Coordinative alignment of molecules in chiral metal-organic frameworks

A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-cryst...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 353; no. 6301; pp. 808 - 811
Main Authors Lee, Seungkyu, Kapustin, Eugene A., Yaghi, Omar M.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 19.08.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.
AbstractList X-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the crystal can limit its resolution. Lee et al. used a chiral metal-organic framework containing formate ligands that can bind and align molecules covalently to reduce this motion (see the Perspective by Öhrström). The structure and absolute configuration--i.e., which spatial arrangement of atoms is the R or S isomer--of several organic molecules can thus be measured. These range from small molecules, such as methanol, to complex plant hormones, such as gibberellins that have eight stereocenters or jasmonic acid, whose absolute configuration had not previously been directly established. Science, this issue p. 808; see also p. 754 A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.
X-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the crystal can limit its resolution. Lee et al. used a chiral metal-organic framework containing formate ligands that can bind and align molecules covalently to reduce this motion (see the Perspective by Öhrström). The structure and absolute configuration—i.e., which spatial arrangement of atoms is the R or S isomer—of several organic molecules can thus be measured. These range from small molecules, such as methanol, to complex plant hormones, such as gibberellins that have eight stereocenters or jasmonic acid, whose absolute configuration had not previously been directly established. Science , this issue p. 808 ; see also p. 754 The x-ray structural disorder of small molecules is reduced by covalent binding in a metal-organic framework. A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.
Stop wiggling and hold that poseX-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the crystal can limit its resolution. Lee et al. used a chiral metal-organic framework containing formate ligands that can bind and align molecules covalently to reduce this motion (see the Perspective by Oehrstrom). The structure and absolute configuration-i.e., which spatial arrangement of atoms is the R or S isomer-of several organic molecules can thus be measured. These range from small molecules, such as methanol, to complex plant hormones, such as gibberellins that have eight stereocenters or jasmonic acid, whose absolute configuration had not previously been directly established.Science, this issue p. 808; see also p. 754 A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.
A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.
A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives.
Author Kapustin, Eugene A.
Yaghi, Omar M.
Lee, Seungkyu
Author_xml – sequence: 1
  givenname: Seungkyu
  surname: Lee
  fullname: Lee, Seungkyu
– sequence: 2
  givenname: Eugene A.
  surname: Kapustin
  fullname: Kapustin, Eugene A.
– sequence: 3
  givenname: Omar M.
  surname: Yaghi
  fullname: Yaghi, Omar M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27540171$$D View this record in MEDLINE/PubMed
BookMark eNqN0b1v3CAYBnAUJUouH3OmVpaydPEFjPnwWJ2SttJJXbJbGF4uXDGkYDfKfx_au2S4ocrEwO8BXp5zdBxiAISuCV4S0vDbrB0EDUulbEcoO0ILgjtWdw2mx2iBMeW1xIKdofOctxiXvY6eorNGsBYTQRbofhVjMi6oyf2BSnm3CSOEqYq2GqMHPXvIlQuVfnRJ-WqESfk6po0KTlc2qRGeY_qVL9GJVT7D1X69QA_3dw-r7_X657cfq6_rWjPCp1oMgwHRqFZZwTHFlhIzGKEaY6zutKSUWMqN5FKKFjijTGM7UEsNtq3l9AJ92R37lOLvGfLUjy5r8F4FiHPuiaSMScG65gOUMEGIlPIjtCkP4qQt9OaAbuOcQhn5n2q7jmFW1Oe9mocRTP-U3KjSS__27QXc7oBOMecE9p0Q3P8ttt8X2--LLQl2kNBuKqXFMCXl_H9yn3a5bZ5ier-mbcvsVDT0FUATsww
CODEN SCIEAS
CitedBy_id crossref_primary_10_1021_jacs_2c05122
crossref_primary_10_1021_acsami_1c05271
crossref_primary_10_1021_acs_jnatprod_0c00883
crossref_primary_10_1039_D2QI01108E
crossref_primary_10_1021_jacs_9b10501
crossref_primary_10_1039_D2CP03090J
crossref_primary_10_1016_j_cej_2019_123051
crossref_primary_10_1016_j_inoche_2017_10_020
crossref_primary_10_1002_anie_202402973
crossref_primary_10_1016_j_ccr_2020_213757
crossref_primary_10_1021_jacs_7b09452
crossref_primary_10_1002_ange_202004992
crossref_primary_10_1002_ejic_202400809
crossref_primary_10_1007_s40820_021_00734_z
crossref_primary_10_1007_s41061_020_0281_0
crossref_primary_10_1021_acs_cgd_7b01390
crossref_primary_10_1039_D2NR01772E
crossref_primary_10_1126_science_aah5367
crossref_primary_10_1002_smll_201804770
crossref_primary_10_1021_acs_inorgchem_3c02349
crossref_primary_10_1007_s11243_017_0184_2
crossref_primary_10_1002_anie_202008129
crossref_primary_10_1016_j_poly_2017_05_034
crossref_primary_10_1016_j_arabjc_2018_07_004
crossref_primary_10_1021_jacs_9b13217
crossref_primary_10_1016_j_ccr_2021_213928
crossref_primary_10_1002_anie_202419195
crossref_primary_10_1002_chem_201900329
crossref_primary_10_1021_acs_inorgchem_1c01077
crossref_primary_10_1038_ncomms15985
crossref_primary_10_1002_advs_202400101
crossref_primary_10_1039_D4QI02919D
crossref_primary_10_1002_anie_202106265
crossref_primary_10_1021_jacs_8b11525
crossref_primary_10_1021_acs_bioconjchem_7b00668
crossref_primary_10_1021_acs_energyfuels_5c00552
crossref_primary_10_1002_anie_202311983
crossref_primary_10_1016_j_jechem_2017_06_013
crossref_primary_10_1039_D2CS00697A
crossref_primary_10_1002_anie_202107227
crossref_primary_10_1021_acs_analchem_4c03558
crossref_primary_10_1002_chem_201804782
crossref_primary_10_1002_anie_202007270
crossref_primary_10_1039_D4CC04119D
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1021_jacs_7b12894
crossref_primary_10_1039_C9QI01103J
crossref_primary_10_1002_anie_202105967
crossref_primary_10_1039_D1AN00948F
crossref_primary_10_1039_C7FD00160F
crossref_primary_10_1039_D3SC02995F
crossref_primary_10_1002_ange_202204066
crossref_primary_10_1021_jacs_9b13793
crossref_primary_10_1021_acs_cgd_7b00877
crossref_primary_10_1002_anie_201813215
crossref_primary_10_1021_acs_inorgchem_8b02082
crossref_primary_10_1016_j_molstruc_2023_137151
crossref_primary_10_1021_acs_inorgchem_3c04060
crossref_primary_10_1021_jacs_9b10961
crossref_primary_10_1021_jacs_8b05271
crossref_primary_10_1007_s11243_018_0235_3
crossref_primary_10_1088_1361_6455_ab999b
crossref_primary_10_1016_j_chempr_2020_08_008
crossref_primary_10_1021_jacs_0c11778
crossref_primary_10_1002_anie_201611254
crossref_primary_10_3390_bios14120586
crossref_primary_10_1016_j_trac_2018_02_014
crossref_primary_10_1039_D0CE00544D
crossref_primary_10_1016_j_cclet_2017_09_050
crossref_primary_10_1021_acs_chemrev_9b00257
crossref_primary_10_1007_s12274_020_2785_x
crossref_primary_10_1039_D3DT04280D
crossref_primary_10_1002_ange_202007270
crossref_primary_10_1021_jacs_4c03728
crossref_primary_10_1016_j_jssc_2021_122525
crossref_primary_10_1002_slct_201800898
crossref_primary_10_1038_s41586_024_08447_0
crossref_primary_10_1038_s41467_018_07851_1
crossref_primary_10_3390_molecules27196179
crossref_primary_10_1021_acsmaterialslett_3c00740
crossref_primary_10_1021_acs_cgd_7b00942
crossref_primary_10_1038_s41560_018_0308_8
crossref_primary_10_1021_acs_langmuir_8b00823
crossref_primary_10_1039_C9QI00837C
crossref_primary_10_31857_S0044453723040064
crossref_primary_10_1002_chem_202402958
crossref_primary_10_1002_ange_201700919
crossref_primary_10_1002_ep_14296
crossref_primary_10_1016_j_ica_2018_02_002
crossref_primary_10_1039_C8SC00783G
crossref_primary_10_1016_j_jorganchem_2018_12_004
crossref_primary_10_1002_chem_201904174
crossref_primary_10_1039_C9DT00813F
crossref_primary_10_1002_ange_202402973
crossref_primary_10_1016_j_carbpol_2017_02_081
crossref_primary_10_1584_jpestics_W21_31
crossref_primary_10_1016_j_ccr_2024_216302
crossref_primary_10_1002_adma_202414509
crossref_primary_10_1016_j_chempr_2021_07_006
crossref_primary_10_1016_j_ica_2019_05_036
crossref_primary_10_1016_j_chempr_2024_03_006
crossref_primary_10_1039_D1ME00055A
crossref_primary_10_1021_acsami_8b19815
crossref_primary_10_1039_D1TA09194H
crossref_primary_10_1021_acsami_9b05091
crossref_primary_10_1039_D4DT02479F
crossref_primary_10_1021_acs_inorgchem_0c01844
crossref_primary_10_1039_D3CS00939D
crossref_primary_10_1002_anie_202004992
crossref_primary_10_1016_j_chempr_2022_10_016
crossref_primary_10_1016_j_poly_2019_05_065
crossref_primary_10_1039_D2CS00031H
crossref_primary_10_1021_jacs_6b12353
crossref_primary_10_3390_qubs2010004
crossref_primary_10_1126_science_adk8680
crossref_primary_10_1016_j_matt_2023_08_002
crossref_primary_10_1016_j_poly_2016_10_045
crossref_primary_10_1039_C6SC04288K
crossref_primary_10_1021_acsami_7b14952
crossref_primary_10_1039_C6CC09484H
crossref_primary_10_3390_cryst12081038
crossref_primary_10_1002_smll_202303113
crossref_primary_10_1016_j_cattod_2024_114786
crossref_primary_10_1039_D3TA07946E
crossref_primary_10_1002_ijch_202100102
crossref_primary_10_1002_chem_202301892
crossref_primary_10_1039_D2CE00228K
crossref_primary_10_1021_acs_cgd_2c00621
crossref_primary_10_1021_acs_inorgchem_0c02152
crossref_primary_10_1016_j_ccr_2023_215175
crossref_primary_10_1016_j_snb_2022_131808
crossref_primary_10_1021_jacs_0c04537
crossref_primary_10_1016_j_chempr_2019_10_022
crossref_primary_10_1039_D0NP00035C
crossref_primary_10_1021_acs_accounts_4c00143
crossref_primary_10_1039_D0CC02420A
crossref_primary_10_1039_C7CC01554B
crossref_primary_10_3390_ma10070727
crossref_primary_10_1016_j_jssc_2019_121141
crossref_primary_10_1002_smll_202005803
crossref_primary_10_1016_j_nanoen_2017_05_042
crossref_primary_10_1039_D0SC00485E
crossref_primary_10_1039_C6CS00533K
crossref_primary_10_1016_j_est_2023_108305
crossref_primary_10_1016_j_jssc_2017_11_013
crossref_primary_10_1021_acs_inorgchem_4c00726
crossref_primary_10_1039_D0CE00120A
crossref_primary_10_1021_jacs_6b09763
crossref_primary_10_1039_C9CE00292H
crossref_primary_10_1021_acs_chemrev_9b00648
crossref_primary_10_1016_j_chempr_2023_12_004
crossref_primary_10_1016_j_desal_2017_12_057
crossref_primary_10_1016_j_ccr_2016_12_003
crossref_primary_10_1021_acs_inorgchem_0c00840
crossref_primary_10_1002_chem_201700266
crossref_primary_10_1002_ange_202106265
crossref_primary_10_1002_cplu_202000232
crossref_primary_10_1021_acscentsci_0c00592
crossref_primary_10_1038_s41467_023_44401_w
crossref_primary_10_1021_acsnano_8b03994
crossref_primary_10_1002_chem_201700827
crossref_primary_10_1039_D2CE01033J
crossref_primary_10_1016_j_tsep_2021_100900
crossref_primary_10_1021_acs_inorgchem_1c01341
crossref_primary_10_1002_ange_202013885
crossref_primary_10_1002_ange_202311983
crossref_primary_10_1002_anie_201700919
crossref_primary_10_1002_cplu_201800641
crossref_primary_10_1016_j_ica_2017_12_030
crossref_primary_10_1002_cssc_202000465
crossref_primary_10_1016_j_rechem_2023_100859
crossref_primary_10_1002_ange_202107227
crossref_primary_10_1002_ejic_201800124
crossref_primary_10_1039_D3DT01846F
crossref_primary_10_1021_acscentsci_7b00169
crossref_primary_10_1021_acs_chemrev_1c00740
crossref_primary_10_1002_ange_202105967
crossref_primary_10_1002_ange_202007731
crossref_primary_10_1021_jacs_4c17248
crossref_primary_10_1002_ejic_202000882
crossref_primary_10_1021_acs_cgd_3c01243
crossref_primary_10_1021_acs_inorgchem_2c03397
crossref_primary_10_1039_D1DT00928A
crossref_primary_10_1002_chem_201803849
crossref_primary_10_1016_j_snb_2022_132395
crossref_primary_10_29026_oea_2021_200063
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1021_acscatal_7b02844
crossref_primary_10_1039_C8DT00339D
crossref_primary_10_1515_cppm_2024_0001
crossref_primary_10_1002_ange_201813215
crossref_primary_10_1016_S1872_2067_17_62874_2
crossref_primary_10_1002_anie_202017105
crossref_primary_10_1002_anie_202411956
crossref_primary_10_1021_jacs_8b06774
crossref_primary_10_3390_ma10020216
crossref_primary_10_1002_ange_202012681
crossref_primary_10_1039_C7DT02358H
crossref_primary_10_1039_D4CS00432A
crossref_primary_10_1002_ange_202419195
crossref_primary_10_1002_ijch_201800114
crossref_primary_10_1002_ange_201802911
crossref_primary_10_1038_s41467_019_12453_6
crossref_primary_10_1002_ange_201611254
crossref_primary_10_1039_D3DT01553J
crossref_primary_10_1016_j_ccr_2021_214083
crossref_primary_10_1002_anie_202415404
crossref_primary_10_1002_ange_202017105
crossref_primary_10_1021_acs_cgd_0c00569
crossref_primary_10_1002_anie_202012681
crossref_primary_10_1039_D4NP00071D
crossref_primary_10_1039_D1CE01711J
crossref_primary_10_1002_anie_202204066
crossref_primary_10_1039_C8TA04498H
crossref_primary_10_1002_ange_202008129
crossref_primary_10_1021_acs_cgd_6b01694
crossref_primary_10_1021_jacs_8b02839
crossref_primary_10_1039_C7DT00614D
crossref_primary_10_1002_anie_202413675
crossref_primary_10_3390_molecules29112523
crossref_primary_10_1002_anie_201802911
crossref_primary_10_1002_slct_201902849
crossref_primary_10_1002_anie_202013885
crossref_primary_10_1002_smtd_202400584
crossref_primary_10_1016_j_jhazmat_2021_125467
crossref_primary_10_1039_D1CE00067E
crossref_primary_10_1039_D4QO01498G
crossref_primary_10_1126_sciadv_aat9180
crossref_primary_10_1002_chem_201905091
crossref_primary_10_1016_j_scib_2017_09_013
crossref_primary_10_1039_C7CC00262A
crossref_primary_10_1016_j_ccr_2024_216035
crossref_primary_10_1021_acs_accounts_6b00457
crossref_primary_10_1002_ange_202411956
crossref_primary_10_1016_j_matpr_2022_01_018
crossref_primary_10_1021_jacs_4c13377
crossref_primary_10_3390_molecules22020211
crossref_primary_10_1007_s12274_020_3226_6
crossref_primary_10_1039_D0CS01236J
crossref_primary_10_1016_j_jhazmat_2022_130422
crossref_primary_10_4019_bjscc_71_39
crossref_primary_10_1021_acs_cgd_7b01070
crossref_primary_10_1021_jacs_6b12847
crossref_primary_10_1002_adom_202101670
crossref_primary_10_1021_acs_inorgchem_2c02791
crossref_primary_10_1016_j_ccr_2024_216385
crossref_primary_10_1016_j_matt_2020_12_016
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1039_C9DT02335F
crossref_primary_10_1021_acs_accounts_4c00564
crossref_primary_10_1016_j_sbi_2019_12_008
crossref_primary_10_1039_C8CP01550C
crossref_primary_10_1021_acs_cgd_0c00901
crossref_primary_10_1021_acsnano_4c04219
crossref_primary_10_1002_asia_201900823
crossref_primary_10_1002_ange_202415404
crossref_primary_10_1039_D1DT00498K
crossref_primary_10_1021_acsami_8b09502
crossref_primary_10_1039_C7CE00885F
crossref_primary_10_1039_D0FD00103A
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1039_C6TA07939C
crossref_primary_10_1515_nanoph_2019_0476
crossref_primary_10_1016_j_chroma_2019_460420
crossref_primary_10_1134_S0036024423040064
crossref_primary_10_1016_j_orgel_2023_106902
crossref_primary_10_1021_jacs_7b06607
crossref_primary_10_1021_acsami_0c05208
crossref_primary_10_1038_s41598_017_15780_0
crossref_primary_10_1021_acs_inorgchem_0c00024
crossref_primary_10_1002_chem_201701099
crossref_primary_10_1021_acs_chemrev_7b00091
crossref_primary_10_1021_acs_cgd_3c00446
crossref_primary_10_1021_jacs_9b06711
crossref_primary_10_1002_ange_202413675
crossref_primary_10_1002_anie_202007731
crossref_primary_10_1002_adma_201905657
crossref_primary_10_1021_acs_inorgchem_8b00416
crossref_primary_10_1016_j_chempr_2017_07_004
crossref_primary_10_1038_s41467_017_00416_8
crossref_primary_10_1038_s41578_021_00287_y
crossref_primary_10_1039_C8CC06468G
crossref_primary_10_1039_D0FD00019A
crossref_primary_10_1021_acscentsci_0c01492
crossref_primary_10_1002_chem_201700798
crossref_primary_10_1021_jacs_9b10880
crossref_primary_10_1039_C7CS00187H
crossref_primary_10_1039_D4CY00430B
crossref_primary_10_1002_chem_202002504
crossref_primary_10_1021_acs_iecr_1c04511
crossref_primary_10_1016_j_talanta_2023_125255
crossref_primary_10_1021_acscatal_6b03404
crossref_primary_10_1039_D1DT02140K
crossref_primary_10_3724_SP_J_1123_2021_03045
crossref_primary_10_1002_jcc_24721
Cites_doi 10.1021/ja501606h
10.1107/S0108767307043930
10.1107/S2053273314019573
10.1107/S0108767307002802
10.1039/C5SC01681A
10.1107/S0108768106021884
10.1107/S002188980600731X
10.1038/nature11990
10.1039/C5SC01838B
10.1107/S2053229614024929
10.1107/S2052252515024379
10.1107/S0108767399004262
10.1038/168271a0
10.1126/science.1188002
10.1126/science.1230444
10.1016/S0040-4020(01)98313-9
10.1107/S0021889800007184
10.1107/S0021889808042726
10.1107/S0907444905019591
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7QO
DOI 10.1126/science.aaf9135
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Materials Research Database
CrossRef
Engineering Research Database

Solid State and Superconductivity Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 811
ExternalDocumentID 4152008501
27540171
10_1126_science_aaf9135
44711372
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: S10-RR027172
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
0B8
CGR
CUY
CVF
DOOOF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7QO
ID FETCH-LOGICAL-c516t-7bbde72a4af76030f31dbd7a2ddfc9c8331f36d868874e6535c0fb3f3d0f4f63
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 16:27:23 EDT 2025
Thu Jul 10 19:01:41 EDT 2025
Tue Aug 05 11:21:25 EDT 2025
Fri Jul 25 10:04:28 EDT 2025
Wed Feb 19 01:57:12 EST 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 00:37:20 EDT 2025
Thu Jul 03 22:17:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6301
Language English
License http://www.sciencemag.org/about/science-licenses-journal-article-reuse
Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c516t-7bbde72a4af76030f31dbd7a2ddfc9c8331f36d868874e6535c0fb3f3d0f4f63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27540171
PQID 1812499505
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_1835587592
proquest_miscellaneous_1815711888
proquest_miscellaneous_1812887614
proquest_journals_1812499505
pubmed_primary_27540171
crossref_primary_10_1126_science_aaf9135
crossref_citationtrail_10_1126_science_aaf9135
jstor_primary_44711372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-19
PublicationDateYYYYMMDD 2016-08-19
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_2_2
e_1_3_2_14_2
27540155 - Science. 2016 Aug 19;353(6301):754-5
References_xml – ident: e_1_3_2_11_2
  doi: 10.1021/ja501606h
– ident: e_1_3_2_19_2
  doi: 10.1107/S0108767307043930
– ident: e_1_3_2_14_2
  doi: 10.1107/S2053273314019573
– ident: e_1_3_2_16_2
  doi: 10.1107/S0108767307002802
– ident: e_1_3_2_8_2
  doi: 10.1039/C5SC01681A
– ident: e_1_3_2_15_2
  doi: 10.1107/S0108768106021884
– ident: e_1_3_2_21_2
  doi: 10.1107/S002188980600731X
– ident: e_1_3_2_5_2
  doi: 10.1038/nature11990
– ident: e_1_3_2_9_2
  doi: 10.1039/C5SC01838B
– ident: e_1_3_2_23_2
  doi: 10.1107/S2053229614024929
– ident: e_1_3_2_10_2
  doi: 10.1107/S2052252515024379
– ident: e_1_3_2_7_2
  doi: 10.1107/S0108767399004262
– ident: e_1_3_2_17_2
  doi: 10.1038/168271a0
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1188002
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1230444
– ident: e_1_3_2_18_2
  doi: 10.1016/S0040-4020(01)98313-9
– ident: e_1_3_2_3_2
– ident: e_1_3_2_12_2
  doi: 10.1107/S0021889800007184
– ident: e_1_3_2_20_2
  doi: 10.1107/S0021889808042726
– ident: e_1_3_2_2_2
– ident: e_1_3_2_22_2
  doi: 10.1107/S0907444905019591
– reference: 27540155 - Science. 2016 Aug 19;353(6301):754-5
SSID ssj0009593
Score 2.6184566
Snippet A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced...
X-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but orientational disorder in the...
Stop wiggling and hold that poseX-ray crystallography can be the definitive method for determining the structure and chirality of small organic molecules, but...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 808
SubjectTerms Alignment
Carboxylic acids
Chirality
Crystallization
Crystallography
Crystallography, X-Ray - methods
Cyclopentanes - chemistry
Gibberellins
Gibberellins - chemistry
Hormones
Metal-organic frameworks
Metals
Methanol
Methanol - chemistry
Methyl alcohol
Molecular Structure
Organic chemicals
Organic Chemistry
Oxylipins - chemistry
Phenols
Stereoisomerism
X-ray diffraction
X-rays
Title Coordinative alignment of molecules in chiral metal-organic frameworks
URI https://www.jstor.org/stable/44711372
https://www.ncbi.nlm.nih.gov/pubmed/27540171
https://www.proquest.com/docview/1812499505
https://www.proquest.com/docview/1812887614
https://www.proquest.com/docview/1815711888
https://www.proquest.com/docview/1835587592
Volume 353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJiReEBsMCgMZiYehKVUSx3by2A2qiQd4oEjwFDn-QNNoWq3tw_jrOceO66J12vYSRbETJ77z5e589zuEPpS6SplWNMnyXCRgf7GkFKxMUsWUkfDLFLKL8v3Kzn8UX37SaKO9yy5ZNkP598a8kodQFa4BXW2W7D0oGx4KF-Ac6AtHoDAc70TjsxmYjhetw-4Ghfp32Nqfuqq3XbSVTdi-6pJEQNFOXBkneWL6qKxFrJ_2Sx30zrCXE1EwBCWOXOhAP5y_LXIr-ACf7xqEyeX1Ksh1Mbflw5zTZwUfptfO1F_CVRg--Ta14EKxPyJj1sHqpZ52MjS15R_zlMRCljhIYM9NjHgPhpOaZQftcIM0j-pP6qEQpsoctklE2_m0I27OQfXMXDWX_wC0-6ZHaC8HWwKE4d7o9NPpeAOb2aM-RflU_XgWLto_YUN3ceGr2w2TTkGZPENPvWWBR45N9tGObg_QY1dr9PoA7XsaLfCxhxr_-ByNYw7CgYPwzODAQfiixY6D8AYH4TUHvUCT8efJ2XniK2skkmZsmfCmUZrnohCGMxDzhmSqUVzkChZoJUtCMkOYKhn8ggrNKKEyNQ0xRKWmMIwcot121upXCHOuKOVNIcBOKEijGtpITkXBCdOCSTJAw37KaulR523xkz91Z33mrPbTXfvpHqDjcMPcAa5s73rY0SD0K0DTygjPB-ioJ0rtl-ui7lTZqgKNf4Deh2YQpnaHTLR6tnJ94JNBZb21D4VhyrK8rY-tWsBpBa_y0jFFeMmemV5vbXmDnqwX1hHaXV6t9FtQfZfNO8-6_wDEhbGK
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinative+alignment+of+molecules+in+chiral+metal-organic+frameworks&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lee%2C+Seungkyu&rft.au=Kapustin%2C+Eugene+A&rft.au=Yaghi%2C+Omar+M&rft.date=2016-08-19&rft.eissn=1095-9203&rft.volume=353&rft.issue=6301&rft.spage=808&rft_id=info:doi/10.1126%2Fscience.aaf9135&rft_id=info%3Apmid%2F27540171&rft.externalDocID=27540171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon