Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy

Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive co...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 46; pp. 82 - 96
Main Authors Wang, Fei, Li, Lanya, Deng, Junyao, Ai, Jiacong, Mo, Shushan, Ding, Dandan, Xiao, Yingxian, Hu, Shiqi, Zhu, Dashuai, Li, Qishan, Zeng, Yan, Chen, Zhitong, Cheng, Ke, Li, Zhenhua
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.04.2025
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. [Display omitted] •The comparative lipidomic analysis suggested the optimized application of GEVs in anti-cancer therapy.•Transcriptomic analysis showed that GEVs induced cancer cell apoptosis via regulating of cell cycle and p53 signaling pathways.•The proteomic analysis revealed three potential protein markers, which is beneficial for the quality control of PEVs.
AbstractList Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.
Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. Image 1 • The comparative lipidomic analysis suggested the optimized application of GEVs in anti-cancer therapy. • Transcriptomic analysis showed that GEVs induced cancer cell apoptosis via regulating of cell cycle and p53 signaling pathways. • The proteomic analysis revealed three potential protein markers, which is beneficial for the quality control of PEVs.
Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.
Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies. [Display omitted] •The comparative lipidomic analysis suggested the optimized application of GEVs in anti-cancer therapy.•Transcriptomic analysis showed that GEVs induced cancer cell apoptosis via regulating of cell cycle and p53 signaling pathways.•The proteomic analysis revealed three potential protein markers, which is beneficial for the quality control of PEVs.
Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent and investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.
Author Mo, Shushan
Chen, Zhitong
Li, Lanya
Cheng, Ke
Xiao, Yingxian
Ding, Dandan
Ai, Jiacong
Wang, Fei
Hu, Shiqi
Li, Zhenhua
Zhu, Dashuai
Deng, Junyao
Li, Qishan
Zeng, Yan
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 2
  givenname: Lanya
  surname: Li
  fullname: Li, Lanya
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 3
  givenname: Junyao
  surname: Deng
  fullname: Deng, Junyao
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 4
  givenname: Jiacong
  surname: Ai
  fullname: Ai, Jiacong
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 5
  givenname: Shushan
  surname: Mo
  fullname: Mo, Shushan
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 6
  givenname: Dandan
  surname: Ding
  fullname: Ding, Dandan
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 7
  givenname: Yingxian
  surname: Xiao
  fullname: Xiao, Yingxian
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 8
  givenname: Shiqi
  surname: Hu
  fullname: Hu, Shiqi
  organization: Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA
– sequence: 9
  givenname: Dashuai
  surname: Zhu
  fullname: Zhu, Dashuai
  organization: Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA
– sequence: 10
  givenname: Qishan
  surname: Li
  fullname: Li, Qishan
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 11
  givenname: Yan
  surname: Zeng
  fullname: Zeng, Yan
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
– sequence: 12
  givenname: Zhitong
  surname: Chen
  fullname: Chen, Zhitong
  organization: Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
– sequence: 13
  givenname: Ke
  surname: Cheng
  fullname: Cheng, Ke
  organization: Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA
– sequence: 14
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
  email: zhenhuali@hbu.edu.cn
  organization: The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39737211$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu2zAQFIoUTZrmF1oBvfQil0_ROhVB0EcAA720QG_EilzZFCTRJSkj_vvSdmokvfRCEsuZwe7OvC4uJj9hUbyjZEEJrT_2i9Z5MGmEtGCEiQVlC0Loi-KKCckq2jS_Lp68L4ubGHuSESofRL0qLnmjuGKUXhWblds660dnSphg2EcXS9-V2wGmVFkMboe2xIcUwOAwzAOEcofRmQFj2flQrmdnYTJ4JPmEU3IwZKnkKnOohzJtMMB2_6Z42cEQ8ebxvi5-fvn84-5btfr-9f7udlUZSetUAZGMKVAd73AJlHAJlnGoWcfqhnLkuBQdyBo63qKgLSOWmEbWS8WEqRXn18X9Sdd66PU2uBHCXntw-ljwYa0hpMMAmqMyVjRgbCYrQ1q0YFpqbKNEg1JlrU8nre3cjmhNni7A8Ez0-c_kNnrtd5rSeslpw7LCh0eF4H_PGJMeXTxsEib0c9ScSsKFFKLO0Pf_QHs_h-zJEaVqsZRcZtTbpy2de_nraAaoE8AEH2PA7gyhRB_io3t9jo8-xEdTpnM4MvP2xMRsz85h0NE4zB5aF9CkvD_3X40_aV7Tag
Cites_doi 10.1016/j.vesic.2023.100032
10.1016/j.jacc.2011.10.858
10.1038/nature25447
10.1126/science.aau6977
10.1186/s12964-022-00889-1
10.1016/j.fmre.2023.09.007
10.1002/EXP.20220001
10.1002/jev2.12048
10.1038/s41565-021-00931-2
10.3402/jev.v4.28713
10.1016/j.ymthe.2017.01.025
10.1371/journal.pone.0045074
10.1002/advs.202105274
10.1016/j.nano.2020.102271
10.1016/j.semcancer.2019.08.009
10.1016/j.jconrel.2022.08.046
10.1016/S0022-5320(67)80128-X
10.3390/foods8060185
10.20517/evcna.2021.25
10.1126/science.1183057
10.1016/j.apsb.2021.08.016
10.1002/adma.202207826
10.1002/stem.1736
10.7717/peerj.5186
10.1002/EXP.20230139
10.1039/D0FO02953J
10.1021/acs.accounts.9b00137
10.1016/j.isci.2023.107041
10.1016/j.vesic.2023.100029
10.1016/j.biomaterials.2016.06.018
10.1038/s44222-023-00064-2
10.1111/jcmm.17404
10.1002/btpr.391
10.1038/s41467-022-34883-5
10.1007/s13770-021-00367-8
10.1016/j.ymthe.2020.11.030
10.1038/s41565-023-01580-3
10.1016/j.addr.2021.114108
10.1002/jev2.12283
10.1105/tpc.18.00872
10.1021/acs.nanolett.1c02530
10.1126/science.aar4142
10.1186/s12951-020-00656-9
10.1038/nrd3978
10.18632/oncotarget.4004
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2024.12.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 96
ExternalDocumentID oai_doaj_org_article_3e7cd49acd7247c0bedacb1cd9749e57
PMC11683192
39737211
10_1016_j_bioactmat_2024_12_001
S2452199X24005309
Genre Journal Article
GroupedDBID 0R~
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABJCF
ABMAC
ACGFS
ADBBV
ADMLS
ADVLN
AEXQZ
AFKRA
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
HYE
KB.
M41
M7P
M~E
OK1
PDBOC
PHGZT
PIMPY
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
0SF
NCXOZ
NPM
8FE
8FG
8FH
ABUWG
AZQEC
D1I
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c516t-a05227a7f3fe8a1035ad23a62f26913e3e84fa56af3be41b20d0c9568724c6733
IEDL.DBID DOA
ISSN 2452-199X
2097-1192
IngestDate Wed Aug 27 00:50:03 EDT 2025
Thu Aug 21 18:34:49 EDT 2025
Fri Jul 11 10:58:54 EDT 2025
Fri Jul 25 12:09:49 EDT 2025
Wed Feb 19 02:03:13 EST 2025
Tue Jul 01 05:23:57 EDT 2025
Sat Mar 15 15:41:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant-derived extracellular vesicles
anti-cancer therapy
Ginger
Lipidomic analysis
Protein markers
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-a05227a7f3fe8a1035ad23a62f26913e3e84fa56af3be41b20d0c9568724c6733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally: Fei Wang, Lanya Li.
OpenAccessLink https://doaj.org/article/3e7cd49acd7247c0bedacb1cd9749e57
PMID 39737211
PQID 3157648535
PQPubID 6865030
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_3e7cd49acd7247c0bedacb1cd9749e57
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11683192
proquest_miscellaneous_3150345446
proquest_journals_3157648535
pubmed_primary_39737211
crossref_primary_10_1016_j_bioactmat_2024_12_001
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
– name: Beijing
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2025
Publisher Elsevier B.V
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing Communications Ltd
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Cheng, Kalluri (bib7) 2023; 2
Deng, Rong, Teng, Mu, Zhuang, Tseng, Samykutty, Zhang, Yan, Miller (bib16) 2017; 25
Liu, Wu, Koo, Yang, Dai, Khant, Osman, Chowdhury, Wei, Li (bib45) 2020; 29
Li, Hu, Huang, Su, Cores, Cheng (bib39) 2020; 6
Zhuang, Deng, Mu, Zhang, Yan, Miller, Feng, McClain, Zhang (bib14) 2015; 4
Wang, Zhang, Guo, Zeng, Li, Wu, Li, Zhu, Li, Di (bib31) 2023
Xu, Yuan, Dad, Shi, Huang, Jiang, Peng (bib28) 2021; 21
Cheng, Malliaras, Shen, Tseliou, Ionta, Smith, Galang, Sun, Houde, Marbán (bib34) 2012; 59
Herrmann, Wood, Fuhrmann (bib1) 2021; 16
Sharma, Mukhopadhyay (bib17) 2024; 3
Zhang, Viennois, Prasad, Zhang, Wang, Zhang, Han, Xiao, Xu, Srinivasan (bib50) 2016; 101
Kim, Li, Zhang, Wang (bib35) 2022; 17
Cai, Qiao, Wang, He, Lin, Palmquist, Huang, Jin (bib26) 2018; 360
Yang, Liu, Luo, Xu, Chen (bib22) 2020; 18
Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Greenwald, Ruoslahti (bib41) 2010; 328
Chavda, Luo, Bezbaruah, Kalita, Sarma, Deka, Duo, Das, Shah, Postwala (bib48) 2024; 4
Ly, Han, Kim, Park, Choi (bib12) 2023; 22
Fang, Liu (bib13) 2022; 350
Lai, Cheng, Kisaalita (bib47) 2012; 7
Urzì, Cafora, Ganji, Tinnirello, Gasparro, Raccosta, Manno, Corsale, Conigliaro, Pistocchi (bib21) 2023; 26
Lei, Pei, Jiang, Cheng (bib44) 2023; 3
Raimondo, Urzì, Meraviglia, Di Simone, Corsale, Rabienezhad Ganji, Palumbo Piccionello, Polito, Lo Presti, Dieli (bib20) 2022; 26
Cong, Tan, Li, Gao, Huang, Zhang, Qiao (bib8) 2022; 182
Xiao, Ma, Zhang, Zhang, Zhao, Zhou, Wang, Ge, Guo, Zhang (bib32) 2024; 36
Nemati, Singh, Mir, Nemati, Babaei, Ahmadi, Rasmi, Golezani, Rezaie (bib30) 2022; 20
Zhang, Cheng (bib6) 2023; 1
Feng, Xiu, Huang, Troyer, Li, Zheng (bib11) 2023; 35
Qiao, Zhang, Liu, Cheng, Yu, Zhao, Xu (bib18) 2022; 13
Halperin, Jensen (bib10) 1967; 18
Kalluri, LeBleu (bib2) 2020; 367
Cheng, Kisaalita (bib43) 2010; 26
Savcı, Kırbaş, Bozkurt, Abdik, Taşlı, Şahin, Abdik (bib24) 2021; 12
Wu, Terol, Ibanez, López-García, Pérez-Román, Borredá, Domingo, Tadeo, Carbonell-Caballero, Alonso (bib36) 2018; 554
Xie, Ibrahim, Cheng, Wu, Liang, Malliaras, Sun, Liu, Shen, Cheol Cho (bib42) 2014; 32
Kim, Choi, Cho, Choi, Cho (bib25) 2021; 18
Dad, Gu, Zhu, Huang, Peng (bib46) 2021; 29
Pinedo, de la Canal, de Marcos Lousa (bib33) 2021; 10
Liu, Hu, Yan, Popowski, Cheng (bib3) 2024; 19
Shinge, Xiao, Xia, Liang, Duan (bib49) 2022; 3
Raimondo, Naselli, Fontana, Monteleone, Dico, Saieva, Zito, Flugy, Manno, Di Bella (bib23) 2015; 6
Mao, Xu, Cao, Gan, Corke, Beta, Li (bib37) 2019; 8
Mahomoodally, Aumeeruddy, Rengasamy, Roshan, Hammad, Pandohee, Hu, Zengin (bib38) 2021; 69
Lian, Chng, Liang, Yeo, Lee, Belaid, Tollemeto, Wacker, Czarny, Pastorin (bib9) 2022; 11
El Andaloussi, Mäger, Breakefield, Wood (bib4) 2013; 12
Baldrich, Rutter, Karimi, Podicheti, Meyers, Innes (bib27) 2019; 31
Xiao, Zhao, Wu, Wang, Chen, Shi, Sha, Li, Liang, Yang (bib19) 2022; 9
Xiao, Feng, Wang, Long, Luo, Wang, Ma, Tang, Jin, Li (bib29) 2018; 6
Chen, Li, Liang, Zu, Chen, Canup, Luo, Wang, Zeng, Xiao (bib15) 2022; 12
Fan, Li, Shen, Wang, Liu, Zhu, Wang, Li, Popowski, Ou (bib40) 2022; 9
Li, Hu, Cheng (bib5) 2019; 52
Fang (10.1016/j.bioactmat.2024.12.001_bib13) 2022; 350
Zhang (10.1016/j.bioactmat.2024.12.001_bib6) 2023; 1
Yang (10.1016/j.bioactmat.2024.12.001_bib22) 2020; 18
Ly (10.1016/j.bioactmat.2024.12.001_bib12) 2023; 22
Feng (10.1016/j.bioactmat.2024.12.001_bib11) 2023; 35
Liu (10.1016/j.bioactmat.2024.12.001_bib45) 2020; 29
Halperin (10.1016/j.bioactmat.2024.12.001_bib10) 1967; 18
Wu (10.1016/j.bioactmat.2024.12.001_bib36) 2018; 554
Raimondo (10.1016/j.bioactmat.2024.12.001_bib23) 2015; 6
Fan (10.1016/j.bioactmat.2024.12.001_bib40) 2022; 9
Lian (10.1016/j.bioactmat.2024.12.001_bib9) 2022; 11
Kim (10.1016/j.bioactmat.2024.12.001_bib35) 2022; 17
Mahomoodally (10.1016/j.bioactmat.2024.12.001_bib38) 2021; 69
Cheng (10.1016/j.bioactmat.2024.12.001_bib34) 2012; 59
Kalluri (10.1016/j.bioactmat.2024.12.001_bib2) 2020; 367
Raimondo (10.1016/j.bioactmat.2024.12.001_bib20) 2022; 26
Dad (10.1016/j.bioactmat.2024.12.001_bib46) 2021; 29
Chavda (10.1016/j.bioactmat.2024.12.001_bib48) 2024; 4
Lei (10.1016/j.bioactmat.2024.12.001_bib44) 2023; 3
Baldrich (10.1016/j.bioactmat.2024.12.001_bib27) 2019; 31
Xu (10.1016/j.bioactmat.2024.12.001_bib28) 2021; 21
Cheng (10.1016/j.bioactmat.2024.12.001_bib43) 2010; 26
Herrmann (10.1016/j.bioactmat.2024.12.001_bib1) 2021; 16
Urzì (10.1016/j.bioactmat.2024.12.001_bib21) 2023; 26
Wang (10.1016/j.bioactmat.2024.12.001_bib31) 2023
El Andaloussi (10.1016/j.bioactmat.2024.12.001_bib4) 2013; 12
Deng (10.1016/j.bioactmat.2024.12.001_bib16) 2017; 25
Qiao (10.1016/j.bioactmat.2024.12.001_bib18) 2022; 13
Kim (10.1016/j.bioactmat.2024.12.001_bib25) 2021; 18
Xiao (10.1016/j.bioactmat.2024.12.001_bib29) 2018; 6
Chen (10.1016/j.bioactmat.2024.12.001_bib15) 2022; 12
Cong (10.1016/j.bioactmat.2024.12.001_bib8) 2022; 182
Liu (10.1016/j.bioactmat.2024.12.001_bib3) 2024; 19
Savcı (10.1016/j.bioactmat.2024.12.001_bib24) 2021; 12
Cai (10.1016/j.bioactmat.2024.12.001_bib26) 2018; 360
Zhang (10.1016/j.bioactmat.2024.12.001_bib50) 2016; 101
Nemati (10.1016/j.bioactmat.2024.12.001_bib30) 2022; 20
Xiao (10.1016/j.bioactmat.2024.12.001_bib19) 2022; 9
Zhuang (10.1016/j.bioactmat.2024.12.001_bib14) 2015; 4
Sugahara (10.1016/j.bioactmat.2024.12.001_bib41) 2010; 328
Cheng (10.1016/j.bioactmat.2024.12.001_bib7) 2023; 2
Li (10.1016/j.bioactmat.2024.12.001_bib39) 2020; 6
Xie (10.1016/j.bioactmat.2024.12.001_bib42) 2014; 32
Pinedo (10.1016/j.bioactmat.2024.12.001_bib33) 2021; 10
Shinge (10.1016/j.bioactmat.2024.12.001_bib49) 2022; 3
Sharma (10.1016/j.bioactmat.2024.12.001_bib17) 2024; 3
Mao (10.1016/j.bioactmat.2024.12.001_bib37) 2019; 8
Xiao (10.1016/j.bioactmat.2024.12.001_bib32) 2024; 36
Lai (10.1016/j.bioactmat.2024.12.001_bib47) 2012; 7
Li (10.1016/j.bioactmat.2024.12.001_bib5) 2019; 52
References_xml – volume: 19
  start-page: 565
  year: 2024
  end-page: 575
  ident: bib3
  article-title: Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity
  publication-title: Nat. Nanotechnol.
– volume: 32
  start-page: 2397
  year: 2014
  end-page: 2406
  ident: bib42
  article-title: Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells
  publication-title: Stem cells
– volume: 2
  year: 2023
  ident: bib7
  article-title: Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics
  publication-title: Extracell. Vesicle
– volume: 22
  start-page: 365
  year: 2023
  end-page: 383
  ident: bib12
  article-title: Plant-derived nanovesicles: current understanding and applications for cancer therapy
  publication-title: Bioact. Mater.
– volume: 3
  year: 2024
  ident: bib17
  article-title: Exosome as drug delivery system: current advancements
  publication-title: Extracell. Vesicle
– volume: 101
  start-page: 321
  year: 2016
  end-page: 340
  ident: bib50
  article-title: Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer
  publication-title: Biomaterials
– volume: 6
  year: 2015
  ident: bib23
  article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death
  publication-title: Oncotarget
– volume: 367
  year: 2020
  ident: bib2
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
– volume: 3
  start-page: 150
  year: 2022
  end-page: 162
  ident: bib49
  article-title: New insights of engineering plant exosome-like nanovesicles as a nanoplatform for therapeutics and drug delivery, Extracell
  publication-title: Vesicles Circ. Nucl. Acids
– volume: 360
  start-page: 1126
  year: 2018
  end-page: 1129
  ident: bib26
  article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes
  publication-title: Science
– volume: 12
  start-page: 907
  year: 2022
  end-page: 923
  ident: bib15
  article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation
  publication-title: Acta Pharm. Sin. B
– volume: 1
  start-page: 608
  year: 2023
  end-page: 609
  ident: bib6
  article-title: Stem cell-derived exosome versus stem cell therapy
  publication-title: Nat. Rev. Bioeng.
– volume: 17
  start-page: 53
  year: 2022
  end-page: 69
  ident: bib35
  article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities
  publication-title: Asian J. Pharm. Sci.
– volume: 182
  year: 2022
  ident: bib8
  article-title: Technology insight: plant-derived vesicles—how far from the clinical biotherapeutics and therapeutic drug carriers?
  publication-title: Adv. Drug Deliv. Rev.
– volume: 26
  start-page: 4195
  year: 2022
  end-page: 4209
  ident: bib20
  article-title: Anti‐inflammatory properties of lemon‐derived extracellular vesicles are achieved through the inhibition of ERK/NF‐κB signalling pathways
  publication-title: J. Cell Mol. Med.
– volume: 12
  start-page: 5144
  year: 2021
  end-page: 5156
  ident: bib24
  article-title: Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing
  publication-title: Food Funct.
– volume: 3
  year: 2023
  ident: bib44
  article-title: Recent progress of metal‐based nanomaterials with anti‐tumor biological effects for enhanced cancer therapy
  publication-title: Exploration
– volume: 26
  start-page: 838
  year: 2010
  end-page: 846
  ident: bib43
  article-title: Exploring cellular adhesion and differentiation in a micro‐/nano‐hybrid polymer scaffold
  publication-title: Biotechnol. Progr.
– volume: 11
  year: 2022
  ident: bib9
  article-title: Plant‐derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications
  publication-title: J. Extracell. Vesicles
– volume: 16
  start-page: 748
  year: 2021
  end-page: 759
  ident: bib1
  article-title: Extracellular vesicles as a next-generation drug delivery platform
  publication-title: Nat. Nanotechnol.
– volume: 52
  start-page: 1687
  year: 2019
  end-page: 1696
  ident: bib5
  article-title: Chemical engineering of cell therapy for heart diseases
  publication-title: Acc. Chem. Res.
– volume: 554
  start-page: 311
  year: 2018
  end-page: 316
  ident: bib36
  article-title: Genomics of the origin and evolution of Citrus
  publication-title: Nature
– volume: 350
  start-page: 389
  year: 2022
  end-page: 400
  ident: bib13
  article-title: Plant-derived extracellular vesicles as oral drug delivery carriers
  publication-title: J. Contr. Release
– volume: 8
  start-page: 185
  year: 2019
  ident: bib37
  article-title: Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe)
  publication-title: Foods
– volume: 26
  year: 2023
  ident: bib21
  article-title: Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway
  publication-title: iScience
– volume: 4
  year: 2024
  ident: bib48
  article-title: Unveiling the promise: exosomes as game‐changers in anti‐infective therapy
  publication-title: Exploration
– volume: 31
  start-page: 315
  year: 2019
  end-page: 324
  ident: bib27
  article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs
  publication-title: Plant Cell
– volume: 69
  start-page: 140
  year: 2021
  end-page: 149
  ident: bib38
  article-title: Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications
  publication-title: Semin. Cancer Biol.
– volume: 20
  start-page: 69
  year: 2022
  ident: bib30
  article-title: Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges
  publication-title: Cell Commun. Signal.
– volume: 35
  year: 2023
  ident: bib11
  article-title: Plant‐derived vesicle‐like nanoparticles as promising biotherapeutic tools: present and future
  publication-title: Adv. Mater.
– volume: 29
  start-page: 13
  year: 2021
  end-page: 31
  ident: bib46
  article-title: Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms
  publication-title: Mol. Ther.
– volume: 12
  start-page: 347
  year: 2013
  end-page: 357
  ident: bib4
  article-title: Extracellular vesicles: biology and emerging therapeutic opportunities
  publication-title: Nat. Rev. Drug Discov.
– volume: 18
  start-page: 428
  year: 1967
  end-page: 443
  ident: bib10
  article-title: Ultrastructural changes during growth and embryogenesis in carrot cell cultures
  publication-title: J. Ultrastruct. Res.
– volume: 6
  year: 2020
  ident: bib39
  article-title: Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair
  publication-title: Sci. Adv.
– volume: 13
  start-page: 7164
  year: 2022
  ident: bib18
  article-title: Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy
  publication-title: Nat. Commun.
– volume: 18
  start-page: 561
  year: 2021
  end-page: 571
  ident: bib25
  article-title: The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing
  publication-title: Tissue Eng. Regener. Med.
– year: 2023
  ident: bib31
  article-title: Plant-derived nanovesicles: promising therapeutics and drug delivery nanoplatforms for brain disorders
  publication-title: Fundam. Res.
– volume: 7
  year: 2012
  ident: bib47
  article-title: Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue
  publication-title: PLoS One
– volume: 18
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib22
  article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy
  publication-title: J. Nanobiotechnol.
– volume: 29
  year: 2020
  ident: bib45
  article-title: Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 21
  start-page: 8151
  year: 2021
  end-page: 8159
  ident: bib28
  article-title: Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo
  publication-title: Nano Lett.
– volume: 4
  year: 2015
  ident: bib14
  article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage
  publication-title: J. Extracell. Vesicles
– volume: 10
  year: 2021
  ident: bib33
  article-title: A call for Rigor and standardization in plant extracellular vesicle research
  publication-title: J. Extracell. Vesicles
– volume: 328
  start-page: 1031
  year: 2010
  end-page: 1035
  ident: bib41
  article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs
  publication-title: Science
– volume: 59
  start-page: 256
  year: 2012
  end-page: 264
  ident: bib34
  article-title: Intramyocardial injection of platelet gel promotes endogenous repair and augments cardiac function in rats with myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
– volume: 9
  year: 2022
  ident: bib19
  article-title: Lemon‐derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis‐triggered energy dissipation and energy production reduction
  publication-title: Adv. Sci.
– volume: 6
  year: 2018
  ident: bib29
  article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables
  publication-title: PeerJ
– volume: 36
  start-page: 48
  year: 2024
  end-page: 61
  ident: bib32
  article-title: Tailoring therapeutics via a systematic beneficial elements comparison between photosynthetic bacteria-derived OMVs and extruded nanovesicles
  publication-title: Bioact. Mater.
– volume: 25
  start-page: 1641
  year: 2017
  end-page: 1654
  ident: bib16
  article-title: Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase
  publication-title: Mol. Ther.
– volume: 9
  year: 2022
  ident: bib40
  article-title: Decoy exosomes offer protection against chemotherapy‐induced toxicity
  publication-title: Adv. Sci.
– volume: 3
  year: 2024
  ident: 10.1016/j.bioactmat.2024.12.001_bib17
  article-title: Exosome as drug delivery system: current advancements
  publication-title: Extracell. Vesicle
  doi: 10.1016/j.vesic.2023.100032
– volume: 59
  start-page: 256
  issue: 3
  year: 2012
  ident: 10.1016/j.bioactmat.2024.12.001_bib34
  article-title: Intramyocardial injection of platelet gel promotes endogenous repair and augments cardiac function in rats with myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.10.858
– volume: 554
  start-page: 311
  year: 2018
  ident: 10.1016/j.bioactmat.2024.12.001_bib36
  article-title: Genomics of the origin and evolution of Citrus
  publication-title: Nature
  doi: 10.1038/nature25447
– volume: 367
  year: 2020
  ident: 10.1016/j.bioactmat.2024.12.001_bib2
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
  doi: 10.1126/science.aau6977
– volume: 36
  start-page: 48
  year: 2024
  ident: 10.1016/j.bioactmat.2024.12.001_bib32
  article-title: Tailoring therapeutics via a systematic beneficial elements comparison between photosynthetic bacteria-derived OMVs and extruded nanovesicles
  publication-title: Bioact. Mater.
– volume: 20
  start-page: 69
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib30
  article-title: Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-022-00889-1
– year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib31
  article-title: Plant-derived nanovesicles: promising therapeutics and drug delivery nanoplatforms for brain disorders
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2023.09.007
– volume: 3
  year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib44
  article-title: Recent progress of metal‐based nanomaterials with anti‐tumor biological effects for enhanced cancer therapy
  publication-title: Exploration
  doi: 10.1002/EXP.20220001
– volume: 10
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib33
  article-title: A call for Rigor and standardization in plant extracellular vesicle research
  publication-title: J. Extracell. Vesicles
  doi: 10.1002/jev2.12048
– volume: 16
  start-page: 748
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib1
  article-title: Extracellular vesicles as a next-generation drug delivery platform
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00931-2
– volume: 4
  year: 2015
  ident: 10.1016/j.bioactmat.2024.12.001_bib14
  article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage
  publication-title: J. Extracell. Vesicles
  doi: 10.3402/jev.v4.28713
– volume: 25
  start-page: 1641
  year: 2017
  ident: 10.1016/j.bioactmat.2024.12.001_bib16
  article-title: Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.01.025
– volume: 7
  year: 2012
  ident: 10.1016/j.bioactmat.2024.12.001_bib47
  article-title: Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045074
– volume: 9
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib19
  article-title: Lemon‐derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis‐triggered energy dissipation and energy production reduction
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105274
– volume: 29
  year: 2020
  ident: 10.1016/j.bioactmat.2024.12.001_bib45
  article-title: Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2020.102271
– volume: 69
  start-page: 140
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib38
  article-title: Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.08.009
– volume: 350
  start-page: 389
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib13
  article-title: Plant-derived extracellular vesicles as oral drug delivery carriers
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2022.08.046
– volume: 18
  start-page: 428
  year: 1967
  ident: 10.1016/j.bioactmat.2024.12.001_bib10
  article-title: Ultrastructural changes during growth and embryogenesis in carrot cell cultures
  publication-title: J. Ultrastruct. Res.
  doi: 10.1016/S0022-5320(67)80128-X
– volume: 9
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib40
  article-title: Decoy exosomes offer protection against chemotherapy‐induced toxicity
  publication-title: Adv. Sci.
– volume: 8
  start-page: 185
  year: 2019
  ident: 10.1016/j.bioactmat.2024.12.001_bib37
  article-title: Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe)
  publication-title: Foods
  doi: 10.3390/foods8060185
– volume: 3
  start-page: 150
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib49
  article-title: New insights of engineering plant exosome-like nanovesicles as a nanoplatform for therapeutics and drug delivery, Extracell
  publication-title: Vesicles Circ. Nucl. Acids
  doi: 10.20517/evcna.2021.25
– volume: 328
  start-page: 1031
  year: 2010
  ident: 10.1016/j.bioactmat.2024.12.001_bib41
  article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs
  publication-title: Science
  doi: 10.1126/science.1183057
– volume: 12
  start-page: 907
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib15
  article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2021.08.016
– volume: 35
  year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib11
  article-title: Plant‐derived vesicle‐like nanoparticles as promising biotherapeutic tools: present and future
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207826
– volume: 22
  start-page: 365
  year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib12
  article-title: Plant-derived nanovesicles: current understanding and applications for cancer therapy
  publication-title: Bioact. Mater.
– volume: 32
  start-page: 2397
  issue: 9
  year: 2014
  ident: 10.1016/j.bioactmat.2024.12.001_bib42
  article-title: Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells
  publication-title: Stem cells
  doi: 10.1002/stem.1736
– volume: 6
  year: 2018
  ident: 10.1016/j.bioactmat.2024.12.001_bib29
  article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables
  publication-title: PeerJ
  doi: 10.7717/peerj.5186
– volume: 4
  year: 2024
  ident: 10.1016/j.bioactmat.2024.12.001_bib48
  article-title: Unveiling the promise: exosomes as game‐changers in anti‐infective therapy
  publication-title: Exploration
  doi: 10.1002/EXP.20230139
– volume: 12
  start-page: 5144
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib24
  article-title: Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing
  publication-title: Food Funct.
  doi: 10.1039/D0FO02953J
– volume: 52
  start-page: 1687
  issue: 6
  year: 2019
  ident: 10.1016/j.bioactmat.2024.12.001_bib5
  article-title: Chemical engineering of cell therapy for heart diseases
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00137
– volume: 26
  year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib21
  article-title: Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway
  publication-title: iScience
  doi: 10.1016/j.isci.2023.107041
– volume: 2
  year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib7
  article-title: Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics
  publication-title: Extracell. Vesicle
  doi: 10.1016/j.vesic.2023.100029
– volume: 101
  start-page: 321
  year: 2016
  ident: 10.1016/j.bioactmat.2024.12.001_bib50
  article-title: Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.018
– volume: 1
  start-page: 608
  year: 2023
  ident: 10.1016/j.bioactmat.2024.12.001_bib6
  article-title: Stem cell-derived exosome versus stem cell therapy
  publication-title: Nat. Rev. Bioeng.
  doi: 10.1038/s44222-023-00064-2
– volume: 26
  start-page: 4195
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib20
  article-title: Anti‐inflammatory properties of lemon‐derived extracellular vesicles are achieved through the inhibition of ERK/NF‐κB signalling pathways
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.17404
– volume: 26
  start-page: 838
  issue: 3
  year: 2010
  ident: 10.1016/j.bioactmat.2024.12.001_bib43
  article-title: Exploring cellular adhesion and differentiation in a micro‐/nano‐hybrid polymer scaffold
  publication-title: Biotechnol. Progr.
  doi: 10.1002/btpr.391
– volume: 13
  start-page: 7164
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib18
  article-title: Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34883-5
– volume: 18
  start-page: 561
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib25
  article-title: The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing
  publication-title: Tissue Eng. Regener. Med.
  doi: 10.1007/s13770-021-00367-8
– volume: 29
  start-page: 13
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib46
  article-title: Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.11.030
– volume: 19
  start-page: 565
  year: 2024
  ident: 10.1016/j.bioactmat.2024.12.001_bib3
  article-title: Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01580-3
– volume: 182
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib8
  article-title: Technology insight: plant-derived vesicles—how far from the clinical biotherapeutics and therapeutic drug carriers?
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.114108
– volume: 17
  start-page: 53
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib35
  article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities
  publication-title: Asian J. Pharm. Sci.
– volume: 11
  year: 2022
  ident: 10.1016/j.bioactmat.2024.12.001_bib9
  article-title: Plant‐derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications
  publication-title: J. Extracell. Vesicles
  doi: 10.1002/jev2.12283
– volume: 31
  start-page: 315
  year: 2019
  ident: 10.1016/j.bioactmat.2024.12.001_bib27
  article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00872
– volume: 21
  start-page: 8151
  year: 2021
  ident: 10.1016/j.bioactmat.2024.12.001_bib28
  article-title: Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02530
– volume: 360
  start-page: 1126
  year: 2018
  ident: 10.1016/j.bioactmat.2024.12.001_bib26
  article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes
  publication-title: Science
  doi: 10.1126/science.aar4142
– volume: 18
  start-page: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2024.12.001_bib22
  article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-020-00656-9
– volume: 6
  year: 2020
  ident: 10.1016/j.bioactmat.2024.12.001_bib39
  article-title: Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair
  publication-title: Sci. Adv.
– volume: 12
  start-page: 347
  year: 2013
  ident: 10.1016/j.bioactmat.2024.12.001_bib4
  article-title: Extracellular vesicles: biology and emerging therapeutic opportunities
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3978
– volume: 6
  year: 2015
  ident: 10.1016/j.bioactmat.2024.12.001_bib23
  article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4004
SSID ssj0001700007
Score 2.338005
Snippet Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 82
SubjectTerms anti-cancer therapy
Apoptosis
Biomedical materials
Cancer therapies
Cell cycle
Cytotoxicity
Drug delivery
Drug delivery systems
Extracellular vesicles
Ginger
In vivo methods and tests
Lipidomic analysis
Lipids
Nanotechnology
p53 Protein
Plant-derived extracellular vesicles
Plants
Protein markers
Proteins
Proteomics
Sterols
Therapeutic applications
Transcriptomics
Tumors
Vesicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9VAEF60ffFFFG_RKhF8Xcxespv0Ray0FMEiYqFvy97SRiQ5PSen4L_vTLI5NQr6mmST3Z3bN5PZGULegRXlIWpGrYyKgvYraB2Fps4CwbkUUgk8O_zlTJ2ey88X5UUKuG1SWuWsE0dFHXqPMfL3ggEylmBcyg-ra4pdo_DvamqhcZ_sgwquwPnaPzo--_rtLsqix3912GGuqDVlgGcWSV6u7a0fABuCp8jlGBhM7WFmEzVW8l9Yqr-R6J8Jlb9ZqJNH5GGClvnHiRcek3uxe0KusDl1wKPHuU31R_K-yVc_YUdpAPa7iSEHBb22GMLHnNT8Jm7GXLkc8Gx-uW0DMsY4qB8wtwi-AYNb6vH6Op9OcP16Ss5Pjr9_OqWpuwL1JVMDtQVAL211I5pYWVaI0gYurOINVzXGRmMlG1sq2wgXJXO8CIXHw4WaS6-0EM_IXtd38QXJYaxkIPmOOya1Z9ZzoZy3rrQx2jpkpJg31KymIhpmzi77YXY0MEgDwzjm2WXkCDd-9zhWwR4v9OtLk4TKiKh9kLX1AeakfeFisN4xH8BJqmOpM3I4k80kQDEBBXhV-_8ZHMyENkmuN-aOCzPydncbJBJpZLvYb8dnCiFL8LMz8nzii90yAP0J9LkzUi04ZrHO5Z2uvRqrfjOmKtCX_OW_5_WKPODYonhMLjoge8N6G18DbhrcmyQct0qyGew
  priority: 102
  providerName: ProQuest
Title Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy
URI https://dx.doi.org/10.1016/j.bioactmat.2024.12.001
https://www.ncbi.nlm.nih.gov/pubmed/39737211
https://www.proquest.com/docview/3157648535
https://www.proquest.com/docview/3150345446
https://pubmed.ncbi.nlm.nih.gov/PMC11683192
https://doaj.org/article/3e7cd49acd7247c0bedacb1cd9749e57
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggUHkE2pWRuEbEjzgJt7Z0qRCtEFCpN2v8CE1VJdU2W4l_z9hJVhs49NJTpCTOY2bs-cb6ZoaQD-hFufMFS0F6leLql6WVF0VqABXOpZBKhNzh0zN1ci6_XuQXW62-AidsKA88CO6j8IV1sgLrCi4LmxnvwBpmHQLhyucxjxx93lYwdTUUhQneb0boMk0HtkcciFEhl3ETcGwFM7mjWLV_5pX-R53_kie3vNHyOXk2wkh6MHz-C_LIt7vkMjSidiHNmMJYa4R2Nb25RumlDk3tzjuKi_EKwnZ94J_SO38beXEUsSv9vW5cMII4qOsDjwjfgYOb1IbzKzpka_15Sc6Xx7-OTtKxk0Jqc6b6FDKEWQUUtah9CSwTOTguQPGaqyrsg_pS1pArqIXxkhmeucyGREKUuVWFEK_ITtu1_g2hOFYynOWGG4b6YGC5UMaCycF7qFxCskmg-mYomKEnJtmV3uhABx1oxgOnLiGHQfCb20PF63gC7UCPdqDvs4OEfJrUpkfwMIACfFRz_xfsTYrW4xy-1YJhLCYRzuQJeb-5jLMv6Aha363jPZmQOcbUCXk92MXmNxDpiRBfJ6ScWczsP-dX2uYyVvhmTJW4NvK3DyGZd-QpD02LI91oj-z0q7XfRyTVmwV5XC6_LMiTg8-n337i8fD47PuPRZxKfwF9QiTc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaq8gAvCMQVKGAkeLSIj8QbJIS4li09nlqpb8ZX2iC0WfYo6p_iNzLjJFsWJHjqaxInjuf6ZjzjIeQ5WFERoubMqlgy0H45q6LUzFkguFBSlRJrhw8Oy8mx-nxSnGyRn0MtDKZVDjoxKerQeoyRv5QckLEC41K8mX1n2DUKd1eHFhodW-zFix_gsi1e734A-r4QYvzx6P2E9V0FmC94uWQ2B8ihra5lHUeW57KwQUhbilqUFcYE40jVtihtLV1U3Ik85B6L6rRQvtQYAAWVf01JWaFEjcafLmM6Ou0MYj-7vNKMA3raSClzTWv9EpAo-KVCpTBk34xmMIipb8CGXfwb9_6ZvvmbPRzfIjd7IEvfdpx3m2zF6R1yhq2wAxY6U9ufdkLbms6-Af1YAGY_j4GCOZhb3DDADFh6HhcpM48CeqanqyYgG6ZB7RIzmeAbMLhhHq_PaVcvdnGXHF_Jqt8j29N2Gh8QCmMVBz3jhONKe269kKXz1hU2RluFjOTDgppZd2SHGXLZvpo1DQzSwHCBWX0ZeYcLv34cz9xOF9r5qelF2MiofVCV9QHmpH3uYrDecR_AJatioTPyaiCb6eFLB0vgVc3_Z7AzENr0WmRhLnk-I8_Wt0H-kUZ2GttVeiaXqgCvPiP3O75Y_wZgTYkefkZGGxyz8Z-bd6bNWTpjnPNyBNpZPPz3vJ6S65Ojg32zv3u494jcENgcOaU17ZDt5XwVHwNiW7onSUwo-XLVcvkLOzlUUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipidomic+analysis+of+plant-derived+extracellular+vesicles+for+guidance+of+potential+anti-cancer+therapy&rft.jtitle=Bioactive+materials&rft.au=Wang%2C+Fei&rft.au=Li%2C+Lanya&rft.au=Deng%2C+Junyao&rft.au=Ai%2C+Jiacong&rft.date=2025-04-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=46&rft.spage=82&rft.epage=96&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.12.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bioactmat_2024_12_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon