Bacterial volatile compound-based tools for crop management and quality
Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their ear...
Saved in:
Published in | Trends in plant science Vol. 26; no. 9; pp. 968 - 983 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.
Plant-associated bacteria interact with their environment through the exchange of chemicals, including volatile compounds. Innovative agricultural technologies may exploit the inherent advantages of bacterial airborne signals, including diffusibility, independence from water availability and physical connection, and absence of pesticide residuals.Volatile compounds resulting from plant–pathogen interactions allow nondestructive disease diagnosis on bulk samples of asymptomatic plant material.Volatile compounds, expressing a direct biocidal activity, interfering with signalling, or stimulating plant host defences, contribute to the biological control of pests and pathogens.Bacterial volatile compounds modulate plant hormones enhancing plant growth, stress tolerance, crop quality, aroma and nutraceutical characteristics, and reduce post-harvest losses. |
---|---|
AbstractList | Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment. Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment. Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment. Plant-associated bacteria interact with their environment through the exchange of chemicals, including volatile compounds. Innovative agricultural technologies may exploit the inherent advantages of bacterial airborne signals, including diffusibility, independence from water availability and physical connection, and absence of pesticide residuals.Volatile compounds resulting from plant–pathogen interactions allow nondestructive disease diagnosis on bulk samples of asymptomatic plant material.Volatile compounds, expressing a direct biocidal activity, interfering with signalling, or stimulating plant host defences, contribute to the biological control of pests and pathogens.Bacterial volatile compounds modulate plant hormones enhancing plant growth, stress tolerance, crop quality, aroma and nutraceutical characteristics, and reduce post-harvest losses. |
Author | Ryu, Choong-Min Kloepper, Joseph W. Cellini, Antonio Donati, Irene Spinelli, Francesco |
Author_xml | – sequence: 1 givenname: Antonio surname: Cellini fullname: Cellini, Antonio organization: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy – sequence: 2 givenname: Francesco orcidid: 0000-0003-3870-1227 surname: Spinelli fullname: Spinelli, Francesco email: francesco.spinelli3@unibo.it organization: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy – sequence: 3 givenname: Irene surname: Donati fullname: Donati, Irene organization: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy – sequence: 4 givenname: Choong-Min orcidid: 0000-0002-7276-1189 surname: Ryu fullname: Ryu, Choong-Min organization: Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea – sequence: 5 givenname: Joseph W. surname: Kloepper fullname: Kloepper, Joseph W. organization: Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA |
BookMark | eNqFkUFr3DAQhUVJoUnan1Aw5NKLXclaWTI5lDakSSDQS3sWY2lctMiSI8mB_Pto2Zxy2dPM4XuPmfcuyFmIAQn5ymjHKBu-77uyeggldz3tWUdFR-nwgZwzJVW747I_qzsfaMu4Ep_IRc57Sqlkajgnd7_AFEwOfPMcPRTnsTFxWeMWbDtBRtuUGH1u5pgak-LaLBDgPy4YSgPBNk8beFdePpOPM_iMX97mJfn3-_bvzX37-Ofu4ebnY2sEG0prxY5y4Fz1E8y9qfeMOIM1fOI9zhOX0hrAUU1AJzobKw0YNQ1cWYtyoopfkm9H3zXFpw1z0YvLBn39H-OWdT_wgY_jyPhpVNRsqJKCVfTqHbqPWwr1kUrJ3U4oJWWlro9UzSHnhLM2rtTIYigJnNeM6kMfeq_f-tCHPjQVuvZR1eKdek1ugfRyUvfjqMMa67PDpLNxGAxal9AUbaM74fAK4OWrYw |
CitedBy_id | crossref_primary_10_1007_s11103_025_01566_w crossref_primary_10_1016_j_foodcont_2023_110211 crossref_primary_10_1093_jxb_erab520 crossref_primary_10_3390_plants11030386 crossref_primary_10_3389_fagro_2022_849911 crossref_primary_10_3389_fpls_2023_1279896 crossref_primary_10_1128_msphere_00324_23 crossref_primary_10_1007_s10526_023_10212_7 crossref_primary_10_3390_toxins15010045 crossref_primary_10_3390_plants12173094 crossref_primary_10_1002_jcp_30889 crossref_primary_10_3389_fmicb_2022_826827 crossref_primary_10_3389_fhort_2024_1394041 crossref_primary_10_3390_bios12040239 crossref_primary_10_3390_microorganisms10010069 crossref_primary_10_1016_j_scitotenv_2022_157123 crossref_primary_10_1016_j_micres_2024_127611 crossref_primary_10_1016_j_scienta_2023_111901 crossref_primary_10_3390_horticulturae9020193 crossref_primary_10_1016_j_foodres_2025_116053 crossref_primary_10_1016_j_postharvbio_2021_111742 crossref_primary_10_1093_jambio_lxad037 crossref_primary_10_5423_RPD_2022_28_1_1 crossref_primary_10_1016_j_cois_2023_101151 crossref_primary_10_1021_acsnano_2c04457 crossref_primary_10_1016_j_plaphy_2025_109830 crossref_primary_10_1016_j_cropro_2025_107114 crossref_primary_10_1080_17429145_2022_2107243 crossref_primary_10_1128_aem_02317_21 crossref_primary_10_3389_fmicb_2022_1050901 crossref_primary_10_3390_plants11192486 crossref_primary_10_3390_microorganisms10071286 crossref_primary_10_1128_spectrum_04346_22 crossref_primary_10_3390_microorganisms9081617 crossref_primary_10_1016_j_envadv_2024_100513 crossref_primary_10_5458_bag_12_3_165 crossref_primary_10_1111_1749_4877_12911 crossref_primary_10_3389_fmicb_2022_826635 crossref_primary_10_1016_j_biotechadv_2022_108078 crossref_primary_10_1002_advs_202400207 crossref_primary_10_1111_1541_4337_13151 |
Cites_doi | 10.1021/jf8020305 10.1007/s10340-016-0768-1 10.1111/j.1744-7348.2005.00036.x 10.1111/j.1472-765X.2007.02147.x 10.3390/app7010085 10.1038/35002669 10.1007/s13593-014-0246-1 10.3389/fpls.2018.01473 10.1038/ncomms1347 10.3390/s140915939 10.3390/agronomy10060794 10.1094/PHYTO.2004.94.5.419 10.1104/pp.103.026583 10.1002/jobm.201600188 10.1002/cbdv.201400342 10.1016/j.micres.2017.12.014 10.1016/j.tim.2016.12.002 10.3389/fpls.2018.00090 10.1002/anie.201906326 10.1007/s00425-005-1523-7 10.1023/B:EJPP.0000021058.81491.f8 10.3389/fpls.2014.00550 10.1007/s10886-013-0306-z 10.1007/s11694-017-9537-y 10.1371/journal.pbio.2001793 10.1021/jf403436t 10.1094/PDIS.2002.86.2.131 10.1016/j.biocontrol.2009.11.010 10.1094/MPMI-21-8-1067 10.1016/j.compag.2010.02.007 10.1104/pp.16.01584 10.1111/pce.12220 10.1099/mic.0.000451 10.1128/AEM.02341-10 10.1111/aab.12272 10.3389/fmicb.2017.00171 10.1016/j.plaphy.2011.07.016 10.1016/j.fm.2020.103502 10.1111/1574-6976.12019 10.1016/j.plaphy.2016.01.026 10.1155/2014/125704 10.1016/j.biocontrol.2013.02.004 10.1002/ps.3301 10.3389/fmicb.2015.01295 10.3389/fmicb.2015.00701 10.1002/ps.4040 10.1111/j.1574-6941.2010.00942.x 10.1046/j.1365-3059.1999.00357.x 10.1111/j.1574-6976.2009.00204.x 10.1128/AEM.01357-12 10.1186/s40168-018-0436-1 10.1016/j.tplants.2015.01.004 10.3389/fmicb.2018.00456 10.1016/j.cropro.2017.09.002 10.1111/mpp.12180 10.3233/JBR-180340 10.1007/s12275-013-2586-y 10.1111/1462-2920.12560 10.1016/j.ijfoodmicro.2018.04.034 10.1002/jsfa.9125 10.1007/s11103-017-0694-5 10.1002/ps.4102 10.1016/j.postharvbio.2010.06.003 10.1094/PHYTO-09-16-0330-RVW 10.1111/mpp.12494 10.1016/j.soilbio.2004.10.021 10.1007/s00709-013-0506-y 10.3389/fmicb.2016.00196 10.1073/pnas.0730845100 10.1111/nph.16282 10.1016/j.tplants.2017.05.009 10.1007/s00468-015-1321-1 10.3103/S0891416814040077 10.1094/PHYTO-01-17-0032-R 10.1016/j.aca.2010.02.017 10.1128/AEM.02999-14 10.1016/j.ijfoodmicro.2014.03.012 10.1007/s11104-014-2131-8 10.1016/j.micres.2016.05.014 10.1094/MPMI-19-0924 10.1021/jf049148i 10.1111/j.1365-313X.2008.03593.x 10.1039/C4CC10393A 10.1007/s00468-011-0667-2 10.1021/jf050533x 10.1111/j.1365-2672.2010.04891.x 10.1007/s00344-014-9453-x 10.1021/jf100393w 10.1111/pce.12759 10.1016/j.lwt.2010.11.036 10.1111/pce.13011 10.1094/PHYTO.2001.91.5.511 10.1073/pnas.1007276107 10.1111/tpj.12666 10.1093/nar/gkx1016 10.1088/1361-6501/ab5417 10.1094/MPMI-23-8-1097 10.1111/1574-6968.12088 10.1111/pce.13629 10.1016/j.biocontrol.2011.10.014 10.3389/fmicb.2016.01971 10.1021/acs.jafc.9b00289 10.1016/j.tree.2009.09.010 10.3389/fpls.2018.00114 10.1016/j.niox.2016.04.002 10.1016/j.biocontrol.2008.05.015 10.1111/j.1758-2229.2011.00284.x 10.1038/s41396-018-0072-6 10.17660/ActaHortic.2017.1155.34 10.3390/chemosensors6040045 10.1111/mpp.12095 10.4161/cib.3.2.10584 10.3390/molecules23020358 10.1371/journal.pbio.2000322 10.1038/s41598-017-04922-z 10.1007/s10886-012-0135-5 10.1016/j.pestbp.2019.02.019 10.1038/s41598-018-21544-1 10.1016/j.micres.2018.01.002 10.1016/j.jplph.2014.03.018 10.3389/fmicb.2016.01838 10.1016/j.rhisph.2016.07.001 10.1016/j.talanta.2014.04.057 10.1111/j.1365-294X.2012.05752.x 10.1186/1745-6150-5-30 10.1016/j.plaphy.2013.09.011 10.1016/j.plaphy.2020.08.020 10.1007/s10886-013-0317-9 10.1007/s11274-011-0817-0 10.3390/s17112596 10.1007/s13199-010-0066-2 10.1111/jam.13667 10.1007/s10725-018-00473-z 10.1016/j.pbi.2017.01.004 10.1094/PHYTO-11-11-0312 10.1186/s40168-019-0775-6 10.1242/jeb.099648 10.1073/pnas.1405641111 10.1016/j.fm.2017.01.006 10.1039/b507392h 10.1111/j.1462-2920.2011.02582.x 10.1094/MPMI-21-6-0737 10.1186/s40168-018-0445-0 10.1021/acs.jafc.8b03010 10.1007/s00344-019-10020-3 10.1016/j.postharvbio.2017.09.003 10.1016/j.postharvbio.2015.12.028 10.1038/s41477-019-0476-y 10.3389/fmicb.2017.01638 10.3389/fmicb.2020.00142 10.1021/ac403469y 10.1371/journal.pone.0022974 10.1016/j.micres.2018.11.009 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Sep 2021 Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2021 – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.tplants.2021.05.006 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 983 |
ExternalDocumentID | 10_1016_j_tplants_2021_05_006 S1360138521001242 |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c516t-d5403a3382baf2c3859efadc3b32efb377dcae98ba0b0fcd7cac8b638dde7b083 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Fri Jul 11 08:57:03 EDT 2025 Thu Jul 10 22:20:52 EDT 2025 Wed Aug 13 07:44:10 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Tue Jul 01 00:57:57 EDT 2025 Fri Feb 23 02:43:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | VOC-based diagnosis biological control abiotic stress tolerance plant growth-promoting bacteria crop protection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-d5403a3382baf2c3859efadc3b32efb377dcae98ba0b0fcd7cac8b638dde7b083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3870-1227 0000-0002-7276-1189 |
OpenAccessLink | https://hdl.handle.net/11585/829792 |
PQID | 2574458877 |
PQPubID | 2045386 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636399913 proquest_miscellaneous_2543708751 proquest_journals_2574458877 crossref_citationtrail_10_1016_j_tplants_2021_05_006 crossref_primary_10_1016_j_tplants_2021_05_006 elsevier_sciencedirect_doi_10_1016_j_tplants_2021_05_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Trends in plant science |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Weingart (bb0350) 2001; 91 Lee, Lee (bb0330) 2010; 34 Lanteigne (bb0255) 2012; 102 Tyc (bb0020) 2017; 25 Pothakos (bb0725) 2014; 178 Guevara-Avendaño (bb0225) 2019; 219 Deshmukh (bb0780) 2016; 1 Xu (bb0620) 2015; 12 Kushalappa (bb0095) 2002; 86 Effmert (bb0035) 2012; 38 Rybakova (bb0215) 2017; 8 Velázquez-Becerra (bb0190) 2013; 250 Zhang (bb0235) 2019; 67 Sinha (bb0750) 2017; 11 Sun (bb0135) 2020; 31 Ravanbakhsh (bb0540) 2018; 6 Blasioli (bb0110) 2010; 672 Ryu (bb0575) 2004; 134 Lee (bb0335) 2015; 17 van Agtmaal (bb0030) 2015; 6 Jiang (bb0370) 2019; 87 Nasopoulou (bb0440) 2014; 171 Niu (bb0660) 2010; 107 Li (bb0490) 2012; 61 Kong (bb0580) 2018; 9 Ryu (bb0340) 2003; 100 Wei, Jousset (bb0045) 2017; 22 Santoro (bb0425) 2011; 49 Martinelli (bb0065) 2015; 35 Venturi (bb0305) 2010; 5 Banchio (bb0420) 2009; 57 Wilson (bb0755) 2004; 94 Cellini (bb0075) 2016; 168 Liu (bb0470) 2018; 98 Sharifi, Ryu (bb0275) 2016; 7 Zhang (bb0385) 2008; 56 Hernández-Calderón (bb0395) 2018; 96 Palma (bb0150) 2018; 8 Hassani (bb0290) 2018; 6 Sánchez‐López (bb0355) 2016; 39 Hermenau (bb0550) 2019; 58 Arasimowicz-Jelonek, Floryszak-Wieczorek (bb0545) 2014; 15 Li (bb0740) 2011; 44 Hamby, Becher (bb0665) 2016; 89 Zhang (bb0685) 2010; 23 Chernin (bb0315) 2011; 3 Ioannidis (bb0735) 2018; 279 Tahir (bb0365) 2017; 8 Bailly, Weisskopf (bb0155) 2017; 8 Wang (bb0485) 2013; 341 Creus (bb0555) 2005; 221 Wang (bb0195) 2013; 51 Zhang (bb0695) 2008; 21 Dillon (bb0640) 2000; 403 Han (bb0585) 2006; 19 Yuan (bb0185) 2012; 78 Zhou (bb0430) 2016; 101 Zheng (bb0455) 2013; 65 Ledger (bb0705) 2016; 7 Hann (bb0570) 2014; 5 Gao (bb0465) 2018; 9 Jakobson (bb0515) 2016; 14 McGenity (bb0715) 2018; 12 Cellini (bb0070) 2017; 17 Verginer (bb0500) 2010; 58 Xie (bb0265) 2018; 19 Lyu (bb0240) 2020; 11 Gutiérrez-Luna (bb0415) 2010; 51 Backer (bb0510) 2018; 9 Dandurishvili (bb0250) 2011; 110 Yamasaki, Cohen (bb0565) 2016; 55–56 Rutolo (bb0760) 2014; 14 Lemfack (bb0015) 2018; 46 Mazzola, Freilich (bb0165) 2017; 107 Fernando (bb0280) 2005; 37 Cofer (bb0605) 2018; 66 Wang (bb0390) 2017; 7 Heil, Karban (bb0160) 2010; 25 Rudrappa (bb0600) 2010; 3 Vaishnav (bb0700) 2016; 56 Sangiorgio (bb0410) 2020; 10 Helman, Chernin (bb0310) 2015; 16 Bailly (bb0375) 2014; 80 Farag (bb0615) 2013; 38 Cappellari, L.d.R. and Banchio, E. (bb0690) 2020; 39 Lantz (bb0710) 2019; 42 Wallingford (bb0635) 2016; 72 Perpetuini (bb0765) 2019; 9 Kanchiswamy (bb0405) 2015; 20 Marquez-Villavicencio (bb0590) 2011; 6 Rajaofera (bb0230) 2019; 156 Popova (bb0200) 2014; 2014 Leroy (bb0650) 2011; 2 Rutolo (bb0130) 2016; 116 Sinha (bb0745) 2018; 135 Venu (bb0630) 2014; 217 Sankaran (bb0060) 2010; 72 Bhattacharyya (bb0360) 2015; 34 Wan (bb0475) 2008; 46 Arrebola (bb0445) 2010; 53 Biondi (bb0125) 2014; 129 Chen (bb0450) 2018; 108 Verginer (bb0435) 2010; 74 Xing (bb0220) 2018; 23 Garbeva, Weisskopf (bb0400) 2020; 226 Farine (bb0645) 2017; 7 Cho (bb0680) 2008; 21 Blasioli (bb0120) 2014; 62 Werbrouck (bb0730) 2017; 1155 Vikram (bb0080) 2006; 148 Fincheira, Quiroz (bb0345) 2018; 208 Piechulla (bb0175) 2017; 40 Hadapad (bb0675) 2016; 72 D’Alessandro (bb0655) 2014; 37 Mukherjee, Corpas (bb0560) 2020; 155 de Lacy Costello (bb0090) 1999; 48 Spinelli (bb0595) 2012; 26 Blom (bb0010) 2011; 13 Rho (bb0525) 2018; 13 Kilani-Feki (bb0180) 2012; 28 Gabriel (bb0285) 2018; 124 Morris (bb0295) 2013; 37 Calvo (bb0505) 2014; 383 Abanda-Nkpwatt, Schwab (bb0775) 2004; 52 De Vrieze (bb0205) 2015; 6 Rajer (bb0260) 2017; 163 Colman (bb0670) 2012; 21 Zhang, Hartung (bb0105) 2005; 53 Iqbal (bb0380) 2013; 73 Gotor-Vila (bb0460) 2017; 64 Ye (bb0245) 2020; 91 Aksenov (bb0100) 2014; 86 Schulz, Dickschat (bb0005) 2007; 24 Busby (bb0170) 2017; 15 Hunziker (bb0210) 2015; 81 Kviatkovski (bb0325) 2015; 51 Cellini (bb0115) 2016; 30 Raza (bb0270) 2016; 192 Xue, Ahring (bb0720) 2011; 77 Feron (bb0770) 2007; 45 Sharifi, Ryu (bb0055) 2020 Plyuta (bb0320) 2014; 29 Wilson (bb0140) 2018; 6 Mee (bb0300) 2014; 111 Chen (bb0535) 2020; 8 Gopal, Gupta (bb0040) 2016; 7 Boukaew (bb0495) 2018; 103 Huang (bb0610) 2012; 68 Li (bb0480) 2010; 58 Rath (bb0025) 2018; 208 Davis (bb0625) 2013; 39 Li (bb0145) 2019; 5 Nascimento (bb0530) 2018; 9 Prithiviraj (bb0085) 2004; 110 Kroll (bb0050) 2017; 36 Piechulla (bb0520) 2017; 173 Verginer (10.1016/j.tplants.2021.05.006_bb0435) 2010; 74 Lee (10.1016/j.tplants.2021.05.006_bb0330) 2010; 34 Zheng (10.1016/j.tplants.2021.05.006_bb0455) 2013; 65 Morris (10.1016/j.tplants.2021.05.006_bb0295) 2013; 37 Feron (10.1016/j.tplants.2021.05.006_bb0770) 2007; 45 Chen (10.1016/j.tplants.2021.05.006_bb0450) 2018; 108 Leroy (10.1016/j.tplants.2021.05.006_bb0650) 2011; 2 Hernández-Calderón (10.1016/j.tplants.2021.05.006_bb0395) 2018; 96 Werbrouck (10.1016/j.tplants.2021.05.006_bb0730) 2017; 1155 Sankaran (10.1016/j.tplants.2021.05.006_bb0060) 2010; 72 Boukaew (10.1016/j.tplants.2021.05.006_bb0495) 2018; 103 Yamasaki (10.1016/j.tplants.2021.05.006_bb0565) 2016; 55–56 Prithiviraj (10.1016/j.tplants.2021.05.006_bb0085) 2004; 110 Xie (10.1016/j.tplants.2021.05.006_bb0265) 2018; 19 Gopal (10.1016/j.tplants.2021.05.006_bb0040) 2016; 7 Mee (10.1016/j.tplants.2021.05.006_bb0300) 2014; 111 Li (10.1016/j.tplants.2021.05.006_bb0480) 2010; 58 Venturi (10.1016/j.tplants.2021.05.006_bb0305) 2010; 5 Plyuta (10.1016/j.tplants.2021.05.006_bb0320) 2014; 29 Chernin (10.1016/j.tplants.2021.05.006_bb0315) 2011; 3 Wang (10.1016/j.tplants.2021.05.006_bb0390) 2017; 7 Ledger (10.1016/j.tplants.2021.05.006_bb0705) 2016; 7 Banchio (10.1016/j.tplants.2021.05.006_bb0420) 2009; 57 Sánchez‐López (10.1016/j.tplants.2021.05.006_bb0355) 2016; 39 Pothakos (10.1016/j.tplants.2021.05.006_bb0725) 2014; 178 Kong (10.1016/j.tplants.2021.05.006_bb0580) 2018; 9 Effmert (10.1016/j.tplants.2021.05.006_bb0035) 2012; 38 Arrebola (10.1016/j.tplants.2021.05.006_bb0445) 2010; 53 Cellini (10.1016/j.tplants.2021.05.006_bb0070) 2017; 17 Cellini (10.1016/j.tplants.2021.05.006_bb0115) 2016; 30 Kanchiswamy (10.1016/j.tplants.2021.05.006_bb0405) 2015; 20 van Agtmaal (10.1016/j.tplants.2021.05.006_bb0030) 2015; 6 Heil (10.1016/j.tplants.2021.05.006_bb0160) 2010; 25 Li (10.1016/j.tplants.2021.05.006_bb0145) 2019; 5 Gotor-Vila (10.1016/j.tplants.2021.05.006_bb0460) 2017; 64 Hadapad (10.1016/j.tplants.2021.05.006_bb0675) 2016; 72 Kroll (10.1016/j.tplants.2021.05.006_bb0050) 2017; 36 Lyu (10.1016/j.tplants.2021.05.006_bb0240) 2020; 11 Hann (10.1016/j.tplants.2021.05.006_bb0570) 2014; 5 Velázquez-Becerra (10.1016/j.tplants.2021.05.006_bb0190) 2013; 250 Rho (10.1016/j.tplants.2021.05.006_bb0525) 2018; 13 Wei (10.1016/j.tplants.2021.05.006_bb0045) 2017; 22 Cho (10.1016/j.tplants.2021.05.006_bb0680) 2008; 21 Nasopoulou (10.1016/j.tplants.2021.05.006_bb0440) 2014; 171 Han (10.1016/j.tplants.2021.05.006_bb0585) 2006; 19 Zhou (10.1016/j.tplants.2021.05.006_bb0430) 2016; 101 Sinha (10.1016/j.tplants.2021.05.006_bb0750) 2017; 11 Ioannidis (10.1016/j.tplants.2021.05.006_bb0735) 2018; 279 Aksenov (10.1016/j.tplants.2021.05.006_bb0100) 2014; 86 Wang (10.1016/j.tplants.2021.05.006_bb0485) 2013; 341 Blasioli (10.1016/j.tplants.2021.05.006_bb0110) 2010; 672 Hermenau (10.1016/j.tplants.2021.05.006_bb0550) 2019; 58 Tyc (10.1016/j.tplants.2021.05.006_bb0020) 2017; 25 Lee (10.1016/j.tplants.2021.05.006_bb0335) 2015; 17 Blasioli (10.1016/j.tplants.2021.05.006_bb0120) 2014; 62 Li (10.1016/j.tplants.2021.05.006_bb0490) 2012; 61 Hamby (10.1016/j.tplants.2021.05.006_bb0665) 2016; 89 Creus (10.1016/j.tplants.2021.05.006_bb0555) 2005; 221 Iqbal (10.1016/j.tplants.2021.05.006_bb0380) 2013; 73 Zhang (10.1016/j.tplants.2021.05.006_bb0105) 2005; 53 Santoro (10.1016/j.tplants.2021.05.006_bb0425) 2011; 49 Wang (10.1016/j.tplants.2021.05.006_bb0195) 2013; 51 Sangiorgio (10.1016/j.tplants.2021.05.006_bb0410) 2020; 10 Zhang (10.1016/j.tplants.2021.05.006_bb0695) 2008; 21 Popova (10.1016/j.tplants.2021.05.006_bb0200) 2014; 2014 Li (10.1016/j.tplants.2021.05.006_bb0740) 2011; 44 Busby (10.1016/j.tplants.2021.05.006_bb0170) 2017; 15 Vaishnav (10.1016/j.tplants.2021.05.006_bb0700) 2016; 56 Verginer (10.1016/j.tplants.2021.05.006_bb0500) 2010; 58 Marquez-Villavicencio (10.1016/j.tplants.2021.05.006_bb0590) 2011; 6 Sharifi (10.1016/j.tplants.2021.05.006_bb0055) 2020 Martinelli (10.1016/j.tplants.2021.05.006_bb0065) 2015; 35 Palma (10.1016/j.tplants.2021.05.006_bb0150) 2018; 8 Wilson (10.1016/j.tplants.2021.05.006_bb0140) 2018; 6 Mukherjee (10.1016/j.tplants.2021.05.006_bb0560) 2020; 155 Zhang (10.1016/j.tplants.2021.05.006_bb0235) 2019; 67 Guevara-Avendaño (10.1016/j.tplants.2021.05.006_bb0225) 2019; 219 Wan (10.1016/j.tplants.2021.05.006_bb0475) 2008; 46 Mazzola (10.1016/j.tplants.2021.05.006_bb0165) 2017; 107 Perpetuini (10.1016/j.tplants.2021.05.006_bb0765) 2019; 9 Blom (10.1016/j.tplants.2021.05.006_bb0010) 2011; 13 Kviatkovski (10.1016/j.tplants.2021.05.006_bb0325) 2015; 51 Venu (10.1016/j.tplants.2021.05.006_bb0630) 2014; 217 Raza (10.1016/j.tplants.2021.05.006_bb0270) 2016; 192 Schulz (10.1016/j.tplants.2021.05.006_bb0005) 2007; 24 Wallingford (10.1016/j.tplants.2021.05.006_bb0635) 2016; 72 Garbeva (10.1016/j.tplants.2021.05.006_bb0400) 2020; 226 Vikram (10.1016/j.tplants.2021.05.006_bb0080) 2006; 148 Rajaofera (10.1016/j.tplants.2021.05.006_bb0230) 2019; 156 Cellini (10.1016/j.tplants.2021.05.006_bb0075) 2016; 168 Rybakova (10.1016/j.tplants.2021.05.006_bb0215) 2017; 8 Rajer (10.1016/j.tplants.2021.05.006_bb0260) 2017; 163 Rudrappa (10.1016/j.tplants.2021.05.006_bb0600) 2010; 3 Bhattacharyya (10.1016/j.tplants.2021.05.006_bb0360) 2015; 34 Nascimento (10.1016/j.tplants.2021.05.006_bb0530) 2018; 9 Biondi (10.1016/j.tplants.2021.05.006_bb0125) 2014; 129 Lemfack (10.1016/j.tplants.2021.05.006_bb0015) 2018; 46 Helman (10.1016/j.tplants.2021.05.006_bb0310) 2015; 16 Cofer (10.1016/j.tplants.2021.05.006_bb0605) 2018; 66 Gabriel (10.1016/j.tplants.2021.05.006_bb0285) 2018; 124 Zhang (10.1016/j.tplants.2021.05.006_bb0385) 2008; 56 Jakobson (10.1016/j.tplants.2021.05.006_bb0515) 2016; 14 Huang (10.1016/j.tplants.2021.05.006_bb0610) 2012; 68 Lanteigne (10.1016/j.tplants.2021.05.006_bb0255) 2012; 102 Zhang (10.1016/j.tplants.2021.05.006_bb0685) 2010; 23 Ravanbakhsh (10.1016/j.tplants.2021.05.006_bb0540) 2018; 6 Colman (10.1016/j.tplants.2021.05.006_bb0670) 2012; 21 Kushalappa (10.1016/j.tplants.2021.05.006_bb0095) 2002; 86 Tahir (10.1016/j.tplants.2021.05.006_bb0365) 2017; 8 Sharifi (10.1016/j.tplants.2021.05.006_bb0275) 2016; 7 Farag (10.1016/j.tplants.2021.05.006_bb0615) 2013; 38 Farine (10.1016/j.tplants.2021.05.006_bb0645) 2017; 7 Fincheira (10.1016/j.tplants.2021.05.006_bb0345) 2018; 208 Davis (10.1016/j.tplants.2021.05.006_bb0625) 2013; 39 McGenity (10.1016/j.tplants.2021.05.006_bb0715) 2018; 12 Cappellari, L.d.R. and Banchio, E. (10.1016/j.tplants.2021.05.006_bb0690) 2020; 39 Xu (10.1016/j.tplants.2021.05.006_bb0620) 2015; 12 Sun (10.1016/j.tplants.2021.05.006_bb0135) 2020; 31 Chen (10.1016/j.tplants.2021.05.006_bb0535) 2020; 8 Fernando (10.1016/j.tplants.2021.05.006_bb0280) 2005; 37 Yuan (10.1016/j.tplants.2021.05.006_bb0185) 2012; 78 Calvo (10.1016/j.tplants.2021.05.006_bb0505) 2014; 383 Liu (10.1016/j.tplants.2021.05.006_bb0470) 2018; 98 Dillon (10.1016/j.tplants.2021.05.006_bb0640) 2000; 403 Hunziker (10.1016/j.tplants.2021.05.006_bb0210) 2015; 81 D’Alessandro (10.1016/j.tplants.2021.05.006_bb0655) 2014; 37 Ryu (10.1016/j.tplants.2021.05.006_bb0340) 2003; 100 Piechulla (10.1016/j.tplants.2021.05.006_bb0175) 2017; 40 Piechulla (10.1016/j.tplants.2021.05.006_bb0520) 2017; 173 Arasimowicz-Jelonek (10.1016/j.tplants.2021.05.006_bb0545) 2014; 15 De Vrieze (10.1016/j.tplants.2021.05.006_bb0205) 2015; 6 Hassani (10.1016/j.tplants.2021.05.006_bb0290) 2018; 6 Sinha (10.1016/j.tplants.2021.05.006_bb0745) 2018; 135 Jiang (10.1016/j.tplants.2021.05.006_bb0370) 2019; 87 de Lacy Costello (10.1016/j.tplants.2021.05.006_bb0090) 1999; 48 Dandurishvili (10.1016/j.tplants.2021.05.006_bb0250) 2011; 110 Lantz (10.1016/j.tplants.2021.05.006_bb0710) 2019; 42 Bailly (10.1016/j.tplants.2021.05.006_bb0155) 2017; 8 Weingart (10.1016/j.tplants.2021.05.006_bb0350) 2001; 91 Xing (10.1016/j.tplants.2021.05.006_bb0220) 2018; 23 Ye (10.1016/j.tplants.2021.05.006_bb0245) 2020; 91 Spinelli (10.1016/j.tplants.2021.05.006_bb0595) 2012; 26 Niu (10.1016/j.tplants.2021.05.006_bb0660) 2010; 107 Abanda-Nkpwatt (10.1016/j.tplants.2021.05.006_bb0775) 2004; 52 Bailly (10.1016/j.tplants.2021.05.006_bb0375) 2014; 80 Ryu (10.1016/j.tplants.2021.05.006_bb0575) 2004; 134 Gao (10.1016/j.tplants.2021.05.006_bb0465) 2018; 9 Xue (10.1016/j.tplants.2021.05.006_bb0720) 2011; 77 Gutiérrez-Luna (10.1016/j.tplants.2021.05.006_bb0415) 2010; 51 Kilani-Feki (10.1016/j.tplants.2021.05.006_bb0180) 2012; 28 Backer (10.1016/j.tplants.2021.05.006_bb0510) 2018; 9 Rutolo (10.1016/j.tplants.2021.05.006_bb0760) 2014; 14 Wilson (10.1016/j.tplants.2021.05.006_bb0755) 2004; 94 Rutolo (10.1016/j.tplants.2021.05.006_bb0130) 2016; 116 Deshmukh (10.1016/j.tplants.2021.05.006_bb0780) 2016; 1 Rath (10.1016/j.tplants.2021.05.006_bb0025) 2018; 208 |
References_xml | – volume: 8 start-page: 171 year: 2017 ident: bb0365 article-title: Plant growth promotion by volatile organic compounds produced by publication-title: Front. Microbiol. – volume: 107 start-page: 16631 year: 2010 end-page: 16636 ident: bb0660 article-title: A Trojan horse mechanism of bacterial pathogenesis against nematodes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 89 start-page: 621 year: 2016 end-page: 630 ident: bb0665 article-title: Current knowledge of interactions between publication-title: J. Pest. Sci. – volume: 21 start-page: 5124 year: 2012 end-page: 5137 ident: bb0670 article-title: Do diet and taxonomy influence insect gut bacterial communities? publication-title: Mol. Ecol. – volume: 86 start-page: 131 year: 2002 end-page: 137 ident: bb0095 article-title: Volatile fingerprinting (SPME-GC FID) to detect and discriminate diseases of potato tubers publication-title: Plant Dis. – volume: 40 start-page: 2042 year: 2017 end-page: 2067 ident: bb0175 article-title: Effects of discrete bioactive microbial volatiles on plants and fungi publication-title: Plant Cell Environ. – volume: 81 start-page: 821 year: 2015 end-page: 830 ident: bb0210 article-title: Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of publication-title: Appl. Environ. Microbiol. – volume: 25 start-page: 137 year: 2010 end-page: 144 ident: bb0160 article-title: Explaining evolution of plant communication by airborne signals publication-title: Trends Ecol. Evol. – volume: 68 start-page: 1306 year: 2012 end-page: 1310 ident: bb0610 article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by publication-title: Pest Manag. Sci. – volume: 56 start-page: 264 year: 2008 end-page: 273 ident: bb0385 article-title: Soil bacteria augment publication-title: Plant J. – volume: 1 start-page: 53 year: 2016 end-page: 57 ident: bb0780 article-title: Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety publication-title: Rhizosphere – volume: 16 start-page: 316 year: 2015 end-page: 329 ident: bb0310 article-title: Silencing the mob: disrupting quorum sensing as a means to fight plant disease publication-title: Mol. Plant Pathol. – volume: 24 start-page: 814 year: 2007 end-page: 842 ident: bb0005 article-title: Bacterial volatiles: the smell of small organisms publication-title: Nat. Prod. Rep. – volume: 38 start-page: 665 year: 2012 end-page: 703 ident: bb0035 article-title: Volatile mediated interactions between bacteria and fungi in the soil publication-title: J. Chem. Ecol. – volume: 34 start-page: 426 year: 2010 end-page: 444 ident: bb0330 article-title: Indole as an intercellular signal in microbial communities publication-title: FEMS Microbiol. Rev. – volume: 134 start-page: 1017 year: 2004 end-page: 1026 ident: bb0575 article-title: Bacterial volatiles induce systemic resistance in publication-title: Plant Physiol. – volume: 37 start-page: 384 year: 2013 end-page: 406 ident: bb0295 article-title: Microbial syntrophy: interaction for the common good publication-title: FEMS Microbiol. Rev. – volume: 168 start-page: 409 year: 2016 end-page: 420 ident: bb0075 article-title: Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose publication-title: Ann. Appl. Biol. – volume: 6 start-page: 701 year: 2015 ident: bb0030 article-title: Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles publication-title: Front. Microbiol. – volume: 9 start-page: 1473 year: 2018 ident: bb0510 article-title: Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front. Plant Sci. – volume: 12 start-page: 931 year: 2018 end-page: 941 ident: bb0715 article-title: Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth publication-title: ISME J – volume: 1155 start-page: 239 year: 2017 end-page: 244 ident: bb0730 article-title: Volatile indicators of contamination in tissue cultures publication-title: Acta Hortic. – volume: 80 start-page: 758 year: 2014 end-page: 771 ident: bb0375 article-title: The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling publication-title: Plant J. – volume: 341 start-page: 45 year: 2013 end-page: 51 ident: bb0485 article-title: Antifungal activity of volatile organic compounds from publication-title: FEMS Microbiol. Lett. – volume: 78 start-page: 5942 year: 2012 end-page: 5944 ident: bb0185 article-title: Antifungal activity of publication-title: Appl. Environ. Microbiol. – volume: 23 start-page: 1097 year: 2010 end-page: 1104 ident: bb0685 article-title: Choline and osmotic-stress tolerance induced in publication-title: Mol. Plant-Microbe Interact. – volume: 58 start-page: 13024 year: 2019 end-page: 13029 ident: bb0550 article-title: Genomics‐driven discovery of NO‐donating diazeniumdiolate siderophores in diverse plant‐associated bacteria publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 71 year: 2017 end-page: 78 ident: bb0050 article-title: Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding publication-title: Curr. Opin. Plant Biol. – volume: 72 start-page: 1222 year: 2016 end-page: 1230 ident: bb0675 article-title: Diversity of bacterial communities in the midgut of publication-title: Pest Manag. Sci. – volume: 9 start-page: 114 year: 2018 ident: bb0530 article-title: Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions publication-title: Front. Plant Sci. – volume: 11 start-page: 1578 year: 2017 end-page: 1585 ident: bb0750 article-title: FAIMS based sensing of publication-title: J. Food Meas. Charact. – volume: 20 start-page: 206 year: 2015 end-page: 211 ident: bb0405 article-title: Bioprospecting bacterial and fungal volatiles for sustainable agriculture publication-title: Trends Plant Sci. – volume: 58 start-page: 8344 year: 2010 end-page: 8350 ident: bb0500 article-title: Production of volatile metabolites by grape-associated microorganisms publication-title: J. Agric. Food Chem. – volume: 56 start-page: 1274 year: 2016 end-page: 1288 ident: bb0700 article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside publication-title: J. Basic Microbiol. – volume: 6 start-page: 1 year: 2015 end-page: 15 ident: bb0205 article-title: Volatile organic compounds from native potato-associated publication-title: Front. Microbiol. – volume: 86 start-page: 2481 year: 2014 end-page: 2488 ident: bb0100 article-title: Detection of huanglongbing disease using differential mobility spectrometry publication-title: Anal. Chem. – volume: 171 start-page: 1099 year: 2014 end-page: 1105 ident: bb0440 article-title: Localization of strawberry ( publication-title: J. Plant Physiol. – volume: 383 start-page: 3 year: 2014 end-page: 41 ident: bb0505 article-title: Agricultural uses of plant biostimulants publication-title: Plant Soil – volume: 7 start-page: 6062 year: 2017 ident: bb0645 article-title: Maternally-transmitted microbiota affects odor emission and preference in publication-title: Sci. Rep. – volume: 2 start-page: 348 year: 2011 ident: bb0650 article-title: Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies publication-title: Nat. Commun. – volume: 94 start-page: 419 year: 2004 end-page: 431 ident: bb0755 article-title: Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes publication-title: Phytopathology – volume: 25 start-page: 280 year: 2017 end-page: 292 ident: bb0020 article-title: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria publication-title: Trends Microbiol. – volume: 6 year: 2011 ident: bb0590 article-title: The 3-hydroxy-2-butanone pathway is required for publication-title: PLoS ONE – volume: 129 start-page: 422 year: 2014 end-page: 430 ident: bb0125 article-title: Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale publication-title: Talanta – volume: 163 start-page: 523 year: 2017 end-page: 530 ident: bb0260 article-title: Volatile organic compounds produced by a soil-isolate, publication-title: Microbiology – volume: 91 start-page: 103502 year: 2020 ident: bb0245 article-title: Biocidal effects of volatile organic compounds produced by the myxobacterium publication-title: Food Microbiol. – volume: 221 start-page: 297 year: 2005 end-page: 303 ident: bb0555 article-title: Nitric oxide is involved in the publication-title: Planta – volume: 5 start-page: 30 year: 2010 ident: bb0305 article-title: Locality versus globality in bacterial signalling: can local communication stabilize bacterial communities? publication-title: Biol. Direct – volume: 208 start-page: 76 year: 2018 end-page: 84 ident: bb0025 article-title: Volatiles produced by publication-title: Microbiol. Res. – volume: 6 start-page: 45 year: 2018 ident: bb0140 article-title: Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases publication-title: Chemosensors – volume: 279 start-page: 1 year: 2018 end-page: 13 ident: bb0735 article-title: Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce publication-title: Int. J. Food Microbiol. – volume: 3 start-page: 698 year: 2011 end-page: 704 ident: bb0315 article-title: Quorum-sensing quenching by rhizobacterial volatiles publication-title: Environ. Microbiol. Rep. – volume: 62 start-page: 337 year: 2014 end-page: 347 ident: bb0120 article-title: Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples publication-title: J. Agric. Food Chem. – volume: 178 start-page: 120 year: 2014 end-page: 129 ident: bb0725 article-title: Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: publication-title: Int. J. Food Microbiol. – start-page: 317 year: 2020 end-page: 336 ident: bb0055 article-title: Formulation and agricultural application of bacterial volatile compounds publication-title: Bacterial Volatile Compounds as Mediators of Airborne Interactions – volume: 7 start-page: 1 year: 2016 end-page: 10 ident: bb0275 article-title: Are bacterial volatile compounds poisonous odors to a fungal pathogen publication-title: Front. Microbiol. – volume: 9 start-page: 90 year: 2018 ident: bb0580 article-title: Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field publication-title: Front. Plant Sci. – volume: 19 start-page: 49 year: 2018 end-page: 58 ident: bb0265 article-title: Antibacterial effects of volatiles produced by publication-title: Mol. Plant Pathol. – volume: 21 start-page: 737 year: 2008 end-page: 744 ident: bb0695 article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 publication-title: Mol. Plant-Microbe Interact. – volume: 9 start-page: 227 year: 2019 end-page: 247 ident: bb0765 article-title: Genetic and functional characterization of the bacterial community on fruit of three raspberry ( publication-title: J. Berry Res. – volume: 77 start-page: 2399 year: 2011 end-page: 2405 ident: bb0720 article-title: Enhancing isoprene production by genetic modification of the 1-deoxy-D-xylulose-5-phosphate pathway in publication-title: Appl. Environ. Microbiol. – volume: 192 start-page: 103 year: 2016 end-page: 113 ident: bb0270 article-title: Volatile organic compounds produced by publication-title: Microbiol. Res. – volume: 5 start-page: 550 year: 2014 ident: bb0570 article-title: Methanol and ethanol modulate responses to danger-and microbe-associated molecular patterns publication-title: Front. Plant Sci. – volume: 37 start-page: 955 year: 2005 end-page: 964 ident: bb0280 article-title: Identification and use of potential bacterial organic antifungal volatiles in biocontrol publication-title: Soil Biol. Biochem. – volume: 100 start-page: 4927 year: 2003 end-page: 4932 ident: bb0340 article-title: Bacterial volatiles promote growth in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 66 start-page: 11197 year: 2018 end-page: 11208 ident: bb0605 article-title: From acetoin to ( Z )-3-hexen-1-ol: the diversity of volatile organic compounds that induce plant responses publication-title: J. Agric. Food Chem. – volume: 31 year: 2020 ident: bb0135 article-title: Discriminative power of independent component analysis applied to an electronic nose publication-title: Meas. Sci. Technol. – volume: 45 start-page: 29 year: 2007 end-page: 35 ident: bb0770 article-title: Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone publication-title: Lett. Appl. Microbiol. – volume: 102 start-page: 967 year: 2012 end-page: 973 ident: bb0255 article-title: Production of DAPG and HCN by publication-title: Phytopathology – volume: 226 start-page: 32 year: 2020 end-page: 43 ident: bb0400 article-title: Airborne medicine: bacterial volatiles and their influence on plant health publication-title: New Phytol. – volume: 148 start-page: 17 year: 2006 end-page: 26 ident: bb0080 article-title: Metabolic fingerprinting to discriminate diseases of stored carrots publication-title: Ann. Appl. Biol. – volume: 58 start-page: 157 year: 2010 end-page: 165 ident: bb0480 article-title: Fumigant activity of volatiles of publication-title: Postharvest Biol. Technol. – volume: 110 start-page: 341 year: 2011 end-page: 352 ident: bb0250 article-title: Broad-range antagonistic rhizobacteria publication-title: J. Appl. Microbiol. – volume: 111 start-page: E2149 year: 2014 end-page: E2156 ident: bb0300 article-title: Syntrophic exchange in synthetic microbial communities publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 52 start-page: 5939 year: 2004 end-page: 5942 ident: bb0775 article-title: Microbial transformation of aliphatic aldehydes by publication-title: J. Agric. Food Chem. – volume: 124 start-page: 1024 year: 2018 end-page: 1031 ident: bb0285 article-title: Biomimicry of volatile-based microbial control for managing emerging fungal pathogens publication-title: J. Appl. Microbiol. – volume: 28 start-page: 275 year: 2012 end-page: 281 ident: bb0180 article-title: Correlation between synthesis variation of 2-alkylquinolones and the antifungal activity of a publication-title: World J. Microbiol. Biotechnol. – volume: 98 start-page: 5756 year: 2018 end-page: 5763 ident: bb0470 article-title: Antagonistic activities of volatiles produced by two publication-title: J. Sci. Food Agric. – volume: 13 year: 2018 ident: bb0525 article-title: Estimating microbial respiratory CO publication-title: Plant Signal. Behav. – volume: 6 start-page: 52 year: 2018 ident: bb0540 article-title: Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences publication-title: Microbiome – volume: 8 start-page: 1294 year: 2017 ident: bb0215 article-title: Aerial warfare: a volatile dialogue between the plant pathogen publication-title: Plant Sci. – volume: 110 start-page: 371 year: 2004 end-page: 377 ident: bb0085 article-title: Volatile metabolite profiling for the discrimination of onion bulbs infected by publication-title: Eur. J. Plant Pathol. – volume: 103 start-page: 1 year: 2018 end-page: 8 ident: bb0495 article-title: Fumigant activity of volatile compounds of publication-title: Crop Prot. – volume: 53 start-page: 5134 year: 2005 end-page: 5137 ident: bb0105 article-title: Phenylacetaldehyde O-methyloxime: a volatile compound produced by grapefruit leaves infected with the citrus canker pathogen, publication-title: J. Agric. Food Chem. – volume: 17 start-page: 1234 year: 2015 end-page: 1244 ident: bb0335 article-title: The multifaceted roles of the interspecies signalling molecule indole in publication-title: Environ. Microbiol. – volume: 30 start-page: 795 year: 2016 end-page: 806 ident: bb0115 article-title: Characterization of volatile organic compounds emitted by kiwifruit plants infected with publication-title: Trees – volume: 51 start-page: 3258 year: 2015 end-page: 3261 ident: bb0325 article-title: activates the quorum sensing LuxR response regulator through secretion of 2-aminoacetophenone publication-title: Chem. Commun. – volume: 14 start-page: 1 year: 2016 end-page: 25 ident: bb0515 article-title: Natural variation in publication-title: PLoS Biol. – volume: 12 start-page: 1415 year: 2015 end-page: 1421 ident: bb0620 article-title: Effect of volatile organic compounds from bacteria on nematodes publication-title: Chem. Biodivers. – volume: 108 start-page: 1253 year: 2018 end-page: 1262 ident: bb0450 article-title: Antagonistic activity and the mechanism of publication-title: Phytopathology – volume: 42 start-page: 2808 year: 2019 end-page: 2826 ident: bb0710 article-title: Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression publication-title: Plant Cell Environ. – volume: 22 start-page: 555 year: 2017 end-page: 558 ident: bb0045 article-title: Plant breeding goes microbial publication-title: Trends Plant Sci. – volume: 672 start-page: 20 year: 2010 end-page: 24 ident: bb0110 article-title: Electronic nose as an innovative tool for the diagnosis of grapevine crown gall publication-title: Anal. Chim. Acta – volume: 7 start-page: 85 year: 2017 ident: bb0390 article-title: Enhanced iron and selenium uptake in plants by volatile emissions of publication-title: Appl. Sci. – volume: 39 start-page: 840 year: 2013 end-page: 859 ident: bb0625 article-title: Microbial volatile emissions as insect semiochemicals publication-title: J. Chem. Ecol. – volume: 403 start-page: 851 year: 2000 ident: bb0640 article-title: Exploitation of gut bacteria in the locust publication-title: Nature – volume: 156 start-page: 170 year: 2019 end-page: 176 ident: bb0230 article-title: Volatile organic compounds of publication-title: Pestic. Biochem. Physiol. – volume: 91 start-page: 511 year: 2001 end-page: 518 ident: bb0350 article-title: The role of ethylene production in virulence of publication-title: Phytopathology – volume: 13 start-page: 3047 year: 2011 end-page: 3058 ident: bb0010 article-title: Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions publication-title: Environ. Microbiol. – volume: 53 start-page: 122 year: 2010 end-page: 128 ident: bb0445 article-title: Effect of volatile compounds produced by publication-title: Biol. Control – volume: 9 start-page: 456 year: 2018 ident: bb0465 article-title: Research on volatile organic compounds from publication-title: Front. Microbiol. – volume: 34 start-page: 158 year: 2015 end-page: 168 ident: bb0360 article-title: Volatile indole produced by rhizobacterium publication-title: J. Plant Growth Regul. – volume: 250 start-page: 1251 year: 2013 end-page: 1262 ident: bb0190 article-title: The rhizobacterium publication-title: Protoplasma – volume: 11 start-page: 1 year: 2020 end-page: 17 ident: bb0240 article-title: High efficacy of the volatile organic compounds of publication-title: Front. Microbiol. – volume: 155 start-page: 800 year: 2020 end-page: 814 ident: bb0560 article-title: Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome publication-title: Plant Physiol. Biochem. – volume: 26 start-page: 141 year: 2012 end-page: 152 ident: bb0595 article-title: Emission of volatile compounds by publication-title: Trees – volume: 51 start-page: 477 year: 2013 end-page: 483 ident: bb0195 article-title: Fumigant activity of volatiles from publication-title: J. Microbiol. – volume: 3 start-page: 130 year: 2010 end-page: 138 ident: bb0600 article-title: The rhizobacterial elicitor acetoin induces systemic resistance in publication-title: Commun. Integr. Biol. – volume: 217 start-page: 1346 year: 2014 end-page: 1352 ident: bb0630 article-title: Social attraction mediated by fruit flies’ microbiome publication-title: J. Exp. Biol. – volume: 23 start-page: 358 year: 2018 ident: bb0220 article-title: Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen publication-title: Molecules – volume: 19 start-page: 924 year: 2006 end-page: 930 ident: bb0585 article-title: GacS-dependent production of 2R,3R-butanediol by publication-title: Mol. Plant-Microbe Interact. – volume: 8 start-page: 4 year: 2020 ident: bb0535 article-title: Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants publication-title: Microbiome – volume: 135 start-page: 83 year: 2018 end-page: 92 ident: bb0745 article-title: FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions publication-title: Postharvest Biol. Technol. – volume: 64 start-page: 219 year: 2017 end-page: 225 ident: bb0460 article-title: Antifungal effect of volatile organic compounds produced by publication-title: Food Microbiol. – volume: 35 start-page: 1 year: 2015 end-page: 25 ident: bb0065 article-title: Advanced methods of plant disease detection. A review publication-title: Agron. Sustain. Dev. – volume: 173 start-page: 1529 year: 2017 ident: bb0520 article-title: Considering microbial CO publication-title: Plant Physiol. – volume: 7 start-page: 1838 year: 2016 ident: bb0705 article-title: Volatile-mediated effects predominate in publication-title: Front. Microbiol. – volume: 51 start-page: 75 year: 2010 end-page: 83 ident: bb0415 article-title: Plant growth-promoting rhizobacteria modulate root-system architecture in publication-title: Symbiosis – volume: 87 start-page: 317 year: 2019 end-page: 328 ident: bb0370 article-title: Volatile organic compounds emitted by publication-title: J. Plant Growth Regul. – volume: 8 start-page: 1638 year: 2017 ident: bb0155 article-title: Mining the volatilomes of plant-associated microbiota for new biocontrol solutions publication-title: Front. Microbiol. – volume: 101 start-page: 132 year: 2016 end-page: 140 ident: bb0430 article-title: Volatiles released by endophytic publication-title: Plant Physiol. Biochem. – volume: 72 start-page: 701 year: 2016 end-page: 706 ident: bb0635 article-title: Behavioral response of spotted-wing drosophila, publication-title: Pest Manag. Sci. – volume: 6 start-page: 58 year: 2018 ident: bb0290 article-title: Microbial interactions within the plant holobiont publication-title: Microbiome – volume: 39 start-page: 2592 year: 2016 end-page: 2608 ident: bb0355 article-title: Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action publication-title: Plant Cell Environ. – volume: 67 start-page: 3702 year: 2019 end-page: 3710 ident: bb0235 article-title: Volatile organic compounds produced by publication-title: J. Agric. Food Chem. – volume: 116 start-page: 50 year: 2016 end-page: 58 ident: bb0130 article-title: Early identification of potato storage disease using an array of metal-oxide based gas sensors publication-title: Postharvest Biol. Technol. – volume: 2014 start-page: 125704 year: 2014 ident: bb0200 article-title: Inhibitory and toxic effects of volatiles emitted by strains of publication-title: Biomed. Res. Int. – volume: 7 start-page: 1971 year: 2016 ident: bb0040 article-title: Microbiome selection could spur next-generation plant breeding strategies publication-title: Front. Microbiol. – volume: 10 start-page: 794 year: 2020 ident: bb0410 article-title: Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops publication-title: Agronomy – volume: 61 start-page: 113 year: 2012 end-page: 120 ident: bb0490 article-title: Effects of volatile substances of publication-title: Biol. Control – volume: 96 start-page: 291 year: 2018 end-page: 304 ident: bb0395 article-title: Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in publication-title: Plant Mol. Biol. – volume: 73 start-page: 128 year: 2013 end-page: 138 ident: bb0380 article-title: Current understanding on ethylene signaling in plants: the influence of nutrient availability publication-title: Plant Physiol. Biochem. – volume: 21 start-page: 1067 year: 2008 end-page: 1075 ident: bb0680 article-title: 2R,3R-butanediol, a bacterial volatile produced by publication-title: Mol. Plant-Microbe Interact. – volume: 8 start-page: 3360 year: 2018 ident: bb0150 article-title: Machine learning for the metaanalyses of microbial pathogens’ volatile signatures publication-title: Sci. Rep. – volume: 29 start-page: 167 year: 2014 end-page: 171 ident: bb0320 article-title: The ability of natural ketones to interact with bacterial quorum sensing systems publication-title: Mol. Genet. Microbiol. Virol. – volume: 15 start-page: 406 year: 2014 end-page: 416 ident: bb0545 article-title: Nitric oxide: an effective weapon of the plant or the pathogen? publication-title: Mol. Plant Pathol. – volume: 39 start-page: 764 year: 2020 end-page: 775 ident: bb0690 article-title: Microbial volatile organic compounds produced by publication-title: J. Plant Growth Regul. – volume: 57 start-page: 653 year: 2009 end-page: 657 ident: bb0420 article-title: Soil bacteria elevate essential oil accumulation and emissions in sweet basil publication-title: J. Agric. Food Chem. – volume: 48 start-page: 345 year: 1999 end-page: 351 ident: bb0090 article-title: Identification of volatiles generated by potato tubers ( publication-title: Plant Pathol. – volume: 38 start-page: 1007 year: 2013 end-page: 1018 ident: bb0615 article-title: Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles publication-title: J. Chem. Ecol. – volume: 208 start-page: 63 year: 2018 end-page: 75 ident: bb0345 article-title: Microbial volatiles as plant growth inducers publication-title: Microbiol. Res. – volume: 14 start-page: 15939 year: 2014 end-page: 15952 ident: bb0760 article-title: Detection of potato storage disease via gas analysis: a pilot study using field asymmetric ion mobility spectrometry publication-title: Sensors – volume: 37 start-page: 813 year: 2014 end-page: 826 ident: bb0655 article-title: Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions publication-title: Plant Cell Environ. – volume: 49 start-page: 1177 year: 2011 end-page: 1182 ident: bb0425 article-title: Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint ( publication-title: Plant Physiol. Biochem. – volume: 55–56 start-page: 91 year: 2016 end-page: 100 ident: bb0565 article-title: Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies publication-title: Nitric Oxide – volume: 5 start-page: 856 year: 2019 end-page: 866 ident: bb0145 article-title: Non-invasive plant disease diagnostics enabled by smartphone-based finger printing of leaf volatiles publication-title: Nat. Plants – volume: 107 start-page: 256 year: 2017 end-page: 263 ident: bb0165 article-title: Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes publication-title: Phytopathology – volume: 65 start-page: 200 year: 2013 end-page: 206 ident: bb0455 article-title: Antimicrobial effects of volatiles produced by two antagonistic publication-title: Biol. Control – volume: 17 start-page: 2596 year: 2017 ident: bb0070 article-title: Potential applications and limitations of electronic nose devices for plant disease diagnosis publication-title: Sensors – volume: 72 start-page: 1 year: 2010 end-page: 13 ident: bb0060 article-title: A review of advanced techniques for detecting plant diseases publication-title: Comput. Electron. Agric. – volume: 219 start-page: 74 year: 2019 end-page: 83 ident: bb0225 article-title: Avocado rhizobacteria emit volatile organic compounds with antifungal activity against publication-title: Microbiol. Res. – volume: 44 start-page: 1019 year: 2011 end-page: 1025 ident: bb0740 article-title: Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS publication-title: LWT - Food Sci. Technol. – volume: 46 start-page: 552 year: 2008 end-page: 559 ident: bb0475 article-title: Effect of volatile substances of publication-title: Biol. Control – volume: 15 year: 2017 ident: bb0170 article-title: Research priorities for harnessing plant microbiomes in sustainable agriculture publication-title: PLoS Biol. – volume: 46 start-page: D1261 year: 2018 end-page: D1265 ident: bb0015 article-title: mVOC 2.0: a database of microbial volatiles publication-title: Nucleic Acids Res. – volume: 74 start-page: 136 year: 2010 end-page: 145 ident: bb0435 article-title: Monitoring the plant epiphyte publication-title: FEMS Microbiol. Ecol. – volume: 57 start-page: 653 year: 2009 ident: 10.1016/j.tplants.2021.05.006_bb0420 article-title: Soil bacteria elevate essential oil accumulation and emissions in sweet basil publication-title: J. Agric. Food Chem. doi: 10.1021/jf8020305 – volume: 89 start-page: 621 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0665 article-title: Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management publication-title: J. Pest. Sci. doi: 10.1007/s10340-016-0768-1 – volume: 148 start-page: 17 year: 2006 ident: 10.1016/j.tplants.2021.05.006_bb0080 article-title: Metabolic fingerprinting to discriminate diseases of stored carrots publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2005.00036.x – volume: 45 start-page: 29 year: 2007 ident: 10.1016/j.tplants.2021.05.006_bb0770 article-title: Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2007.02147.x – volume: 7 start-page: 85 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0390 article-title: Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06) publication-title: Appl. Sci. doi: 10.3390/app7010085 – volume: 403 start-page: 851 year: 2000 ident: 10.1016/j.tplants.2021.05.006_bb0640 article-title: Exploitation of gut bacteria in the locust publication-title: Nature doi: 10.1038/35002669 – volume: 35 start-page: 1 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0065 article-title: Advanced methods of plant disease detection. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0246-1 – volume: 9 start-page: 1473 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0510 article-title: Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01473 – volume: 2 start-page: 348 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0650 article-title: Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies publication-title: Nat. Commun. doi: 10.1038/ncomms1347 – volume: 14 start-page: 15939 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0760 article-title: Detection of potato storage disease via gas analysis: a pilot study using field asymmetric ion mobility spectrometry publication-title: Sensors doi: 10.3390/s140915939 – volume: 10 start-page: 794 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0410 article-title: Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops publication-title: Agronomy doi: 10.3390/agronomy10060794 – volume: 94 start-page: 419 year: 2004 ident: 10.1016/j.tplants.2021.05.006_bb0755 article-title: Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes publication-title: Phytopathology doi: 10.1094/PHYTO.2004.94.5.419 – volume: 134 start-page: 1017 year: 2004 ident: 10.1016/j.tplants.2021.05.006_bb0575 article-title: Bacterial volatiles induce systemic resistance in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.103.026583 – volume: 56 start-page: 1274 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0700 article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201600188 – volume: 12 start-page: 1415 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0620 article-title: Effect of volatile organic compounds from bacteria on nematodes publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201400342 – volume: 208 start-page: 76 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0025 article-title: Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.12.014 – volume: 25 start-page: 280 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0020 article-title: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.12.002 – volume: 9 start-page: 90 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0580 article-title: Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00090 – volume: 58 start-page: 13024 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0550 article-title: Genomics‐driven discovery of NO‐donating diazeniumdiolate siderophores in diverse plant‐associated bacteria publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906326 – volume: 221 start-page: 297 year: 2005 ident: 10.1016/j.tplants.2021.05.006_bb0555 article-title: Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato publication-title: Planta doi: 10.1007/s00425-005-1523-7 – volume: 110 start-page: 371 year: 2004 ident: 10.1016/j.tplants.2021.05.006_bb0085 article-title: Volatile metabolite profiling for the discrimination of onion bulbs infected by Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii publication-title: Eur. J. Plant Pathol. doi: 10.1023/B:EJPP.0000021058.81491.f8 – volume: 5 start-page: 550 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0570 article-title: Methanol and ethanol modulate responses to danger-and microbe-associated molecular patterns publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00550 – volume: 39 start-page: 840 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0625 article-title: Microbial volatile emissions as insect semiochemicals publication-title: J. Chem. Ecol. doi: 10.1007/s10886-013-0306-z – volume: 11 start-page: 1578 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0750 article-title: FAIMS based sensing of Burkholderia cepacia caused sour skin in onions under bulk storage condition publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-017-9537-y – volume: 15 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0170 article-title: Research priorities for harnessing plant microbiomes in sustainable agriculture publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2001793 – volume: 62 start-page: 337 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0120 article-title: Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples publication-title: J. Agric. Food Chem. doi: 10.1021/jf403436t – volume: 86 start-page: 131 year: 2002 ident: 10.1016/j.tplants.2021.05.006_bb0095 article-title: Volatile fingerprinting (SPME-GC FID) to detect and discriminate diseases of potato tubers publication-title: Plant Dis. doi: 10.1094/PDIS.2002.86.2.131 – volume: 53 start-page: 122 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0445 article-title: Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus publication-title: Biol. Control doi: 10.1016/j.biocontrol.2009.11.010 – volume: 21 start-page: 1067 year: 2008 ident: 10.1016/j.tplants.2021.05.006_bb0680 article-title: 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-21-8-1067 – volume: 72 start-page: 1 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0060 article-title: A review of advanced techniques for detecting plant diseases publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.02.007 – volume: 173 start-page: 1529 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0520 article-title: Considering microbial CO2 during microbe-plant cocultivation publication-title: Plant Physiol. doi: 10.1104/pp.16.01584 – volume: 37 start-page: 813 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0655 article-title: Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions publication-title: Plant Cell Environ. doi: 10.1111/pce.12220 – volume: 163 start-page: 523 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0260 article-title: Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato publication-title: Microbiology doi: 10.1099/mic.0.000451 – volume: 77 start-page: 2399 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0720 article-title: Enhancing isoprene production by genetic modification of the 1-deoxy-D-xylulose-5-phosphate pathway in Bacillus subtilis publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02341-10 – volume: 168 start-page: 409 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0075 article-title: Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12272 – volume: 8 start-page: 171 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0365 article-title: Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00171 – volume: 49 start-page: 1177 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0425 article-title: Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.07.016 – volume: 91 start-page: 103502 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0245 article-title: Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens publication-title: Food Microbiol. doi: 10.1016/j.fm.2020.103502 – volume: 37 start-page: 384 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0295 article-title: Microbial syntrophy: interaction for the common good publication-title: FEMS Microbiol. Rev. doi: 10.1111/1574-6976.12019 – volume: 101 start-page: 132 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0430 article-title: Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.01.026 – volume: 2014 start-page: 125704 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0200 article-title: Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster publication-title: Biomed. Res. Int. doi: 10.1155/2014/125704 – volume: 65 start-page: 200 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0455 article-title: Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos publication-title: Biol. Control doi: 10.1016/j.biocontrol.2013.02.004 – volume: 68 start-page: 1306 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0610 article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L publication-title: Pest Manag. Sci. doi: 10.1002/ps.3301 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0205 article-title: Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01295 – volume: 6 start-page: 701 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0030 article-title: Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00701 – volume: 72 start-page: 701 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0635 article-title: Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field publication-title: Pest Manag. Sci. doi: 10.1002/ps.4040 – volume: 74 start-page: 136 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0435 article-title: Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real-time PCR and its influence on the strawberry flavor publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00942.x – volume: 48 start-page: 345 year: 1999 ident: 10.1016/j.tplants.2021.05.006_bb0090 article-title: Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris Piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp publication-title: Plant Pathol. doi: 10.1046/j.1365-3059.1999.00357.x – volume: 34 start-page: 426 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0330 article-title: Indole as an intercellular signal in microbial communities publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2009.00204.x – volume: 78 start-page: 5942 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0185 article-title: Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01357-12 – volume: 6 start-page: 52 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0540 article-title: Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences publication-title: Microbiome doi: 10.1186/s40168-018-0436-1 – volume: 20 start-page: 206 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0405 article-title: Bioprospecting bacterial and fungal volatiles for sustainable agriculture publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.01.004 – volume: 9 start-page: 456 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0465 article-title: Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00456 – volume: 103 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0495 article-title: Fumigant activity of volatile compounds of Streptomyces philanthi RM-1-138 and pure chemicals (acetophenone and phenylethyl alcohol) against anthracnose pathogen in postharvest chili fruit publication-title: Crop Prot. doi: 10.1016/j.cropro.2017.09.002 – volume: 16 start-page: 316 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0310 article-title: Silencing the mob: disrupting quorum sensing as a means to fight plant disease publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12180 – volume: 9 start-page: 227 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0765 article-title: Genetic and functional characterization of the bacterial community on fruit of three raspberry (Rubus idaeus) cultivars publication-title: J. Berry Res. doi: 10.3233/JBR-180340 – volume: 8 start-page: 1294 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0215 article-title: Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa publication-title: Plant Sci. – volume: 51 start-page: 477 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0195 article-title: Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon publication-title: J. Microbiol. doi: 10.1007/s12275-013-2586-y – volume: 17 start-page: 1234 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0335 article-title: The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12560 – volume: 279 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0735 article-title: Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2018.04.034 – volume: 98 start-page: 5756 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0470 article-title: Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9125 – volume: 96 start-page: 291 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0395 article-title: Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor publication-title: Plant Mol. Biol. doi: 10.1007/s11103-017-0694-5 – volume: 72 start-page: 1222 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0675 article-title: Diversity of bacterial communities in the midgut of Bactrocera cucurbitae (Diptera: Tephritidae) populations and their potential use as attractants publication-title: Pest Manag. Sci. doi: 10.1002/ps.4102 – volume: 58 start-page: 157 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0480 article-title: Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2010.06.003 – volume: 107 start-page: 256 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0165 article-title: Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes publication-title: Phytopathology doi: 10.1094/PHYTO-09-16-0330-RVW – volume: 19 start-page: 49 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0265 article-title: Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12494 – volume: 37 start-page: 955 year: 2005 ident: 10.1016/j.tplants.2021.05.006_bb0280 article-title: Identification and use of potential bacterial organic antifungal volatiles in biocontrol publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.10.021 – volume: 250 start-page: 1251 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0190 article-title: The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro publication-title: Protoplasma doi: 10.1007/s00709-013-0506-y – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0275 article-title: Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00196 – volume: 100 start-page: 4927 year: 2003 ident: 10.1016/j.tplants.2021.05.006_bb0340 article-title: Bacterial volatiles promote growth in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0730845100 – volume: 226 start-page: 32 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0400 article-title: Airborne medicine: bacterial volatiles and their influence on plant health publication-title: New Phytol. doi: 10.1111/nph.16282 – volume: 22 start-page: 555 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0045 article-title: Plant breeding goes microbial publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.05.009 – volume: 30 start-page: 795 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0115 article-title: Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences publication-title: Trees doi: 10.1007/s00468-015-1321-1 – volume: 29 start-page: 167 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0320 article-title: The ability of natural ketones to interact with bacterial quorum sensing systems publication-title: Mol. Genet. Microbiol. Virol. doi: 10.3103/S0891416814040077 – volume: 108 start-page: 1253 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0450 article-title: Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold publication-title: Phytopathology doi: 10.1094/PHYTO-01-17-0032-R – volume: 672 start-page: 20 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0110 article-title: Electronic nose as an innovative tool for the diagnosis of grapevine crown gall publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.02.017 – volume: 81 start-page: 821 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0210 article-title: Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02999-14 – volume: 178 start-page: 120 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0725 article-title: Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2014.03.012 – volume: 383 start-page: 3 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0505 article-title: Agricultural uses of plant biostimulants publication-title: Plant Soil doi: 10.1007/s11104-014-2131-8 – volume: 192 start-page: 103 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0270 article-title: Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum publication-title: Microbiol. Res. doi: 10.1016/j.micres.2016.05.014 – volume: 19 start-page: 924 year: 2006 ident: 10.1016/j.tplants.2021.05.006_bb0585 article-title: GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis o6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-19-0924 – volume: 52 start-page: 5939 year: 2004 ident: 10.1016/j.tplants.2021.05.006_bb0775 article-title: Microbial transformation of aliphatic aldehydes by Bacillus megaterium to 2,3-dialkylacroleins publication-title: J. Agric. Food Chem. doi: 10.1021/jf049148i – volume: 56 start-page: 264 year: 2008 ident: 10.1016/j.tplants.2021.05.006_bb0385 article-title: Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03593.x – volume: 51 start-page: 3258 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0325 article-title: Pseudomonas aeruginosa activates the quorum sensing LuxR response regulator through secretion of 2-aminoacetophenone publication-title: Chem. Commun. doi: 10.1039/C4CC10393A – volume: 13 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0525 article-title: Estimating microbial respiratory CO2 from endophytic bacteria in rice publication-title: Plant Signal. Behav. – volume: 26 start-page: 141 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0595 article-title: Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification publication-title: Trees doi: 10.1007/s00468-011-0667-2 – volume: 53 start-page: 5134 year: 2005 ident: 10.1016/j.tplants.2021.05.006_bb0105 article-title: Phenylacetaldehyde O-methyloxime: a volatile compound produced by grapefruit leaves infected with the citrus canker pathogen, Xanthomonas axonopodis pv. citri publication-title: J. Agric. Food Chem. doi: 10.1021/jf050533x – volume: 110 start-page: 341 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0250 article-title: Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2010.04891.x – volume: 34 start-page: 158 year: 2015 ident: 10.1016/j.tplants.2021.05.006_bb0360 article-title: Volatile indole produced by rhizobacterium Proteus vulgaris jbls202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-014-9453-x – volume: 58 start-page: 8344 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0500 article-title: Production of volatile metabolites by grape-associated microorganisms publication-title: J. Agric. Food Chem. doi: 10.1021/jf100393w – volume: 39 start-page: 2592 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0355 article-title: Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action publication-title: Plant Cell Environ. doi: 10.1111/pce.12759 – volume: 44 start-page: 1019 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0740 article-title: Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS publication-title: LWT - Food Sci. Technol. doi: 10.1016/j.lwt.2010.11.036 – volume: 40 start-page: 2042 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0175 article-title: Effects of discrete bioactive microbial volatiles on plants and fungi publication-title: Plant Cell Environ. doi: 10.1111/pce.13011 – volume: 91 start-page: 511 year: 2001 ident: 10.1016/j.tplants.2021.05.006_bb0350 article-title: The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola publication-title: Phytopathology doi: 10.1094/PHYTO.2001.91.5.511 – volume: 107 start-page: 16631 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0660 article-title: A Trojan horse mechanism of bacterial pathogenesis against nematodes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1007276107 – volume: 80 start-page: 758 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0375 article-title: The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling publication-title: Plant J. doi: 10.1111/tpj.12666 – volume: 46 start-page: D1261 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0015 article-title: mVOC 2.0: a database of microbial volatiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1016 – volume: 31 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0135 article-title: Discriminative power of independent component analysis applied to an electronic nose publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab5417 – volume: 23 start-page: 1097 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0685 article-title: Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03) publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-23-8-1097 – volume: 341 start-page: 45 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0485 article-title: Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1 publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12088 – volume: 42 start-page: 2808 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0710 article-title: Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression publication-title: Plant Cell Environ. doi: 10.1111/pce.13629 – volume: 61 start-page: 113 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0490 article-title: Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit publication-title: Biol. Control doi: 10.1016/j.biocontrol.2011.10.014 – volume: 7 start-page: 1971 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0040 article-title: Microbiome selection could spur next-generation plant breeding strategies publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01971 – volume: 67 start-page: 3702 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0235 article-title: Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b00289 – start-page: 317 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0055 article-title: Formulation and agricultural application of bacterial volatile compounds – volume: 25 start-page: 137 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0160 article-title: Explaining evolution of plant communication by airborne signals publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2009.09.010 – volume: 9 start-page: 114 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0530 article-title: Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00114 – volume: 55–56 start-page: 91 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0565 article-title: Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies publication-title: Nitric Oxide doi: 10.1016/j.niox.2016.04.002 – volume: 46 start-page: 552 year: 2008 ident: 10.1016/j.tplants.2021.05.006_bb0475 article-title: Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases publication-title: Biol. Control doi: 10.1016/j.biocontrol.2008.05.015 – volume: 3 start-page: 698 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0315 article-title: Quorum-sensing quenching by rhizobacterial volatiles publication-title: Environ. Microbiol. Rep. doi: 10.1111/j.1758-2229.2011.00284.x – volume: 12 start-page: 931 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0715 article-title: Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth publication-title: ISME J doi: 10.1038/s41396-018-0072-6 – volume: 1155 start-page: 239 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0730 article-title: Volatile indicators of contamination in tissue cultures publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2017.1155.34 – volume: 6 start-page: 45 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0140 article-title: Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases publication-title: Chemosensors doi: 10.3390/chemosensors6040045 – volume: 15 start-page: 406 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0545 article-title: Nitric oxide: an effective weapon of the plant or the pathogen? publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12095 – volume: 3 start-page: 130 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0600 article-title: The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana publication-title: Commun. Integr. Biol. doi: 10.4161/cib.3.2.10584 – volume: 23 start-page: 358 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0220 article-title: Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen Peronophythora litchii publication-title: Molecules doi: 10.3390/molecules23020358 – volume: 14 start-page: 1 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0515 article-title: Natural variation in Arabidopsis Cvi-0 accession reveals an important role of MPK12 in guard cell CO2 signaling publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2000322 – volume: 7 start-page: 6062 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0645 article-title: Maternally-transmitted microbiota affects odor emission and preference in Drosophila larva publication-title: Sci. Rep. doi: 10.1038/s41598-017-04922-z – volume: 38 start-page: 665 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0035 article-title: Volatile mediated interactions between bacteria and fungi in the soil publication-title: J. Chem. Ecol. doi: 10.1007/s10886-012-0135-5 – volume: 156 start-page: 170 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0230 article-title: Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2019.02.019 – volume: 8 start-page: 3360 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0150 article-title: Machine learning for the metaanalyses of microbial pathogens’ volatile signatures publication-title: Sci. Rep. doi: 10.1038/s41598-018-21544-1 – volume: 208 start-page: 63 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0345 article-title: Microbial volatiles as plant growth inducers publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.01.002 – volume: 171 start-page: 1099 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0440 article-title: Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.03.018 – volume: 7 start-page: 1838 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0705 article-title: Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01838 – volume: 1 start-page: 53 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0780 article-title: Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety publication-title: Rhizosphere doi: 10.1016/j.rhisph.2016.07.001 – volume: 129 start-page: 422 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0125 article-title: Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale publication-title: Talanta doi: 10.1016/j.talanta.2014.04.057 – volume: 21 start-page: 5124 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0670 article-title: Do diet and taxonomy influence insect gut bacterial communities? publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2012.05752.x – volume: 5 start-page: 30 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0305 article-title: Locality versus globality in bacterial signalling: can local communication stabilize bacterial communities? publication-title: Biol. Direct doi: 10.1186/1745-6150-5-30 – volume: 73 start-page: 128 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0380 article-title: Current understanding on ethylene signaling in plants: the influence of nutrient availability publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.09.011 – volume: 155 start-page: 800 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0560 article-title: Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.08.020 – volume: 38 start-page: 1007 year: 2013 ident: 10.1016/j.tplants.2021.05.006_bb0615 article-title: Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles publication-title: J. Chem. Ecol. doi: 10.1007/s10886-013-0317-9 – volume: 28 start-page: 275 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0180 article-title: Correlation between synthesis variation of 2-alkylquinolones and the antifungal activity of a Burkholderia cepacia strain collection publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-011-0817-0 – volume: 17 start-page: 2596 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0070 article-title: Potential applications and limitations of electronic nose devices for plant disease diagnosis publication-title: Sensors doi: 10.3390/s17112596 – volume: 51 start-page: 75 year: 2010 ident: 10.1016/j.tplants.2021.05.006_bb0415 article-title: Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission publication-title: Symbiosis doi: 10.1007/s13199-010-0066-2 – volume: 124 start-page: 1024 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0285 article-title: Biomimicry of volatile-based microbial control for managing emerging fungal pathogens publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13667 – volume: 87 start-page: 317 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0370 article-title: Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone publication-title: J. Plant Growth Regul. doi: 10.1007/s10725-018-00473-z – volume: 36 start-page: 71 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0050 article-title: Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.01.004 – volume: 102 start-page: 967 year: 2012 ident: 10.1016/j.tplants.2021.05.006_bb0255 article-title: Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato publication-title: Phytopathology doi: 10.1094/PHYTO-11-11-0312 – volume: 8 start-page: 4 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0535 article-title: Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants publication-title: Microbiome doi: 10.1186/s40168-019-0775-6 – volume: 217 start-page: 1346 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0630 article-title: Social attraction mediated by fruit flies’ microbiome publication-title: J. Exp. Biol. doi: 10.1242/jeb.099648 – volume: 111 start-page: E2149 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0300 article-title: Syntrophic exchange in synthetic microbial communities publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1405641111 – volume: 64 start-page: 219 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0460 article-title: Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry publication-title: Food Microbiol. doi: 10.1016/j.fm.2017.01.006 – volume: 24 start-page: 814 year: 2007 ident: 10.1016/j.tplants.2021.05.006_bb0005 article-title: Bacterial volatiles: the smell of small organisms publication-title: Nat. Prod. Rep. doi: 10.1039/b507392h – volume: 13 start-page: 3047 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0010 article-title: Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02582.x – volume: 21 start-page: 737 year: 2008 ident: 10.1016/j.tplants.2021.05.006_bb0695 article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-21-6-0737 – volume: 6 start-page: 58 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0290 article-title: Microbial interactions within the plant holobiont publication-title: Microbiome doi: 10.1186/s40168-018-0445-0 – volume: 66 start-page: 11197 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0605 article-title: From acetoin to ( Z )-3-hexen-1-ol: the diversity of volatile organic compounds that induce plant responses publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b03010 – volume: 39 start-page: 764 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0690 article-title: Microbial volatile organic compounds produced by Bacillus amyloliquefaciens GB03 ameliorate the effects of salt stress in Mentha piperita principally through acetoin emission publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-019-10020-3 – volume: 135 start-page: 83 year: 2018 ident: 10.1016/j.tplants.2021.05.006_bb0745 article-title: FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2017.09.003 – volume: 116 start-page: 50 year: 2016 ident: 10.1016/j.tplants.2021.05.006_bb0130 article-title: Early identification of potato storage disease using an array of metal-oxide based gas sensors publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2015.12.028 – volume: 5 start-page: 856 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0145 article-title: Non-invasive plant disease diagnostics enabled by smartphone-based finger printing of leaf volatiles publication-title: Nat. Plants doi: 10.1038/s41477-019-0476-y – volume: 8 start-page: 1638 year: 2017 ident: 10.1016/j.tplants.2021.05.006_bb0155 article-title: Mining the volatilomes of plant-associated microbiota for new biocontrol solutions publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01638 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tplants.2021.05.006_bb0240 article-title: High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3-10 in suppression of Aspergillus contamination on peanut kernels publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00142 – volume: 86 start-page: 2481 year: 2014 ident: 10.1016/j.tplants.2021.05.006_bb0100 article-title: Detection of huanglongbing disease using differential mobility spectrometry publication-title: Anal. Chem. doi: 10.1021/ac403469y – volume: 6 year: 2011 ident: 10.1016/j.tplants.2021.05.006_bb0590 article-title: The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis publication-title: PLoS ONE doi: 10.1371/journal.pone.0022974 – volume: 219 start-page: 74 year: 2019 ident: 10.1016/j.tplants.2021.05.006_bb0225 article-title: Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.11.009 |
SSID | ssj0007186 |
Score | 2.5293083 |
SecondaryResourceType | review_article |
Snippet | Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 968 |
SubjectTerms | abiotic stress tolerance Agricultural production Agricultural technology Bacteria Biological control Crop management crop protection crop quality early development Ecological effects growth promotion Inspection Metabolites Plant growth plant growth-promoting bacteria VOC-based diagnosis Volatile compounds |
Title | Bacterial volatile compound-based tools for crop management and quality |
URI | https://dx.doi.org/10.1016/j.tplants.2021.05.006 https://www.proquest.com/docview/2574458877 https://www.proquest.com/docview/2543708751 https://www.proquest.com/docview/2636399913 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4QwEJ0Y9aAH42dcXU1NvLJbKFA4ukZdNXpRE29NW0qiWWGj7MGLv92ZBdaPGE08Am1Spu2bB30zA3DIuckSl_qe75zwwjwWXqJN7gmjfWNkzGVGvwauruPhXXhxH93PwXEbC0Oyygb7a0yfonVzp99Ysz9-eOjf-CKmYzb0P-SzQ8LhMJS0yntvHzIPxN64jr3ilG8v-oji6T_2qvGI1Cb4mRj40wSeVPjoZ__0Damn7ud0FVYa3siO6qGtwZwr1mFxUCK3e12H5U9pBTfgbFCnYMb2CD5o-pFjJB2nCkoeua2MVWU5emFIWBmV8GJPMxEM00XG6kjL1024Oz25PR56TcEEz0Z-XHkZ0i-h8aMzMDoPLL5t6nKdWWFE4HIjpMysdmliNDc8t5m02iYGdyBinDRIxrZgvigLtw3MBClyo0RzEmyKyCZ4EUTOIhvRUiS8A2FrJmWbbOJU1GKkWtnYo2qsq8i6ikcKrduB3qzbuE6n8VeHpJ0D9WVdKIT8v7p22zlTzcbE55EMKThXyg4czB7jlqJzEl24ckJtQiEp07__S5tYELdLfbHz_xHuwhJd1ZK1LsxXzxO3hxynMvvTRbwPC0fnl8Prd2ZU_Ng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VUgl6QLSAWChgJHrMrmMncXLgQIGypY9LW6k3YzuO1GpJVjRVtRf-FH-QmY2zLaiiElKPiR-KZuyZz_E3MwDvOLdl7os4ir2XUVJlMsqNrSJpTWytyrgq6dfA_kE2Pk6-nqQnS_Crj4UhWmWw_Z1Nn1vr8GYUpDmanp6ODmOZ0TUb-h_y2YkIzMpdP7vEc9v5-51PqORNIbY_H30cR6G0QOTSOGujEoGKNHg8E9ZUwuEsha9M6aSVwldWKlU644vcGm555UrljMstrlW0BsoibMF578H9BM0FlU0Y_rzilaCxz7pgL04J_tKrsKHR2bCdTojegudSEc8zhlKlpZsd4l-uYe7vth_DowBU2YdOFmuw5Ot1WNlqEEzO1mH1Wh7DJ_Blq8v5jP3R2qGuJ54RV51KNkXkJ0vWNs3knCFCZlQzjH1fsG6YqUvWhXbOnsLxnYjxGSzXTe2fA7OiQDCWG04MUZm6HB9E6h3CH6NkzgeQ9GLSLqQvpyoaE93z1M50kK4m6WqeapTuAIaLYdMuf8dtA_JeB_qPhajRx9w2dKPXmQ6WANtTlVA0sFIDeLtoxj1MFzOm9s0F9UmkotIC8T_6ZJLAZBHLF___hW_gwfhof0_v7RzsvoSH1NLx5TZguf1x4V8hwGrt6_mCZvDtrnfQb7jDO5c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+volatile+compound-based+tools+for+crop+management+and+quality&rft.jtitle=Trends+in+plant+science&rft.au=Cellini%2C+Antonio&rft.au=Spinelli%2C+Francesco&rft.au=Donati%2C+Irene&rft.au=Ryu%2C+Choong-Min&rft.date=2021-09-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=26&rft.issue=9&rft.spage=968&rft_id=info:doi/10.1016%2Fj.tplants.2021.05.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |