Microfluidic Gas Sensors: Detection Principle and Applications
With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of minia...
Saved in:
Published in | Micromachines (Basel) Vol. 13; no. 10; p. 1716 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined. |
---|---|
AbstractList | With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined. With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined. With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined. |
Audience | Academic |
Author | Kaaliveetil, Sreerag Alssaidy, Saud Cheng, Yu-Hsuan Menon, Niranjan Haridas Yang, Juliana Li, Zhenglong Chande, Charmi Basuray, Sagnik |
AuthorAffiliation | 1 Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA 2 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA |
AuthorAffiliation_xml | – name: 1 Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA – name: 2 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA |
Author_xml | – sequence: 1 givenname: Sreerag surname: Kaaliveetil fullname: Kaaliveetil, Sreerag – sequence: 2 givenname: Juliana surname: Yang fullname: Yang, Juliana – sequence: 3 givenname: Saud surname: Alssaidy fullname: Alssaidy, Saud – sequence: 4 givenname: Zhenglong surname: Li fullname: Li, Zhenglong – sequence: 5 givenname: Yu-Hsuan surname: Cheng fullname: Cheng, Yu-Hsuan – sequence: 6 givenname: Niranjan Haridas surname: Menon fullname: Menon, Niranjan Haridas – sequence: 7 givenname: Charmi surname: Chande fullname: Chande, Charmi – sequence: 8 givenname: Sagnik orcidid: 0000-0001-9767-9096 surname: Basuray fullname: Basuray, Sagnik |
BookMark | eNptUl1rFDEUDdKCtfbFXzDgiwhb8zXJxIfC0mottLSggm8hk481SyYZkxnBf2-mW6lbmkAS7j3nJLn3vAIHMUULwBsETwkR8MPgEUEQccRegCMMOV4xxn4c_Hd-CU5K2cI6OBd1OQJnN17n5MLsjdfNpSrNVxtLyuVjc2EnqyefYnOXfdR-DLZR0TTrcQxeqyVTXoNDp0KxJw_7Mfj--dO38y-r69vLq_P19Uq3iE0r5ShtdcewZsQabYkTpGUMMg4NxYLQnimGNO8c16hXhHKIjHKGml45zBg5Blc7XZPUVo7ZDyr_kUl5eR9IeSNVnrwOVhJOLez6rmudoMyKXljSW8KIUbrHmlats53WOPfD8po4ZRX2RPcz0f-Um_RbCgY5JYvAuweBnH7Ntkxy8EXbEFS0aS4ScyxajDqBKvTtE-g2zTnWUi2orkUYIvKI2qj6AR9dqvfqRVSuOW0FgRDhijp9BlWnsYPX1QrO1_geAe4ItcOlZOuk9tN93yrRB4mgXHwjH31TKe-fUP6V5RnwX25wwuI |
CitedBy_id | crossref_primary_10_1016_j_snb_2023_135212 crossref_primary_10_1088_2399_1984_ace9a3 crossref_primary_10_1109_JSEN_2024_3436631 crossref_primary_10_3390_mi14061133 crossref_primary_10_3390_mi15060672 crossref_primary_10_3390_app13126869 crossref_primary_10_1039_D4RA03039G crossref_primary_10_1021_acs_analchem_4c02682 crossref_primary_10_3390_ijms25115959 crossref_primary_10_3390_mi14030667 crossref_primary_10_1039_D3LC00871A crossref_primary_10_3390_mi14020480 crossref_primary_10_3390_photonics11020178 crossref_primary_10_1039_D4TA06632D crossref_primary_10_1021_acssensors_2c02810 crossref_primary_10_1149_1945_7111_aced6e crossref_primary_10_3390_mi16020231 crossref_primary_10_1002_pls2_10116 |
Cites_doi | 10.3390/s18093141 10.1016/j.apcatb.2021.120688 10.3390/s151229783 10.1016/j.jhazmat.2021.127566 10.1016/j.bios.2019.01.013 10.1016/j.envint.2014.10.005 10.1002/j.1538-7305.1953.tb01420.x 10.1021/ac302497y 10.1016/j.snb.2018.03.057 10.1002/elps.200700552 10.1016/j.ccr.2020.213514 10.1016/j.snb.2011.01.011 10.3390/s20051281 10.1016/j.bios.2021.113912 10.1039/D1TC00544H 10.1109/JSEN.2011.2174218 10.3390/s90907111 10.1021/ac100085w 10.1023/A:1014215728074 10.1021/acsami.7b18140 10.1016/j.aca.2018.07.053 10.1017/S1466252315000018 10.1021/es1043547 10.1109/TRANSDUCERS.2019.8808289 10.1126/science.275.5303.1102 10.1002/smtd.201900688 10.1016/j.snb.2021.130972 10.1073/pnas.0708596104 10.1080/02786826.2016.1275515 10.1021/acsami.9b22445 10.1039/C5RA06754E 10.3390/chemosensors9020030 10.1021/acssensors.6b00282 10.1038/srep15983 10.1021/acsnano.1c01890 10.1021/acsami.7b11649 10.1016/j.aca.2021.338575 10.1016/j.snb.2016.10.048 10.1016/j.bios.2020.112940 10.1016/j.bios.2015.04.033 10.1149/2.0121808jes 10.1016/j.aca.2019.04.042 10.1016/j.snb.2018.08.129 10.1111/apt.12657 10.1016/j.bios.2021.113163 10.1016/S0924-4247(99)00060-6 10.1038/srep42299 10.1063/10.0003447 10.1021/acssensors.7b00873 10.1109/SAS.2012.6166309 10.1039/C4LC00892H 10.1039/C5LC00328H 10.1146/annurev.anchem.1.031207.112814 10.1103/PhysRevLett.78.1667 10.1021/ac400590c 10.1021/acs.analchem.0c05154 10.1080/10408398.2018.1518897 10.1038/s41598-018-36615-6 10.3390/s20205742 10.1021/acsami.9b19358 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi13101716 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_374e08b885f946e9b9e3be363dacb2c4 PMC9607434 A745930012 10_3390_mi13101716 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: New Jersey Health Foundation Grant grantid: PC 54-20 – fundername: Sagnik Basuray’s NSF grant grantid: 1751759 – fundername: ESTCP grant grantid: ER21-5101 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS PMFND 7SP 7TB 8FD ABUWG AZQEC COVID DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c516t-af445c862c63edce3f935660670d42934b6a61c78f7c1ba34701dafd4dbaf2663 |
IEDL.DBID | DOA |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:15:54 EDT 2025 Thu Aug 21 18:38:45 EDT 2025 Thu Jul 10 19:30:45 EDT 2025 Fri Jul 25 12:14:25 EDT 2025 Tue Jun 17 21:56:50 EDT 2025 Tue May 27 03:55:41 EDT 2025 Thu Apr 24 23:02:49 EDT 2025 Tue Jul 01 03:41:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-af445c862c63edce3f935660670d42934b6a61c78f7c1ba34701dafd4dbaf2663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9767-9096 |
OpenAccessLink | https://doaj.org/article/374e08b885f946e9b9e3be363dacb2c4 |
PQID | 2728512013 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_374e08b885f946e9b9e3be363dacb2c4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9607434 proquest_miscellaneous_2729521891 proquest_journals_2728512013 gale_infotracmisc_A745930012 gale_infotracacademiconefile_A745930012 crossref_citationtrail_10_3390_mi13101716 crossref_primary_10_3390_mi13101716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ghazi (ref_16) 2022; 424 Ali (ref_63) 2022; 351 Rehman (ref_48) 2015; 5 Yang (ref_15) 2020; 12 Sun (ref_19) 2018; 1044 Stiles (ref_51) 2008; 1 Piorek (ref_29) 2007; 104 Paknahad (ref_12) 2019; 9 Choi (ref_25) 2015; 5 Lee (ref_8) 2015; 71 Shang (ref_46) 2018; 60 ref_60 Jiang (ref_28) 2016; 1 Deshmukh (ref_62) 2020; 424 Kuznetsov (ref_21) 2019; 129 Paknahad (ref_10) 2017; 241 ref_24 Luka (ref_5) 2015; 15 Yang (ref_33) 2021; 15 Martini (ref_4) 2012; 170 Cha (ref_22) 2010; 82 Shu (ref_58) 2022; 300 Meckes (ref_6) 1999; 76 Kim (ref_26) 2022; 200 Bulbul (ref_35) 2015; 15 Hussain (ref_23) 2019; 1072 Chen (ref_17) 2008; 29 Arasaradnam (ref_2) 2014; 39 Mansour (ref_55) 2015; 16 Zhu (ref_13) 2015; 15 Li (ref_20) 2021; 4 Shen (ref_9) 2011; 45 ref_32 Wlodkowic (ref_56) 2008; 73A Jing (ref_14) 2013; 85 Piorek (ref_30) 2012; 84 ref_38 Kneipp (ref_52) 1997; 78 Rupprecht (ref_54) 2014; Volume 1 Ven (ref_57) 2018; 3 Gao (ref_40) 2018; 277 Wang (ref_18) 2012; 12 Cheng (ref_49) 2021; 182 Nie (ref_53) 1997; 275 Xiong (ref_27) 2021; 93 Effenhauser (ref_61) 2002; 4 Lee (ref_45) 2009; 9 Tirandazi (ref_37) 2018; 267 Chen (ref_3) 2019; 3 Zhang (ref_44) 2021; 1172 Lee (ref_31) 2017; 9 ref_41 ref_1 Brattain (ref_39) 1953; 32 Bao (ref_43) 2021; 9 Lee (ref_42) 2018; 10 Kim (ref_59) 2015; 74 Upasham (ref_47) 2021; 177 Cheng (ref_50) 2020; 12 Ozhikandathil (ref_34) 2018; 165 (ref_11) 2017; 7 ref_7 Damit (ref_36) 2017; 51 |
References_xml | – ident: ref_24 doi: 10.3390/s18093141 – volume: 300 start-page: 120688 year: 2022 ident: ref_58 article-title: Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120688 – volume: 15 start-page: 30011 year: 2015 ident: ref_5 article-title: Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications publication-title: Sensors doi: 10.3390/s151229783 – volume: 73A start-page: 496 year: 2008 ident: ref_56 article-title: SYTO probes in the cytometry of tumor cell death–Wlodkowic–2008–Cytometry Part A–Wiley Online Library publication-title: J. Quant. Cell Sci. – volume: 424 start-page: 127566 year: 2022 ident: ref_16 article-title: Selective detection of VOCs using microfluidic gas sensor with embedded cylindrical microfeatures coated with graphene oxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127566 – volume: 129 start-page: 29 year: 2019 ident: ref_21 article-title: Integration of a field effect transistor-based aptasensor under a hydrophobic membrane for bioelectronic nose applications publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.01.013 – volume: 74 start-page: 136 year: 2015 ident: ref_59 article-title: A review on the human health impact of airborne particulate matter publication-title: Environ. Int. doi: 10.1016/j.envint.2014.10.005 – volume: 32 start-page: 1 year: 1953 ident: ref_39 article-title: Surface properties of germanium publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1953.tb01420.x – volume: 84 start-page: 9700 year: 2012 ident: ref_30 article-title: Free-Surface Microfluidics/Surface-Enhanced Raman Spectroscopy for Real-Time Trace Vapor Detection of Explosives publication-title: Anal. Chem. doi: 10.1021/ac302497y – volume: 267 start-page: 279 year: 2018 ident: ref_37 article-title: An integrated gas-liquid droplet microfluidic platform for digital sampling and detection of airborne targets publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.03.057 – volume: 29 start-page: 1801 year: 2008 ident: ref_17 article-title: Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips publication-title: Electrophoresis doi: 10.1002/elps.200700552 – volume: 424 start-page: 213514 year: 2020 ident: ref_62 article-title: State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213514 – volume: 170 start-page: 45 year: 2012 ident: ref_4 article-title: Microfluidic gas sensor with integrated pumping system publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.01.011 – ident: ref_38 doi: 10.3390/s20051281 – volume: Volume 1 start-page: 85 year: 2014 ident: ref_54 article-title: Chapter Eight–Reverse Transcription-Loop-Mediated Isothermal Amplification System for the Detection of Rabies Virus publication-title: Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention – volume: 200 start-page: 113912 year: 2022 ident: ref_26 article-title: Direct capture and smartphone quantification of airborne SARS-CoV-2 on a paper microfluidic chip publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113912 – volume: 9 start-page: 6507 year: 2021 ident: ref_43 article-title: Designing chemically selective liquid crystalline materials that respond to oxidizing gases publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00544H – volume: 12 start-page: 1529 year: 2012 ident: ref_18 article-title: A Microfluidic-Colorimetric Sensor for Continuous Monitoring of Reactive Environmental Chemicals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2174218 – volume: 9 start-page: 7111 year: 2009 ident: ref_45 article-title: Ion-Sensitive Field-Effect Transistor for Biological Sensing publication-title: Sensors doi: 10.3390/s90907111 – volume: 82 start-page: 3300 year: 2010 ident: ref_22 article-title: Patterned Electrode-Based Amperometric Gas Sensor for Direct Nitric Oxide Detection within Microfluidic Devices publication-title: Anal. Chem. doi: 10.1021/ac100085w – volume: 4 start-page: 27 year: 2002 ident: ref_61 article-title: An Evaporation-Based Disposable Micropump Concept for Continuous Monitoring Applications publication-title: Biomed. Microdevices doi: 10.1023/A:1014215728074 – volume: 10 start-page: 10173 year: 2018 ident: ref_42 article-title: Finely Tuned SnO 2 Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18140 – volume: 1044 start-page: 110 year: 2018 ident: ref_19 article-title: Multiplex quantification of metals in airborne particulate matter via smartphone and paper-based microfluidics publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.07.053 – volume: 16 start-page: 89 year: 2015 ident: ref_55 article-title: Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry publication-title: Anim. Health Res. Rev. doi: 10.1017/S1466252315000018 – volume: 45 start-page: 7473 year: 2011 ident: ref_9 article-title: Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols publication-title: Environ. Sci. Technol. doi: 10.1021/es1043547 – ident: ref_32 doi: 10.1109/TRANSDUCERS.2019.8808289 – volume: 275 start-page: 1102 year: 1997 ident: ref_53 article-title: Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 3 start-page: 1900688 year: 2019 ident: ref_3 article-title: Application of Microfluidics in Wearable Devices publication-title: Small Methods doi: 10.1002/smtd.201900688 – volume: 351 start-page: 130972 year: 2022 ident: ref_63 article-title: Nanoporous naphthalene diimide surface enhances humidity and ammonia sensing at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130972 – volume: 104 start-page: 18898 year: 2007 ident: ref_29 article-title: Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708596104 – volume: 51 start-page: 488 year: 2017 ident: ref_36 article-title: Droplet-based microfluidics detector for bioaerosol detection publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2016.1275515 – volume: 12 start-page: 10503 year: 2020 ident: ref_50 article-title: Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22445 – volume: 5 start-page: 58371 year: 2015 ident: ref_48 article-title: Methods and approach of utilizing ionic liquids as gas sensing materials publication-title: RSC Adv. doi: 10.1039/C5RA06754E – ident: ref_1 doi: 10.3390/chemosensors9020030 – volume: 1 start-page: 958 year: 2016 ident: ref_28 article-title: High-Throughput Microfluidic Device for LAMP Analysis of Airborne Bacteria publication-title: ACS Sens. doi: 10.1021/acssensors.6b00282 – volume: 5 start-page: 15983 year: 2015 ident: ref_25 article-title: Integrated micro-optofluidic platform for real-time detection of airborne microorganisms publication-title: Sci. Rep. doi: 10.1038/srep15983 – volume: 15 start-page: 12996 year: 2021 ident: ref_33 article-title: Ti3C2Tx MXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout publication-title: ACS Nano doi: 10.1021/acsnano.1c01890 – volume: 9 start-page: 39584 year: 2017 ident: ref_31 article-title: Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11649 – volume: 1172 start-page: 338575 year: 2021 ident: ref_44 article-title: Highly sensitive gas sensing platforms based on field effect Transistor-A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338575 – volume: 241 start-page: 55 year: 2017 ident: ref_10 article-title: Characterization of channel coating and dimensions of microfluidic-based gas detectors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.10.048 – volume: 177 start-page: 112940 year: 2021 ident: ref_47 article-title: Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112940 – volume: 71 start-page: 179 year: 2015 ident: ref_8 article-title: Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.04.033 – volume: 165 start-page: B3078 year: 2018 ident: ref_34 article-title: Polymer Composite Optically Integrated Lab on Chip for the Detection of Ammonia publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121808jes – volume: 1072 start-page: 35 year: 2019 ident: ref_23 article-title: Fast responding hydrogen gas sensors using platinum nanoparticle modified microchannels and ionic liquids publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.04.042 – volume: 277 start-page: 604 year: 2018 ident: ref_40 article-title: An overview: Facet-dependent metal oxide semiconductor gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.08.129 – volume: 39 start-page: 780 year: 2014 ident: ref_2 article-title: Review article: Next generation diagnostic modalities in gastroenterology–gas phase volatile compound biomarker detection publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.12657 – volume: 182 start-page: 113163 year: 2021 ident: ref_49 article-title: ESSENCE–A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules | Elsevier Enhanced Reader publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113163 – volume: 76 start-page: 478 year: 1999 ident: ref_6 article-title: Microfluidic system for the integration and cyclic operation of gas sensors publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(99)00060-6 – volume: 7 start-page: 42299 year: 2017 ident: ref_11 article-title: The selective flow of volatile organic compounds in conductive polymer-coated microchannels publication-title: Sci. Rep. doi: 10.1038/srep42299 – volume: 4 start-page: 013003 year: 2021 ident: ref_20 article-title: A combined virtual impactor and field-effect transistor microsystem for particulate matter separation and detection publication-title: Nanotechnol. Precis. Eng. doi: 10.1063/10.0003447 – volume: 3 start-page: 264 year: 2018 ident: ref_57 article-title: Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis publication-title: ACS Sens. doi: 10.1021/acssensors.7b00873 – ident: ref_7 doi: 10.1109/SAS.2012.6166309 – volume: 15 start-page: 94 year: 2015 ident: ref_35 article-title: A bubble-based microfluidic gas sensor for gas chromatographs publication-title: Lab A Chip doi: 10.1039/C4LC00892H – volume: 15 start-page: 3021 year: 2015 ident: ref_13 article-title: Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection publication-title: Lab. Chip. doi: 10.1039/C5LC00328H – volume: 1 start-page: 601 year: 2008 ident: ref_51 article-title: Surface-Enhanced Raman Spectroscopy publication-title: Annu. Rev. Anal. Chem. Palo Alto Calif. doi: 10.1146/annurev.anchem.1.031207.112814 – volume: 78 start-page: 1667 year: 1997 ident: ref_52 article-title: Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1667 – volume: 85 start-page: 5255 year: 2013 ident: ref_14 article-title: Microfluidic Device for Efficient Airborne Bacteria Capture and Enrichment publication-title: Anal. Chem. doi: 10.1021/ac400590c – volume: 93 start-page: 4270 year: 2021 ident: ref_27 article-title: Efficient Microfluidic-Based Air Sampling/Monitoring Platform for Detection of Aerosol SARS-CoV-2 On-site publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c05154 – volume: 60 start-page: 201 year: 2018 ident: ref_46 article-title: Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2018.1518897 – volume: 9 start-page: 161 year: 2019 ident: ref_12 article-title: Selective detection of volatile organic compounds in microfluidic gas detectors based on “like dissolves like” publication-title: Sci. Rep. doi: 10.1038/s41598-018-36615-6 – ident: ref_60 – ident: ref_41 doi: 10.3390/s20205742 – volume: 12 start-page: 1395 year: 2020 ident: ref_15 article-title: Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19358 |
SSID | ssj0000779007 |
Score | 2.3640587 |
SecondaryResourceType | review_article |
Snippet | With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1716 |
SubjectTerms | Adsorption Air pollution Airborne sensing Bacteria Biomarkers Contact angle Contaminants Design and construction E coli Efficiency Ethanol gas sensing Gas sensors Gases Geometry Microfluidics Nitrogen oxides Optics Pandemics Pathogens Pollutants Production costs Protective coatings Raman spectroscopy Response time Review Selectivity Sensitivity Sensors Severe acute respiratory syndrome coronavirus 2 VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gKHiqcaKCgIJMQhahI7tsMBtIWWCqlVBVTqLfITVlqSdh__n5msd7uBims8URzb8_TMNwBvBJNWaeMyW1qREcZUVmvvMiqTRFEYyqApDnl6Jk4u-NfL6jIG3OYxrXItE3tB7TpLMfKDUpZoHKC6Yh-vrjPqGkW3q7GFxl3YQRGs1Ah2Do_Ozr9toiw5wenlcoVLytC_P_g9KVjRg8QMNFEP2P-vWP47VXJL9xw_gN1oNKbj1S4_hDu-fQT3t6AEH8OHU8qsC9PlxE1s-kXP0-_ooHaz-fv0s1_0-VZter6OrKe6del46-76CVwcH_34dJLF3giZrQqxyHTgvLLojljBaHYs1AwtM6q6cahiGDdCi8JKFaQtjGZc5oXTwXFndEClzJ7CqO1avwcpqivU0UajpYjeFTdKahQDpdZWEXWewLv1OjU2AodT_4ppgw4ErWlzs6YJvN7QXq3gMm6lOqTl3lAQxHX_oJv9bCLHNExynyujVBVqLnxtas-MZ4I5bU1peQJvabMaYkScjtWxngB_iiCtmrHkVc3InEtgf0CJDGSHw-vtbiIDz5ub45bAq80wvUlJaa3vlj1NjdaPqosE5OCYDP5sONJOfvUg3ug5ovHGn_3_48_hXkn1Fn324D6MFrOlf4FW0MK8jEf9DxerB6M priority: 102 providerName: ProQuest |
Title | Microfluidic Gas Sensors: Detection Principle and Applications |
URI | https://www.proquest.com/docview/2728512013 https://www.proquest.com/docview/2729521891 https://pubmed.ncbi.nlm.nih.gov/PMC9607434 https://doaj.org/article/374e08b885f946e9b9e3be363dacb2c4 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0vuiD-InRekQUxIfQS3azu_FBuGqvRWgpaqFvy37Sg5qT3t3_78wmdyYq-OJrdgK7M5md32xmfgvwRjDplLG-cJUTBXFMFY0JvqA2SdwKYxUNnUOenomTC_75sr4cXPVFNWEdPXCnuAMmeZgqq1QdGy5CY5vAbGCCeeNs5RITKMa8QTKV9mCi0ZvKjo-UYV5_8H1RsjKRw4wiUCLq_3M7_r1EchBz5g_gfg8W81k3yYdwK7SP4N6AQvAxfDilirp4vVn4hcuPzSr_ionp8mb1Pv8U1qnOqs3PtyfquWl9Phv8s34CF_Ojbx9Piv5OhMLVpVgXJnJeO0xDnGA0OxYbhoiMum08hhbGrTCidFJF6UprGJfT0pvoubcmYjBmT2GvXbbhGeQYpjA2W4MIEbMqbpU06P6VMU6R9DSDd1s9adcThtO9FdcaEwfSqf6l0wxe72R_dDQZf5U6JHXvJIjaOj1Ag-ve4PpfBs_gLRlLkwPidJzp-whwUURlpWeS1w0jGJfB_kgSHceNh7fm1r3jrnQlK8SgiIpYBq92w_QmFaO1YblJMg2iHtWUGcjRZzJa2XikXVwl8m7MGBG08ef_QxUv4G5F3RiptnAf9tY3m_ASMdLaTuC2mh9P4M7h0dn5l0lyjp9iyhHr |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOVXkJ0wJGgBAHq7Z37bWRAAVKmtKmQqKVetvuy22kYpc8hPqn-I3MOHYaA-LWa3Zsx7OzM9-sZ74FeJkyYTKlbWBikwbEMRXkytmA2iTRFRZxoWgfcniQDo74l-PkeAV-tb0wVFbZ-sTaUdvK0B75VixiBAcYrtiHix8BnRpFX1fbIzTmZrHnLn9iyjZ5t7uN8_sqjvufDz8NguZUgcAkUToNVMF5YhDIm5RRCSQrcoaYhvpVLDpnxnWq0siIrBAm0opxEUZWFZZbrQoMZwzvewNucoaRnDrT-zuLPZ2QyPtCMWdBxfFw6_soYlFNSdOJe_XxAH8HgT8LM5ciXX8d1hqI6vfmNnUXVlx5D-4sERfeh_dDquMrzmcjOzL-jpr43zAdrsaTt_62m9bVXaX_td3H91Vp_d7Sl_IHcHQtOnsIq2VVukfgY3BERKAV4lLM5bjOhEKnEytlMpIOPXjT6kmahqacTss4l5iukE7llU49eLGQvZiTc_xT6iOpeyFBhNr1D9X4VDbrUzLBXZjpLEuKnKcu17lj2rGUWWV0bLgHr2myJC17_DtGNd0L-FJEoCV7gic5I_DowWZHEper6Q630y0bdzGRV8btwfPFMF1JJXClq2a1TI5YK8sjD0THTDpv1h0pR2c1ZTjmqQgV-eP_P_wZ3BocDvfl_u7B3gbcjqnTo65b3ITV6XjmniD-muqntdH7cHLdq-w3tg9DRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFSwEjQIiDFdu78dpIgFLS0FIaRdBKvS37Mo1U7JKHEH-NX8eMY6cxIG69Zsd2PDs788165luAZwkTJlXaBiY2SUAcU0GmnA2oTRJdYR7nivYhD0fJ3jH_cNI72YBfTS8MlVU2PrFy1LY0tEfejUWM4ADDFevmdVnEeDB8e_49oBOk6Etrc5zG0kQO3M8fmL7NXu8PcK6fx_Fw9-jdXlCfMBCYXpTMA5Vz3jMI6k3CqByS5RlDfEO9KxYdNeM6UUlkRJoLE2nFuAgjq3LLrVY5hjaG970Cm4Kyog5s7uyOxp9WOzwhUfmFYsmJylgWdr9NIhZVBDWtKFgdFvB3SPizTHMt7g1vwo0asPr9pYXdgg1X3IbrazSGd-DNIVX15WeLiZ0Y_72a-Z8xOS6ns1f-wM2rWq_CHze7-r4qrN9f-25-F44vRWv3oFOUhbsPPoZKxAdaIUrFzI7rVCh0QbFSJiXp0IOXjZ6kqUnL6eyMM4nJC-lUXujUg6cr2fMlVcc_pXZI3SsJoteufiinX2W9WiUT3IWpTtNenvHEZTpzTDuWMKuMjg334AVNliQngH_HqLqXAV-K6LRkX_BexghKerDdksTFa9rDzXTL2nnM5IWpe_BkNUxXUkFc4cpFJZMh8kqzyAPRMpPWm7VHislpRSCOWSsCR771_4c_hqu4wuTH_dHBA7gWU9tHVcS4DZ35dOEeIhib60e11fvw5bIX2m8SXkjZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+Gas+Sensors%3A+Detection+Principle+and+Applications&rft.jtitle=Micromachines+%28Basel%29&rft.au=Kaaliveetil%2C+Sreerag&rft.au=Yang%2C+Juliana&rft.au=Alssaidy%2C+Saud&rft.au=Li%2C+Zhenglong&rft.date=2022-10-01&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=13&rft.issue=10&rft.spage=1716&rft_id=info:doi/10.3390%2Fmi13101716&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi13101716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |