Coordinative alignment of molecules in chiral metal-organic frameworks
A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-cryst...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 353; no. 6301; pp. 808 - 811 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
19.08.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. |
---|---|
AbstractList | X-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the crystal can limit its resolution. Lee et al. used a chiral metal-organic framework containing formate ligands that can bind and align molecules covalently to reduce this motion (see the Perspective by Öhrström). The structure and absolute configuration--i.e., which spatial arrangement of atoms is the R or S isomer--of several organic molecules can thus be measured. These range from small molecules, such as methanol, to complex plant hormones, such as gibberellins that have eight stereocenters or jasmonic acid, whose absolute configuration had not previously been directly established. Science, this issue p. 808; see also p. 754 A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. X-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the crystal can limit its resolution. Lee et al. used a chiral metal-organic framework containing formate ligands that can bind and align molecules covalently to reduce this motion (see the Perspective by Öhrström). The structure and absolute configuration—i.e., which spatial arrangement of atoms is the R or S isomer—of several organic molecules can thus be measured. These range from small molecules, such as methanol, to complex plant hormones, such as gibberellins that have eight stereocenters or jasmonic acid, whose absolute configuration had not previously been directly established. Science , this issue p. 808 ; see also p. 754 The x-ray structural disorder of small molecules is reduced by covalent binding in a metal-organic framework. A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. Stop wiggling and hold that poseX-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the crystal can limit its resolution. Lee et al. used a chiral metal-organic framework containing formate ligands that can bind and align molecules covalently to reduce this motion (see the Perspective by Oehrstrom). The structure and absolute configuration-i.e., which spatial arrangement of atoms is the R or S isomer-of several organic molecules can thus be measured. These range from small molecules, such as methanol, to complex plant hormones, such as gibberellins that have eight stereocenters or jasmonic acid, whose absolute configuration had not previously been directly established.Science, this issue p. 808; see also p. 754 A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. |
Author | Kapustin, Eugene A. Yaghi, Omar M. Lee, Seungkyu |
Author_xml | – sequence: 1 givenname: Seungkyu surname: Lee fullname: Lee, Seungkyu – sequence: 2 givenname: Eugene A. surname: Kapustin fullname: Kapustin, Eugene A. – sequence: 3 givenname: Omar M. surname: Yaghi fullname: Yaghi, Omar M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27540171$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0b1v3CAYBnAUJUouH3OmVpaydPEFjPnwWJ2SttJJXbJbGF4uXDGkYDfKfx_au2S4ocrEwO8BXp5zdBxiAISuCV4S0vDbrB0EDUulbEcoO0ILgjtWdw2mx2iBMeW1xIKdofOctxiXvY6eorNGsBYTQRbofhVjMi6oyf2BSnm3CSOEqYq2GqMHPXvIlQuVfnRJ-WqESfk6po0KTlc2qRGeY_qVL9GJVT7D1X69QA_3dw-r7_X657cfq6_rWjPCp1oMgwHRqFZZwTHFlhIzGKEaY6zutKSUWMqN5FKKFjijTGM7UEsNtq3l9AJ92R37lOLvGfLUjy5r8F4FiHPuiaSMScG65gOUMEGIlPIjtCkP4qQt9OaAbuOcQhn5n2q7jmFW1Oe9mocRTP-U3KjSS__27QXc7oBOMecE9p0Q3P8ttt8X2--LLQl2kNBuKqXFMCXl_H9yn3a5bZ5ier-mbcvsVDT0FUATsww |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1021_jacs_2c05122 crossref_primary_10_1021_acsami_1c05271 crossref_primary_10_1021_acs_jnatprod_0c00883 crossref_primary_10_1039_D2QI01108E crossref_primary_10_1021_jacs_9b10501 crossref_primary_10_1039_D2CP03090J crossref_primary_10_1016_j_cej_2019_123051 crossref_primary_10_1016_j_inoche_2017_10_020 crossref_primary_10_1002_anie_202402973 crossref_primary_10_1016_j_ccr_2020_213757 crossref_primary_10_1021_jacs_7b09452 crossref_primary_10_1002_ange_202004992 crossref_primary_10_1002_ejic_202400809 crossref_primary_10_1007_s40820_021_00734_z crossref_primary_10_1007_s41061_020_0281_0 crossref_primary_10_1021_acs_cgd_7b01390 crossref_primary_10_1039_D2NR01772E crossref_primary_10_1126_science_aah5367 crossref_primary_10_1002_smll_201804770 crossref_primary_10_1021_acs_inorgchem_3c02349 crossref_primary_10_1007_s11243_017_0184_2 crossref_primary_10_1002_anie_202008129 crossref_primary_10_1016_j_poly_2017_05_034 crossref_primary_10_1016_j_arabjc_2018_07_004 crossref_primary_10_1021_jacs_9b13217 crossref_primary_10_1016_j_ccr_2021_213928 crossref_primary_10_1002_anie_202419195 crossref_primary_10_1002_chem_201900329 crossref_primary_10_1021_acs_inorgchem_1c01077 crossref_primary_10_1038_ncomms15985 crossref_primary_10_1002_advs_202400101 crossref_primary_10_1039_D4QI02919D crossref_primary_10_1002_anie_202106265 crossref_primary_10_1021_jacs_8b11525 crossref_primary_10_1021_acs_bioconjchem_7b00668 crossref_primary_10_1021_acs_energyfuels_5c00552 crossref_primary_10_1002_anie_202311983 crossref_primary_10_1016_j_jechem_2017_06_013 crossref_primary_10_1039_D2CS00697A crossref_primary_10_1002_anie_202107227 crossref_primary_10_1021_acs_analchem_4c03558 crossref_primary_10_1002_chem_201804782 crossref_primary_10_1002_anie_202007270 crossref_primary_10_1039_D4CC04119D crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1021_jacs_7b12894 crossref_primary_10_1039_C9QI01103J crossref_primary_10_1002_anie_202105967 crossref_primary_10_1039_D1AN00948F crossref_primary_10_1039_C7FD00160F crossref_primary_10_1039_D3SC02995F crossref_primary_10_1002_ange_202204066 crossref_primary_10_1021_jacs_9b13793 crossref_primary_10_1021_acs_cgd_7b00877 crossref_primary_10_1002_anie_201813215 crossref_primary_10_1021_acs_inorgchem_8b02082 crossref_primary_10_1016_j_molstruc_2023_137151 crossref_primary_10_1021_acs_inorgchem_3c04060 crossref_primary_10_1021_jacs_9b10961 crossref_primary_10_1021_jacs_8b05271 crossref_primary_10_1007_s11243_018_0235_3 crossref_primary_10_1088_1361_6455_ab999b crossref_primary_10_1016_j_chempr_2020_08_008 crossref_primary_10_1021_jacs_0c11778 crossref_primary_10_1002_anie_201611254 crossref_primary_10_3390_bios14120586 crossref_primary_10_1016_j_trac_2018_02_014 crossref_primary_10_1039_D0CE00544D crossref_primary_10_1016_j_cclet_2017_09_050 crossref_primary_10_1021_acs_chemrev_9b00257 crossref_primary_10_1007_s12274_020_2785_x crossref_primary_10_1039_D3DT04280D crossref_primary_10_1002_ange_202007270 crossref_primary_10_1021_jacs_4c03728 crossref_primary_10_1016_j_jssc_2021_122525 crossref_primary_10_1002_slct_201800898 crossref_primary_10_1038_s41586_024_08447_0 crossref_primary_10_1038_s41467_018_07851_1 crossref_primary_10_3390_molecules27196179 crossref_primary_10_1021_acsmaterialslett_3c00740 crossref_primary_10_1021_acs_cgd_7b00942 crossref_primary_10_1038_s41560_018_0308_8 crossref_primary_10_1021_acs_langmuir_8b00823 crossref_primary_10_1039_C9QI00837C crossref_primary_10_31857_S0044453723040064 crossref_primary_10_1002_chem_202402958 crossref_primary_10_1002_ange_201700919 crossref_primary_10_1002_ep_14296 crossref_primary_10_1016_j_ica_2018_02_002 crossref_primary_10_1039_C8SC00783G crossref_primary_10_1016_j_jorganchem_2018_12_004 crossref_primary_10_1002_chem_201904174 crossref_primary_10_1039_C9DT00813F crossref_primary_10_1002_ange_202402973 crossref_primary_10_1016_j_carbpol_2017_02_081 crossref_primary_10_1584_jpestics_W21_31 crossref_primary_10_1016_j_ccr_2024_216302 crossref_primary_10_1002_adma_202414509 crossref_primary_10_1016_j_chempr_2021_07_006 crossref_primary_10_1016_j_ica_2019_05_036 crossref_primary_10_1016_j_chempr_2024_03_006 crossref_primary_10_1039_D1ME00055A crossref_primary_10_1021_acsami_8b19815 crossref_primary_10_1039_D1TA09194H crossref_primary_10_1021_acsami_9b05091 crossref_primary_10_1039_D4DT02479F crossref_primary_10_1021_acs_inorgchem_0c01844 crossref_primary_10_1039_D3CS00939D crossref_primary_10_1002_anie_202004992 crossref_primary_10_1016_j_chempr_2022_10_016 crossref_primary_10_1016_j_poly_2019_05_065 crossref_primary_10_1039_D2CS00031H crossref_primary_10_1021_jacs_6b12353 crossref_primary_10_3390_qubs2010004 crossref_primary_10_1126_science_adk8680 crossref_primary_10_1016_j_matt_2023_08_002 crossref_primary_10_1016_j_poly_2016_10_045 crossref_primary_10_1039_C6SC04288K crossref_primary_10_1021_acsami_7b14952 crossref_primary_10_1039_C6CC09484H crossref_primary_10_3390_cryst12081038 crossref_primary_10_1002_smll_202303113 crossref_primary_10_1016_j_cattod_2024_114786 crossref_primary_10_1039_D3TA07946E crossref_primary_10_1002_ijch_202100102 crossref_primary_10_1002_chem_202301892 crossref_primary_10_1039_D2CE00228K crossref_primary_10_1021_acs_cgd_2c00621 crossref_primary_10_1021_acs_inorgchem_0c02152 crossref_primary_10_1016_j_ccr_2023_215175 crossref_primary_10_1016_j_snb_2022_131808 crossref_primary_10_1021_jacs_0c04537 crossref_primary_10_1016_j_chempr_2019_10_022 crossref_primary_10_1039_D0NP00035C crossref_primary_10_1021_acs_accounts_4c00143 crossref_primary_10_1039_D0CC02420A crossref_primary_10_1039_C7CC01554B crossref_primary_10_3390_ma10070727 crossref_primary_10_1016_j_jssc_2019_121141 crossref_primary_10_1002_smll_202005803 crossref_primary_10_1016_j_nanoen_2017_05_042 crossref_primary_10_1039_D0SC00485E crossref_primary_10_1039_C6CS00533K crossref_primary_10_1016_j_est_2023_108305 crossref_primary_10_1016_j_jssc_2017_11_013 crossref_primary_10_1021_acs_inorgchem_4c00726 crossref_primary_10_1039_D0CE00120A crossref_primary_10_1021_jacs_6b09763 crossref_primary_10_1039_C9CE00292H crossref_primary_10_1021_acs_chemrev_9b00648 crossref_primary_10_1016_j_chempr_2023_12_004 crossref_primary_10_1016_j_desal_2017_12_057 crossref_primary_10_1016_j_ccr_2016_12_003 crossref_primary_10_1021_acs_inorgchem_0c00840 crossref_primary_10_1002_chem_201700266 crossref_primary_10_1002_ange_202106265 crossref_primary_10_1002_cplu_202000232 crossref_primary_10_1021_acscentsci_0c00592 crossref_primary_10_1038_s41467_023_44401_w crossref_primary_10_1021_acsnano_8b03994 crossref_primary_10_1002_chem_201700827 crossref_primary_10_1039_D2CE01033J crossref_primary_10_1016_j_tsep_2021_100900 crossref_primary_10_1021_acs_inorgchem_1c01341 crossref_primary_10_1002_ange_202013885 crossref_primary_10_1002_ange_202311983 crossref_primary_10_1002_anie_201700919 crossref_primary_10_1002_cplu_201800641 crossref_primary_10_1016_j_ica_2017_12_030 crossref_primary_10_1002_cssc_202000465 crossref_primary_10_1016_j_rechem_2023_100859 crossref_primary_10_1002_ange_202107227 crossref_primary_10_1002_ejic_201800124 crossref_primary_10_1039_D3DT01846F crossref_primary_10_1021_acscentsci_7b00169 crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1002_ange_202105967 crossref_primary_10_1002_ange_202007731 crossref_primary_10_1021_jacs_4c17248 crossref_primary_10_1002_ejic_202000882 crossref_primary_10_1021_acs_cgd_3c01243 crossref_primary_10_1021_acs_inorgchem_2c03397 crossref_primary_10_1039_D1DT00928A crossref_primary_10_1002_chem_201803849 crossref_primary_10_1016_j_snb_2022_132395 crossref_primary_10_29026_oea_2021_200063 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1021_acscatal_7b02844 crossref_primary_10_1039_C8DT00339D crossref_primary_10_1515_cppm_2024_0001 crossref_primary_10_1002_ange_201813215 crossref_primary_10_1016_S1872_2067_17_62874_2 crossref_primary_10_1002_anie_202017105 crossref_primary_10_1002_anie_202411956 crossref_primary_10_1021_jacs_8b06774 crossref_primary_10_3390_ma10020216 crossref_primary_10_1002_ange_202012681 crossref_primary_10_1039_C7DT02358H crossref_primary_10_1039_D4CS00432A crossref_primary_10_1002_ange_202419195 crossref_primary_10_1002_ijch_201800114 crossref_primary_10_1002_ange_201802911 crossref_primary_10_1038_s41467_019_12453_6 crossref_primary_10_1002_ange_201611254 crossref_primary_10_1039_D3DT01553J crossref_primary_10_1016_j_ccr_2021_214083 crossref_primary_10_1002_anie_202415404 crossref_primary_10_1002_ange_202017105 crossref_primary_10_1021_acs_cgd_0c00569 crossref_primary_10_1002_anie_202012681 crossref_primary_10_1039_D4NP00071D crossref_primary_10_1039_D1CE01711J crossref_primary_10_1002_anie_202204066 crossref_primary_10_1039_C8TA04498H crossref_primary_10_1002_ange_202008129 crossref_primary_10_1021_acs_cgd_6b01694 crossref_primary_10_1021_jacs_8b02839 crossref_primary_10_1039_C7DT00614D crossref_primary_10_1002_anie_202413675 crossref_primary_10_3390_molecules29112523 crossref_primary_10_1002_anie_201802911 crossref_primary_10_1002_slct_201902849 crossref_primary_10_1002_anie_202013885 crossref_primary_10_1002_smtd_202400584 crossref_primary_10_1016_j_jhazmat_2021_125467 crossref_primary_10_1039_D1CE00067E crossref_primary_10_1039_D4QO01498G crossref_primary_10_1126_sciadv_aat9180 crossref_primary_10_1002_chem_201905091 crossref_primary_10_1016_j_scib_2017_09_013 crossref_primary_10_1039_C7CC00262A crossref_primary_10_1016_j_ccr_2024_216035 crossref_primary_10_1021_acs_accounts_6b00457 crossref_primary_10_1002_ange_202411956 crossref_primary_10_1016_j_matpr_2022_01_018 crossref_primary_10_1021_jacs_4c13377 crossref_primary_10_3390_molecules22020211 crossref_primary_10_1007_s12274_020_3226_6 crossref_primary_10_1039_D0CS01236J crossref_primary_10_1016_j_jhazmat_2022_130422 crossref_primary_10_4019_bjscc_71_39 crossref_primary_10_1021_acs_cgd_7b01070 crossref_primary_10_1021_jacs_6b12847 crossref_primary_10_1002_adom_202101670 crossref_primary_10_1021_acs_inorgchem_2c02791 crossref_primary_10_1016_j_ccr_2024_216385 crossref_primary_10_1016_j_matt_2020_12_016 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1039_C9DT02335F crossref_primary_10_1021_acs_accounts_4c00564 crossref_primary_10_1016_j_sbi_2019_12_008 crossref_primary_10_1039_C8CP01550C crossref_primary_10_1021_acs_cgd_0c00901 crossref_primary_10_1021_acsnano_4c04219 crossref_primary_10_1002_asia_201900823 crossref_primary_10_1002_ange_202415404 crossref_primary_10_1039_D1DT00498K crossref_primary_10_1021_acsami_8b09502 crossref_primary_10_1039_C7CE00885F crossref_primary_10_1039_D0FD00103A crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1039_C6TA07939C crossref_primary_10_1515_nanoph_2019_0476 crossref_primary_10_1016_j_chroma_2019_460420 crossref_primary_10_1134_S0036024423040064 crossref_primary_10_1016_j_orgel_2023_106902 crossref_primary_10_1021_jacs_7b06607 crossref_primary_10_1021_acsami_0c05208 crossref_primary_10_1038_s41598_017_15780_0 crossref_primary_10_1021_acs_inorgchem_0c00024 crossref_primary_10_1002_chem_201701099 crossref_primary_10_1021_acs_chemrev_7b00091 crossref_primary_10_1021_acs_cgd_3c00446 crossref_primary_10_1021_jacs_9b06711 crossref_primary_10_1002_ange_202413675 crossref_primary_10_1002_anie_202007731 crossref_primary_10_1002_adma_201905657 crossref_primary_10_1021_acs_inorgchem_8b00416 crossref_primary_10_1016_j_chempr_2017_07_004 crossref_primary_10_1038_s41467_017_00416_8 crossref_primary_10_1038_s41578_021_00287_y crossref_primary_10_1039_C8CC06468G crossref_primary_10_1039_D0FD00019A crossref_primary_10_1021_acscentsci_0c01492 crossref_primary_10_1002_chem_201700798 crossref_primary_10_1021_jacs_9b10880 crossref_primary_10_1039_C7CS00187H crossref_primary_10_1039_D4CY00430B crossref_primary_10_1002_chem_202002504 crossref_primary_10_1021_acs_iecr_1c04511 crossref_primary_10_1016_j_talanta_2023_125255 crossref_primary_10_1021_acscatal_6b03404 crossref_primary_10_1039_D1DT02140K crossref_primary_10_3724_SP_J_1123_2021_03045 crossref_primary_10_1002_jcc_24721 |
Cites_doi | 10.1021/ja501606h 10.1107/S0108767307043930 10.1107/S2053273314019573 10.1107/S0108767307002802 10.1039/C5SC01681A 10.1107/S0108768106021884 10.1107/S002188980600731X 10.1038/nature11990 10.1039/C5SC01838B 10.1107/S2053229614024929 10.1107/S2052252515024379 10.1107/S0108767399004262 10.1038/168271a0 10.1126/science.1188002 10.1126/science.1230444 10.1016/S0040-4020(01)98313-9 10.1107/S0021889800007184 10.1107/S0021889808042726 10.1107/S0907444905019591 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7QO |
DOI | 10.1126/science.aaf9135 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Materials Research Database CrossRef Engineering Research Database Solid State and Superconductivity Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 811 |
ExternalDocumentID | 4152008501 27540171 10_1126_science_aaf9135 44711372 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: S10-RR027172 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O 0B8 CGR CUY CVF DOOOF ECM EIF ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7QO |
ID | FETCH-LOGICAL-c516t-7bbde72a4af76030f31dbd7a2ddfc9c8331f36d868874e6535c0fb3f3d0f4f63 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 16:27:23 EDT 2025 Thu Jul 10 19:01:41 EDT 2025 Tue Aug 05 11:21:25 EDT 2025 Fri Jul 25 10:04:28 EDT 2025 Wed Feb 19 01:57:12 EST 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 00:37:20 EDT 2025 Thu Jul 03 22:17:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6301 |
Language | English |
License | http://www.sciencemag.org/about/science-licenses-journal-article-reuse Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c516t-7bbde72a4af76030f31dbd7a2ddfc9c8331f36d868874e6535c0fb3f3d0f4f63 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27540171 |
PQID | 1812499505 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1835587592 proquest_miscellaneous_1815711888 proquest_miscellaneous_1812887614 proquest_journals_1812499505 pubmed_primary_27540171 crossref_primary_10_1126_science_aaf9135 crossref_citationtrail_10_1126_science_aaf9135 jstor_primary_44711372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-19 |
PublicationDateYYYYMMDD | 2016-08-19 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_20_2 e_1_3_2_10_2 e_1_3_2_21_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_22_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_23_2 e_1_3_2_3_2 e_1_3_2_2_2 e_1_3_2_14_2 27540155 - Science. 2016 Aug 19;353(6301):754-5 |
References_xml | – ident: e_1_3_2_11_2 doi: 10.1021/ja501606h – ident: e_1_3_2_19_2 doi: 10.1107/S0108767307043930 – ident: e_1_3_2_14_2 doi: 10.1107/S2053273314019573 – ident: e_1_3_2_16_2 doi: 10.1107/S0108767307002802 – ident: e_1_3_2_8_2 doi: 10.1039/C5SC01681A – ident: e_1_3_2_15_2 doi: 10.1107/S0108768106021884 – ident: e_1_3_2_21_2 doi: 10.1107/S002188980600731X – ident: e_1_3_2_5_2 doi: 10.1038/nature11990 – ident: e_1_3_2_9_2 doi: 10.1039/C5SC01838B – ident: e_1_3_2_23_2 doi: 10.1107/S2053229614024929 – ident: e_1_3_2_10_2 doi: 10.1107/S2052252515024379 – ident: e_1_3_2_7_2 doi: 10.1107/S0108767399004262 – ident: e_1_3_2_17_2 doi: 10.1038/168271a0 – ident: e_1_3_2_4_2 doi: 10.1126/science.1188002 – ident: e_1_3_2_6_2 doi: 10.1126/science.1230444 – ident: e_1_3_2_18_2 doi: 10.1016/S0040-4020(01)98313-9 – ident: e_1_3_2_3_2 – ident: e_1_3_2_12_2 doi: 10.1107/S0021889800007184 – ident: e_1_3_2_20_2 doi: 10.1107/S0021889808042726 – ident: e_1_3_2_2_2 – ident: e_1_3_2_22_2 doi: 10.1107/S0907444905019591 – reference: 27540155 - Science. 2016 Aug 19;353(6301):754-5 |
SSID | ssj0009593 |
Score | 2.6184566 |
Snippet | A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced... X-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the... Stop wiggling and hold that poseX-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 808 |
SubjectTerms | Alignment Carboxylic acids Chirality Crystallization Crystallography Crystallography, X-Ray - methods Cyclopentanes - chemistry Gibberellins Gibberellins - chemistry Hormones Metal-organic frameworks Metals Methanol Methanol - chemistry Methyl alcohol Molecular Structure Organic chemicals Organic Chemistry Oxylipins - chemistry Phenols Stereoisomerism X-ray diffraction X-rays |
Title | Coordinative alignment of molecules in chiral metal-organic frameworks |
URI | https://www.jstor.org/stable/44711372 https://www.ncbi.nlm.nih.gov/pubmed/27540171 https://www.proquest.com/docview/1812499505 https://www.proquest.com/docview/1812887614 https://www.proquest.com/docview/1815711888 https://www.proquest.com/docview/1835587592 |
Volume | 353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJiReEBsMCgMZiYehKVUSx3by2A2qiQd4oEjwFDn-QNNoWq3tw_jrOceO66J12vYSRbETJ77z5e589zuEPpS6SplWNMnyXCRgf7GkFKxMUsWUkfDLFLKL8v3Kzn8UX37SaKO9yy5ZNkP598a8kodQFa4BXW2W7D0oGx4KF-Ac6AtHoDAc70TjsxmYjhetw-4Ghfp32Nqfuqq3XbSVTdi-6pJEQNFOXBkneWL6qKxFrJ_2Sx30zrCXE1EwBCWOXOhAP5y_LXIr-ACf7xqEyeX1Ksh1Mbflw5zTZwUfptfO1F_CVRg--Ta14EKxPyJj1sHqpZ52MjS15R_zlMRCljhIYM9NjHgPhpOaZQftcIM0j-pP6qEQpsoctklE2_m0I27OQfXMXDWX_wC0-6ZHaC8HWwKE4d7o9NPpeAOb2aM-RflU_XgWLto_YUN3ceGr2w2TTkGZPENPvWWBR45N9tGObg_QY1dr9PoA7XsaLfCxhxr_-ByNYw7CgYPwzODAQfiixY6D8AYH4TUHvUCT8efJ2XniK2skkmZsmfCmUZrnohCGMxDzhmSqUVzkChZoJUtCMkOYKhn8ggrNKKEyNQ0xRKWmMIwcot121upXCHOuKOVNIcBOKEijGtpITkXBCdOCSTJAw37KaulR523xkz91Z33mrPbTXfvpHqDjcMPcAa5s73rY0SD0K0DTygjPB-ioJ0rtl-ui7lTZqgKNf4Deh2YQpnaHTLR6tnJ94JNBZb21D4VhyrK8rY-tWsBpBa_y0jFFeMmemV5vbXmDnqwX1hHaXV6t9FtQfZfNO8-6_wDEhbGK |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinative+alignment+of+molecules+in+chiral+metal-organic+frameworks&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lee%2C+Seungkyu&rft.au=Kapustin%2C+Eugene+A&rft.au=Yaghi%2C+Omar+M&rft.date=2016-08-19&rft.eissn=1095-9203&rft.volume=353&rft.issue=6301&rft.spage=808&rft_id=info:doi/10.1126%2Fscience.aaf9135&rft_id=info%3Apmid%2F27540171&rft.externalDocID=27540171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |