Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy
Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive co...
Saved in:
Published in | Bioactive materials Vol. 46; pp. 82 - 96 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.04.2025
KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.
[Display omitted]
•The comparative lipidomic analysis suggested the optimized application of GEVs in anti-cancer therapy.•Transcriptomic analysis showed that GEVs induced cancer cell apoptosis via regulating of cell cycle and p53 signaling pathways.•The proteomic analysis revealed three potential protein markers, which is beneficial for the quality control of PEVs. |
---|---|
AbstractList | Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. Image 1 • The comparative lipidomic analysis suggested the optimized application of GEVs in anti-cancer therapy. • Transcriptomic analysis showed that GEVs induced cancer cell apoptosis via regulating of cell cycle and p53 signaling pathways. • The proteomic analysis revealed three potential protein markers, which is beneficial for the quality control of PEVs. Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. [Display omitted] •The comparative lipidomic analysis suggested the optimized application of GEVs in anti-cancer therapy.•Transcriptomic analysis showed that GEVs induced cancer cell apoptosis via regulating of cell cycle and p53 signaling pathways.•The proteomic analysis revealed three potential protein markers, which is beneficial for the quality control of PEVs. Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent and investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. |
Author | Mo, Shushan Chen, Zhitong Li, Lanya Cheng, Ke Xiao, Yingxian Ding, Dandan Ai, Jiacong Wang, Fei Hu, Shiqi Li, Zhenhua Zhu, Dashuai Deng, Junyao Li, Qishan Zeng, Yan |
Author_xml | – sequence: 1 givenname: Fei surname: Wang fullname: Wang, Fei organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 2 givenname: Lanya surname: Li fullname: Li, Lanya organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 3 givenname: Junyao surname: Deng fullname: Deng, Junyao organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 4 givenname: Jiacong surname: Ai fullname: Ai, Jiacong organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 5 givenname: Shushan surname: Mo fullname: Mo, Shushan organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 6 givenname: Dandan surname: Ding fullname: Ding, Dandan organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 7 givenname: Yingxian surname: Xiao fullname: Xiao, Yingxian organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 8 givenname: Shiqi surname: Hu fullname: Hu, Shiqi organization: Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA – sequence: 9 givenname: Dashuai surname: Zhu fullname: Zhu, Dashuai organization: Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA – sequence: 10 givenname: Qishan surname: Li fullname: Li, Qishan organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 11 givenname: Yan surname: Zeng fullname: Zeng, Yan organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China – sequence: 12 givenname: Zhitong surname: Chen fullname: Chen, Zhitong organization: Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China – sequence: 13 givenname: Ke surname: Cheng fullname: Cheng, Ke organization: Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA – sequence: 14 givenname: Zhenhua surname: Li fullname: Li, Zhenhua email: zhenhuali@hbu.edu.cn organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39737211$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu2zAQFIoUTZrmF1oBvfQil0_ROhVB0EcAA720QG_EilzZFCTRJSkj_vvSdmokvfRCEsuZwe7OvC4uJj9hUbyjZEEJrT_2i9Z5MGmEtGCEiQVlC0Loi-KKCckq2jS_Lp68L4ubGHuSESofRL0qLnmjuGKUXhWblds660dnSphg2EcXS9-V2wGmVFkMboe2xIcUwOAwzAOEcofRmQFj2flQrmdnYTJ4JPmEU3IwZKnkKnOohzJtMMB2_6Z42cEQ8ebxvi5-fvn84-5btfr-9f7udlUZSetUAZGMKVAd73AJlHAJlnGoWcfqhnLkuBQdyBo63qKgLSOWmEbWS8WEqRXn18X9Sdd66PU2uBHCXntw-ljwYa0hpMMAmqMyVjRgbCYrQ1q0YFpqbKNEg1JlrU8nre3cjmhNni7A8Ez0-c_kNnrtd5rSeslpw7LCh0eF4H_PGJMeXTxsEib0c9ScSsKFFKLO0Pf_QHs_h-zJEaVqsZRcZtTbpy2de_nraAaoE8AEH2PA7gyhRB_io3t9jo8-xEdTpnM4MvP2xMRsz85h0NE4zB5aF9CkvD_3X40_aV7Tag |
Cites_doi | 10.1016/j.vesic.2023.100032 10.1016/j.jacc.2011.10.858 10.1038/nature25447 10.1126/science.aau6977 10.1186/s12964-022-00889-1 10.1016/j.fmre.2023.09.007 10.1002/EXP.20220001 10.1002/jev2.12048 10.1038/s41565-021-00931-2 10.3402/jev.v4.28713 10.1016/j.ymthe.2017.01.025 10.1371/journal.pone.0045074 10.1002/advs.202105274 10.1016/j.nano.2020.102271 10.1016/j.semcancer.2019.08.009 10.1016/j.jconrel.2022.08.046 10.1016/S0022-5320(67)80128-X 10.3390/foods8060185 10.20517/evcna.2021.25 10.1126/science.1183057 10.1016/j.apsb.2021.08.016 10.1002/adma.202207826 10.1002/stem.1736 10.7717/peerj.5186 10.1002/EXP.20230139 10.1039/D0FO02953J 10.1021/acs.accounts.9b00137 10.1016/j.isci.2023.107041 10.1016/j.vesic.2023.100029 10.1016/j.biomaterials.2016.06.018 10.1038/s44222-023-00064-2 10.1111/jcmm.17404 10.1002/btpr.391 10.1038/s41467-022-34883-5 10.1007/s13770-021-00367-8 10.1016/j.ymthe.2020.11.030 10.1038/s41565-023-01580-3 10.1016/j.addr.2021.114108 10.1002/jev2.12283 10.1105/tpc.18.00872 10.1021/acs.nanolett.1c02530 10.1126/science.aar4142 10.1186/s12951-020-00656-9 10.1038/nrd3978 10.18632/oncotarget.4004 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2024.12.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 96 |
ExternalDocumentID | oai_doaj_org_article_3e7cd49acd7247c0bedacb1cd9749e57 PMC11683192 39737211 10_1016_j_bioactmat_2024_12_001 S2452199X24005309 |
Genre | Journal Article |
GroupedDBID | 0R~ 6I. AACTN AAEDW AAFTH AALRI AAXUO ABJCF ABMAC ACGFS ADBBV ADMLS ADVLN AEXQZ AFKRA AFTJW AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ HYE KB. M41 M7P M~E OK1 PDBOC PHGZT PIMPY ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION PHGZM 0SF NCXOZ NPM 8FE 8FG 8FH ABUWG AZQEC D1I DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c516t-a05227a7f3fe8a1035ad23a62f26913e3e84fa56af3be41b20d0c9568724c6733 |
IEDL.DBID | DOA |
ISSN | 2452-199X 2097-1192 |
IngestDate | Wed Aug 27 00:50:03 EDT 2025 Thu Aug 21 18:34:49 EDT 2025 Fri Jul 11 10:58:54 EDT 2025 Fri Jul 25 12:09:49 EDT 2025 Wed Feb 19 02:03:13 EST 2025 Tue Jul 01 05:23:57 EDT 2025 Sat Mar 15 15:41:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plant-derived extracellular vesicles anti-cancer therapy Ginger Lipidomic analysis Protein markers |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-a05227a7f3fe8a1035ad23a62f26913e3e84fa56af3be41b20d0c9568724c6733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally: Fei Wang, Lanya Li. |
OpenAccessLink | https://doaj.org/article/3e7cd49acd7247c0bedacb1cd9749e57 |
PMID | 39737211 |
PQID | 3157648535 |
PQPubID | 6865030 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e7cd49acd7247c0bedacb1cd9749e57 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11683192 proquest_miscellaneous_3150345446 proquest_journals_3157648535 pubmed_primary_39737211 crossref_primary_10_1016_j_bioactmat_2024_12_001 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_12_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China – name: Beijing |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2025 |
Publisher | Elsevier B.V KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing Communications Ltd – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Cheng, Kalluri (bib7) 2023; 2 Deng, Rong, Teng, Mu, Zhuang, Tseng, Samykutty, Zhang, Yan, Miller (bib16) 2017; 25 Liu, Wu, Koo, Yang, Dai, Khant, Osman, Chowdhury, Wei, Li (bib45) 2020; 29 Li, Hu, Huang, Su, Cores, Cheng (bib39) 2020; 6 Zhuang, Deng, Mu, Zhang, Yan, Miller, Feng, McClain, Zhang (bib14) 2015; 4 Wang, Zhang, Guo, Zeng, Li, Wu, Li, Zhu, Li, Di (bib31) 2023 Xu, Yuan, Dad, Shi, Huang, Jiang, Peng (bib28) 2021; 21 Cheng, Malliaras, Shen, Tseliou, Ionta, Smith, Galang, Sun, Houde, Marbán (bib34) 2012; 59 Herrmann, Wood, Fuhrmann (bib1) 2021; 16 Sharma, Mukhopadhyay (bib17) 2024; 3 Zhang, Viennois, Prasad, Zhang, Wang, Zhang, Han, Xiao, Xu, Srinivasan (bib50) 2016; 101 Kim, Li, Zhang, Wang (bib35) 2022; 17 Cai, Qiao, Wang, He, Lin, Palmquist, Huang, Jin (bib26) 2018; 360 Yang, Liu, Luo, Xu, Chen (bib22) 2020; 18 Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Greenwald, Ruoslahti (bib41) 2010; 328 Chavda, Luo, Bezbaruah, Kalita, Sarma, Deka, Duo, Das, Shah, Postwala (bib48) 2024; 4 Ly, Han, Kim, Park, Choi (bib12) 2023; 22 Fang, Liu (bib13) 2022; 350 Lai, Cheng, Kisaalita (bib47) 2012; 7 Urzì, Cafora, Ganji, Tinnirello, Gasparro, Raccosta, Manno, Corsale, Conigliaro, Pistocchi (bib21) 2023; 26 Lei, Pei, Jiang, Cheng (bib44) 2023; 3 Raimondo, Urzì, Meraviglia, Di Simone, Corsale, Rabienezhad Ganji, Palumbo Piccionello, Polito, Lo Presti, Dieli (bib20) 2022; 26 Cong, Tan, Li, Gao, Huang, Zhang, Qiao (bib8) 2022; 182 Xiao, Ma, Zhang, Zhang, Zhao, Zhou, Wang, Ge, Guo, Zhang (bib32) 2024; 36 Nemati, Singh, Mir, Nemati, Babaei, Ahmadi, Rasmi, Golezani, Rezaie (bib30) 2022; 20 Zhang, Cheng (bib6) 2023; 1 Feng, Xiu, Huang, Troyer, Li, Zheng (bib11) 2023; 35 Qiao, Zhang, Liu, Cheng, Yu, Zhao, Xu (bib18) 2022; 13 Halperin, Jensen (bib10) 1967; 18 Kalluri, LeBleu (bib2) 2020; 367 Cheng, Kisaalita (bib43) 2010; 26 Savcı, Kırbaş, Bozkurt, Abdik, Taşlı, Şahin, Abdik (bib24) 2021; 12 Wu, Terol, Ibanez, López-García, Pérez-Román, Borredá, Domingo, Tadeo, Carbonell-Caballero, Alonso (bib36) 2018; 554 Xie, Ibrahim, Cheng, Wu, Liang, Malliaras, Sun, Liu, Shen, Cheol Cho (bib42) 2014; 32 Kim, Choi, Cho, Choi, Cho (bib25) 2021; 18 Dad, Gu, Zhu, Huang, Peng (bib46) 2021; 29 Pinedo, de la Canal, de Marcos Lousa (bib33) 2021; 10 Liu, Hu, Yan, Popowski, Cheng (bib3) 2024; 19 Shinge, Xiao, Xia, Liang, Duan (bib49) 2022; 3 Raimondo, Naselli, Fontana, Monteleone, Dico, Saieva, Zito, Flugy, Manno, Di Bella (bib23) 2015; 6 Mao, Xu, Cao, Gan, Corke, Beta, Li (bib37) 2019; 8 Mahomoodally, Aumeeruddy, Rengasamy, Roshan, Hammad, Pandohee, Hu, Zengin (bib38) 2021; 69 Lian, Chng, Liang, Yeo, Lee, Belaid, Tollemeto, Wacker, Czarny, Pastorin (bib9) 2022; 11 El Andaloussi, Mäger, Breakefield, Wood (bib4) 2013; 12 Baldrich, Rutter, Karimi, Podicheti, Meyers, Innes (bib27) 2019; 31 Xiao, Zhao, Wu, Wang, Chen, Shi, Sha, Li, Liang, Yang (bib19) 2022; 9 Xiao, Feng, Wang, Long, Luo, Wang, Ma, Tang, Jin, Li (bib29) 2018; 6 Chen, Li, Liang, Zu, Chen, Canup, Luo, Wang, Zeng, Xiao (bib15) 2022; 12 Fan, Li, Shen, Wang, Liu, Zhu, Wang, Li, Popowski, Ou (bib40) 2022; 9 Li, Hu, Cheng (bib5) 2019; 52 Fang (10.1016/j.bioactmat.2024.12.001_bib13) 2022; 350 Zhang (10.1016/j.bioactmat.2024.12.001_bib6) 2023; 1 Yang (10.1016/j.bioactmat.2024.12.001_bib22) 2020; 18 Ly (10.1016/j.bioactmat.2024.12.001_bib12) 2023; 22 Feng (10.1016/j.bioactmat.2024.12.001_bib11) 2023; 35 Liu (10.1016/j.bioactmat.2024.12.001_bib45) 2020; 29 Halperin (10.1016/j.bioactmat.2024.12.001_bib10) 1967; 18 Wu (10.1016/j.bioactmat.2024.12.001_bib36) 2018; 554 Raimondo (10.1016/j.bioactmat.2024.12.001_bib23) 2015; 6 Fan (10.1016/j.bioactmat.2024.12.001_bib40) 2022; 9 Lian (10.1016/j.bioactmat.2024.12.001_bib9) 2022; 11 Kim (10.1016/j.bioactmat.2024.12.001_bib35) 2022; 17 Mahomoodally (10.1016/j.bioactmat.2024.12.001_bib38) 2021; 69 Cheng (10.1016/j.bioactmat.2024.12.001_bib34) 2012; 59 Kalluri (10.1016/j.bioactmat.2024.12.001_bib2) 2020; 367 Raimondo (10.1016/j.bioactmat.2024.12.001_bib20) 2022; 26 Dad (10.1016/j.bioactmat.2024.12.001_bib46) 2021; 29 Chavda (10.1016/j.bioactmat.2024.12.001_bib48) 2024; 4 Lei (10.1016/j.bioactmat.2024.12.001_bib44) 2023; 3 Baldrich (10.1016/j.bioactmat.2024.12.001_bib27) 2019; 31 Xu (10.1016/j.bioactmat.2024.12.001_bib28) 2021; 21 Cheng (10.1016/j.bioactmat.2024.12.001_bib43) 2010; 26 Herrmann (10.1016/j.bioactmat.2024.12.001_bib1) 2021; 16 Urzì (10.1016/j.bioactmat.2024.12.001_bib21) 2023; 26 Wang (10.1016/j.bioactmat.2024.12.001_bib31) 2023 El Andaloussi (10.1016/j.bioactmat.2024.12.001_bib4) 2013; 12 Deng (10.1016/j.bioactmat.2024.12.001_bib16) 2017; 25 Qiao (10.1016/j.bioactmat.2024.12.001_bib18) 2022; 13 Kim (10.1016/j.bioactmat.2024.12.001_bib25) 2021; 18 Xiao (10.1016/j.bioactmat.2024.12.001_bib29) 2018; 6 Chen (10.1016/j.bioactmat.2024.12.001_bib15) 2022; 12 Cong (10.1016/j.bioactmat.2024.12.001_bib8) 2022; 182 Liu (10.1016/j.bioactmat.2024.12.001_bib3) 2024; 19 Savcı (10.1016/j.bioactmat.2024.12.001_bib24) 2021; 12 Cai (10.1016/j.bioactmat.2024.12.001_bib26) 2018; 360 Zhang (10.1016/j.bioactmat.2024.12.001_bib50) 2016; 101 Nemati (10.1016/j.bioactmat.2024.12.001_bib30) 2022; 20 Xiao (10.1016/j.bioactmat.2024.12.001_bib19) 2022; 9 Zhuang (10.1016/j.bioactmat.2024.12.001_bib14) 2015; 4 Sugahara (10.1016/j.bioactmat.2024.12.001_bib41) 2010; 328 Cheng (10.1016/j.bioactmat.2024.12.001_bib7) 2023; 2 Li (10.1016/j.bioactmat.2024.12.001_bib39) 2020; 6 Xie (10.1016/j.bioactmat.2024.12.001_bib42) 2014; 32 Pinedo (10.1016/j.bioactmat.2024.12.001_bib33) 2021; 10 Shinge (10.1016/j.bioactmat.2024.12.001_bib49) 2022; 3 Sharma (10.1016/j.bioactmat.2024.12.001_bib17) 2024; 3 Mao (10.1016/j.bioactmat.2024.12.001_bib37) 2019; 8 Xiao (10.1016/j.bioactmat.2024.12.001_bib32) 2024; 36 Lai (10.1016/j.bioactmat.2024.12.001_bib47) 2012; 7 Li (10.1016/j.bioactmat.2024.12.001_bib5) 2019; 52 |
References_xml | – volume: 19 start-page: 565 year: 2024 end-page: 575 ident: bib3 article-title: Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity publication-title: Nat. Nanotechnol. – volume: 32 start-page: 2397 year: 2014 end-page: 2406 ident: bib42 article-title: Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells publication-title: Stem cells – volume: 2 year: 2023 ident: bib7 article-title: Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics publication-title: Extracell. Vesicle – volume: 22 start-page: 365 year: 2023 end-page: 383 ident: bib12 article-title: Plant-derived nanovesicles: current understanding and applications for cancer therapy publication-title: Bioact. Mater. – volume: 3 year: 2024 ident: bib17 article-title: Exosome as drug delivery system: current advancements publication-title: Extracell. Vesicle – volume: 101 start-page: 321 year: 2016 end-page: 340 ident: bib50 article-title: Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer publication-title: Biomaterials – volume: 6 year: 2015 ident: bib23 article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death publication-title: Oncotarget – volume: 367 year: 2020 ident: bib2 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science – volume: 3 start-page: 150 year: 2022 end-page: 162 ident: bib49 article-title: New insights of engineering plant exosome-like nanovesicles as a nanoplatform for therapeutics and drug delivery, Extracell publication-title: Vesicles Circ. Nucl. Acids – volume: 360 start-page: 1126 year: 2018 end-page: 1129 ident: bib26 article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes publication-title: Science – volume: 12 start-page: 907 year: 2022 end-page: 923 ident: bib15 article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation publication-title: Acta Pharm. Sin. B – volume: 1 start-page: 608 year: 2023 end-page: 609 ident: bib6 article-title: Stem cell-derived exosome versus stem cell therapy publication-title: Nat. Rev. Bioeng. – volume: 17 start-page: 53 year: 2022 end-page: 69 ident: bib35 article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities publication-title: Asian J. Pharm. Sci. – volume: 182 year: 2022 ident: bib8 article-title: Technology insight: plant-derived vesicles—how far from the clinical biotherapeutics and therapeutic drug carriers? publication-title: Adv. Drug Deliv. Rev. – volume: 26 start-page: 4195 year: 2022 end-page: 4209 ident: bib20 article-title: Anti‐inflammatory properties of lemon‐derived extracellular vesicles are achieved through the inhibition of ERK/NF‐κB signalling pathways publication-title: J. Cell Mol. Med. – volume: 12 start-page: 5144 year: 2021 end-page: 5156 ident: bib24 article-title: Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing publication-title: Food Funct. – volume: 3 year: 2023 ident: bib44 article-title: Recent progress of metal‐based nanomaterials with anti‐tumor biological effects for enhanced cancer therapy publication-title: Exploration – volume: 26 start-page: 838 year: 2010 end-page: 846 ident: bib43 article-title: Exploring cellular adhesion and differentiation in a micro‐/nano‐hybrid polymer scaffold publication-title: Biotechnol. Progr. – volume: 11 year: 2022 ident: bib9 article-title: Plant‐derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications publication-title: J. Extracell. Vesicles – volume: 16 start-page: 748 year: 2021 end-page: 759 ident: bib1 article-title: Extracellular vesicles as a next-generation drug delivery platform publication-title: Nat. Nanotechnol. – volume: 52 start-page: 1687 year: 2019 end-page: 1696 ident: bib5 article-title: Chemical engineering of cell therapy for heart diseases publication-title: Acc. Chem. Res. – volume: 554 start-page: 311 year: 2018 end-page: 316 ident: bib36 article-title: Genomics of the origin and evolution of Citrus publication-title: Nature – volume: 350 start-page: 389 year: 2022 end-page: 400 ident: bib13 article-title: Plant-derived extracellular vesicles as oral drug delivery carriers publication-title: J. Contr. Release – volume: 8 start-page: 185 year: 2019 ident: bib37 article-title: Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe) publication-title: Foods – volume: 26 year: 2023 ident: bib21 article-title: Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway publication-title: iScience – volume: 4 year: 2024 ident: bib48 article-title: Unveiling the promise: exosomes as game‐changers in anti‐infective therapy publication-title: Exploration – volume: 31 start-page: 315 year: 2019 end-page: 324 ident: bib27 article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs publication-title: Plant Cell – volume: 69 start-page: 140 year: 2021 end-page: 149 ident: bib38 article-title: Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications publication-title: Semin. Cancer Biol. – volume: 20 start-page: 69 year: 2022 ident: bib30 article-title: Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges publication-title: Cell Commun. Signal. – volume: 35 year: 2023 ident: bib11 article-title: Plant‐derived vesicle‐like nanoparticles as promising biotherapeutic tools: present and future publication-title: Adv. Mater. – volume: 29 start-page: 13 year: 2021 end-page: 31 ident: bib46 article-title: Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms publication-title: Mol. Ther. – volume: 12 start-page: 347 year: 2013 end-page: 357 ident: bib4 article-title: Extracellular vesicles: biology and emerging therapeutic opportunities publication-title: Nat. Rev. Drug Discov. – volume: 18 start-page: 428 year: 1967 end-page: 443 ident: bib10 article-title: Ultrastructural changes during growth and embryogenesis in carrot cell cultures publication-title: J. Ultrastruct. Res. – volume: 6 year: 2020 ident: bib39 article-title: Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair publication-title: Sci. Adv. – volume: 13 start-page: 7164 year: 2022 ident: bib18 article-title: Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy publication-title: Nat. Commun. – volume: 18 start-page: 561 year: 2021 end-page: 571 ident: bib25 article-title: The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing publication-title: Tissue Eng. Regener. Med. – year: 2023 ident: bib31 article-title: Plant-derived nanovesicles: promising therapeutics and drug delivery nanoplatforms for brain disorders publication-title: Fundam. Res. – volume: 7 year: 2012 ident: bib47 article-title: Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue publication-title: PLoS One – volume: 18 start-page: 1 year: 2020 end-page: 12 ident: bib22 article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy publication-title: J. Nanobiotechnol. – volume: 29 year: 2020 ident: bib45 article-title: Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 21 start-page: 8151 year: 2021 end-page: 8159 ident: bib28 article-title: Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo publication-title: Nano Lett. – volume: 4 year: 2015 ident: bib14 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J. Extracell. Vesicles – volume: 10 year: 2021 ident: bib33 article-title: A call for Rigor and standardization in plant extracellular vesicle research publication-title: J. Extracell. Vesicles – volume: 328 start-page: 1031 year: 2010 end-page: 1035 ident: bib41 article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs publication-title: Science – volume: 59 start-page: 256 year: 2012 end-page: 264 ident: bib34 article-title: Intramyocardial injection of platelet gel promotes endogenous repair and augments cardiac function in rats with myocardial infarction publication-title: J. Am. Coll. Cardiol. – volume: 9 year: 2022 ident: bib19 article-title: Lemon‐derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis‐triggered energy dissipation and energy production reduction publication-title: Adv. Sci. – volume: 6 year: 2018 ident: bib29 article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables publication-title: PeerJ – volume: 36 start-page: 48 year: 2024 end-page: 61 ident: bib32 article-title: Tailoring therapeutics via a systematic beneficial elements comparison between photosynthetic bacteria-derived OMVs and extruded nanovesicles publication-title: Bioact. Mater. – volume: 25 start-page: 1641 year: 2017 end-page: 1654 ident: bib16 article-title: Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase publication-title: Mol. Ther. – volume: 9 year: 2022 ident: bib40 article-title: Decoy exosomes offer protection against chemotherapy‐induced toxicity publication-title: Adv. Sci. – volume: 3 year: 2024 ident: 10.1016/j.bioactmat.2024.12.001_bib17 article-title: Exosome as drug delivery system: current advancements publication-title: Extracell. Vesicle doi: 10.1016/j.vesic.2023.100032 – volume: 59 start-page: 256 issue: 3 year: 2012 ident: 10.1016/j.bioactmat.2024.12.001_bib34 article-title: Intramyocardial injection of platelet gel promotes endogenous repair and augments cardiac function in rats with myocardial infarction publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2011.10.858 – volume: 554 start-page: 311 year: 2018 ident: 10.1016/j.bioactmat.2024.12.001_bib36 article-title: Genomics of the origin and evolution of Citrus publication-title: Nature doi: 10.1038/nature25447 – volume: 367 year: 2020 ident: 10.1016/j.bioactmat.2024.12.001_bib2 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – volume: 36 start-page: 48 year: 2024 ident: 10.1016/j.bioactmat.2024.12.001_bib32 article-title: Tailoring therapeutics via a systematic beneficial elements comparison between photosynthetic bacteria-derived OMVs and extruded nanovesicles publication-title: Bioact. Mater. – volume: 20 start-page: 69 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib30 article-title: Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges publication-title: Cell Commun. Signal. doi: 10.1186/s12964-022-00889-1 – year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib31 article-title: Plant-derived nanovesicles: promising therapeutics and drug delivery nanoplatforms for brain disorders publication-title: Fundam. Res. doi: 10.1016/j.fmre.2023.09.007 – volume: 3 year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib44 article-title: Recent progress of metal‐based nanomaterials with anti‐tumor biological effects for enhanced cancer therapy publication-title: Exploration doi: 10.1002/EXP.20220001 – volume: 10 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib33 article-title: A call for Rigor and standardization in plant extracellular vesicle research publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12048 – volume: 16 start-page: 748 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib1 article-title: Extracellular vesicles as a next-generation drug delivery platform publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00931-2 – volume: 4 year: 2015 ident: 10.1016/j.bioactmat.2024.12.001_bib14 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v4.28713 – volume: 25 start-page: 1641 year: 2017 ident: 10.1016/j.bioactmat.2024.12.001_bib16 article-title: Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.01.025 – volume: 7 year: 2012 ident: 10.1016/j.bioactmat.2024.12.001_bib47 article-title: Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue publication-title: PLoS One doi: 10.1371/journal.pone.0045074 – volume: 9 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib19 article-title: Lemon‐derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis‐triggered energy dissipation and energy production reduction publication-title: Adv. Sci. doi: 10.1002/advs.202105274 – volume: 29 year: 2020 ident: 10.1016/j.bioactmat.2024.12.001_bib45 article-title: Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2020.102271 – volume: 69 start-page: 140 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib38 article-title: Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.08.009 – volume: 350 start-page: 389 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib13 article-title: Plant-derived extracellular vesicles as oral drug delivery carriers publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2022.08.046 – volume: 18 start-page: 428 year: 1967 ident: 10.1016/j.bioactmat.2024.12.001_bib10 article-title: Ultrastructural changes during growth and embryogenesis in carrot cell cultures publication-title: J. Ultrastruct. Res. doi: 10.1016/S0022-5320(67)80128-X – volume: 9 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib40 article-title: Decoy exosomes offer protection against chemotherapy‐induced toxicity publication-title: Adv. Sci. – volume: 8 start-page: 185 year: 2019 ident: 10.1016/j.bioactmat.2024.12.001_bib37 article-title: Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe) publication-title: Foods doi: 10.3390/foods8060185 – volume: 3 start-page: 150 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib49 article-title: New insights of engineering plant exosome-like nanovesicles as a nanoplatform for therapeutics and drug delivery, Extracell publication-title: Vesicles Circ. Nucl. Acids doi: 10.20517/evcna.2021.25 – volume: 328 start-page: 1031 year: 2010 ident: 10.1016/j.bioactmat.2024.12.001_bib41 article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs publication-title: Science doi: 10.1126/science.1183057 – volume: 12 start-page: 907 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib15 article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.08.016 – volume: 35 year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib11 article-title: Plant‐derived vesicle‐like nanoparticles as promising biotherapeutic tools: present and future publication-title: Adv. Mater. doi: 10.1002/adma.202207826 – volume: 22 start-page: 365 year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib12 article-title: Plant-derived nanovesicles: current understanding and applications for cancer therapy publication-title: Bioact. Mater. – volume: 32 start-page: 2397 issue: 9 year: 2014 ident: 10.1016/j.bioactmat.2024.12.001_bib42 article-title: Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells publication-title: Stem cells doi: 10.1002/stem.1736 – volume: 6 year: 2018 ident: 10.1016/j.bioactmat.2024.12.001_bib29 article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables publication-title: PeerJ doi: 10.7717/peerj.5186 – volume: 4 year: 2024 ident: 10.1016/j.bioactmat.2024.12.001_bib48 article-title: Unveiling the promise: exosomes as game‐changers in anti‐infective therapy publication-title: Exploration doi: 10.1002/EXP.20230139 – volume: 12 start-page: 5144 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib24 article-title: Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing publication-title: Food Funct. doi: 10.1039/D0FO02953J – volume: 52 start-page: 1687 issue: 6 year: 2019 ident: 10.1016/j.bioactmat.2024.12.001_bib5 article-title: Chemical engineering of cell therapy for heart diseases publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00137 – volume: 26 year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib21 article-title: Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway publication-title: iScience doi: 10.1016/j.isci.2023.107041 – volume: 2 year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib7 article-title: Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics publication-title: Extracell. Vesicle doi: 10.1016/j.vesic.2023.100029 – volume: 101 start-page: 321 year: 2016 ident: 10.1016/j.bioactmat.2024.12.001_bib50 article-title: Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.018 – volume: 1 start-page: 608 year: 2023 ident: 10.1016/j.bioactmat.2024.12.001_bib6 article-title: Stem cell-derived exosome versus stem cell therapy publication-title: Nat. Rev. Bioeng. doi: 10.1038/s44222-023-00064-2 – volume: 26 start-page: 4195 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib20 article-title: Anti‐inflammatory properties of lemon‐derived extracellular vesicles are achieved through the inhibition of ERK/NF‐κB signalling pathways publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.17404 – volume: 26 start-page: 838 issue: 3 year: 2010 ident: 10.1016/j.bioactmat.2024.12.001_bib43 article-title: Exploring cellular adhesion and differentiation in a micro‐/nano‐hybrid polymer scaffold publication-title: Biotechnol. Progr. doi: 10.1002/btpr.391 – volume: 13 start-page: 7164 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib18 article-title: Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy publication-title: Nat. Commun. doi: 10.1038/s41467-022-34883-5 – volume: 18 start-page: 561 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib25 article-title: The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing publication-title: Tissue Eng. Regener. Med. doi: 10.1007/s13770-021-00367-8 – volume: 29 start-page: 13 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib46 article-title: Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.11.030 – volume: 19 start-page: 565 year: 2024 ident: 10.1016/j.bioactmat.2024.12.001_bib3 article-title: Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01580-3 – volume: 182 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib8 article-title: Technology insight: plant-derived vesicles—how far from the clinical biotherapeutics and therapeutic drug carriers? publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.114108 – volume: 17 start-page: 53 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib35 article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities publication-title: Asian J. Pharm. Sci. – volume: 11 year: 2022 ident: 10.1016/j.bioactmat.2024.12.001_bib9 article-title: Plant‐derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12283 – volume: 31 start-page: 315 year: 2019 ident: 10.1016/j.bioactmat.2024.12.001_bib27 article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs publication-title: Plant Cell doi: 10.1105/tpc.18.00872 – volume: 21 start-page: 8151 year: 2021 ident: 10.1016/j.bioactmat.2024.12.001_bib28 article-title: Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02530 – volume: 360 start-page: 1126 year: 2018 ident: 10.1016/j.bioactmat.2024.12.001_bib26 article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes publication-title: Science doi: 10.1126/science.aar4142 – volume: 18 start-page: 1 year: 2020 ident: 10.1016/j.bioactmat.2024.12.001_bib22 article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-020-00656-9 – volume: 6 year: 2020 ident: 10.1016/j.bioactmat.2024.12.001_bib39 article-title: Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair publication-title: Sci. Adv. – volume: 12 start-page: 347 year: 2013 ident: 10.1016/j.bioactmat.2024.12.001_bib4 article-title: Extracellular vesicles: biology and emerging therapeutic opportunities publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3978 – volume: 6 year: 2015 ident: 10.1016/j.bioactmat.2024.12.001_bib23 article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death publication-title: Oncotarget doi: 10.18632/oncotarget.4004 |
SSID | ssj0001700007 |
Score | 2.338005 |
Snippet | Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 82 |
SubjectTerms | anti-cancer therapy Apoptosis Biomedical materials Cancer therapies Cell cycle Cytotoxicity Drug delivery Drug delivery systems Extracellular vesicles Ginger In vivo methods and tests Lipidomic analysis Lipids Nanotechnology p53 Protein Plant-derived extracellular vesicles Plants Protein markers Proteins Proteomics Sterols Therapeutic applications Transcriptomics Tumors Vesicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9VAEF60ffFFFG_RKhF8Xcxespv0Ray0FMEiYqFvy97SRiQ5PSen4L_vTLI5NQr6mmST3Z3bN5PZGULegRXlIWpGrYyKgvYraB2Fps4CwbkUUgk8O_zlTJ2ey88X5UUKuG1SWuWsE0dFHXqPMfL3ggEylmBcyg-ra4pdo_DvamqhcZ_sgwquwPnaPzo--_rtLsqix3912GGuqDVlgGcWSV6u7a0fABuCp8jlGBhM7WFmEzVW8l9Yqr-R6J8Jlb9ZqJNH5GGClvnHiRcek3uxe0KusDl1wKPHuU31R_K-yVc_YUdpAPa7iSEHBb22GMLHnNT8Jm7GXLkc8Gx-uW0DMsY4qB8wtwi-AYNb6vH6Op9OcP16Ss5Pjr9_OqWpuwL1JVMDtQVAL211I5pYWVaI0gYurOINVzXGRmMlG1sq2wgXJXO8CIXHw4WaS6-0EM_IXtd38QXJYaxkIPmOOya1Z9ZzoZy3rrQx2jpkpJg31KymIhpmzi77YXY0MEgDwzjm2WXkCDd-9zhWwR4v9OtLk4TKiKh9kLX1AeakfeFisN4xH8BJqmOpM3I4k80kQDEBBXhV-_8ZHMyENkmuN-aOCzPydncbJBJpZLvYb8dnCiFL8LMz8nzii90yAP0J9LkzUi04ZrHO5Z2uvRqrfjOmKtCX_OW_5_WKPODYonhMLjoge8N6G18DbhrcmyQct0qyGew priority: 102 providerName: ProQuest |
Title | Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy |
URI | https://dx.doi.org/10.1016/j.bioactmat.2024.12.001 https://www.ncbi.nlm.nih.gov/pubmed/39737211 https://www.proquest.com/docview/3157648535 https://www.proquest.com/docview/3150345446 https://pubmed.ncbi.nlm.nih.gov/PMC11683192 https://doaj.org/article/3e7cd49acd7247c0bedacb1cd9749e57 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggUHkE2pWRuEbEjzgJt7Z0qRCtEFCpN2v8CE1VJdU2W4l_z9hJVhs49NJTpCTOY2bs-cb6ZoaQD-hFufMFS0F6leLql6WVF0VqABXOpZBKhNzh0zN1ci6_XuQXW62-AidsKA88CO6j8IV1sgLrCi4LmxnvwBpmHQLhyucxjxx93lYwdTUUhQneb0boMk0HtkcciFEhl3ETcGwFM7mjWLV_5pX-R53_kie3vNHyOXk2wkh6MHz-C_LIt7vkMjSidiHNmMJYa4R2Nb25RumlDk3tzjuKi_EKwnZ94J_SO38beXEUsSv9vW5cMII4qOsDjwjfgYOb1IbzKzpka_15Sc6Xx7-OTtKxk0Jqc6b6FDKEWQUUtah9CSwTOTguQPGaqyrsg_pS1pArqIXxkhmeucyGREKUuVWFEK_ITtu1_g2hOFYynOWGG4b6YGC5UMaCycF7qFxCskmg-mYomKEnJtmV3uhABx1oxgOnLiGHQfCb20PF63gC7UCPdqDvs4OEfJrUpkfwMIACfFRz_xfsTYrW4xy-1YJhLCYRzuQJeb-5jLMv6Aha363jPZmQOcbUCXk92MXmNxDpiRBfJ6ScWczsP-dX2uYyVvhmTJW4NvK3DyGZd-QpD02LI91oj-z0q7XfRyTVmwV5XC6_LMiTg8-n337i8fD47PuPRZxKfwF9QiTc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaq8gAvCMQVKGAkeLSIj8QbJIS4li09nlqpb8ZX2iC0WfYo6p_iNzLjJFsWJHjqaxInjuf6ZjzjIeQ5WFERoubMqlgy0H45q6LUzFkguFBSlRJrhw8Oy8mx-nxSnGyRn0MtDKZVDjoxKerQeoyRv5QckLEC41K8mX1n2DUKd1eHFhodW-zFix_gsi1e734A-r4QYvzx6P2E9V0FmC94uWQ2B8ihra5lHUeW57KwQUhbilqUFcYE40jVtihtLV1U3Ik85B6L6rRQvtQYAAWVf01JWaFEjcafLmM6Ou0MYj-7vNKMA3raSClzTWv9EpAo-KVCpTBk34xmMIipb8CGXfwb9_6ZvvmbPRzfIjd7IEvfdpx3m2zF6R1yhq2wAxY6U9ufdkLbms6-Af1YAGY_j4GCOZhb3DDADFh6HhcpM48CeqanqyYgG6ZB7RIzmeAbMLhhHq_PaVcvdnGXHF_Jqt8j29N2Gh8QCmMVBz3jhONKe269kKXz1hU2RluFjOTDgppZd2SHGXLZvpo1DQzSwHCBWX0ZeYcLv34cz9xOF9r5qelF2MiofVCV9QHmpH3uYrDecR_AJatioTPyaiCb6eFLB0vgVc3_Z7AzENr0WmRhLnk-I8_Wt0H-kUZ2GttVeiaXqgCvPiP3O75Y_wZgTYkefkZGGxyz8Z-bd6bNWTpjnPNyBNpZPPz3vJ6S65Ojg32zv3u494jcENgcOaU17ZDt5XwVHwNiW7onSUwo-XLVcvkLOzlUUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipidomic+analysis+of+plant-derived+extracellular+vesicles+for+guidance+of+potential+anti-cancer+therapy&rft.jtitle=Bioactive+materials&rft.au=Wang%2C+Fei&rft.au=Li%2C+Lanya&rft.au=Deng%2C+Junyao&rft.au=Ai%2C+Jiacong&rft.date=2025-04-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=46&rft.spage=82&rft.epage=96&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.12.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bioactmat_2024_12_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |