Microfluidic Gas Sensors: Detection Principle and Applications

With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of minia...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 13; no. 10; p. 1716
Main Authors Kaaliveetil, Sreerag, Yang, Juliana, Alssaidy, Saud, Li, Zhenglong, Cheng, Yu-Hsuan, Menon, Niranjan Haridas, Chande, Charmi, Basuray, Sagnik
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.
AbstractList With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.
With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.
With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.
Audience Academic
Author Kaaliveetil, Sreerag
Alssaidy, Saud
Cheng, Yu-Hsuan
Menon, Niranjan Haridas
Yang, Juliana
Li, Zhenglong
Chande, Charmi
Basuray, Sagnik
AuthorAffiliation 1 Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
2 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
AuthorAffiliation_xml – name: 1 Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
– name: 2 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
Author_xml – sequence: 1
  givenname: Sreerag
  surname: Kaaliveetil
  fullname: Kaaliveetil, Sreerag
– sequence: 2
  givenname: Juliana
  surname: Yang
  fullname: Yang, Juliana
– sequence: 3
  givenname: Saud
  surname: Alssaidy
  fullname: Alssaidy, Saud
– sequence: 4
  givenname: Zhenglong
  surname: Li
  fullname: Li, Zhenglong
– sequence: 5
  givenname: Yu-Hsuan
  surname: Cheng
  fullname: Cheng, Yu-Hsuan
– sequence: 6
  givenname: Niranjan Haridas
  surname: Menon
  fullname: Menon, Niranjan Haridas
– sequence: 7
  givenname: Charmi
  surname: Chande
  fullname: Chande, Charmi
– sequence: 8
  givenname: Sagnik
  orcidid: 0000-0001-9767-9096
  surname: Basuray
  fullname: Basuray, Sagnik
BookMark eNptUl1rFDEUDdKCtfbFXzDgiwhb8zXJxIfC0mottLSggm8hk481SyYZkxnBf2-mW6lbmkAS7j3nJLn3vAIHMUULwBsETwkR8MPgEUEQccRegCMMOV4xxn4c_Hd-CU5K2cI6OBd1OQJnN17n5MLsjdfNpSrNVxtLyuVjc2EnqyefYnOXfdR-DLZR0TTrcQxeqyVTXoNDp0KxJw_7Mfj--dO38y-r69vLq_P19Uq3iE0r5ShtdcewZsQabYkTpGUMMg4NxYLQnimGNO8c16hXhHKIjHKGml45zBg5Blc7XZPUVo7ZDyr_kUl5eR9IeSNVnrwOVhJOLez6rmudoMyKXljSW8KIUbrHmlats53WOPfD8po4ZRX2RPcz0f-Um_RbCgY5JYvAuweBnH7Ntkxy8EXbEFS0aS4ScyxajDqBKvTtE-g2zTnWUi2orkUYIvKI2qj6AR9dqvfqRVSuOW0FgRDhijp9BlWnsYPX1QrO1_geAe4ItcOlZOuk9tN93yrRB4mgXHwjH31TKe-fUP6V5RnwX25wwuI
CitedBy_id crossref_primary_10_1016_j_snb_2023_135212
crossref_primary_10_1088_2399_1984_ace9a3
crossref_primary_10_1109_JSEN_2024_3436631
crossref_primary_10_3390_mi14061133
crossref_primary_10_3390_mi15060672
crossref_primary_10_3390_app13126869
crossref_primary_10_1039_D4RA03039G
crossref_primary_10_1021_acs_analchem_4c02682
crossref_primary_10_3390_ijms25115959
crossref_primary_10_3390_mi14030667
crossref_primary_10_1039_D3LC00871A
crossref_primary_10_3390_mi14020480
crossref_primary_10_3390_photonics11020178
crossref_primary_10_1039_D4TA06632D
crossref_primary_10_1021_acssensors_2c02810
crossref_primary_10_1149_1945_7111_aced6e
crossref_primary_10_3390_mi16020231
crossref_primary_10_1002_pls2_10116
Cites_doi 10.3390/s18093141
10.1016/j.apcatb.2021.120688
10.3390/s151229783
10.1016/j.jhazmat.2021.127566
10.1016/j.bios.2019.01.013
10.1016/j.envint.2014.10.005
10.1002/j.1538-7305.1953.tb01420.x
10.1021/ac302497y
10.1016/j.snb.2018.03.057
10.1002/elps.200700552
10.1016/j.ccr.2020.213514
10.1016/j.snb.2011.01.011
10.3390/s20051281
10.1016/j.bios.2021.113912
10.1039/D1TC00544H
10.1109/JSEN.2011.2174218
10.3390/s90907111
10.1021/ac100085w
10.1023/A:1014215728074
10.1021/acsami.7b18140
10.1016/j.aca.2018.07.053
10.1017/S1466252315000018
10.1021/es1043547
10.1109/TRANSDUCERS.2019.8808289
10.1126/science.275.5303.1102
10.1002/smtd.201900688
10.1016/j.snb.2021.130972
10.1073/pnas.0708596104
10.1080/02786826.2016.1275515
10.1021/acsami.9b22445
10.1039/C5RA06754E
10.3390/chemosensors9020030
10.1021/acssensors.6b00282
10.1038/srep15983
10.1021/acsnano.1c01890
10.1021/acsami.7b11649
10.1016/j.aca.2021.338575
10.1016/j.snb.2016.10.048
10.1016/j.bios.2020.112940
10.1016/j.bios.2015.04.033
10.1149/2.0121808jes
10.1016/j.aca.2019.04.042
10.1016/j.snb.2018.08.129
10.1111/apt.12657
10.1016/j.bios.2021.113163
10.1016/S0924-4247(99)00060-6
10.1038/srep42299
10.1063/10.0003447
10.1021/acssensors.7b00873
10.1109/SAS.2012.6166309
10.1039/C4LC00892H
10.1039/C5LC00328H
10.1146/annurev.anchem.1.031207.112814
10.1103/PhysRevLett.78.1667
10.1021/ac400590c
10.1021/acs.analchem.0c05154
10.1080/10408398.2018.1518897
10.1038/s41598-018-36615-6
10.3390/s20205742
10.1021/acsami.9b19358
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi13101716
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_374e08b885f946e9b9e3be363dacb2c4
PMC9607434
A745930012
10_3390_mi13101716
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: New Jersey Health Foundation Grant
  grantid: PC 54-20
– fundername: Sagnik Basuray’s NSF grant
  grantid: 1751759
– fundername: ESTCP grant
  grantid: ER21-5101
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
PMFND
7SP
7TB
8FD
ABUWG
AZQEC
COVID
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c516t-af445c862c63edce3f935660670d42934b6a61c78f7c1ba34701dafd4dbaf2663
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 01:15:54 EDT 2025
Thu Aug 21 18:38:45 EDT 2025
Thu Jul 10 19:30:45 EDT 2025
Fri Jul 25 12:14:25 EDT 2025
Tue Jun 17 21:56:50 EDT 2025
Tue May 27 03:55:41 EDT 2025
Thu Apr 24 23:02:49 EDT 2025
Tue Jul 01 03:41:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-af445c862c63edce3f935660670d42934b6a61c78f7c1ba34701dafd4dbaf2663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9767-9096
OpenAccessLink https://doaj.org/article/374e08b885f946e9b9e3be363dacb2c4
PQID 2728512013
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_374e08b885f946e9b9e3be363dacb2c4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9607434
proquest_miscellaneous_2729521891
proquest_journals_2728512013
gale_infotracmisc_A745930012
gale_infotracacademiconefile_A745930012
crossref_citationtrail_10_3390_mi13101716
crossref_primary_10_3390_mi13101716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Micromachines (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ghazi (ref_16) 2022; 424
Ali (ref_63) 2022; 351
Rehman (ref_48) 2015; 5
Yang (ref_15) 2020; 12
Sun (ref_19) 2018; 1044
Stiles (ref_51) 2008; 1
Piorek (ref_29) 2007; 104
Paknahad (ref_12) 2019; 9
Choi (ref_25) 2015; 5
Lee (ref_8) 2015; 71
Shang (ref_46) 2018; 60
ref_60
Jiang (ref_28) 2016; 1
Deshmukh (ref_62) 2020; 424
Kuznetsov (ref_21) 2019; 129
Paknahad (ref_10) 2017; 241
ref_24
Luka (ref_5) 2015; 15
Yang (ref_33) 2021; 15
Martini (ref_4) 2012; 170
Cha (ref_22) 2010; 82
Shu (ref_58) 2022; 300
Meckes (ref_6) 1999; 76
Kim (ref_26) 2022; 200
Bulbul (ref_35) 2015; 15
Hussain (ref_23) 2019; 1072
Chen (ref_17) 2008; 29
Arasaradnam (ref_2) 2014; 39
Mansour (ref_55) 2015; 16
Zhu (ref_13) 2015; 15
Li (ref_20) 2021; 4
Shen (ref_9) 2011; 45
ref_32
Wlodkowic (ref_56) 2008; 73A
Jing (ref_14) 2013; 85
Piorek (ref_30) 2012; 84
ref_38
Kneipp (ref_52) 1997; 78
Rupprecht (ref_54) 2014; Volume 1
Ven (ref_57) 2018; 3
Gao (ref_40) 2018; 277
Wang (ref_18) 2012; 12
Cheng (ref_49) 2021; 182
Nie (ref_53) 1997; 275
Xiong (ref_27) 2021; 93
Effenhauser (ref_61) 2002; 4
Lee (ref_45) 2009; 9
Tirandazi (ref_37) 2018; 267
Chen (ref_3) 2019; 3
Zhang (ref_44) 2021; 1172
Lee (ref_31) 2017; 9
ref_41
ref_1
Brattain (ref_39) 1953; 32
Bao (ref_43) 2021; 9
Lee (ref_42) 2018; 10
Kim (ref_59) 2015; 74
Upasham (ref_47) 2021; 177
Cheng (ref_50) 2020; 12
Ozhikandathil (ref_34) 2018; 165
(ref_11) 2017; 7
ref_7
Damit (ref_36) 2017; 51
References_xml – ident: ref_24
  doi: 10.3390/s18093141
– volume: 300
  start-page: 120688
  year: 2022
  ident: ref_58
  article-title: Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120688
– volume: 15
  start-page: 30011
  year: 2015
  ident: ref_5
  article-title: Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications
  publication-title: Sensors
  doi: 10.3390/s151229783
– volume: 73A
  start-page: 496
  year: 2008
  ident: ref_56
  article-title: SYTO probes in the cytometry of tumor cell death–Wlodkowic–2008–Cytometry Part A–Wiley Online Library
  publication-title: J. Quant. Cell Sci.
– volume: 424
  start-page: 127566
  year: 2022
  ident: ref_16
  article-title: Selective detection of VOCs using microfluidic gas sensor with embedded cylindrical microfeatures coated with graphene oxide
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127566
– volume: 129
  start-page: 29
  year: 2019
  ident: ref_21
  article-title: Integration of a field effect transistor-based aptasensor under a hydrophobic membrane for bioelectronic nose applications
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.01.013
– volume: 74
  start-page: 136
  year: 2015
  ident: ref_59
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.10.005
– volume: 32
  start-page: 1
  year: 1953
  ident: ref_39
  article-title: Surface properties of germanium
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1953.tb01420.x
– volume: 84
  start-page: 9700
  year: 2012
  ident: ref_30
  article-title: Free-Surface Microfluidics/Surface-Enhanced Raman Spectroscopy for Real-Time Trace Vapor Detection of Explosives
  publication-title: Anal. Chem.
  doi: 10.1021/ac302497y
– volume: 267
  start-page: 279
  year: 2018
  ident: ref_37
  article-title: An integrated gas-liquid droplet microfluidic platform for digital sampling and detection of airborne targets
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.03.057
– volume: 29
  start-page: 1801
  year: 2008
  ident: ref_17
  article-title: Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700552
– volume: 424
  start-page: 213514
  year: 2020
  ident: ref_62
  article-title: State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213514
– volume: 170
  start-page: 45
  year: 2012
  ident: ref_4
  article-title: Microfluidic gas sensor with integrated pumping system
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.01.011
– ident: ref_38
  doi: 10.3390/s20051281
– volume: Volume 1
  start-page: 85
  year: 2014
  ident: ref_54
  article-title: Chapter Eight–Reverse Transcription-Loop-Mediated Isothermal Amplification System for the Detection of Rabies Virus
  publication-title: Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention
– volume: 200
  start-page: 113912
  year: 2022
  ident: ref_26
  article-title: Direct capture and smartphone quantification of airborne SARS-CoV-2 on a paper microfluidic chip
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113912
– volume: 9
  start-page: 6507
  year: 2021
  ident: ref_43
  article-title: Designing chemically selective liquid crystalline materials that respond to oxidizing gases
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC00544H
– volume: 12
  start-page: 1529
  year: 2012
  ident: ref_18
  article-title: A Microfluidic-Colorimetric Sensor for Continuous Monitoring of Reactive Environmental Chemicals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2174218
– volume: 9
  start-page: 7111
  year: 2009
  ident: ref_45
  article-title: Ion-Sensitive Field-Effect Transistor for Biological Sensing
  publication-title: Sensors
  doi: 10.3390/s90907111
– volume: 82
  start-page: 3300
  year: 2010
  ident: ref_22
  article-title: Patterned Electrode-Based Amperometric Gas Sensor for Direct Nitric Oxide Detection within Microfluidic Devices
  publication-title: Anal. Chem.
  doi: 10.1021/ac100085w
– volume: 4
  start-page: 27
  year: 2002
  ident: ref_61
  article-title: An Evaporation-Based Disposable Micropump Concept for Continuous Monitoring Applications
  publication-title: Biomed. Microdevices
  doi: 10.1023/A:1014215728074
– volume: 10
  start-page: 10173
  year: 2018
  ident: ref_42
  article-title: Finely Tuned SnO 2 Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18140
– volume: 1044
  start-page: 110
  year: 2018
  ident: ref_19
  article-title: Multiplex quantification of metals in airborne particulate matter via smartphone and paper-based microfluidics
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.07.053
– volume: 16
  start-page: 89
  year: 2015
  ident: ref_55
  article-title: Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry
  publication-title: Anim. Health Res. Rev.
  doi: 10.1017/S1466252315000018
– volume: 45
  start-page: 7473
  year: 2011
  ident: ref_9
  article-title: Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1043547
– ident: ref_32
  doi: 10.1109/TRANSDUCERS.2019.8808289
– volume: 275
  start-page: 1102
  year: 1997
  ident: ref_53
  article-title: Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 3
  start-page: 1900688
  year: 2019
  ident: ref_3
  article-title: Application of Microfluidics in Wearable Devices
  publication-title: Small Methods
  doi: 10.1002/smtd.201900688
– volume: 351
  start-page: 130972
  year: 2022
  ident: ref_63
  article-title: Nanoporous naphthalene diimide surface enhances humidity and ammonia sensing at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130972
– volume: 104
  start-page: 18898
  year: 2007
  ident: ref_29
  article-title: Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708596104
– volume: 51
  start-page: 488
  year: 2017
  ident: ref_36
  article-title: Droplet-based microfluidics detector for bioaerosol detection
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2016.1275515
– volume: 12
  start-page: 10503
  year: 2020
  ident: ref_50
  article-title: Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22445
– volume: 5
  start-page: 58371
  year: 2015
  ident: ref_48
  article-title: Methods and approach of utilizing ionic liquids as gas sensing materials
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06754E
– ident: ref_1
  doi: 10.3390/chemosensors9020030
– volume: 1
  start-page: 958
  year: 2016
  ident: ref_28
  article-title: High-Throughput Microfluidic Device for LAMP Analysis of Airborne Bacteria
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00282
– volume: 5
  start-page: 15983
  year: 2015
  ident: ref_25
  article-title: Integrated micro-optofluidic platform for real-time detection of airborne microorganisms
  publication-title: Sci. Rep.
  doi: 10.1038/srep15983
– volume: 15
  start-page: 12996
  year: 2021
  ident: ref_33
  article-title: Ti3C2Tx MXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01890
– volume: 9
  start-page: 39584
  year: 2017
  ident: ref_31
  article-title: Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11649
– volume: 1172
  start-page: 338575
  year: 2021
  ident: ref_44
  article-title: Highly sensitive gas sensing platforms based on field effect Transistor-A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338575
– volume: 241
  start-page: 55
  year: 2017
  ident: ref_10
  article-title: Characterization of channel coating and dimensions of microfluidic-based gas detectors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.10.048
– volume: 177
  start-page: 112940
  year: 2021
  ident: ref_47
  article-title: Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112940
– volume: 71
  start-page: 179
  year: 2015
  ident: ref_8
  article-title: Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.04.033
– volume: 165
  start-page: B3078
  year: 2018
  ident: ref_34
  article-title: Polymer Composite Optically Integrated Lab on Chip for the Detection of Ammonia
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121808jes
– volume: 1072
  start-page: 35
  year: 2019
  ident: ref_23
  article-title: Fast responding hydrogen gas sensors using platinum nanoparticle modified microchannels and ionic liquids
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.04.042
– volume: 277
  start-page: 604
  year: 2018
  ident: ref_40
  article-title: An overview: Facet-dependent metal oxide semiconductor gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.08.129
– volume: 39
  start-page: 780
  year: 2014
  ident: ref_2
  article-title: Review article: Next generation diagnostic modalities in gastroenterology–gas phase volatile compound biomarker detection
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.12657
– volume: 182
  start-page: 113163
  year: 2021
  ident: ref_49
  article-title: ESSENCE–A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules | Elsevier Enhanced Reader
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113163
– volume: 76
  start-page: 478
  year: 1999
  ident: ref_6
  article-title: Microfluidic system for the integration and cyclic operation of gas sensors
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(99)00060-6
– volume: 7
  start-page: 42299
  year: 2017
  ident: ref_11
  article-title: The selective flow of volatile organic compounds in conductive polymer-coated microchannels
  publication-title: Sci. Rep.
  doi: 10.1038/srep42299
– volume: 4
  start-page: 013003
  year: 2021
  ident: ref_20
  article-title: A combined virtual impactor and field-effect transistor microsystem for particulate matter separation and detection
  publication-title: Nanotechnol. Precis. Eng.
  doi: 10.1063/10.0003447
– volume: 3
  start-page: 264
  year: 2018
  ident: ref_57
  article-title: Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00873
– ident: ref_7
  doi: 10.1109/SAS.2012.6166309
– volume: 15
  start-page: 94
  year: 2015
  ident: ref_35
  article-title: A bubble-based microfluidic gas sensor for gas chromatographs
  publication-title: Lab A Chip
  doi: 10.1039/C4LC00892H
– volume: 15
  start-page: 3021
  year: 2015
  ident: ref_13
  article-title: Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection
  publication-title: Lab. Chip.
  doi: 10.1039/C5LC00328H
– volume: 1
  start-page: 601
  year: 2008
  ident: ref_51
  article-title: Surface-Enhanced Raman Spectroscopy
  publication-title: Annu. Rev. Anal. Chem. Palo Alto Calif.
  doi: 10.1146/annurev.anchem.1.031207.112814
– volume: 78
  start-page: 1667
  year: 1997
  ident: ref_52
  article-title: Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1667
– volume: 85
  start-page: 5255
  year: 2013
  ident: ref_14
  article-title: Microfluidic Device for Efficient Airborne Bacteria Capture and Enrichment
  publication-title: Anal. Chem.
  doi: 10.1021/ac400590c
– volume: 93
  start-page: 4270
  year: 2021
  ident: ref_27
  article-title: Efficient Microfluidic-Based Air Sampling/Monitoring Platform for Detection of Aerosol SARS-CoV-2 On-site
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c05154
– volume: 60
  start-page: 201
  year: 2018
  ident: ref_46
  article-title: Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2018.1518897
– volume: 9
  start-page: 161
  year: 2019
  ident: ref_12
  article-title: Selective detection of volatile organic compounds in microfluidic gas detectors based on “like dissolves like”
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36615-6
– ident: ref_60
– ident: ref_41
  doi: 10.3390/s20205742
– volume: 12
  start-page: 1395
  year: 2020
  ident: ref_15
  article-title: Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19358
SSID ssj0000779007
Score 2.3640587
SecondaryResourceType review_article
Snippet With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1716
SubjectTerms Adsorption
Air pollution
Airborne sensing
Bacteria
Biomarkers
Contact angle
Contaminants
Design and construction
E coli
Efficiency
Ethanol
gas sensing
Gas sensors
Gases
Geometry
Microfluidics
Nitrogen oxides
Optics
Pandemics
Pathogens
Pollutants
Production costs
Protective coatings
Raman spectroscopy
Response time
Review
Selectivity
Sensitivity
Sensors
Severe acute respiratory syndrome coronavirus 2
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gKHiqcaKCgIJMQhahI7tsMBtIWWCqlVBVTqLfITVlqSdh__n5msd7uBims8URzb8_TMNwBvBJNWaeMyW1qREcZUVmvvMiqTRFEYyqApDnl6Jk4u-NfL6jIG3OYxrXItE3tB7TpLMfKDUpZoHKC6Yh-vrjPqGkW3q7GFxl3YQRGs1Ah2Do_Ozr9toiw5wenlcoVLytC_P_g9KVjRg8QMNFEP2P-vWP47VXJL9xw_gN1oNKbj1S4_hDu-fQT3t6AEH8OHU8qsC9PlxE1s-kXP0-_ooHaz-fv0s1_0-VZter6OrKe6del46-76CVwcH_34dJLF3giZrQqxyHTgvLLojljBaHYs1AwtM6q6cahiGDdCi8JKFaQtjGZc5oXTwXFndEClzJ7CqO1avwcpqivU0UajpYjeFTdKahQDpdZWEXWewLv1OjU2AodT_4ppgw4ErWlzs6YJvN7QXq3gMm6lOqTl3lAQxHX_oJv9bCLHNExynyujVBVqLnxtas-MZ4I5bU1peQJvabMaYkScjtWxngB_iiCtmrHkVc3InEtgf0CJDGSHw-vtbiIDz5ub45bAq80wvUlJaa3vlj1NjdaPqosE5OCYDP5sONJOfvUg3ug5ovHGn_3_48_hXkn1Fn324D6MFrOlf4FW0MK8jEf9DxerB6M
  priority: 102
  providerName: ProQuest
Title Microfluidic Gas Sensors: Detection Principle and Applications
URI https://www.proquest.com/docview/2728512013
https://www.proquest.com/docview/2729521891
https://pubmed.ncbi.nlm.nih.gov/PMC9607434
https://doaj.org/article/374e08b885f946e9b9e3be363dacb2c4
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0vuiD-InRekQUxIfQS3azu_FBuGqvRWgpaqFvy37Sg5qT3t3_78wmdyYq-OJrdgK7M5md32xmfgvwRjDplLG-cJUTBXFMFY0JvqA2SdwKYxUNnUOenomTC_75sr4cXPVFNWEdPXCnuAMmeZgqq1QdGy5CY5vAbGCCeeNs5RITKMa8QTKV9mCi0ZvKjo-UYV5_8H1RsjKRw4wiUCLq_3M7_r1EchBz5g_gfg8W81k3yYdwK7SP4N6AQvAxfDilirp4vVn4hcuPzSr_ionp8mb1Pv8U1qnOqs3PtyfquWl9Phv8s34CF_Ojbx9Piv5OhMLVpVgXJnJeO0xDnGA0OxYbhoiMum08hhbGrTCidFJF6UprGJfT0pvoubcmYjBmT2GvXbbhGeQYpjA2W4MIEbMqbpU06P6VMU6R9DSDd1s9adcThtO9FdcaEwfSqf6l0wxe72R_dDQZf5U6JHXvJIjaOj1Ag-ve4PpfBs_gLRlLkwPidJzp-whwUURlpWeS1w0jGJfB_kgSHceNh7fm1r3jrnQlK8SgiIpYBq92w_QmFaO1YblJMg2iHtWUGcjRZzJa2XikXVwl8m7MGBG08ef_QxUv4G5F3RiptnAf9tY3m_ASMdLaTuC2mh9P4M7h0dn5l0lyjp9iyhHr
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOVXkJ0wJGgBAHq7Z37bWRAAVKmtKmQqKVetvuy22kYpc8hPqn-I3MOHYaA-LWa3Zsx7OzM9-sZ74FeJkyYTKlbWBikwbEMRXkytmA2iTRFRZxoWgfcniQDo74l-PkeAV-tb0wVFbZ-sTaUdvK0B75VixiBAcYrtiHix8BnRpFX1fbIzTmZrHnLn9iyjZ5t7uN8_sqjvufDz8NguZUgcAkUToNVMF5YhDIm5RRCSQrcoaYhvpVLDpnxnWq0siIrBAm0opxEUZWFZZbrQoMZwzvewNucoaRnDrT-zuLPZ2QyPtCMWdBxfFw6_soYlFNSdOJe_XxAH8HgT8LM5ciXX8d1hqI6vfmNnUXVlx5D-4sERfeh_dDquMrzmcjOzL-jpr43zAdrsaTt_62m9bVXaX_td3H91Vp_d7Sl_IHcHQtOnsIq2VVukfgY3BERKAV4lLM5bjOhEKnEytlMpIOPXjT6kmahqacTss4l5iukE7llU49eLGQvZiTc_xT6iOpeyFBhNr1D9X4VDbrUzLBXZjpLEuKnKcu17lj2rGUWWV0bLgHr2myJC17_DtGNd0L-FJEoCV7gic5I_DowWZHEper6Q630y0bdzGRV8btwfPFMF1JJXClq2a1TI5YK8sjD0THTDpv1h0pR2c1ZTjmqQgV-eP_P_wZ3BocDvfl_u7B3gbcjqnTo65b3ITV6XjmniD-muqntdH7cHLdq-w3tg9DRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFSwEjQIiDFdu78dpIgFLS0FIaRdBKvS37Mo1U7JKHEH-NX8eMY6cxIG69Zsd2PDs788165luAZwkTJlXaBiY2SUAcU0GmnA2oTRJdYR7nivYhD0fJ3jH_cNI72YBfTS8MlVU2PrFy1LY0tEfejUWM4ADDFevmdVnEeDB8e_49oBOk6Etrc5zG0kQO3M8fmL7NXu8PcK6fx_Fw9-jdXlCfMBCYXpTMA5Vz3jMI6k3CqByS5RlDfEO9KxYdNeM6UUlkRJoLE2nFuAgjq3LLrVY5hjaG970Cm4Kyog5s7uyOxp9WOzwhUfmFYsmJylgWdr9NIhZVBDWtKFgdFvB3SPizTHMt7g1vwo0asPr9pYXdgg1X3IbrazSGd-DNIVX15WeLiZ0Y_72a-Z8xOS6ns1f-wM2rWq_CHze7-r4qrN9f-25-F44vRWv3oFOUhbsPPoZKxAdaIUrFzI7rVCh0QbFSJiXp0IOXjZ6kqUnL6eyMM4nJC-lUXujUg6cr2fMlVcc_pXZI3SsJoteufiinX2W9WiUT3IWpTtNenvHEZTpzTDuWMKuMjg334AVNliQngH_HqLqXAV-K6LRkX_BexghKerDdksTFa9rDzXTL2nnM5IWpe_BkNUxXUkFc4cpFJZMh8kqzyAPRMpPWm7VHislpRSCOWSsCR771_4c_hqu4wuTH_dHBA7gWU9tHVcS4DZ35dOEeIhib60e11fvw5bIX2m8SXkjZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+Gas+Sensors%3A+Detection+Principle+and+Applications&rft.jtitle=Micromachines+%28Basel%29&rft.au=Kaaliveetil%2C+Sreerag&rft.au=Yang%2C+Juliana&rft.au=Alssaidy%2C+Saud&rft.au=Li%2C+Zhenglong&rft.date=2022-10-01&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=13&rft.issue=10&rft.spage=1716&rft_id=info:doi/10.3390%2Fmi13101716&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi13101716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon