Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs

Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultane...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 65; no. 24; pp. 11597 - 11604
Main Authors Bindra, Ranjit S., Gibson, Shannon L., Meng, Alice, Westermark, Ulrica, Jasin, Maria, Pierce, Andrew J., Bristow, Robert G., Classon, Marie K., Glazer, Peter M.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.12.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer. (Cancer Res 2005; 65(24): 11597-604)
AbstractList Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer. (Cancer Res 2005; 65(24): 11597-604)
Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer.
Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer.Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer.
Author Pierce, Andrew J.
Glazer, Peter M.
Gibson, Shannon L.
Meng, Alice
Bristow, Robert G.
Westermark, Ulrica
Classon, Marie K.
Jasin, Maria
Bindra, Ranjit S.
Author_xml – sequence: 1
  givenname: Ranjit S.
  surname: Bindra
  fullname: Bindra, Ranjit S.
– sequence: 2
  givenname: Shannon L.
  surname: Gibson
  fullname: Gibson, Shannon L.
– sequence: 3
  givenname: Alice
  surname: Meng
  fullname: Meng, Alice
– sequence: 4
  givenname: Ulrica
  surname: Westermark
  fullname: Westermark, Ulrica
– sequence: 5
  givenname: Maria
  surname: Jasin
  fullname: Jasin, Maria
– sequence: 6
  givenname: Andrew J.
  surname: Pierce
  fullname: Pierce, Andrew J.
– sequence: 7
  givenname: Robert G.
  surname: Bristow
  fullname: Bristow, Robert G.
– sequence: 8
  givenname: Marie K.
  surname: Classon
  fullname: Classon, Marie K.
– sequence: 9
  givenname: Peter M.
  surname: Glazer
  fullname: Glazer, Peter M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17356747$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16357170$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFr2zAUB3BRMtok20fo8KW7qdOz9CyJnNIsaQthg7GdhSzLxcOxU8lmybef3aYt7NKTeOL3F-j9Z2TStI0n5BLYNQCqr4wxRVHI9Hq1_E4Z0hRAn5EpIFdUCoETMn01F2QW459hRGB4Ti4g4yhBsilZ3B337aGy9L4peueL5Fv7t6HBP_S17aq2Sdoyufm5WkKyPuyDj3G8y4_JOt3Ej-RDaevoP53OOfm9Wf9a3dHtj9v71XJLHULWUV2khZROKCtyXnAsfekydDmKzGZSC648L1OmcwFCQ2ZTpREU6kLZXDHI-Zx8eX53H9rH3sfO7KrofF3bxrd9NJlSWnMF70KQgg9f1wP8fIJ9vvOF2YdqZ8PRvOxlAFcnYKOzdRls46r45iTHTAo5OHx2LrQxBl--EWbGnszYgRk7MENPhqEZexpyi_9yruqeFt4FW9XvpP8BYuqUaQ
CODEN CNREA8
CitedBy_id crossref_primary_10_1111_cas_13947
crossref_primary_10_1038_onc_2010_406
crossref_primary_10_1128_MCB_01301_08
crossref_primary_10_1074_mcp_M112_018325
crossref_primary_10_1007_s10549_012_2232_0
crossref_primary_10_1097_CAD_0000000000001160
crossref_primary_10_5301_tj_5000558
crossref_primary_10_1093_nar_gkx951
crossref_primary_10_1200_EDBK_280495
crossref_primary_10_2174_1871530319666191129120253
crossref_primary_10_33590_emjoncol_10313985
crossref_primary_10_3389_fgene_2022_886170
crossref_primary_10_1128_JVI_02495_15
crossref_primary_10_1200_JCO_2017_77_2285
crossref_primary_10_1038_nrc2504
crossref_primary_10_1667_RR13959_1
crossref_primary_10_1016_j_nutres_2015_04_009
crossref_primary_10_3389_fonc_2020_01610
crossref_primary_10_15252_emmm_201708816
crossref_primary_10_3390_cancers15112955
crossref_primary_10_1172_JCI146256
crossref_primary_10_1016_j_yao_2022_02_006
crossref_primary_10_1038_cdd_2017_172
crossref_primary_10_1186_s13075_014_0488_y
crossref_primary_10_1155_2022_1591377
crossref_primary_10_1186_s13046_021_02005_6
crossref_primary_10_1158_1541_7786_MCR_12_0395
crossref_primary_10_1259_bjr_20200087
crossref_primary_10_4049_jimmunol_0801882
crossref_primary_10_1016_j_isci_2020_101262
crossref_primary_10_1200_JCO_19_00337
crossref_primary_10_2217_14796694_3_3_329
crossref_primary_10_1093_carcin_bgx038
crossref_primary_10_1111_j_1349_7006_2010_01702_x
crossref_primary_10_1038_s41581_020_00359_2
crossref_primary_10_1016_j_semradonc_2010_05_006
crossref_primary_10_1186_s12967_020_02667_4
crossref_primary_10_1016_j_canlet_2006_12_011
crossref_primary_10_1002_humu_23652
crossref_primary_10_1038_labinvest_3700658
crossref_primary_10_3390_diagnostics9030087
crossref_primary_10_1016_j_scr_2012_07_001
crossref_primary_10_1371_journal_pone_0011208
crossref_primary_10_1359_jbmr_090512
crossref_primary_10_1038_cddis_2014_577
crossref_primary_10_1038_sj_onc_1210001
crossref_primary_10_1152_physiol_00016_2013
crossref_primary_10_3390_cancers14112640
crossref_primary_10_1002_ijc_25728
crossref_primary_10_1200_JCO_21_02947
crossref_primary_10_1038_s41598_019_46210_y
crossref_primary_10_1002_iub_427
crossref_primary_10_1002_path_2925
crossref_primary_10_1007_s12307_011_0067_6
crossref_primary_10_1093_nar_gkab964
crossref_primary_10_1093_annonc_mdz018
crossref_primary_10_1016_j_bbrc_2006_05_060
crossref_primary_10_1667_RR0660_1
crossref_primary_10_1097_CCO_0000000000000557
crossref_primary_10_2174_1871530319666191125112728
crossref_primary_10_1002_em_20606
crossref_primary_10_1016_j_semcancer_2023_11_007
crossref_primary_10_1158_0008_5472_CAN_19_1807
crossref_primary_10_1080_13543784_2021_1898586
crossref_primary_10_1002_mc_20813
crossref_primary_10_1111_j_1742_4658_2007_06033_x
crossref_primary_10_3389_fphar_2023_1162665
crossref_primary_10_1146_annurev_cancerbio_050216_121919
crossref_primary_10_1155_2014_820248
crossref_primary_10_1158_1541_7786_MCR_14_0246
crossref_primary_10_3389_fcell_2022_814621
crossref_primary_10_3390_diagnostics13061040
crossref_primary_10_1007_s11523_020_00756_4
crossref_primary_10_1038_onc_2008_58
crossref_primary_10_1038_d41586_021_03718_6
crossref_primary_10_1002_stem_2195
crossref_primary_10_1038_nrc3007
crossref_primary_10_1158_1541_7786_MCR_19_0665
crossref_primary_10_1158_1541_7786_MCR_13_0628
crossref_primary_10_1016_j_ctrv_2007_11_005
crossref_primary_10_1038_s44318_025_00402_7
crossref_primary_10_1593_neo_121674
crossref_primary_10_3390_genes14020393
crossref_primary_10_1158_0008_5472_CAN_10_0944
crossref_primary_10_1186_s12916_023_03046_8
crossref_primary_10_1038_s41416_023_02534_1
crossref_primary_10_1016_j_bbcan_2024_189185
crossref_primary_10_3390_genes15060808
crossref_primary_10_1016_j_ygyno_2018_10_023
crossref_primary_10_1080_14656566_2017_1383384
crossref_primary_10_1016_j_ygyno_2024_05_002
crossref_primary_10_1371_journal_pgen_1000208
crossref_primary_10_3390_cancers11030416
crossref_primary_10_1016_S1470_2045_18_30786_1
crossref_primary_10_1016_j_ygyno_2021_05_018
crossref_primary_10_1016_j_ctrv_2021_102337
crossref_primary_10_1016_j_radonc_2011_05_059
crossref_primary_10_3389_fimmu_2022_1034903
crossref_primary_10_1158_0008_5472_CAN_12_3270
crossref_primary_10_1016_j_critrevonc_2017_04_006
crossref_primary_10_1016_j_gene_2021_145796
crossref_primary_10_1016_j_ejca_2016_03_005
crossref_primary_10_1158_1541_7786_MCR_14_0173
crossref_primary_10_1158_0008_5472_CAN_08_2516
crossref_primary_10_4161_cc_10_8_15341
crossref_primary_10_1155_2016_9810383
crossref_primary_10_1016_j_dnarep_2015_04_030
crossref_primary_10_20517_cdr_2023_08
crossref_primary_10_1200_JCO_19_00508
crossref_primary_10_1038_s41420_020_00311_0
crossref_primary_10_1016_j_lfs_2020_118434
crossref_primary_10_1158_2159_8290_CD_16_0860
crossref_primary_10_1158_1078_0432_CCR_10_0527
crossref_primary_10_1038_s41391_019_0153_2
crossref_primary_10_1111_j_1447_0756_2010_01377_x
crossref_primary_10_2147_CMAR_S320193
crossref_primary_10_1002_gcc_22935
crossref_primary_10_1016_j_ebiom_2019_04_009
crossref_primary_10_1007_s11523_020_00780_4
crossref_primary_10_1016_j_ctro_2017_06_001
crossref_primary_10_1155_2022_4880355
crossref_primary_10_1242_jcs_092262
crossref_primary_10_1158_0008_5472_CAN_09_2715
crossref_primary_10_3390_ijms21197093
crossref_primary_10_1158_0008_5472_CAN_07_5472
crossref_primary_10_1007_s13402_024_00973_3
crossref_primary_10_1074_jbc_M710296200
crossref_primary_10_1016_j_ctrv_2018_12_002
crossref_primary_10_1158_1078_0432_CCR_10_2158
crossref_primary_10_1016_j_apsb_2021_01_003
crossref_primary_10_7717_peerj_11275
crossref_primary_10_1007_s11912_016_0515_z
crossref_primary_10_18632_oncotarget_3787
crossref_primary_10_1186_s13046_020_01616_9
crossref_primary_10_1186_s12859_015_0827_2
crossref_primary_10_1080_14728222_2023_2259096
crossref_primary_10_1128_mbio_01074_22
crossref_primary_10_3390_ijms24010245
crossref_primary_10_1073_pnas_0904783107
crossref_primary_10_1038_s41571_021_00539_4
crossref_primary_10_1177_1758835919897537
crossref_primary_10_1186_bcr2566
crossref_primary_10_1080_14728214_2020_1773791
crossref_primary_10_1371_journal_pone_0108511
crossref_primary_10_1249_JES_0000000000000265
crossref_primary_10_18632_oncotarget_2587
crossref_primary_10_3389_fendo_2021_742215
crossref_primary_10_1038_onc_2015_198
crossref_primary_10_1016_j_radonc_2021_11_027
crossref_primary_10_1016_j_ygyno_2015_11_024
crossref_primary_10_1101_gad_334516_119
crossref_primary_10_1186_2041_9414_4_5
crossref_primary_10_1158_1541_7786_MCR_21_0456
crossref_primary_10_1016_j_critrevonc_2016_10_010
crossref_primary_10_3390_ijms232012093
crossref_primary_10_1111_j_1742_4658_2010_07733_x
crossref_primary_10_1038_sj_onc_1209998
crossref_primary_10_1186_1471_2407_11_246
crossref_primary_10_1007_s10549_009_0422_1
crossref_primary_10_1007_s10555_021_09983_1
crossref_primary_10_1038_s41467_019_12610_x
crossref_primary_10_1016_j_ygyno_2014_02_039
crossref_primary_10_18632_oncotarget_23445
crossref_primary_10_1002_onco_13758
crossref_primary_10_1016_j_canlet_2014_12_038
crossref_primary_10_1371_journal_pone_0192136
crossref_primary_10_3390_cells10030678
crossref_primary_10_1634_theoncologist_2012_0028
crossref_primary_10_1089_ars_2012_5151
crossref_primary_10_1097_GCO_0000000000000428
crossref_primary_10_1016_j_mrfmmm_2017_02_001
crossref_primary_10_1128_MCB_01121_10
crossref_primary_10_1177_17588359241255174
crossref_primary_10_1016_j_dnarep_2011_05_006
crossref_primary_10_1111_1751_2980_13168
crossref_primary_10_1126_scitranslmed_aav4508
crossref_primary_10_3389_fonc_2021_754524
crossref_primary_10_1371_journal_pone_0134120
crossref_primary_10_1002_ijc_27512
crossref_primary_10_3802_jgo_2022_33_e86
crossref_primary_10_1098_rsob_220118
crossref_primary_10_1136_bmjopen_2020_047076
crossref_primary_10_1016_j_taap_2007_05_010
crossref_primary_10_1038_nsmb_1941
crossref_primary_10_1016_S1470_2045_14_70391_2
crossref_primary_10_1002_jcp_24409
crossref_primary_10_1016_j_cancergen_2020_08_005
crossref_primary_10_1016_j_jinorgbio_2023_112197
crossref_primary_10_1016_j_mcn_2021_103658
crossref_primary_10_1007_s12088_011_0195_1
crossref_primary_10_1016_j_trecan_2019_08_005
crossref_primary_10_1200_JCO_21_02011
crossref_primary_10_1038_sj_emboj_7601369
crossref_primary_10_1093_mutage_gez019
crossref_primary_10_1016_j_ccr_2008_10_016
crossref_primary_10_1155_2013_746858
crossref_primary_10_3390_antiox11061195
crossref_primary_10_1007_s11356_021_16726_w
crossref_primary_10_1158_1535_7163_MCT_11_0634
crossref_primary_10_1186_s13046_017_0570_9
crossref_primary_10_3390_cancers14102504
crossref_primary_10_1016_j_bbrc_2018_09_068
crossref_primary_10_4161_cc_9_13_12059
crossref_primary_10_1016_j_neo_2020_06_001
crossref_primary_10_1089_ars_2013_5403
crossref_primary_10_1371_journal_pone_0079106
crossref_primary_10_3389_fphar_2021_743073
crossref_primary_10_1016_j_radonc_2007_04_016
crossref_primary_10_1016_j_radonc_2011_07_001
crossref_primary_10_1016_j_eclinm_2022_101767
crossref_primary_10_1177_10732748241298329
crossref_primary_10_3390_ijms23158125
crossref_primary_10_1016_j_pharmthera_2021_108009
crossref_primary_10_1016_j_clon_2014_02_002
crossref_primary_10_3390_ph16091261
crossref_primary_10_3892_ijmm_2024_5447
crossref_primary_10_1093_annonc_mdw094
crossref_primary_10_1016_j_yao_2021_02_012
crossref_primary_10_1016_j_chembiol_2011_07_010
crossref_primary_10_1016_j_lungcan_2020_09_018
crossref_primary_10_1371_journal_pone_0004832
crossref_primary_10_1093_cvr_cvu222
crossref_primary_10_3390_cancers11091357
crossref_primary_10_1016_j_semcdb_2017_01_007
crossref_primary_10_1042_BJ20111627
crossref_primary_10_1038_bjc_2016_311
crossref_primary_10_1080_10409230701648502
crossref_primary_10_1016_j_ygyno_2019_09_021
crossref_primary_10_1165_rcmb_2011_0032OC
crossref_primary_10_3389_fonc_2020_00782
crossref_primary_10_1158_0008_5472_CAN_09_1477
crossref_primary_10_1016_j_tcb_2019_06_005
crossref_primary_10_1136_ijgc_2019_000499
crossref_primary_10_1007_s10555_007_9061_3
crossref_primary_10_1016_j_ygyno_2022_04_016
crossref_primary_10_18632_oncotarget_23470
crossref_primary_10_1007_s12254_020_00606_z
crossref_primary_10_1038_bjc_2013_808
crossref_primary_10_1002_jcp_22786
crossref_primary_10_1517_13543784_2016_1156857
crossref_primary_10_1021_cr900047g
crossref_primary_10_1200_EDBK_280539
crossref_primary_10_1016_j_ejca_2013_05_020
crossref_primary_10_1038_s41467_023_43991_9
crossref_primary_10_1128_MCB_02246_06
crossref_primary_10_1007_s00109_006_0133_6
Cites_doi 10.1016/j.molcel.2004.09.037
10.1016/j.molcel.2005.02.015
10.1016/j.mrfmmm.2004.03.013
10.1074/jbc.M307733200
10.1016/j.dnarep.2004.03.034
10.1016/S1471-4914(01)02090-1
10.1016/j.semradonc.2004.04.007
10.1182/blood-2004-07-2958
10.1128/MCB.25.8.3040-3055.2005
10.1074/jbc.M402692200
10.4161/cbt.3.12.1494
10.1158/0008-5472.CAN-04-1601
10.4161/cbt.3.12.1239
10.1093/emboj/19.4.662
10.1016/S1535-6108(03)00080-1
10.1016/S0378-1119(00)00549-7
10.1093/nar/gnh148
10.1016/S0092-8674(02)00615-3
10.1073/pnas.85.24.9533
10.1038/sj.emboj.7600196
10.1038/ng0495-439
10.1128/MCB.18.2.732
10.1126/science.7939630
10.1038/386761a0
10.1038/sj.emboj.7600459
10.1038/nature03445
10.1128/MCB.24.19.8504-8518.2004
10.1101/gad.949802
10.1158/1078-0432.CCR-0992-3
10.1101/gad.13.20.2633
10.1038/6029
10.1128/MCB.24.2.708-718.2004
10.1016/S1535-6108(02)00207-6
10.1128/MCB.16.7.3698
10.1038/sj.onc.1208612
10.1074/jbc.M200748200
10.1074/jbc.275.6.4532
10.1038/sj.bjc.6601804
10.1016/S1097-2765(00)80137-9
10.1038/sj.emboj.7600481
10.1074/jbc.272.34.20994
10.1074/jbc.M212360200
10.1093/carcin/24.2.159
10.1002/path.1573
10.1038/ncb998
10.1158/0008-5472.CAN-03-3695
10.1128/MCB.23.9.3265-3273.2003
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TO
H94
7X8
DOI 10.1158/0008-5472.CAN-05-2119
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitleList Oncogenes and Growth Factors Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 11604
ExternalDocumentID 16357170
17356747
10_1158_0008_5472_CAN_05_2119
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: ES05775
– fundername: NIGMS NIH HHS
  grantid: GM07205
GroupedDBID ---
-ET
.55
.GJ
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
MVM
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
XJT
YKV
YZZ
ZCG
ZGI
ADNWM
D0S
IQODW
J5H
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VXZ
7TO
H94
7X8
ID FETCH-LOGICAL-c516t-9d2d77c48a4b3d35fefc65cb546a679438e3f209b414916a28951859d8ab801b3
ISSN 0008-5472
IngestDate Mon Jul 21 11:28:23 EDT 2025
Thu Jul 10 18:08:44 EDT 2025
Wed Feb 19 01:45:06 EST 2025
Mon Jul 21 09:16:16 EDT 2025
Tue Jul 01 01:17:55 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Oxygen
Transcription factor E2F
Cell microenvironment
Hypoxia
Malignant tumor
Gene expression
BRCA1 gene
Tumor suppressor gene
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c516t-9d2d77c48a4b3d35fefc65cb546a679438e3f209b414916a28951859d8ab801b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/cancerres/article-pdf/65/24/11597/2539405/11597-11604.pdf
PMID 16357170
PQID 17431639
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_68899381
proquest_miscellaneous_17431639
pubmed_primary_16357170
pascalfrancis_primary_17356747
crossref_primary_10_1158_0008_5472_CAN_05_2119
crossref_citationtrail_10_1158_0008_5472_CAN_05_2119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-12-15
PublicationDateYYYYMMDD 2005-12-15
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-15
  day: 15
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2005
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061621174435000_B20
2022061621174435000_B21
2022061621174435000_B22
2022061621174435000_B23
2022061621174435000_B24
2022061621174435000_B25
2022061621174435000_B26
2022061621174435000_B27
2022061621174435000_B28
2022061621174435000_B29
2022061621174435000_B40
2022061621174435000_B30
2022061621174435000_B31
2022061621174435000_B32
2022061621174435000_B33
2022061621174435000_B34
2022061621174435000_B35
2022061621174435000_B36
2022061621174435000_B37
2022061621174435000_B38
2022061621174435000_B39
2022061621174435000_B9
2022061621174435000_B8
2022061621174435000_B7
2022061621174435000_B6
2022061621174435000_B5
2022061621174435000_B4
2022061621174435000_B3
2022061621174435000_B50
2022061621174435000_B41
2022061621174435000_B42
2022061621174435000_B43
2022061621174435000_B44
2022061621174435000_B45
2022061621174435000_B46
2022061621174435000_B47
2022061621174435000_B48
2022061621174435000_B2
2022061621174435000_B49
2022061621174435000_B1
2022061621174435000_B10
2022061621174435000_B11
2022061621174435000_B12
2022061621174435000_B13
2022061621174435000_B14
2022061621174435000_B15
2022061621174435000_B16
2022061621174435000_B17
2022061621174435000_B18
2022061621174435000_B19
References_xml – ident: 2022061621174435000_B31
  doi: 10.1016/j.molcel.2004.09.037
– ident: 2022061621174435000_B10
  doi: 10.1016/j.molcel.2005.02.015
– ident: 2022061621174435000_B7
  doi: 10.1016/j.mrfmmm.2004.03.013
– ident: 2022061621174435000_B22
  doi: 10.1074/jbc.M307733200
– ident: 2022061621174435000_B19
  doi: 10.1016/j.dnarep.2004.03.034
– ident: 2022061621174435000_B34
  doi: 10.1016/S1471-4914(01)02090-1
– ident: 2022061621174435000_B48
  doi: 10.1016/j.semradonc.2004.04.007
– ident: 2022061621174435000_B32
  doi: 10.1182/blood-2004-07-2958
– ident: 2022061621174435000_B21
  doi: 10.1128/MCB.25.8.3040-3055.2005
– ident: 2022061621174435000_B50
  doi: 10.1074/jbc.M402692200
– ident: 2022061621174435000_B28
  doi: 10.4161/cbt.3.12.1494
– ident: 2022061621174435000_B12
  doi: 10.1158/0008-5472.CAN-04-1601
– ident: 2022061621174435000_B47
  doi: 10.4161/cbt.3.12.1239
– ident: 2022061621174435000_B43
  doi: 10.1093/emboj/19.4.662
– ident: 2022061621174435000_B20
  doi: 10.1016/S1535-6108(03)00080-1
– ident: 2022061621174435000_B25
  doi: 10.1016/S0378-1119(00)00549-7
– ident: 2022061621174435000_B36
  doi: 10.1093/nar/gnh148
– ident: 2022061621174435000_B18
– ident: 2022061621174435000_B1
  doi: 10.1016/S0092-8674(02)00615-3
– ident: 2022061621174435000_B14
  doi: 10.1073/pnas.85.24.9533
– ident: 2022061621174435000_B33
  doi: 10.1038/sj.emboj.7600196
– ident: 2022061621174435000_B3
  doi: 10.1038/ng0495-439
– ident: 2022061621174435000_B8
– ident: 2022061621174435000_B35
  doi: 10.1128/MCB.18.2.732
– ident: 2022061621174435000_B2
  doi: 10.1126/science.7939630
– ident: 2022061621174435000_B40
  doi: 10.1038/386761a0
– ident: 2022061621174435000_B29
  doi: 10.1038/sj.emboj.7600459
– ident: 2022061621174435000_B49
  doi: 10.1038/nature03445
– ident: 2022061621174435000_B11
  doi: 10.1128/MCB.24.19.8504-8518.2004
– ident: 2022061621174435000_B30
  doi: 10.1101/gad.949802
– ident: 2022061621174435000_B5
  doi: 10.1158/1078-0432.CCR-0992-3
– ident: 2022061621174435000_B23
  doi: 10.1101/gad.13.20.2633
– ident: 2022061621174435000_B6
  doi: 10.1038/6029
– ident: 2022061621174435000_B41
  doi: 10.1128/MCB.24.2.708-718.2004
– ident: 2022061621174435000_B44
  doi: 10.1016/S1535-6108(02)00207-6
– ident: 2022061621174435000_B37
  doi: 10.1128/MCB.16.7.3698
– ident: 2022061621174435000_B42
  doi: 10.1038/sj.onc.1208612
– ident: 2022061621174435000_B39
  doi: 10.1074/jbc.M200748200
– ident: 2022061621174435000_B26
  doi: 10.1074/jbc.275.6.4532
– ident: 2022061621174435000_B4
  doi: 10.1038/sj.bjc.6601804
– ident: 2022061621174435000_B15
  doi: 10.1016/S1097-2765(00)80137-9
– ident: 2022061621174435000_B27
  doi: 10.1038/sj.emboj.7600481
– ident: 2022061621174435000_B24
  doi: 10.1074/jbc.272.34.20994
– ident: 2022061621174435000_B13
  doi: 10.1074/jbc.M212360200
– ident: 2022061621174435000_B9
– ident: 2022061621174435000_B38
  doi: 10.1093/carcin/24.2.159
– ident: 2022061621174435000_B45
  doi: 10.1002/path.1573
– ident: 2022061621174435000_B17
  doi: 10.1038/ncb998
– ident: 2022061621174435000_B46
  doi: 10.1158/0008-5472.CAN-03-3695
– ident: 2022061621174435000_B16
  doi: 10.1128/MCB.23.9.3265-3273.2003
SSID ssj0005105
Score 2.3566477
Snippet Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 11597
SubjectTerms Biological and medical sciences
BRCA1 Protein - genetics
BRCA1 Protein - metabolism
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cell Hypoxia
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Chromatin Immunoprecipitation
Colonic Neoplasms - genetics
Colonic Neoplasms - metabolism
DNA Repair
Down-Regulation
E2F Transcription Factors - genetics
E2F Transcription Factors - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Neoplastic
Gynecology. Andrology. Obstetrics
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Luciferases - metabolism
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Mammary gland diseases
Medical sciences
Molecular and cellular biology
Promoter Regions, Genetic
Recombination, Genetic
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcription, Genetic
Tumor Cells, Cultured
Tumors
Title Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs
URI https://www.ncbi.nlm.nih.gov/pubmed/16357170
https://www.proquest.com/docview/17431639
https://www.proquest.com/docview/68899381
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAhpQnyO8jHywBtyyYft2OKpqzpVMIqAVuqbZceJVlSlVZpKG3895zhp0rFpwEtUWbUd3Z0v9_N9IfROaMAUVIRYc6YwEYHBPEoy7ItMGB4kAcmqap8TNp6RT3M6b_rd19klpe4nv67NK_kfrsIY8NVmyf4DZ3eLwgD8Bv7CEzgMz7_i8fhyvbpYKAy4emv9-AYgNS5cd_naEDz5PhwEto6_i3fNrbk5grfsGqVDy_nifV3357xy7LoIjUqDLJf9zn3BCWxWOItT5T8XZXt32vYi_3Gu8hz22l0s29hZl06zSDrOoE31XXDB2rNl0YQNNZcQ1AZ0uDTMnWLlmJJ4T7Ey2hGgkHTUJJihLir3TwVOuYt4dMv1h4OJ9dXbOnTtF6vx0k--ytPZ2ZmcjubTu-heCEjBNrH4_K0tGE_rKNZmwTqJC7b5cO0me-bJ4Vpt4KRkrsXJzRikskWmj9DDGkR4AycRj9GdNH-C7n-pwySeoo9XBMO7IhjeKvMqwfBawfD0pWcF4xmanY6mwzGuu2TghAasxMKEJo4TwhXRkYlolmYJo4mmhClmy__xNMpCX2gCYDhgChA2BSMNTqLSYJ7o6Dk6AJFIXyCPRaExLDOJrwyhaSR0aJjShjIhYIT3EGmII5O6hLztZLKUFZSk3IYycGlpKoGm0qfS0rSH-rtpa1dD5bYJx3uUb2fFEWUAgHvobcMKCerQ-rhUnq62G2kBNkAMcfM_GOdgk_Ogh44cD9vVbW3GIPZf3jr3FXrQnoLX6KAstukbME5LfVyJ328yNYcB
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia-induced+down-regulation+of+BRCA1+expression+by+E2Fs&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Bindra%2C+Ranjit+S&rft.au=Gibson%2C+Shannon+L&rft.au=Meng%2C+Alice&rft.au=Westermark%2C+Ulrica&rft.date=2005-12-15&rft.issn=0008-5472&rft.volume=65&rft.issue=24&rft.spage=11597&rft_id=info:doi/10.1158%2F0008-5472.CAN-05-2119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon