Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling
The Mst–Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in acti...
Saved in:
Published in | Genes & development Vol. 29; no. 13; pp. 1416 - 1431 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Springs Harbor Laboratory Press
01.07.2015
Cold Spring Harbor Laboratory Press |
Subjects | |
Online Access | Get full text |
ISSN | 0890-9369 1549-5477 |
DOI | 10.1101/gad.264929.115 |
Cover
Loading…
Abstract | The Mst–Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2–Mob1 and phospho-Mob1–Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1 acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades. |
---|---|
AbstractList | The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2-Mob1 and phospho-Mob1-Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1 acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades. The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2-Mob1 and phospho-Mob1-Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mobl mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1 acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades. Here, Ni et al. determined the crystal structures of a key Hippo pathway regulator, Mob1, bound to either Mst2 (human Hippo) or Lats1, two core pathway kinases. Further mechanistic and functional studies provide novel insight into the conserved mechanism by which the Hippo kinase activates Lats through stepwise phosphorylation. The Mst–Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2–Mob1 and phospho-Mob1–Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1 acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades. |
Author | Hara, Mayuko Luo, Xuelian Pan, Duojia Zheng, Yonggang Ni, Lisheng |
AuthorAffiliation | 1 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA 2 Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA – name: 2 Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA |
Author_xml | – sequence: 1 givenname: Lisheng surname: Ni fullname: Ni, Lisheng – sequence: 2 givenname: Yonggang surname: Zheng fullname: Zheng, Yonggang – sequence: 3 givenname: Mayuko surname: Hara fullname: Hara, Mayuko – sequence: 4 givenname: Duojia surname: Pan fullname: Pan, Duojia – sequence: 5 givenname: Xuelian surname: Luo fullname: Luo, Xuelian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26108669$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1213722$$D View this record in Osti.gov |
BookMark | eNqFks2KFDEUhYOMOD2jW5cSXLmpNj-VpLIRZFBH6MGFug6p1K3qaHVSJqkBd76Db-iTGO0ZUUFchZt89-Rczj1DJyEGQOghJVtKCX062WHLZKuZrrW4gzZUtLoRrVInaEM6TRrNpT5FZzl_IIRIIuU9dMokJZ2UeoOmtyWtrqzJzri32Wc8xoSvYk-bARYIA4SCrSv-2hYfA44jLnvALibAV7l8-_J1Z0vGH32wuV7b7OwA2Ad86Zcl4uynYGcfpvvo7mjnDA9uznP0_uWLdxeXze7Nq9cXz3eNE1SWRmky9E4OhAMDrjoie8W1kNBRJQdpu5G1QFvrrGbM9Uy1hBPpOBk71Xej5ufo2VF3WfsDDK7ar6OZJfmDTZ9NtN78-RL83kzx2rSCUkZlFXh8FIi5eJOdL-D2LoYArphKcMVYhZ7c_JLipxVyMQefHcyzDRDXbGiFaMe4kv9HpRZK1JC6ij763fsv07dpVaA9Ai7FnBOMptr7mUsdxc-GEvNjKUxdCnNcilqL2rb9q-1W-R8N3wEhVrnS |
CitedBy_id | crossref_primary_10_1111_odi_14615 crossref_primary_10_1038_s12276_019_0342_z crossref_primary_10_1073_pnas_2000497117 crossref_primary_10_15252_embr_201744777 crossref_primary_10_1038_s41594_021_00564_y crossref_primary_10_1038_s41467_019_09597_w crossref_primary_10_1534_genetics_118_301889 crossref_primary_10_1111_jcmm_13293 crossref_primary_10_3389_fcell_2020_00161 crossref_primary_10_1146_annurev_genet_120417_031621 crossref_primary_10_1038_s41422_021_00530_9 crossref_primary_10_1016_j_biopha_2020_110061 crossref_primary_10_1016_j_tice_2024_102600 crossref_primary_10_1074_jbc_RA120_013297 crossref_primary_10_1016_j_lfs_2020_118655 crossref_primary_10_14336_AD_2024_0306 crossref_primary_10_1002_wdev_371 crossref_primary_10_1242_bio_058904 crossref_primary_10_1038_s41401_021_00755_9 crossref_primary_10_1080_15384101_2016_1207837 crossref_primary_10_1111_febs_16091 crossref_primary_10_26508_lsa_202000953 crossref_primary_10_1016_j_canlet_2019_06_013 crossref_primary_10_1021_acs_biochem_2c00022 crossref_primary_10_3390_cancers14123013 crossref_primary_10_15252_embj_2022112863 crossref_primary_10_1016_j_molcel_2018_10_004 crossref_primary_10_1016_j_molcel_2018_08_038 crossref_primary_10_1021_acs_jproteome_2c00465 crossref_primary_10_1038_s41598_020_60120_4 crossref_primary_10_3390_ijms23020636 crossref_primary_10_1016_j_semcancer_2017_04_010 crossref_primary_10_1097_CAD_0000000000001545 crossref_primary_10_1016_j_str_2018_05_014 crossref_primary_10_7554_eLife_30278 crossref_primary_10_1098_rsob_160119 crossref_primary_10_1016_j_devcel_2015_12_004 crossref_primary_10_1016_j_biopha_2024_116703 crossref_primary_10_1038_s41389_019_0172_9 crossref_primary_10_1158_0008_5472_CAN_22_0717 crossref_primary_10_2139_ssrn_3911552 crossref_primary_10_1074_jbc_RA118_004187 crossref_primary_10_1074_mcp_M116_065490 crossref_primary_10_1038_s41421_021_00254_5 crossref_primary_10_1073_pnas_1913469117 crossref_primary_10_1111_mmi_13954 crossref_primary_10_1016_j_celrep_2018_01_080 crossref_primary_10_1016_j_fsi_2020_04_067 crossref_primary_10_1016_j_bbrc_2022_03_016 crossref_primary_10_1042_BSR20171469 crossref_primary_10_1042_BST20200559 crossref_primary_10_1016_j_canlet_2017_03_001 crossref_primary_10_1038_cdd_2017_99 crossref_primary_10_1172_JCI157171 crossref_primary_10_1074_jbc_RA118_003279 crossref_primary_10_1038_nrgastro_2016_59 crossref_primary_10_1016_j_devcel_2019_06_003 crossref_primary_10_1089_dna_2018_4340 crossref_primary_10_1074_mcp_M117_068130 crossref_primary_10_1161_CIRCRESAHA_122_322113 crossref_primary_10_1080_10985549_2023_2292037 crossref_primary_10_4049_jimmunol_2100341 crossref_primary_10_7554_eLife_54863 crossref_primary_10_1016_j_devcel_2015_11_027 crossref_primary_10_1016_j_taap_2020_115257 crossref_primary_10_1016_S0021_9258_17_49883_8 crossref_primary_10_1080_13543776_2018_1549226 crossref_primary_10_1096_fj_201901278R crossref_primary_10_1155_2021_5533914 crossref_primary_10_1038_s12276_024_01316_w crossref_primary_10_1371_journal_pbio_2006540 crossref_primary_10_3389_fcell_2022_862791 crossref_primary_10_1016_j_cellsig_2016_02_012 crossref_primary_10_1016_j_tibs_2018_02_009 crossref_primary_10_1016_j_chom_2018_08_004 crossref_primary_10_1016_j_jprot_2022_104582 crossref_primary_10_3390_cancers12092438 crossref_primary_10_3390_genes7050021 crossref_primary_10_1007_s00432_021_03552_3 crossref_primary_10_3390_cancers10040121 crossref_primary_10_1038_srep28488 crossref_primary_10_18632_oncotarget_25238 crossref_primary_10_1016_j_jbc_2024_107257 crossref_primary_10_1534_genetics_116_194522 crossref_primary_10_3390_cells10113130 crossref_primary_10_1016_j_bbcan_2024_189191 crossref_primary_10_1038_s41467_017_00795_y crossref_primary_10_1126_scisignal_ado6266 crossref_primary_10_3390_cells8060569 crossref_primary_10_1016_j_semcancer_2017_05_011 crossref_primary_10_1016_j_jmb_2020_166746 crossref_primary_10_1016_j_yexcr_2021_112613 crossref_primary_10_3390_immuno2040039 crossref_primary_10_1007_s00018_018_2890_0 crossref_primary_10_1002_fsn3_1712 crossref_primary_10_1038_s42003_021_02744_4 crossref_primary_10_1007_s11523_022_00900_2 crossref_primary_10_1093_biolre_ioaa112 crossref_primary_10_2147_JIR_S313422 crossref_primary_10_12677_HJBM_2021_111002 crossref_primary_10_3389_fgene_2021_676182 crossref_primary_10_1021_acs_biochem_9b01096 crossref_primary_10_1038_s41467_024_54480_y crossref_primary_10_15252_embr_201642681 crossref_primary_10_26508_lsa_202101346 crossref_primary_10_1038_s41556_020_00588_4 crossref_primary_10_1126_scitranslmed_aaf2304 crossref_primary_10_1074_jbc_RA119_010068 crossref_primary_10_1038_s41556_020_00602_9 crossref_primary_10_1021_acs_biochem_6b00763 crossref_primary_10_1093_cvr_cvab291 crossref_primary_10_1101_gad_274027_115 crossref_primary_10_1093_jmcb_mjz013 crossref_primary_10_3390_biom12101486 crossref_primary_10_1038_s41388_024_03104_2 crossref_primary_10_1016_j_celrep_2020_108118 crossref_primary_10_3389_fmicb_2019_03033 crossref_primary_10_1021_acschembio_6b01058 crossref_primary_10_1093_nar_gkac189 crossref_primary_10_1038_s41421_018_0077_3 crossref_primary_10_1016_j_celrep_2017_11_076 crossref_primary_10_1016_j_celrep_2019_11_035 |
Cites_doi | 10.1107/S0021889807021206 10.1016/j.devcel.2012.03.013 10.1007/BF00197809 10.1016/j.semcdb.2012.05.004 10.1002/biof.47 10.1016/j.molcel.2010.08.002 10.1128/MCB.18.4.2100 10.1038/sj.onc.1208445 10.1101/gad.1602907 10.1101/gad.1843810 10.1016/j.cell.2005.06.007 10.1126/science.1235822 10.1006/jmbi.1993.1012 10.1073/pnas.0610716104 10.1074/jbc.M709037200 10.1107/S0907444910007493 10.1038/nrc3458 10.1186/2045-3701-3-32 10.1016/j.cub.2008.02.006 10.1016/j.ceb.2008.10.001 10.1016/j.cell.2006.01.005 10.1007/s13238-010-0105-z 10.1016/j.devcel.2009.12.012 10.1101/gad.1664408 10.1016/j.bbrc.2006.03.244 10.1038/nrd4161 10.1126/scisignal.2004208 10.1016/S0092-8674(03)00557-9 10.1074/jbc.M404542200 10.1016/S0092-8674(02)00824-3 10.1016/j.ceb.2009.09.010 10.1158/0008-5472.CAN-05-0862 10.1016/j.semcdb.2012.05.002 10.1016/j.cell.2007.07.019 10.1007/BF00404272 10.1107/S0907444909052925 10.1016/S0092-8674(03)00549-X 10.1242/dev.045500 10.1038/sj.emboj.7601630 10.1038/nrc2070 10.1016/j.cell.2013.08.025 10.1016/j.ceb.2012.12.006 10.1016/j.str.2013.07.008 10.1016/j.devcel.2010.09.011 10.1016/j.cellsig.2011.04.007 10.1016/j.celrep.2011.11.004 10.1074/jbc.M111.310334 10.1172/JCI63735 10.1016/j.jmb.2006.07.007 10.1016/j.semcdb.2012.07.002 10.1002/dvdy.22723 10.1038/ncb1051 10.1101/gad.1909210 |
ContentType | Journal Article |
Copyright | 2015 Ni et al.; Published by Cold Spring Harbor Laboratory Press. 2015 |
Copyright_xml | – notice: 2015 Ni et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2015 |
CorporateAuthor | Univ. of Texas Southwestern Medical Center, Dallas, TX (United States) |
CorporateAuthor_xml | – name: Univ. of Texas Southwestern Medical Center, Dallas, TX (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 OIOZB OTOTI 5PM |
DOI | 10.1101/gad.264929.115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Ni et al |
EISSN | 1549-5477 |
EndPage | 1431 |
ExternalDocumentID | PMC4511216 1213722 26108669 10_1101_gad_264929_115 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY015708 – fundername: NIGMS NIH HHS grantid: R01 GM085004 – fundername: NEI NIH HHS grantid: EY015708 – fundername: NIGMS NIH HHS grantid: GM085004 – fundername: Howard Hughes Medical Institute – fundername: NCRR NIH HHS grantid: S10 RR026461 – fundername: NIGMS NIH HHS grantid: R01 GM107415 – fundername: NCRR NIH HHS grantid: S10RR026461-01 – fundername: National Institutes of Health grantid: S10RR026461-01 – fundername: U.S. Department of Energy grantid: DE-AC02-06CH11357 – fundername: National Institutes of Health grantid: GM085004; EY015708 |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XJT XSW YBU YHG YKV YSK CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c516t-790dbc6d03e2e37806b73956e8176d6a8f24e14aca922cb2740306c30f87b8f93 |
ISSN | 0890-9369 |
IngestDate | Thu Aug 21 14:10:03 EDT 2025 Mon Jun 16 03:23:53 EDT 2025 Fri Jul 11 10:40:22 EDT 2025 Sun Aug 24 03:26:21 EDT 2025 Thu Apr 03 06:54:02 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Tue Jul 01 01:12:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Mst2 X-ray crystallography Lats1 NMR Mob1 autoinhibition phosphorylation |
Language | English |
License | 2015 Ni et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c516t-790dbc6d03e2e37806b73956e8176d6a8f24e14aca922cb2740306c30f87b8f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-06CH11357 USDOE National Inst. of Health (NIH) (United States) None |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4511216 |
PMID | 26108669 |
PQID | 1695759368 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511216 osti_scitechconnect_1213722 proquest_miscellaneous_1722182376 proquest_miscellaneous_1695759368 pubmed_primary_26108669 crossref_citationtrail_10_1101_gad_264929_115 crossref_primary_10_1101_gad_264929_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2015 |
Publisher | Cold Springs Harbor Laboratory Press Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Springs Harbor Laboratory Press – name: Cold Spring Harbor Laboratory Press |
References | 2021111619385886000_29.13.1416.40 2021111619385886000_29.13.1416.41 2021111619385886000_29.13.1416.35 2021111619385886000_29.13.1416.36 2021111619385886000_29.13.1416.37 2021111619385886000_29.13.1416.38 2021111619385886000_29.13.1416.31 2021111619385886000_29.13.1416.32 2021111619385886000_29.13.1416.33 2021111619385886000_29.13.1416.34 2021111619385886000_29.13.1416.39 2021111619385886000_29.13.1416.50 2021111619385886000_29.13.1416.51 2021111619385886000_29.13.1416.52 2021111619385886000_29.13.1416.46 2021111619385886000_29.13.1416.47 2021111619385886000_29.13.1416.48 2021111619385886000_29.13.1416.49 2021111619385886000_29.13.1416.42 2021111619385886000_29.13.1416.43 2021111619385886000_29.13.1416.44 2021111619385886000_29.13.1416.45 2021111619385886000_29.13.1416.1 2021111619385886000_29.13.1416.6 2021111619385886000_29.13.1416.13 2021111619385886000_29.13.1416.7 2021111619385886000_29.13.1416.14 2021111619385886000_29.13.1416.8 2021111619385886000_29.13.1416.15 2021111619385886000_29.13.1416.9 2021111619385886000_29.13.1416.16 2021111619385886000_29.13.1416.2 2021111619385886000_29.13.1416.53 2021111619385886000_29.13.1416.3 2021111619385886000_29.13.1416.10 2021111619385886000_29.13.1416.54 2021111619385886000_29.13.1416.4 2021111619385886000_29.13.1416.11 2021111619385886000_29.13.1416.5 2021111619385886000_29.13.1416.12 2021111619385886000_29.13.1416.17 2021111619385886000_29.13.1416.18 2021111619385886000_29.13.1416.19 (2021111619385886000_29.13.1416.29) 1998; 18 2021111619385886000_29.13.1416.30 2021111619385886000_29.13.1416.24 2021111619385886000_29.13.1416.25 2021111619385886000_29.13.1416.26 2021111619385886000_29.13.1416.27 2021111619385886000_29.13.1416.20 2021111619385886000_29.13.1416.21 2021111619385886000_29.13.1416.22 2021111619385886000_29.13.1416.23 2021111619385886000_29.13.1416.28 |
References_xml | – ident: 2021111619385886000_29.13.1416.31 doi: 10.1107/S0021889807021206 – ident: 2021111619385886000_29.13.1416.6 doi: 10.1016/j.devcel.2012.03.013 – ident: 2021111619385886000_29.13.1416.9 doi: 10.1007/BF00197809 – ident: 2021111619385886000_29.13.1416.23 doi: 10.1016/j.semcdb.2012.05.004 – ident: 2021111619385886000_29.13.1416.21 doi: 10.1002/biof.47 – ident: 2021111619385886000_29.13.1416.39 doi: 10.1016/j.molcel.2010.08.002 – volume: 18 start-page: 2100 year: 1998 ident: 2021111619385886000_29.13.1416.29 article-title: DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein publication-title: Mol Cell Biol doi: 10.1128/MCB.18.4.2100 – ident: 2021111619385886000_29.13.1416.8 doi: 10.1038/sj.onc.1208445 – ident: 2021111619385886000_29.13.1416.50 doi: 10.1101/gad.1602907 – ident: 2021111619385886000_29.13.1416.54 doi: 10.1101/gad.1843810 – ident: 2021111619385886000_29.13.1416.24 doi: 10.1016/j.cell.2005.06.007 – ident: 2021111619385886000_29.13.1416.40 doi: 10.1126/science.1235822 – ident: 2021111619385886000_29.13.1416.45 doi: 10.1006/jmbi.1993.1012 – ident: 2021111619385886000_29.13.1416.25 doi: 10.1073/pnas.0610716104 – ident: 2021111619385886000_29.13.1416.15 doi: 10.1074/jbc.M709037200 – ident: 2021111619385886000_29.13.1416.12 doi: 10.1107/S0907444910007493 – ident: 2021111619385886000_29.13.1416.35 doi: 10.1007/BF00197809 – ident: 2021111619385886000_29.13.1416.18 doi: 10.1038/nrc3458 – ident: 2021111619385886000_29.13.1416.20 doi: 10.1186/2045-3701-3-32 – ident: 2021111619385886000_29.13.1416.38 doi: 10.1016/j.cub.2008.02.006 – ident: 2021111619385886000_29.13.1416.51 doi: 10.1016/j.ceb.2008.10.001 – ident: 2021111619385886000_29.13.1416.11 doi: 10.1016/j.cell.2006.01.005 – ident: 2021111619385886000_29.13.1416.30 doi: 10.1007/s13238-010-0105-z – ident: 2021111619385886000_29.13.1416.49 doi: 10.1016/j.devcel.2009.12.012 – ident: 2021111619385886000_29.13.1416.52 doi: 10.1101/gad.1664408 – ident: 2021111619385886000_29.13.1416.22 doi: 10.1016/j.bbrc.2006.03.244 – ident: 2021111619385886000_29.13.1416.28 doi: 10.1038/nrd4161 – ident: 2021111619385886000_29.13.1416.13 doi: 10.1126/scisignal.2004208 – ident: 2021111619385886000_29.13.1416.17 doi: 10.1016/S0092-8674(03)00557-9 – ident: 2021111619385886000_29.13.1416.5 doi: 10.1074/jbc.M404542200 – ident: 2021111619385886000_29.13.1416.44 doi: 10.1016/S0092-8674(02)00824-3 – ident: 2021111619385886000_29.13.1416.3 doi: 10.1016/j.ceb.2009.09.010 – ident: 2021111619385886000_29.13.1416.7 doi: 10.1158/0008-5472.CAN-05-0862 – ident: 2021111619385886000_29.13.1416.43 doi: 10.1016/j.semcdb.2012.05.002 – ident: 2021111619385886000_29.13.1416.10 doi: 10.1016/j.cell.2007.07.019 – ident: 2021111619385886000_29.13.1416.27 doi: 10.1007/BF00404272 – ident: 2021111619385886000_29.13.1416.1 doi: 10.1107/S0907444909052925 – ident: 2021111619385886000_29.13.1416.47 doi: 10.1016/S0092-8674(03)00549-X – ident: 2021111619385886000_29.13.1416.14 doi: 10.1242/dev.045500 – ident: 2021111619385886000_29.13.1416.46 doi: 10.1038/sj.emboj.7601630 – ident: 2021111619385886000_29.13.1416.16 doi: 10.1038/nrc2070 – ident: 2021111619385886000_29.13.1416.48 doi: 10.1016/j.cell.2013.08.025 – ident: 2021111619385886000_29.13.1416.4 doi: 10.1016/j.ceb.2012.12.006 – ident: 2021111619385886000_29.13.1416.33 doi: 10.1016/j.str.2013.07.008 – ident: 2021111619385886000_29.13.1416.36 doi: 10.1016/j.devcel.2010.09.011 – ident: 2021111619385886000_29.13.1416.19 doi: 10.1016/j.cellsig.2011.04.007 – ident: 2021111619385886000_29.13.1416.41 doi: 10.1016/j.celrep.2011.11.004 – ident: 2021111619385886000_29.13.1416.26 doi: 10.1074/jbc.M111.310334 – ident: 2021111619385886000_29.13.1416.34 doi: 10.1172/JCI63735 – ident: 2021111619385886000_29.13.1416.32 doi: 10.1016/j.jmb.2006.07.007 – ident: 2021111619385886000_29.13.1416.2 doi: 10.1016/j.semcdb.2012.07.002 – ident: 2021111619385886000_29.13.1416.42 doi: 10.1002/dvdy.22723 – ident: 2021111619385886000_29.13.1416.37 doi: 10.1038/ncb1051 – ident: 2021111619385886000_29.13.1416.53 doi: 10.1101/gad.1909210 |
SSID | ssj0006066 |
Score | 2.5163767 |
Snippet | The Mst–Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1... The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1... Here, Ni et al. determined the crystal structures of a key Hippo pathway regulator, Mob1, bound to either Mst2 (human Hippo) or Lats1, two core pathway... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1416 |
SubjectTerms | Adaptor Proteins, Signal Transducing - chemistry Adaptor Proteins, Signal Transducing - metabolism Amino Acid Motifs Amino Acid Sequence Animals autoinhibition Binding Sites Cells, Cultured Crystallization Drosophila melanogaster Humans Lats1 Mob1 Models, Molecular Molecular Sequence Data Mst2 NMR Phosphorylation Protein Binding Protein Structure, Quaternary Protein-Serine-Threonine Kinases - chemistry Protein-Serine-Threonine Kinases - metabolism Protein-Serine-Threonine Kinases - physiology Research Paper Sequence Alignment Signal Transduction X-ray crystallography |
Title | Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26108669 https://www.proquest.com/docview/1695759368 https://www.proquest.com/docview/1722182376 https://www.osti.gov/servlets/purl/1213722 https://pubmed.ncbi.nlm.nih.gov/PMC4511216 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB5qRfBFvG9dlREEH0rWTC6T5FEWpehWFHdhfQqTyaQbtyaFpML65H_w3_hz_CWeM5ncpIpuH0KTTDJpz5dzmTnzHUKegs0DK5UFVuoEkeWFTmZFbphakgWJrwR8AlzgvHzLFyfe61P_dDL5Mcha2tbJgfy6c13JZaQKx0CuuEr2PyTb3RQOwHeQL2xBwrD9Jxl_0OSvmjgDrFGuqRXgLU2Y1da2rTVZxpfOL0Q3E4kr58uqbvMc3CNRV_PzvBCYui4qzJjHYZBFvtmUc0zwEOvWwBk3FsmqK42atE866qc4mmC_OlPmKj0wrRqt8rEsVivRn1gIXelovhQX2_Oyn9FqtOG2_JSL4cgE87ssVpMgVK7BZdbDk7giCSA9P2qAjdkDwwwTrewi28Ligo1dMsrYiyzfM2VejLY24yMGle5A9zKP8YEdB0eQ7bYRujbBSqQH4AyCdwhH_GFDkPHms0YMRJcQ8bXPNGLlfrc8RGY3h_Er5KoDIQpWz3jzvmeqx8BQRzDmdxnCUOj8-bhrpKM2_Yx8o2kJOn5X3PN7-u7AHzq-SW6YQIa-aFB5i0xUcZtca0qbXtwhqx6bVGOTAjbpGJu0xyYtMwrYpIhNCtj8-e07opI2qKQGlTQvqEYl7VB5l5y8enl8uLBMUQ9L-ozXVhDZaSJ5arvKUW4Q2jzBuWKuQhbwlIswczzFPCFF5DgycQIPo1rp2lkYJGEWuffItCgLtUeonYTKTmSqggBk74URlxxn8p3QcT2ZuDNitX9nLA3jPRZeWcc68rVZDJKIG0nAvj8jz7r2m4br5Y8t91E6MXipSLUsMSdN1jHSIwISZuRJK7QYlDXOwIlCldsqZjzCgrguD__SBu7AkEKKz8j9RtDd07RAmZFgBIGuAZLFj88U-ZkmjTdofXDpK_fJ9f4lf0imgCL1CBzyOnmskf8LBzDhdA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+Mob1-dependent+activation+of+the+core+Mst%E2%80%93Lats+kinase+cascade+in+Hippo+signaling&rft.jtitle=Genes+%26+development&rft.au=Ni%2C+Lisheng&rft.au=Zheng%2C+Yonggang&rft.au=Hara%2C+Mayuko&rft.au=Pan%2C+Duojia&rft.date=2015-07-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=29&rft.issue=13&rft.spage=1416&rft.epage=1431&rft_id=info:doi/10.1101%2Fgad.264929.115&rft_id=info%3Apmid%2F26108669&rft.externalDocID=PMC4511216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |