Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs
Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultane...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 65; no. 24; pp. 11597 - 11604 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
15.12.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer. (Cancer Res 2005; 65(24): 11597-604) |
---|---|
AbstractList | Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer. (Cancer Res 2005; 65(24): 11597-604) Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer. Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer.Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer. |
Author | Pierce, Andrew J. Glazer, Peter M. Gibson, Shannon L. Meng, Alice Bristow, Robert G. Westermark, Ulrica Classon, Marie K. Jasin, Maria Bindra, Ranjit S. |
Author_xml | – sequence: 1 givenname: Ranjit S. surname: Bindra fullname: Bindra, Ranjit S. – sequence: 2 givenname: Shannon L. surname: Gibson fullname: Gibson, Shannon L. – sequence: 3 givenname: Alice surname: Meng fullname: Meng, Alice – sequence: 4 givenname: Ulrica surname: Westermark fullname: Westermark, Ulrica – sequence: 5 givenname: Maria surname: Jasin fullname: Jasin, Maria – sequence: 6 givenname: Andrew J. surname: Pierce fullname: Pierce, Andrew J. – sequence: 7 givenname: Robert G. surname: Bristow fullname: Bristow, Robert G. – sequence: 8 givenname: Marie K. surname: Classon fullname: Classon, Marie K. – sequence: 9 givenname: Peter M. surname: Glazer fullname: Glazer, Peter M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17356747$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16357170$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFr2zAUB3BRMtok20fo8KW7qdOz9CyJnNIsaQthg7GdhSzLxcOxU8lmybef3aYt7NKTeOL3F-j9Z2TStI0n5BLYNQCqr4wxRVHI9Hq1_E4Z0hRAn5EpIFdUCoETMn01F2QW459hRGB4Ti4g4yhBsilZ3B337aGy9L4peueL5Fv7t6HBP_S17aq2Sdoyufm5WkKyPuyDj3G8y4_JOt3Ej-RDaevoP53OOfm9Wf9a3dHtj9v71XJLHULWUV2khZROKCtyXnAsfekydDmKzGZSC648L1OmcwFCQ2ZTpREU6kLZXDHI-Zx8eX53H9rH3sfO7KrofF3bxrd9NJlSWnMF70KQgg9f1wP8fIJ9vvOF2YdqZ8PRvOxlAFcnYKOzdRls46r45iTHTAo5OHx2LrQxBl--EWbGnszYgRk7MENPhqEZexpyi_9yruqeFt4FW9XvpP8BYuqUaQ |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1111_cas_13947 crossref_primary_10_1038_onc_2010_406 crossref_primary_10_1128_MCB_01301_08 crossref_primary_10_1074_mcp_M112_018325 crossref_primary_10_1007_s10549_012_2232_0 crossref_primary_10_1097_CAD_0000000000001160 crossref_primary_10_5301_tj_5000558 crossref_primary_10_1093_nar_gkx951 crossref_primary_10_1200_EDBK_280495 crossref_primary_10_2174_1871530319666191129120253 crossref_primary_10_33590_emjoncol_10313985 crossref_primary_10_3389_fgene_2022_886170 crossref_primary_10_1128_JVI_02495_15 crossref_primary_10_1200_JCO_2017_77_2285 crossref_primary_10_1038_nrc2504 crossref_primary_10_1667_RR13959_1 crossref_primary_10_1016_j_nutres_2015_04_009 crossref_primary_10_3389_fonc_2020_01610 crossref_primary_10_15252_emmm_201708816 crossref_primary_10_3390_cancers15112955 crossref_primary_10_1172_JCI146256 crossref_primary_10_1016_j_yao_2022_02_006 crossref_primary_10_1038_cdd_2017_172 crossref_primary_10_1186_s13075_014_0488_y crossref_primary_10_1155_2022_1591377 crossref_primary_10_1186_s13046_021_02005_6 crossref_primary_10_1158_1541_7786_MCR_12_0395 crossref_primary_10_1259_bjr_20200087 crossref_primary_10_4049_jimmunol_0801882 crossref_primary_10_1016_j_isci_2020_101262 crossref_primary_10_1200_JCO_19_00337 crossref_primary_10_2217_14796694_3_3_329 crossref_primary_10_1093_carcin_bgx038 crossref_primary_10_1111_j_1349_7006_2010_01702_x crossref_primary_10_1038_s41581_020_00359_2 crossref_primary_10_1016_j_semradonc_2010_05_006 crossref_primary_10_1186_s12967_020_02667_4 crossref_primary_10_1016_j_canlet_2006_12_011 crossref_primary_10_1002_humu_23652 crossref_primary_10_1038_labinvest_3700658 crossref_primary_10_3390_diagnostics9030087 crossref_primary_10_1016_j_scr_2012_07_001 crossref_primary_10_1371_journal_pone_0011208 crossref_primary_10_1359_jbmr_090512 crossref_primary_10_1038_cddis_2014_577 crossref_primary_10_1038_sj_onc_1210001 crossref_primary_10_1152_physiol_00016_2013 crossref_primary_10_3390_cancers14112640 crossref_primary_10_1002_ijc_25728 crossref_primary_10_1200_JCO_21_02947 crossref_primary_10_1038_s41598_019_46210_y crossref_primary_10_1002_iub_427 crossref_primary_10_1002_path_2925 crossref_primary_10_1007_s12307_011_0067_6 crossref_primary_10_1093_nar_gkab964 crossref_primary_10_1093_annonc_mdz018 crossref_primary_10_1016_j_bbrc_2006_05_060 crossref_primary_10_1667_RR0660_1 crossref_primary_10_1097_CCO_0000000000000557 crossref_primary_10_2174_1871530319666191125112728 crossref_primary_10_1002_em_20606 crossref_primary_10_1016_j_semcancer_2023_11_007 crossref_primary_10_1158_0008_5472_CAN_19_1807 crossref_primary_10_1080_13543784_2021_1898586 crossref_primary_10_1002_mc_20813 crossref_primary_10_1111_j_1742_4658_2007_06033_x crossref_primary_10_3389_fphar_2023_1162665 crossref_primary_10_1146_annurev_cancerbio_050216_121919 crossref_primary_10_1155_2014_820248 crossref_primary_10_1158_1541_7786_MCR_14_0246 crossref_primary_10_3389_fcell_2022_814621 crossref_primary_10_3390_diagnostics13061040 crossref_primary_10_1007_s11523_020_00756_4 crossref_primary_10_1038_onc_2008_58 crossref_primary_10_1038_d41586_021_03718_6 crossref_primary_10_1002_stem_2195 crossref_primary_10_1038_nrc3007 crossref_primary_10_1158_1541_7786_MCR_19_0665 crossref_primary_10_1158_1541_7786_MCR_13_0628 crossref_primary_10_1016_j_ctrv_2007_11_005 crossref_primary_10_1038_s44318_025_00402_7 crossref_primary_10_1593_neo_121674 crossref_primary_10_3390_genes14020393 crossref_primary_10_1158_0008_5472_CAN_10_0944 crossref_primary_10_1186_s12916_023_03046_8 crossref_primary_10_1038_s41416_023_02534_1 crossref_primary_10_1016_j_bbcan_2024_189185 crossref_primary_10_3390_genes15060808 crossref_primary_10_1016_j_ygyno_2018_10_023 crossref_primary_10_1080_14656566_2017_1383384 crossref_primary_10_1016_j_ygyno_2024_05_002 crossref_primary_10_1371_journal_pgen_1000208 crossref_primary_10_3390_cancers11030416 crossref_primary_10_1016_S1470_2045_18_30786_1 crossref_primary_10_1016_j_ygyno_2021_05_018 crossref_primary_10_1016_j_ctrv_2021_102337 crossref_primary_10_1016_j_radonc_2011_05_059 crossref_primary_10_3389_fimmu_2022_1034903 crossref_primary_10_1158_0008_5472_CAN_12_3270 crossref_primary_10_1016_j_critrevonc_2017_04_006 crossref_primary_10_1016_j_gene_2021_145796 crossref_primary_10_1016_j_ejca_2016_03_005 crossref_primary_10_1158_1541_7786_MCR_14_0173 crossref_primary_10_1158_0008_5472_CAN_08_2516 crossref_primary_10_4161_cc_10_8_15341 crossref_primary_10_1155_2016_9810383 crossref_primary_10_1016_j_dnarep_2015_04_030 crossref_primary_10_20517_cdr_2023_08 crossref_primary_10_1200_JCO_19_00508 crossref_primary_10_1038_s41420_020_00311_0 crossref_primary_10_1016_j_lfs_2020_118434 crossref_primary_10_1158_2159_8290_CD_16_0860 crossref_primary_10_1158_1078_0432_CCR_10_0527 crossref_primary_10_1038_s41391_019_0153_2 crossref_primary_10_1111_j_1447_0756_2010_01377_x crossref_primary_10_2147_CMAR_S320193 crossref_primary_10_1002_gcc_22935 crossref_primary_10_1016_j_ebiom_2019_04_009 crossref_primary_10_1007_s11523_020_00780_4 crossref_primary_10_1016_j_ctro_2017_06_001 crossref_primary_10_1155_2022_4880355 crossref_primary_10_1242_jcs_092262 crossref_primary_10_1158_0008_5472_CAN_09_2715 crossref_primary_10_3390_ijms21197093 crossref_primary_10_1158_0008_5472_CAN_07_5472 crossref_primary_10_1007_s13402_024_00973_3 crossref_primary_10_1074_jbc_M710296200 crossref_primary_10_1016_j_ctrv_2018_12_002 crossref_primary_10_1158_1078_0432_CCR_10_2158 crossref_primary_10_1016_j_apsb_2021_01_003 crossref_primary_10_7717_peerj_11275 crossref_primary_10_1007_s11912_016_0515_z crossref_primary_10_18632_oncotarget_3787 crossref_primary_10_1186_s13046_020_01616_9 crossref_primary_10_1186_s12859_015_0827_2 crossref_primary_10_1080_14728222_2023_2259096 crossref_primary_10_1128_mbio_01074_22 crossref_primary_10_3390_ijms24010245 crossref_primary_10_1073_pnas_0904783107 crossref_primary_10_1038_s41571_021_00539_4 crossref_primary_10_1177_1758835919897537 crossref_primary_10_1186_bcr2566 crossref_primary_10_1080_14728214_2020_1773791 crossref_primary_10_1371_journal_pone_0108511 crossref_primary_10_1249_JES_0000000000000265 crossref_primary_10_18632_oncotarget_2587 crossref_primary_10_3389_fendo_2021_742215 crossref_primary_10_1038_onc_2015_198 crossref_primary_10_1016_j_radonc_2021_11_027 crossref_primary_10_1016_j_ygyno_2015_11_024 crossref_primary_10_1101_gad_334516_119 crossref_primary_10_1186_2041_9414_4_5 crossref_primary_10_1158_1541_7786_MCR_21_0456 crossref_primary_10_1016_j_critrevonc_2016_10_010 crossref_primary_10_3390_ijms232012093 crossref_primary_10_1111_j_1742_4658_2010_07733_x crossref_primary_10_1038_sj_onc_1209998 crossref_primary_10_1186_1471_2407_11_246 crossref_primary_10_1007_s10549_009_0422_1 crossref_primary_10_1007_s10555_021_09983_1 crossref_primary_10_1038_s41467_019_12610_x crossref_primary_10_1016_j_ygyno_2014_02_039 crossref_primary_10_18632_oncotarget_23445 crossref_primary_10_1002_onco_13758 crossref_primary_10_1016_j_canlet_2014_12_038 crossref_primary_10_1371_journal_pone_0192136 crossref_primary_10_3390_cells10030678 crossref_primary_10_1634_theoncologist_2012_0028 crossref_primary_10_1089_ars_2012_5151 crossref_primary_10_1097_GCO_0000000000000428 crossref_primary_10_1016_j_mrfmmm_2017_02_001 crossref_primary_10_1128_MCB_01121_10 crossref_primary_10_1177_17588359241255174 crossref_primary_10_1016_j_dnarep_2011_05_006 crossref_primary_10_1111_1751_2980_13168 crossref_primary_10_1126_scitranslmed_aav4508 crossref_primary_10_3389_fonc_2021_754524 crossref_primary_10_1371_journal_pone_0134120 crossref_primary_10_1002_ijc_27512 crossref_primary_10_3802_jgo_2022_33_e86 crossref_primary_10_1098_rsob_220118 crossref_primary_10_1136_bmjopen_2020_047076 crossref_primary_10_1016_j_taap_2007_05_010 crossref_primary_10_1038_nsmb_1941 crossref_primary_10_1016_S1470_2045_14_70391_2 crossref_primary_10_1002_jcp_24409 crossref_primary_10_1016_j_cancergen_2020_08_005 crossref_primary_10_1016_j_jinorgbio_2023_112197 crossref_primary_10_1016_j_mcn_2021_103658 crossref_primary_10_1007_s12088_011_0195_1 crossref_primary_10_1016_j_trecan_2019_08_005 crossref_primary_10_1200_JCO_21_02011 crossref_primary_10_1038_sj_emboj_7601369 crossref_primary_10_1093_mutage_gez019 crossref_primary_10_1016_j_ccr_2008_10_016 crossref_primary_10_1155_2013_746858 crossref_primary_10_3390_antiox11061195 crossref_primary_10_1007_s11356_021_16726_w crossref_primary_10_1158_1535_7163_MCT_11_0634 crossref_primary_10_1186_s13046_017_0570_9 crossref_primary_10_3390_cancers14102504 crossref_primary_10_1016_j_bbrc_2018_09_068 crossref_primary_10_4161_cc_9_13_12059 crossref_primary_10_1016_j_neo_2020_06_001 crossref_primary_10_1089_ars_2013_5403 crossref_primary_10_1371_journal_pone_0079106 crossref_primary_10_3389_fphar_2021_743073 crossref_primary_10_1016_j_radonc_2007_04_016 crossref_primary_10_1016_j_radonc_2011_07_001 crossref_primary_10_1016_j_eclinm_2022_101767 crossref_primary_10_1177_10732748241298329 crossref_primary_10_3390_ijms23158125 crossref_primary_10_1016_j_pharmthera_2021_108009 crossref_primary_10_1016_j_clon_2014_02_002 crossref_primary_10_3390_ph16091261 crossref_primary_10_3892_ijmm_2024_5447 crossref_primary_10_1093_annonc_mdw094 crossref_primary_10_1016_j_yao_2021_02_012 crossref_primary_10_1016_j_chembiol_2011_07_010 crossref_primary_10_1016_j_lungcan_2020_09_018 crossref_primary_10_1371_journal_pone_0004832 crossref_primary_10_1093_cvr_cvu222 crossref_primary_10_3390_cancers11091357 crossref_primary_10_1016_j_semcdb_2017_01_007 crossref_primary_10_1042_BJ20111627 crossref_primary_10_1038_bjc_2016_311 crossref_primary_10_1080_10409230701648502 crossref_primary_10_1016_j_ygyno_2019_09_021 crossref_primary_10_1165_rcmb_2011_0032OC crossref_primary_10_3389_fonc_2020_00782 crossref_primary_10_1158_0008_5472_CAN_09_1477 crossref_primary_10_1016_j_tcb_2019_06_005 crossref_primary_10_1136_ijgc_2019_000499 crossref_primary_10_1007_s10555_007_9061_3 crossref_primary_10_1016_j_ygyno_2022_04_016 crossref_primary_10_18632_oncotarget_23470 crossref_primary_10_1007_s12254_020_00606_z crossref_primary_10_1038_bjc_2013_808 crossref_primary_10_1002_jcp_22786 crossref_primary_10_1517_13543784_2016_1156857 crossref_primary_10_1021_cr900047g crossref_primary_10_1200_EDBK_280539 crossref_primary_10_1016_j_ejca_2013_05_020 crossref_primary_10_1038_s41467_023_43991_9 crossref_primary_10_1128_MCB_02246_06 crossref_primary_10_1007_s00109_006_0133_6 |
Cites_doi | 10.1016/j.molcel.2004.09.037 10.1016/j.molcel.2005.02.015 10.1016/j.mrfmmm.2004.03.013 10.1074/jbc.M307733200 10.1016/j.dnarep.2004.03.034 10.1016/S1471-4914(01)02090-1 10.1016/j.semradonc.2004.04.007 10.1182/blood-2004-07-2958 10.1128/MCB.25.8.3040-3055.2005 10.1074/jbc.M402692200 10.4161/cbt.3.12.1494 10.1158/0008-5472.CAN-04-1601 10.4161/cbt.3.12.1239 10.1093/emboj/19.4.662 10.1016/S1535-6108(03)00080-1 10.1016/S0378-1119(00)00549-7 10.1093/nar/gnh148 10.1016/S0092-8674(02)00615-3 10.1073/pnas.85.24.9533 10.1038/sj.emboj.7600196 10.1038/ng0495-439 10.1128/MCB.18.2.732 10.1126/science.7939630 10.1038/386761a0 10.1038/sj.emboj.7600459 10.1038/nature03445 10.1128/MCB.24.19.8504-8518.2004 10.1101/gad.949802 10.1158/1078-0432.CCR-0992-3 10.1101/gad.13.20.2633 10.1038/6029 10.1128/MCB.24.2.708-718.2004 10.1016/S1535-6108(02)00207-6 10.1128/MCB.16.7.3698 10.1038/sj.onc.1208612 10.1074/jbc.M200748200 10.1074/jbc.275.6.4532 10.1038/sj.bjc.6601804 10.1016/S1097-2765(00)80137-9 10.1038/sj.emboj.7600481 10.1074/jbc.272.34.20994 10.1074/jbc.M212360200 10.1093/carcin/24.2.159 10.1002/path.1573 10.1038/ncb998 10.1158/0008-5472.CAN-03-3695 10.1128/MCB.23.9.3265-3273.2003 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TO H94 7X8 |
DOI | 10.1158/0008-5472.CAN-05-2119 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 11604 |
ExternalDocumentID | 16357170 17356747 10_1158_0008_5472_CAN_05_2119 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: ES05775 – fundername: NIGMS NIH HHS grantid: GM07205 |
GroupedDBID | --- -ET .55 .GJ 18M 29B 2WC 34G 39C 3O- 53G 5GY 5RE 5VS 6J9 8WZ A6W AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AETEA AFFNX AFHIN AFOSN AFRAH AFUMD AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO MVM OHT OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WHG WOQ X7M XJT YKV YZZ ZCG ZGI ADNWM D0S IQODW J5H CGR CUY CVF ECM EIF NPM RHF VXZ 7TO H94 7X8 |
ID | FETCH-LOGICAL-c516t-9d2d77c48a4b3d35fefc65cb546a679438e3f209b414916a28951859d8ab801b3 |
ISSN | 0008-5472 |
IngestDate | Mon Jul 21 11:28:23 EDT 2025 Thu Jul 10 18:08:44 EDT 2025 Wed Feb 19 01:45:06 EST 2025 Mon Jul 21 09:16:16 EDT 2025 Tue Jul 01 01:17:55 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Oxygen Transcription factor E2F Cell microenvironment Hypoxia Malignant tumor Gene expression BRCA1 gene Tumor suppressor gene |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c516t-9d2d77c48a4b3d35fefc65cb546a679438e3f209b414916a28951859d8ab801b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/cancerres/article-pdf/65/24/11597/2539405/11597-11604.pdf |
PMID | 16357170 |
PQID | 17431639 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68899381 proquest_miscellaneous_17431639 pubmed_primary_16357170 pascalfrancis_primary_17356747 crossref_primary_10_1158_0008_5472_CAN_05_2119 crossref_citationtrail_10_1158_0008_5472_CAN_05_2119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-12-15 |
PublicationDateYYYYMMDD | 2005-12-15 |
PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2005 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061621174435000_B20 2022061621174435000_B21 2022061621174435000_B22 2022061621174435000_B23 2022061621174435000_B24 2022061621174435000_B25 2022061621174435000_B26 2022061621174435000_B27 2022061621174435000_B28 2022061621174435000_B29 2022061621174435000_B40 2022061621174435000_B30 2022061621174435000_B31 2022061621174435000_B32 2022061621174435000_B33 2022061621174435000_B34 2022061621174435000_B35 2022061621174435000_B36 2022061621174435000_B37 2022061621174435000_B38 2022061621174435000_B39 2022061621174435000_B9 2022061621174435000_B8 2022061621174435000_B7 2022061621174435000_B6 2022061621174435000_B5 2022061621174435000_B4 2022061621174435000_B3 2022061621174435000_B50 2022061621174435000_B41 2022061621174435000_B42 2022061621174435000_B43 2022061621174435000_B44 2022061621174435000_B45 2022061621174435000_B46 2022061621174435000_B47 2022061621174435000_B48 2022061621174435000_B2 2022061621174435000_B49 2022061621174435000_B1 2022061621174435000_B10 2022061621174435000_B11 2022061621174435000_B12 2022061621174435000_B13 2022061621174435000_B14 2022061621174435000_B15 2022061621174435000_B16 2022061621174435000_B17 2022061621174435000_B18 2022061621174435000_B19 |
References_xml | – ident: 2022061621174435000_B31 doi: 10.1016/j.molcel.2004.09.037 – ident: 2022061621174435000_B10 doi: 10.1016/j.molcel.2005.02.015 – ident: 2022061621174435000_B7 doi: 10.1016/j.mrfmmm.2004.03.013 – ident: 2022061621174435000_B22 doi: 10.1074/jbc.M307733200 – ident: 2022061621174435000_B19 doi: 10.1016/j.dnarep.2004.03.034 – ident: 2022061621174435000_B34 doi: 10.1016/S1471-4914(01)02090-1 – ident: 2022061621174435000_B48 doi: 10.1016/j.semradonc.2004.04.007 – ident: 2022061621174435000_B32 doi: 10.1182/blood-2004-07-2958 – ident: 2022061621174435000_B21 doi: 10.1128/MCB.25.8.3040-3055.2005 – ident: 2022061621174435000_B50 doi: 10.1074/jbc.M402692200 – ident: 2022061621174435000_B28 doi: 10.4161/cbt.3.12.1494 – ident: 2022061621174435000_B12 doi: 10.1158/0008-5472.CAN-04-1601 – ident: 2022061621174435000_B47 doi: 10.4161/cbt.3.12.1239 – ident: 2022061621174435000_B43 doi: 10.1093/emboj/19.4.662 – ident: 2022061621174435000_B20 doi: 10.1016/S1535-6108(03)00080-1 – ident: 2022061621174435000_B25 doi: 10.1016/S0378-1119(00)00549-7 – ident: 2022061621174435000_B36 doi: 10.1093/nar/gnh148 – ident: 2022061621174435000_B18 – ident: 2022061621174435000_B1 doi: 10.1016/S0092-8674(02)00615-3 – ident: 2022061621174435000_B14 doi: 10.1073/pnas.85.24.9533 – ident: 2022061621174435000_B33 doi: 10.1038/sj.emboj.7600196 – ident: 2022061621174435000_B3 doi: 10.1038/ng0495-439 – ident: 2022061621174435000_B8 – ident: 2022061621174435000_B35 doi: 10.1128/MCB.18.2.732 – ident: 2022061621174435000_B2 doi: 10.1126/science.7939630 – ident: 2022061621174435000_B40 doi: 10.1038/386761a0 – ident: 2022061621174435000_B29 doi: 10.1038/sj.emboj.7600459 – ident: 2022061621174435000_B49 doi: 10.1038/nature03445 – ident: 2022061621174435000_B11 doi: 10.1128/MCB.24.19.8504-8518.2004 – ident: 2022061621174435000_B30 doi: 10.1101/gad.949802 – ident: 2022061621174435000_B5 doi: 10.1158/1078-0432.CCR-0992-3 – ident: 2022061621174435000_B23 doi: 10.1101/gad.13.20.2633 – ident: 2022061621174435000_B6 doi: 10.1038/6029 – ident: 2022061621174435000_B41 doi: 10.1128/MCB.24.2.708-718.2004 – ident: 2022061621174435000_B44 doi: 10.1016/S1535-6108(02)00207-6 – ident: 2022061621174435000_B37 doi: 10.1128/MCB.16.7.3698 – ident: 2022061621174435000_B42 doi: 10.1038/sj.onc.1208612 – ident: 2022061621174435000_B39 doi: 10.1074/jbc.M200748200 – ident: 2022061621174435000_B26 doi: 10.1074/jbc.275.6.4532 – ident: 2022061621174435000_B4 doi: 10.1038/sj.bjc.6601804 – ident: 2022061621174435000_B15 doi: 10.1016/S1097-2765(00)80137-9 – ident: 2022061621174435000_B27 doi: 10.1038/sj.emboj.7600481 – ident: 2022061621174435000_B24 doi: 10.1074/jbc.272.34.20994 – ident: 2022061621174435000_B13 doi: 10.1074/jbc.M212360200 – ident: 2022061621174435000_B9 – ident: 2022061621174435000_B38 doi: 10.1093/carcin/24.2.159 – ident: 2022061621174435000_B45 doi: 10.1002/path.1573 – ident: 2022061621174435000_B17 doi: 10.1038/ncb998 – ident: 2022061621174435000_B46 doi: 10.1158/0008-5472.CAN-03-3695 – ident: 2022061621174435000_B16 doi: 10.1128/MCB.23.9.3265-3273.2003 |
SSID | ssj0005105 |
Score | 2.3566477 |
Snippet | Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 11597 |
SubjectTerms | Biological and medical sciences BRCA1 Protein - genetics BRCA1 Protein - metabolism Breast Neoplasms - genetics Breast Neoplasms - metabolism Cell Hypoxia Cell physiology Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes Chromatin Immunoprecipitation Colonic Neoplasms - genetics Colonic Neoplasms - metabolism DNA Repair Down-Regulation E2F Transcription Factors - genetics E2F Transcription Factors - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Neoplastic Gynecology. Andrology. Obstetrics Humans Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Luciferases - metabolism Lung Neoplasms - genetics Lung Neoplasms - metabolism Mammary gland diseases Medical sciences Molecular and cellular biology Promoter Regions, Genetic Recombination, Genetic Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Messenger - metabolism Transcription, Genetic Tumor Cells, Cultured Tumors |
Title | Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16357170 https://www.proquest.com/docview/17431639 https://www.proquest.com/docview/68899381 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAhpQnyO8jHywBtyyYft2OKpqzpVMIqAVuqbZceJVlSlVZpKG3895zhp0rFpwEtUWbUd3Z0v9_N9IfROaMAUVIRYc6YwEYHBPEoy7ItMGB4kAcmqap8TNp6RT3M6b_rd19klpe4nv67NK_kfrsIY8NVmyf4DZ3eLwgD8Bv7CEzgMz7_i8fhyvbpYKAy4emv9-AYgNS5cd_naEDz5PhwEto6_i3fNrbk5grfsGqVDy_nifV3357xy7LoIjUqDLJf9zn3BCWxWOItT5T8XZXt32vYi_3Gu8hz22l0s29hZl06zSDrOoE31XXDB2rNl0YQNNZcQ1AZ0uDTMnWLlmJJ4T7Ey2hGgkHTUJJihLir3TwVOuYt4dMv1h4OJ9dXbOnTtF6vx0k--ytPZ2ZmcjubTu-heCEjBNrH4_K0tGE_rKNZmwTqJC7b5cO0me-bJ4Vpt4KRkrsXJzRikskWmj9DDGkR4AycRj9GdNH-C7n-pwySeoo9XBMO7IhjeKvMqwfBawfD0pWcF4xmanY6mwzGuu2TghAasxMKEJo4TwhXRkYlolmYJo4mmhClmy__xNMpCX2gCYDhgChA2BSMNTqLSYJ7o6Dk6AJFIXyCPRaExLDOJrwyhaSR0aJjShjIhYIT3EGmII5O6hLztZLKUFZSk3IYycGlpKoGm0qfS0rSH-rtpa1dD5bYJx3uUb2fFEWUAgHvobcMKCerQ-rhUnq62G2kBNkAMcfM_GOdgk_Ogh44cD9vVbW3GIPZf3jr3FXrQnoLX6KAstukbME5LfVyJ328yNYcB |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia-induced+down-regulation+of+BRCA1+expression+by+E2Fs&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Bindra%2C+Ranjit+S&rft.au=Gibson%2C+Shannon+L&rft.au=Meng%2C+Alice&rft.au=Westermark%2C+Ulrica&rft.date=2005-12-15&rft.issn=0008-5472&rft.volume=65&rft.issue=24&rft.spage=11597&rft_id=info:doi/10.1158%2F0008-5472.CAN-05-2119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |