ident: bb0320
  article-title: The ability of natural ketones to interact with bacterial quorum sensing systems
  publication-title: Mol. Genet. Microbiol. Virol.
– volume: 15
  start-page: 406
  year: 2014
  end-page: 416
  ident: bb0545
  article-title: Nitric oxide: an effective weapon of the plant or the pathogen?
  publication-title: Mol. Plant Pathol.
– volume: 39
  start-page: 764
  year: 2020
  end-page: 775
  ident: bb0690
  article-title: Microbial volatile organic compounds produced by
  publication-title: J. Plant Growth Regul.
– volume: 57
  start-page: 653
  year: 2009
  end-page: 657
  ident: bb0420
  article-title: Soil bacteria elevate essential oil accumulation and emissions in sweet basil
  publication-title: J. Agric. Food Chem.
– volume: 48
  start-page: 345
  year: 1999
  end-page: 351
  ident: bb0090
  article-title: Identification of volatiles generated by potato tubers (
  publication-title: Plant Pathol.
– volume: 38
  start-page: 1007
  year: 2013
  end-page: 1018
  ident: bb0615
  article-title: Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles
  publication-title: J. Chem. Ecol.
– volume: 208
  start-page: 63
  year: 2018
  end-page: 75
  ident: bb0345
  article-title: Microbial volatiles as plant growth inducers
  publication-title: Microbiol. Res.
– volume: 14
  start-page: 15939
  year: 2014
  end-page: 15952
  ident: bb0760
  article-title: Detection of potato storage disease via gas analysis: a pilot study using field asymmetric ion mobility spectrometry
  publication-title: Sensors
– volume: 37
  start-page: 813
  year: 2014
  end-page: 826
  ident: bb0655
  article-title: Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions
  publication-title: Plant Cell Environ.
– volume: 49
  start-page: 1177
  year: 2011
  end-page: 1182
  ident: bb0425
  article-title: Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (
  publication-title: Plant Physiol. Biochem.
– volume: 55–56
  start-page: 91
  year: 2016
  end-page: 100
  ident: bb0565
  article-title: Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies
  publication-title: Nitric Oxide
– volume: 5
  start-page: 856
  year: 2019
  end-page: 866
  ident: bb0145
  article-title: Non-invasive plant disease diagnostics enabled by smartphone-based finger printing of leaf volatiles
  publication-title: Nat. Plants
– volume: 107
  start-page: 256
  year: 2017
  end-page: 263
  ident: bb0165
  article-title: Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes
  publication-title: Phytopathology
– volume: 65
  start-page: 200
  year: 2013
  end-page: 206
  ident: bb0455
  article-title: Antimicrobial effects of volatiles produced by two antagonistic
  publication-title: Biol. Control
– volume: 17
  start-page: 2596
  year: 2017
  ident: bb0070
  article-title: Potential applications and limitations of electronic nose devices for plant disease diagnosis
  publication-title: Sensors
– volume: 72
  start-page: 1
  year: 2010
  end-page: 13
  ident: bb0060
  article-title: A review of advanced techniques for detecting plant diseases
  publication-title: Comput. Electron. Agric.
– volume: 219
  start-page: 74
  year: 2019
  end-page: 83
  ident: bb0225
  article-title: Avocado rhizobacteria emit volatile organic compounds with antifungal activity against
  publication-title: Microbiol. Res.
– volume: 44
  start-page: 1019
  year: 2011
  end-page: 1025
  ident: bb0740
  article-title: Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS
  publication-title: LWT - Food Sci. Technol.
– volume: 46
  start-page: 552
  year: 2008
  end-page: 559
  ident: bb0475
  article-title: Effect of volatile substances of
  publication-title: Biol. Control
– volume: 15
  year: 2017
  ident: bb0170
  article-title: Research priorities for harnessing plant microbiomes in sustainable agriculture
  publication-title: PLoS Biol.
– volume: 46
  start-page: D1261
  year: 2018
  end-page: D1265
  ident: bb0015
  article-title: mVOC 2.0: a database of microbial volatiles
  publication-title: Nucleic Acids Res.
– volume: 74
  start-page: 136
  year: 2010
  end-page: 145
  ident: bb0435
  article-title: Monitoring the plant epiphyte
  publication-title: FEMS Microbiol. Ecol.
– volume: 57
  start-page: 653
  year: 2009
  ident: 10.1016/j.tplants.2021.05.006_bb0420
  article-title: Soil bacteria elevate essential oil accumulation and emissions in sweet basil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf8020305
– volume: 89
  start-page: 621
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0665
  article-title: Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management
  publication-title: J. Pest. Sci.
  doi: 10.1007/s10340-016-0768-1
– volume: 148
  start-page: 17
  year: 2006
  ident: 10.1016/j.tplants.2021.05.006_bb0080
  article-title: Metabolic fingerprinting to discriminate diseases of stored carrots
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2005.00036.x
– volume: 45
  start-page: 29
  year: 2007
  ident: 10.1016/j.tplants.2021.05.006_bb0770
  article-title: Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2007.02147.x
– volume: 7
  start-page: 85
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0390
  article-title: Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06)
  publication-title: Appl. Sci.
  doi: 10.3390/app7010085
– volume: 403
  start-page: 851
  year: 2000
  ident: 10.1016/j.tplants.2021.05.006_bb0640
  article-title: Exploitation of gut bacteria in the locust
  publication-title: Nature
  doi: 10.1038/35002669
– volume: 35
  start-page: 1
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0065
  article-title: Advanced methods of plant disease detection. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0246-1
– volume: 9
  start-page: 1473
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0510
  article-title: Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01473
– volume: 2
  start-page: 348
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0650
  article-title: Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1347
– volume: 14
  start-page: 15939
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0760
  article-title: Detection of potato storage disease via gas analysis: a pilot study using field asymmetric ion mobility spectrometry
  publication-title: Sensors
  doi: 10.3390/s140915939
– volume: 10
  start-page: 794
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0410
  article-title: Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops
  publication-title: Agronomy
  doi: 10.3390/agronomy10060794
– volume: 94
  start-page: 419
  year: 2004
  ident: 10.1016/j.tplants.2021.05.006_bb0755
  article-title: Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2004.94.5.419
– volume: 134
  start-page: 1017
  year: 2004
  ident: 10.1016/j.tplants.2021.05.006_bb0575
  article-title: Bacterial volatiles induce systemic resistance in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.026583
– volume: 56
  start-page: 1274
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0700
  article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201600188
– volume: 12
  start-page: 1415
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0620
  article-title: Effect of volatile organic compounds from bacteria on nematodes
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201400342
– volume: 208
  start-page: 76
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0025
  article-title: Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.12.014
– volume: 25
  start-page: 280
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0020
  article-title: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.12.002
– volume: 9
  start-page: 90
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0580
  article-title: Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00090
– volume: 58
  start-page: 13024
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0550
  article-title: Genomics‐driven discovery of NO‐donating diazeniumdiolate siderophores in diverse plant‐associated bacteria
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906326
– volume: 221
  start-page: 297
  year: 2005
  ident: 10.1016/j.tplants.2021.05.006_bb0555
  article-title: Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato
  publication-title: Planta
  doi: 10.1007/s00425-005-1523-7
– volume: 110
  start-page: 371
  year: 2004
  ident: 10.1016/j.tplants.2021.05.006_bb0085
  article-title: Volatile metabolite profiling for the discrimination of onion bulbs infected by Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1023/B:EJPP.0000021058.81491.f8
– volume: 5
  start-page: 550
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0570
  article-title: Methanol and ethanol modulate responses to danger-and microbe-associated molecular patterns
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00550
– volume: 39
  start-page: 840
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0625
  article-title: Microbial volatile emissions as insect semiochemicals
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-013-0306-z
– volume: 11
  start-page: 1578
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0750
  article-title: FAIMS based sensing of Burkholderia cepacia caused sour skin in onions under bulk storage condition
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-017-9537-y
– volume: 15
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0170
  article-title: Research priorities for harnessing plant microbiomes in sustainable agriculture
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2001793
– volume: 62
  start-page: 337
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0120
  article-title: Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf403436t
– volume: 86
  start-page: 131
  year: 2002
  ident: 10.1016/j.tplants.2021.05.006_bb0095
  article-title: Volatile fingerprinting (SPME-GC FID) to detect and discriminate diseases of potato tubers
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2002.86.2.131
– volume: 53
  start-page: 122
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0445
  article-title: Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2009.11.010
– volume: 21
  start-page: 1067
  year: 2008
  ident: 10.1016/j.tplants.2021.05.006_bb0680
  article-title: 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-21-8-1067
– volume: 72
  start-page: 1
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0060
  article-title: A review of advanced techniques for detecting plant diseases
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.02.007
– volume: 173
  start-page: 1529
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0520
  article-title: Considering microbial CO2 during microbe-plant cocultivation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01584
– volume: 37
  start-page: 813
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0655
  article-title: Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12220
– volume: 163
  start-page: 523
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0260
  article-title: Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato
  publication-title: Microbiology
  doi: 10.1099/mic.0.000451
– volume: 77
  start-page: 2399
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0720
  article-title: Enhancing isoprene production by genetic modification of the 1-deoxy-D-xylulose-5-phosphate pathway in Bacillus subtilis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02341-10
– volume: 168
  start-page: 409
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0075
  article-title: Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12272
– volume: 8
  start-page: 171
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0365
  article-title: Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00171
– volume: 49
  start-page: 1177
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0425
  article-title: Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita)
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.07.016
– volume: 91
  start-page: 103502
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0245
  article-title: Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2020.103502
– volume: 37
  start-page: 384
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0295
  article-title: Microbial syntrophy: interaction for the common good
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/1574-6976.12019
– volume: 101
  start-page: 132
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0430
  article-title: Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.01.026
– volume: 2014
  start-page: 125704
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0200
  article-title: Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2014/125704
– volume: 65
  start-page: 200
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0455
  article-title: Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2013.02.004
– volume: 68
  start-page: 1306
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0610
  article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.3301
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0205
  article-title: Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01295
– volume: 6
  start-page: 701
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0030
  article-title: Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00701
– volume: 72
  start-page: 701
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0635
  article-title: Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4040
– volume: 74
  start-page: 136
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0435
  article-title: Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real-time PCR and its influence on the strawberry flavor
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.00942.x
– volume: 48
  start-page: 345
  year: 1999
  ident: 10.1016/j.tplants.2021.05.006_bb0090
  article-title: Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris Piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp
  publication-title: Plant Pathol.
  doi: 10.1046/j.1365-3059.1999.00357.x
– volume: 34
  start-page: 426
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0330
  article-title: Indole as an intercellular signal in microbial communities
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2009.00204.x
– volume: 78
  start-page: 5942
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0185
  article-title: Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01357-12
– volume: 6
  start-page: 52
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0540
  article-title: Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0436-1
– volume: 20
  start-page: 206
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0405
  article-title: Bioprospecting bacterial and fungal volatiles for sustainable agriculture
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.01.004
– volume: 9
  start-page: 456
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0465
  article-title: Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00456
– volume: 103
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0495
  article-title: Fumigant activity of volatile compounds of Streptomyces philanthi RM-1-138 and pure chemicals (acetophenone and phenylethyl alcohol) against anthracnose pathogen in postharvest chili fruit
  publication-title: Crop Prot.
  doi: 10.1016/j.cropro.2017.09.002
– volume: 16
  start-page: 316
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0310
  article-title: Silencing the mob: disrupting quorum sensing as a means to fight plant disease
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12180
– volume: 9
  start-page: 227
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0765
  article-title: Genetic and functional characterization of the bacterial community on fruit of three raspberry (Rubus idaeus) cultivars
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-180340
– volume: 8
  start-page: 1294
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0215
  article-title: Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa
  publication-title: Plant Sci.
– volume: 51
  start-page: 477
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0195
  article-title: Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-013-2586-y
– volume: 17
  start-page: 1234
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0335
  article-title: The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12560
– volume: 279
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0735
  article-title: Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2018.04.034
– volume: 98
  start-page: 5756
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0470
  article-title: Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.9125
– volume: 96
  start-page: 291
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0395
  article-title: Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-017-0694-5
– volume: 72
  start-page: 1222
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0675
  article-title: Diversity of bacterial communities in the midgut of Bactrocera cucurbitae (Diptera: Tephritidae) populations and their potential use as attractants
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4102
– volume: 58
  start-page: 157
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0480
  article-title: Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2010.06.003
– volume: 107
  start-page: 256
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0165
  article-title: Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-09-16-0330-RVW
– volume: 19
  start-page: 49
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0265
  article-title: Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12494
– volume: 37
  start-page: 955
  year: 2005
  ident: 10.1016/j.tplants.2021.05.006_bb0280
  article-title: Identification and use of potential bacterial organic antifungal volatiles in biocontrol
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.10.021
– volume: 250
  start-page: 1251
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0190
  article-title: The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro
  publication-title: Protoplasma
  doi: 10.1007/s00709-013-0506-y
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0275
  article-title: Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00196
– volume: 100
  start-page: 4927
  year: 2003
  ident: 10.1016/j.tplants.2021.05.006_bb0340
  article-title: Bacterial volatiles promote growth in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0730845100
– volume: 226
  start-page: 32
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0400
  article-title: Airborne medicine: bacterial volatiles and their influence on plant health
  publication-title: New Phytol.
  doi: 10.1111/nph.16282
– volume: 22
  start-page: 555
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0045
  article-title: Plant breeding goes microbial
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.05.009
– volume: 30
  start-page: 795
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0115
  article-title: Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences
  publication-title: Trees
  doi: 10.1007/s00468-015-1321-1
– volume: 29
  start-page: 167
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0320
  article-title: The ability of natural ketones to interact with bacterial quorum sensing systems
  publication-title: Mol. Genet. Microbiol. Virol.
  doi: 10.3103/S0891416814040077
– volume: 108
  start-page: 1253
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0450
  article-title: Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-01-17-0032-R
– volume: 672
  start-page: 20
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0110
  article-title: Electronic nose as an innovative tool for the diagnosis of grapevine crown gall
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.02.017
– volume: 81
  start-page: 821
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0210
  article-title: Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02999-14
– volume: 178
  start-page: 120
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0725
  article-title: Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.03.012
– volume: 383
  start-page: 3
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0505
  article-title: Agricultural uses of plant biostimulants
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2131-8
– volume: 192
  start-page: 103
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0270
  article-title: Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2016.05.014
– volume: 19
  start-page: 924
  year: 2006
  ident: 10.1016/j.tplants.2021.05.006_bb0585
  article-title: GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis o6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-19-0924
– volume: 52
  start-page: 5939
  year: 2004
  ident: 10.1016/j.tplants.2021.05.006_bb0775
  article-title: Microbial transformation of aliphatic aldehydes by Bacillus megaterium to 2,3-dialkylacroleins
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf049148i
– volume: 56
  start-page: 264
  year: 2008
  ident: 10.1016/j.tplants.2021.05.006_bb0385
  article-title: Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03593.x
– volume: 51
  start-page: 3258
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0325
  article-title: Pseudomonas aeruginosa activates the quorum sensing LuxR response regulator through secretion of 2-aminoacetophenone
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10393A
– volume: 13
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0525
  article-title: Estimating microbial respiratory CO2 from endophytic bacteria in rice
  publication-title: Plant Signal. Behav.
– volume: 26
  start-page: 141
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0595
  article-title: Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification
  publication-title: Trees
  doi: 10.1007/s00468-011-0667-2
– volume: 53
  start-page: 5134
  year: 2005
  ident: 10.1016/j.tplants.2021.05.006_bb0105
  article-title: Phenylacetaldehyde O-methyloxime: a volatile compound produced by grapefruit leaves infected with the citrus canker pathogen, Xanthomonas axonopodis pv. citri
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf050533x
– volume: 110
  start-page: 341
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0250
  article-title: Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2010.04891.x
– volume: 34
  start-page: 158
  year: 2015
  ident: 10.1016/j.tplants.2021.05.006_bb0360
  article-title: Volatile indole produced by rhizobacterium Proteus vulgaris jbls202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-014-9453-x
– volume: 58
  start-page: 8344
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0500
  article-title: Production of volatile metabolites by grape-associated microorganisms
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf100393w
– volume: 39
  start-page: 2592
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0355
  article-title: Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12759
– volume: 44
  start-page: 1019
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0740
  article-title: Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS
  publication-title: LWT - Food Sci. Technol.
  doi: 10.1016/j.lwt.2010.11.036
– volume: 40
  start-page: 2042
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0175
  article-title: Effects of discrete bioactive microbial volatiles on plants and fungi
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13011
– volume: 91
  start-page: 511
  year: 2001
  ident: 10.1016/j.tplants.2021.05.006_bb0350
  article-title: The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2001.91.5.511
– volume: 107
  start-page: 16631
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0660
  article-title: A Trojan horse mechanism of bacterial pathogenesis against nematodes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1007276107
– volume: 80
  start-page: 758
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0375
  article-title: The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling
  publication-title: Plant J.
  doi: 10.1111/tpj.12666
– volume: 46
  start-page: D1261
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0015
  article-title: mVOC 2.0: a database of microbial volatiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1016
– volume: 31
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0135
  article-title: Discriminative power of independent component analysis applied to an electronic nose
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab5417
– volume: 23
  start-page: 1097
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0685
  article-title: Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03)
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-23-8-1097
– volume: 341
  start-page: 45
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0485
  article-title: Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12088
– volume: 42
  start-page: 2808
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0710
  article-title: Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13629
– volume: 61
  start-page: 113
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0490
  article-title: Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2011.10.014
– volume: 7
  start-page: 1971
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0040
  article-title: Microbiome selection could spur next-generation plant breeding strategies
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01971
– volume: 67
  start-page: 3702
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0235
  article-title: Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b00289
– start-page: 317
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0055
  article-title: Formulation and agricultural application of bacterial volatile compounds
– volume: 25
  start-page: 137
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0160
  article-title: Explaining evolution of plant communication by airborne signals
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2009.09.010
– volume: 9
  start-page: 114
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0530
  article-title: Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00114
– volume: 55–56
  start-page: 91
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0565
  article-title: Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2016.04.002
– volume: 46
  start-page: 552
  year: 2008
  ident: 10.1016/j.tplants.2021.05.006_bb0475
  article-title: Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2008.05.015
– volume: 3
  start-page: 698
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0315
  article-title: Quorum-sensing quenching by rhizobacterial volatiles
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2011.00284.x
– volume: 12
  start-page: 931
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0715
  article-title: Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth
  publication-title: ISME J
  doi: 10.1038/s41396-018-0072-6
– volume: 1155
  start-page: 239
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0730
  article-title: Volatile indicators of contamination in tissue cultures
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2017.1155.34
– volume: 6
  start-page: 45
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0140
  article-title: Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases
  publication-title: Chemosensors
  doi: 10.3390/chemosensors6040045
– volume: 15
  start-page: 406
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0545
  article-title: Nitric oxide: an effective weapon of the plant or the pathogen?
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12095
– volume: 3
  start-page: 130
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0600
  article-title: The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.3.2.10584
– volume: 23
  start-page: 358
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0220
  article-title: Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen Peronophythora litchii
  publication-title: Molecules
  doi: 10.3390/molecules23020358
– volume: 14
  start-page: 1
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0515
  article-title: Natural variation in Arabidopsis Cvi-0 accession reveals an important role of MPK12 in guard cell CO2 signaling
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2000322
– volume: 7
  start-page: 6062
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0645
  article-title: Maternally-transmitted microbiota affects odor emission and preference in Drosophila larva
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04922-z
– volume: 38
  start-page: 665
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0035
  article-title: Volatile mediated interactions between bacteria and fungi in the soil
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-012-0135-5
– volume: 156
  start-page: 170
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0230
  article-title: Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2019.02.019
– volume: 8
  start-page: 3360
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0150
  article-title: Machine learning for the metaanalyses of microbial pathogens’ volatile signatures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21544-1
– volume: 208
  start-page: 63
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0345
  article-title: Microbial volatiles as plant growth inducers
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.01.002
– volume: 171
  start-page: 1099
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0440
  article-title: Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2014.03.018
– volume: 7
  start-page: 1838
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0705
  article-title: Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01838
– volume: 1
  start-page: 53
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0780
  article-title: Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2016.07.001
– volume: 129
  start-page: 422
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0125
  article-title: Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.04.057
– volume: 21
  start-page: 5124
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0670
  article-title: Do diet and taxonomy influence insect gut bacterial communities?
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2012.05752.x
– volume: 5
  start-page: 30
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0305
  article-title: Locality versus globality in bacterial signalling: can local communication stabilize bacterial communities?
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-5-30
– volume: 73
  start-page: 128
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0380
  article-title: Current understanding on ethylene signaling in plants: the influence of nutrient availability
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.09.011
– volume: 155
  start-page: 800
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0560
  article-title: Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.08.020
– volume: 38
  start-page: 1007
  year: 2013
  ident: 10.1016/j.tplants.2021.05.006_bb0615
  article-title: Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-013-0317-9
– volume: 28
  start-page: 275
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0180
  article-title: Correlation between synthesis variation of 2-alkylquinolones and the antifungal activity of a Burkholderia cepacia strain collection
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-011-0817-0
– volume: 17
  start-page: 2596
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0070
  article-title: Potential applications and limitations of electronic nose devices for plant disease diagnosis
  publication-title: Sensors
  doi: 10.3390/s17112596
– volume: 51
  start-page: 75
  year: 2010
  ident: 10.1016/j.tplants.2021.05.006_bb0415
  article-title: Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission
  publication-title: Symbiosis
  doi: 10.1007/s13199-010-0066-2
– volume: 124
  start-page: 1024
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0285
  article-title: Biomimicry of volatile-based microbial control for managing emerging fungal pathogens
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13667
– volume: 87
  start-page: 317
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0370
  article-title: Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s10725-018-00473-z
– volume: 36
  start-page: 71
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0050
  article-title: Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.01.004
– volume: 102
  start-page: 967
  year: 2012
  ident: 10.1016/j.tplants.2021.05.006_bb0255
  article-title: Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-11-11-0312
– volume: 8
  start-page: 4
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0535
  article-title: Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0775-6
– volume: 217
  start-page: 1346
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0630
  article-title: Social attraction mediated by fruit flies’ microbiome
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.099648
– volume: 111
  start-page: E2149
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0300
  article-title: Syntrophic exchange in synthetic microbial communities
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1405641111
– volume: 64
  start-page: 219
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0460
  article-title: Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2017.01.006
– volume: 24
  start-page: 814
  year: 2007
  ident: 10.1016/j.tplants.2021.05.006_bb0005
  article-title: Bacterial volatiles: the smell of small organisms
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b507392h
– volume: 13
  start-page: 3047
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0010
  article-title: Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02582.x
– volume: 21
  start-page: 737
  year: 2008
  ident: 10.1016/j.tplants.2021.05.006_bb0695
  article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-21-6-0737
– volume: 6
  start-page: 58
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0290
  article-title: Microbial interactions within the plant holobiont
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0445-0
– volume: 66
  start-page: 11197
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0605
  article-title: From acetoin to ( Z )-3-hexen-1-ol: the diversity of volatile organic compounds that induce plant responses
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b03010
– volume: 39
  start-page: 764
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0690
  article-title: Microbial volatile organic compounds produced by Bacillus amyloliquefaciens GB03 ameliorate the effects of salt stress in Mentha piperita principally through acetoin emission
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-019-10020-3
– volume: 135
  start-page: 83
  year: 2018
  ident: 10.1016/j.tplants.2021.05.006_bb0745
  article-title: FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2017.09.003
– volume: 116
  start-page: 50
  year: 2016
  ident: 10.1016/j.tplants.2021.05.006_bb0130
  article-title: Early identification of potato storage disease using an array of metal-oxide based gas sensors
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.12.028
– volume: 5
  start-page: 856
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0145
  article-title: Non-invasive plant disease diagnostics enabled by smartphone-based finger printing of leaf volatiles
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0476-y
– volume: 8
  start-page: 1638
  year: 2017
  ident: 10.1016/j.tplants.2021.05.006_bb0155
  article-title: Mining the volatilomes of plant-associated microbiota for new biocontrol solutions
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01638
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tplants.2021.05.006_bb0240
  article-title: High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3-10 in suppression of Aspergillus contamination on peanut kernels
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00142
– volume: 86
  start-page: 2481
  year: 2014
  ident: 10.1016/j.tplants.2021.05.006_bb0100
  article-title: Detection of huanglongbing disease using differential mobility spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac403469y
– volume: 6
  year: 2011
  ident: 10.1016/j.tplants.2021.05.006_bb0590
  article-title: The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022974
– volume: 219
  start-page: 74
  year: 2019
  ident: 10.1016/j.tplants.2021.05.006_bb0225
  article-title: Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.11.009
SSID ssj0007186
Score 2.5293083
SecondaryResourceType review_article
Snippet Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 968
SubjectTerms abiotic stress tolerance
Agricultural production
Agricultural technology
Bacteria
Biological control
Crop management
crop protection
crop quality
early development
Ecological effects
growth promotion
Inspection
Metabolites
Plant growth
plant growth-promoting bacteria
VOC-based diagnosis
Volatile compounds
Title Bacterial volatile compound-based tools for crop management and quality
URI https://dx.doi.org/10.1016/j.tplants.2021.05.006
https://www.proquest.com/docview/2574458877
https://www.proquest.com/docview/2543708751
https://www.proquest.com/docview/2636399913
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4QwEJ0Y9aAH42dcXU1NvLJbKFA4ukZdNXpRE29NW0qiWWGj7MGLv92ZBdaPGE08Am1Spu2bB30zA3DIuckSl_qe75zwwjwWXqJN7gmjfWNkzGVGvwauruPhXXhxH93PwXEbC0Oyygb7a0yfonVzp99Ysz9-eOjf-CKmYzb0P-SzQ8LhMJS0yntvHzIPxN64jr3ilG8v-oji6T_2qvGI1Cb4mRj40wSeVPjoZ__0Damn7ud0FVYa3siO6qGtwZwr1mFxUCK3e12H5U9pBTfgbFCnYMb2CD5o-pFjJB2nCkoeua2MVWU5emFIWBmV8GJPMxEM00XG6kjL1024Oz25PR56TcEEz0Z-XHkZ0i-h8aMzMDoPLL5t6nKdWWFE4HIjpMysdmliNDc8t5m02iYGdyBinDRIxrZgvigLtw3MBClyo0RzEmyKyCZ4EUTOIhvRUiS8A2FrJmWbbOJU1GKkWtnYo2qsq8i6ikcKrduB3qzbuE6n8VeHpJ0D9WVdKIT8v7p22zlTzcbE55EMKThXyg4czB7jlqJzEl24ckJtQiEp07__S5tYELdLfbHz_xHuwhJd1ZK1LsxXzxO3hxynMvvTRbwPC0fnl8Prd2ZU_Ng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VUgl6QLSAWChgJHrMrmMncXLgQIGypY9LW6k3YzuO1GpJVjRVtRf-FH-QmY2zLaiiElKPiR-KZuyZz_E3MwDvOLdl7os4ir2XUVJlMsqNrSJpTWytyrgq6dfA_kE2Pk6-nqQnS_Crj4UhWmWw_Z1Nn1vr8GYUpDmanp6ODmOZ0TUb-h_y2YkIzMpdP7vEc9v5-51PqORNIbY_H30cR6G0QOTSOGujEoGKNHg8E9ZUwuEsha9M6aSVwldWKlU644vcGm555UrljMstrlW0BsoibMF578H9BM0FlU0Y_rzilaCxz7pgL04J_tKrsKHR2bCdTojegudSEc8zhlKlpZsd4l-uYe7vth_DowBU2YdOFmuw5Ot1WNlqEEzO1mH1Wh7DJ_Blq8v5jP3R2qGuJ54RV51KNkXkJ0vWNs3knCFCZlQzjH1fsG6YqUvWhXbOnsLxnYjxGSzXTe2fA7OiQDCWG04MUZm6HB9E6h3CH6NkzgeQ9GLSLqQvpyoaE93z1M50kK4m6WqeapTuAIaLYdMuf8dtA_JeB_qPhajRx9w2dKPXmQ6WANtTlVA0sFIDeLtoxj1MFzOm9s0F9UmkotIC8T_6ZJLAZBHLF___hW_gwfhof0_v7RzsvoSH1NLx5TZguf1x4V8hwGrt6_mCZvDtrnfQb7jDO5c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+volatile+compound-based+tools+for+crop+management+and+quality&rft.jtitle=Trends+in+plant+science&rft.au=Cellini%2C+Antonio&rft.au=Spinelli%2C+Francesco&rft.au=Donati%2C+Irene&rft.au=Ryu%2C+Choong-Min&rft.date=2021-09-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=26&rft.issue=9&rft.spage=968&rft_id=info:doi/10.1016%2Fj.tplants.2021.05.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon