An active shrinkage and antioxidative hydrogel with biomimetic mechanics functions modulates inflammation and fibrosis to promote skin regeneration

Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repa...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 45; pp. 322 - 344
Main Authors Zhang, Tao, Zhong, Xin-Cao, Feng, Zi-Xuan, Lin, Xiao-Ying, Chen, Chun-Ye, Wang, Xiao-Wei, Guo, Kai, Wang, Yi, Chen, Jun, Du, Yong-Zhong, Zhuang, Ze-Ming, Wang, Yong, Tan, Wei-Qiang
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.03.2025
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. [Display omitted] •The hydrogel possessed heat-shrinkable and antioxidant capabilities.•The hydrogel regulated the inflammatory niche and was anti-fibrotic.•The hydrogel partially substituted for myofibroblast-induced wound contraction.•The hydrogel's skin-like elastic modulus restored wounds' mechanical integrity.•The hydrogel promoted skin regeneration.
AbstractList Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogels immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the antiinflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. [Display omitted] •The hydrogel possessed heat-shrinkable and antioxidant capabilities.•The hydrogel regulated the inflammatory niche and was anti-fibrotic.•The hydrogel partially substituted for myofibroblast-induced wound contraction.•The hydrogel's skin-like elastic modulus restored wounds' mechanical integrity.•The hydrogel promoted skin regeneration.
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. Image 1 • The hydrogel possessed heat-shrinkable and antioxidant capabilities. • The hydrogel regulated the inflammatory niche and was anti-fibrotic. • The hydrogel partially substituted for myofibroblast-induced wound contraction. • The hydrogel's skin-like elastic modulus restored wounds' mechanical integrity. • The hydrogel promoted skin regeneration.
Author Lin, Xiao-Ying
Zhuang, Ze-Ming
Chen, Jun
Guo, Kai
Wang, Yong
Tan, Wei-Qiang
Wang, Yi
Du, Yong-Zhong
Feng, Zi-Xuan
Zhong, Xin-Cao
Chen, Chun-Ye
Wang, Xiao-Wei
Zhang, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 2
  givenname: Xin-Cao
  surname: Zhong
  fullname: Zhong, Xin-Cao
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 3
  givenname: Zi-Xuan
  orcidid: 0009-0002-9302-6455
  surname: Feng
  fullname: Feng, Zi-Xuan
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 4
  givenname: Xiao-Ying
  surname: Lin
  fullname: Lin, Xiao-Ying
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 5
  givenname: Chun-Ye
  surname: Chen
  fullname: Chen, Chun-Ye
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 6
  givenname: Xiao-Wei
  surname: Wang
  fullname: Wang, Xiao-Wei
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 7
  givenname: Kai
  surname: Guo
  fullname: Guo, Kai
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 8
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 9
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 10
  givenname: Yong-Zhong
  surname: Du
  fullname: Du, Yong-Zhong
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 11
  givenname: Ze-Ming
  surname: Zhuang
  fullname: Zhuang, Ze-Ming
  email: 12218001@zju.edu.cn
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 12
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: wongyong@zju.edu.cn
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
– sequence: 13
  givenname: Wei-Qiang
  orcidid: 0000-0003-4951-0960
  surname: Tan
  fullname: Tan, Wei-Qiang
  email: tanweixxxx@zju.edu.cn
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39669127$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEQx1eoiJbSVwBLXLgk2Lu2d_eEqoqPSpW4gMTN8trjxOmuHWwnpc_BCzNJStRywZI_NP7Pb8aeeVmdhBigqt4wOmeUyfer-eCjNmXSZV7Tms8Zm9O6e1ad1VzUM9b3P04enU-ri5xXlFLW4kLbF9Vp00vZs7o9q35fBoIovwWSl8mHW70AooPFWXz85a3e3y3vbYoLGMmdL0uC4Sc_QfGGTGCWOniTidsE5MSQyRTtZtQFMvHBjXrCPNG-pzo_pJh9JiWSdYpTLBj31geSYAEB0l75qnru9Jjh4mE_r75_-vjt6svs5uvn66vLm5kRTJaZ7CzvuHBgZMtqAY3rheVWC9kxYVkzDEJI0xpurZNuMLLrjeOtBEE7TXvXnFfXB66NeqXWyU863auovdobYloonfCRI6heYBCKnNo0HKTTLTV1xwar7aB5B8j6cGCtN8ME1kAoSY9PoE9vgl-qRdwqxmQjJKuR8O6BkOLPDeSiJp8NjKMOEDdZNYxLHILupG__ka7iJgX8K1RJyhrKGUfV68cpHXP5W3wUtAeBwZrkBO4oYVTtOk2t1LHT1K7TMFuFnYaelwdPwPJsPSSVjYdgwPoEpuD_-f8y_gAUzOUD
Cites_doi 10.1056/NEJMoa2210639
10.1096/fj.201701575RRR
10.1021/acs.biomac.7b01133
10.2147/IJN.S418534
10.1016/j.biopha.2019.109394
10.1002/adhm.202000905
10.1016/j.bbamcr.2016.09.012
10.3904/kjim.2017.317
10.1038/s41578-019-0171-7
10.1016/j.eurpolymj.2018.12.019
10.1016/j.nantod.2022.101380
10.1016/j.ymthe.2022.07.016
10.1002/btm2.10620
10.1002/anie.202100064
10.1021/acsnano.1c02147
10.1080/2162402X.2020.1836766
10.1021/bm200423f
10.1038/s41586-019-1794-y
10.1002/adma.202306632
10.1111/bph.14489
10.3390/polym3031377
10.1038/nature07039
10.1038/nprot.2013.002
10.1126/scisignal.aao3469
10.1038/s12276-020-0384-2
10.1016/j.partic.2018.07.007
10.1002/advs.202303326
10.3389/fsurg.2023.1167067
10.2353/ajpath.2007.061205
10.1002/advs.202206306
10.1038/s41586-020-2938-9
10.1016/j.eurpolymj.2019.03.051
10.3109/02770909909055418
10.1089/wound.2012.0412
10.1016/j.ijbiomac.2022.06.153
10.1080/10717544.2021.1938756
10.1089/ten.teb.2018.0350
10.1111/exd.14154
10.1038/s41467-022-30813-7
10.1038/natrevmats.2016.71
10.26502/fccm.92920302
10.1007/s10787-018-0535-4
10.1038/s41580-024-00716-0
10.1016/j.freeradbiomed.2011.06.001
10.1126/sciadv.aba0588
10.1002/adma.202200521
10.1074/jbc.M110.163782
10.1021/acsami.1c23713
10.1016/j.actbio.2008.07.030
10.3389/fmed.2015.00086
10.1038/s41598-019-48254-6
10.1016/j.biopha.2020.110287
10.1016/j.biomaterials.2019.119720
10.1126/science.aam7928
10.1016/j.addr.2018.06.019
10.1002/adma.202312440
10.1016/j.cmet.2021.10.004
10.3390/ijms22137095
10.1007/s40257-022-00744-6
10.1038/s41556-018-0073-8
10.1038/nrcardio.2014.59
10.1093/rb/rbac110
10.1038/s41392-022-01070-3
10.1016/j.saa.2011.09.056
10.1016/j.ijbiomac.2022.07.161
10.1038/s44222-023-00055-3
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2024.11.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 344
ExternalDocumentID oai_doaj_org_article_95c670df62c34e6fa70c281bdadba48e
PMC11635612
39669127
10_1016_j_bioactmat_2024_11_028
S2452199X2400519X
Genre Journal Article
GroupedDBID 0R~
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABJCF
ABMAC
ACGFS
ADBBV
ADMLS
ADVLN
AEXQZ
AFKRA
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
HYE
KB.
M41
M7P
M~E
OK1
PDBOC
PHGZT
PIMPY
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
NPM
8FE
8FG
8FH
ABUWG
AZQEC
D1I
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c516t-68d4845fec67125e3f95d4da56815d13bb556c7c4ddf6fbc689cf476e508a09f3
IEDL.DBID BENPR
ISSN 2452-199X
2097-1192
IngestDate Wed Aug 27 00:44:12 EDT 2025
Thu Aug 21 18:29:29 EDT 2025
Fri Jul 11 09:14:04 EDT 2025
Fri Jul 25 11:46:23 EDT 2025
Thu Apr 03 07:04:51 EDT 2025
Tue Jul 01 05:28:12 EDT 2025
Sat Mar 01 15:45:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomimetic mechanics
Skin regeneration
Anti-inflammation and anti-fibrosis
ACEI microspheres
Active shrinkage and antioxidative hydrogel
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-68d4845fec67125e3f95d4da56815d13bb556c7c4ddf6fbc689cf476e508a09f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-4951-0960
0009-0002-9302-6455
OpenAccessLink https://www.proquest.com/docview/3160130414?pq-origsite=%requestingapplication%
PMID 39669127
PQID 3160130414
PQPubID 6865030
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_95c670df62c34e6fa70c281bdadba48e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11635612
proquest_miscellaneous_3146666502
proquest_journals_3160130414
pubmed_primary_39669127
crossref_primary_10_1016_j_bioactmat_2024_11_028
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_11_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
– name: Beijing
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2025
Publisher Elsevier B.V
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing Communications Ltd
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Junker, Kamel, Caterson, Eriksson (bib61) 2013; 2
Hedayatyanfard, Haddadi, Ziai, Karim, Niazi, Steckelings, Habibi, Modarressi, Dehpour (bib29) 2020; 29
Chatterjee, Hui, Kan, Wang (bib56) 2019; 9
Fang, Wang, Zhao, Ding, Shi, Xia, Yang, Wu, Li, Tan (bib69) 2018; 8
Cremers, Suttorp, Gerritsen, Wong, van Run-van Breda, van Dam, Brouwer, Kuijpers-Jagtman, Carels, Lundvig, Wagener (bib70) 2015; 2
Eming, Wynn, Martin (bib9) 2017; 356
Feng, Wang (bib59) 2023; 10
Li, Liu, Chen, Zhao, Xu, Weng, Yu, Xiong, Udduttula, Wang, Liu, Chen, Zeng (bib43) 2023; 14
Perillo, Di Donato, Pezone, Di Zazzo, Giovannelli, Galasso, Castoria, Migliaccio (bib66) 2020; 52
Li, Yang, Li, Zhang, Zhu, Song, Guo, Wang, Gan, Shi, Ma, Gao, Su (bib39) 2023; 18
Polez, Morits, Jonkergouw, Phiri, Valle-Delgado, Linder, Maloney, Rojas, Österberg (bib57) 2022; 215
Jiang, Correa-Gallegos, Christ, Stefanska, Liu, Ramesh, Rajendran, De Santis, Wagner, Rinkevich (bib55) 2018; 20
Hasturk, Jordan, Choi, Kaplan (bib42) 2020; 232
Okwan-Duodu, Datta, Shen, Goodridge, Bernstein, Fuchs, Liu, Bernstein (bib20) 2010; 285
Medjebar, Truntzer, Perrichet, Limagne, Fumet, Richard, Elkrief, Routy, Rébé, Ghiringhelli (bib25) 2020; 9
Wu, Chen, Xiao, Xin, Zhang, Li, Li, Si, Wang, Ma (bib24) 2020
Taboada, Yang, Pereira, Liu, Hu, Karp, Artzi, Lee (bib36) 2020; 5
Li, Mooney (bib37) 2016; 1
Wu, Zhu, Dai, Wang, Zhong, Fang, Peng, Wei, Qian, Chen, Wang, Zha, Cheng (bib12) 2022; 43
Willenborg, Sanin, Jais, Ding, Ulas, Nüchel, Popović, MacVicar, Langer, Schultze, Gerbaulet, Roers, Pearce, Brüning, Trifunovic, Eming (bib64) 2021; 33
Shen, Li, Weiss, Fuchs, Xiao, Adams, Williams, Capecchi, Taylor, Bernstein (bib21) 2007; 170
Correa-Gallegos, Jiang, Christ, Ramesh, Ye, Wannemacher, Kalgudde Gopal, Yu, Aichler, Walch, Mirastschijski, Volz, Rinkevich (bib54) 2019; 576
Henderson, Rieder, Wynn (bib13) 2020; 587
Sun, Zhou, Lai, Zheng, Wang, Lu, Huang, Zhang (bib19) 2024
Wang, Ge, Tredget, Wu (bib73) 2013; 8
Shim, Eom, Kim, Kang, Baik (bib27) 2018; 33
Su, Zhang, Sun, Liu, Zhu, Zhang, Wang, Chen (bib33) 2021; 28
Wang, Chen, Zhang, Wang, Dong, Zhu, Fu, Liu (bib76) 2023; 9
Jiang, Yang, Zhang, Dong, Wang, Zhang, Liu, Zhang, Zhang (bib30) 2014; 11
Hozumi, Kageyama, Ohta, Fukuda, Ito (bib48) 2018; 19
Lodyga, Cambridge, Karvonen, Pakshir, Wu, Boo, Kiebalo, Kaarteenaho, Glogauer, Kapoor, Ask, Hinz (bib14) 2019; 12
Younesi, Miller, Barker, Rossi, Hinz (bib15) 2024; 25
Chen, Zhu, Xia, Zhu, Xia, Hu, Jin, Wang, He, Dai, Hu (bib58) 2023; 10
Qian, Zheng, Jin, Wu, Xu, Dai, Niu, Zheng, He, Shen (bib10) 2022; 34
Fang, Wang, Zhao, Chen, Zhang, Shi, Zhang, Tan (bib28) 2018; 32
Pourshahrestani, Zeimaran, Kadri, Mutlu, Boccaccini (bib60) 2020; 9
Son, Hinz (bib71) 2021
Gupta, Kowalczuk, Heaselgrave, Britland, Martin, Radecka (bib62) 2019; 111
Redza-Dutordoir, Averill-Bates (bib67) 2016; 1863
Mei, Zhang, Shao, Hao, Zhang, Zheng, Ji, Ling, Lu, Zhou (bib50) 2022; 14
Zhang, Wang, Wang, Lou, Fang, Hu, Zhao, Zhang, Wu, Tan (bib2) 2020; 129
Boskabadi, Askari, Hosseini, Boskabady (bib22) 2018; 27
Standard (bib63) 2009
Li, Zhang, Liu (bib49) 2012; 86
Suzuki, Teramoto, Katayama, Ohga, Matsuse, Ouchi (bib23) 2009; 36
Hu, Xie, Liao, Huang, Yang, Zhou, Liu, Deng (bib47) 2022; 219
Ligorio, Mata (bib41) 2023; 1
Sun, Xiao, Li, Zhao, Wang, Zhou, Ma, Li, Zhang, Herrmann, Liu (bib35) 2021; 60
Gao, Guo, Zhang, Liu, Xing, Wang, Luo, Kong, Zhang (bib74) 2023; 10
Berry, Downer, Morgan, Griffin, Liang, Kameni, Laufey Parker, Guo, Longaker, Wan (bib5) 2023; 10
Giles, Hong, Liu, Tang, Li, Beig, Schwendeman, Schwendeman (bib34) 2022; 13
Na, Zhou, Li, Hong, Li, Ma (bib51) 2019; 44
Bellu, Medici, Coradduzza, Cruciani, Amler, Maioli (bib3) 2021; 22
A, A (bib45) 2016; 5
Gao, Sarode, Kokoroskos, Ukidve, Zhao, Guo, Flaumenhaft, Gupta, Saillant, Mitragotri (bib7) 2020; 6
Zheng, Fang, Wang, Shi, Zhao, Chen, Zhang, Zhang, Hu, Shi, Ma, Tan (bib32) 2019; 118
Zhao, Wang, Wang, Zhou, Lu, Cui, Racanelli, Zhang, Ye, Ding, Zhang, Yang, Yao (bib16) 2022; 7
Bhandari, Mehta, Khwaja, Cleland, Ives, Brettell, Chadburn, Cockwell (bib26) 2022; 387
Song, Zhang, Gao, Xiao, Li (bib40) 2019; 115
Gurtner, Werner, Barrandon, Longaker (bib1) 2008; 453
Loo, Ho, Halliwell (bib65) 2011; 51
Tan, Wu, Lao, Gao (bib53) 2009; 5
Wang, Zhang, Yang, Jin, Huang, Zhuang, Zhang, Cao, Lin, Chen, Du, Chen, Tan (bib68) 2024; 35
Qi, Cai, Xiang, Zhang, Ge, Wang, Lan, Xu, Hu, Shen (bib17) 2023; 35
Tan, Fang, Shen, Giani, Zhao, Shi, Zhang, Khan, Li, Li, Xu, Bernstein, Bernstein (bib31) 2018; 175
Lagares, Hinz (bib72) 2021
Zhao, Li, Ruan, Chen, Cai, Lu, Li, Deng, Cai, Cui (bib44) 2021; 15
Rousselle, Braye, Dayan (bib11) 2019; 146
Zhang, Tao, Li, Wei (bib46) 2011; 12
Monavarian, Kader, Moeinzadeh, Jabbari (bib4) 2019; 25
Bian, Hao, Qiu, Wu, Chang, Kuang, Zhang, Hu, Dai, Zhou, Huang, Liu, Zou, Liu, Lu, Pan, Zhao (bib38) 2022; 32
Singh, Rai, Agrawal (bib75) 2023; 7
Sharifiaghdam, Shaabani, Faridi-Majidi, De Smedt, Braeckmans, Fraire (bib8) 2022; 30
Sun, Jia, Qi, Huo, Liao, Xu, Wang, Sun, Liu, Liu, Zhen, Wang, Bai (bib18) 2024; 36
Frech, Hernandez, Urbonas, Zaken, Dreyfuss, Nouri (bib6) 2023; 24
Makadia, Siegel (bib52) 2011; 3
Bhandari (10.1016/j.bioactmat.2024.11.028_bib26) 2022; 387
Zhao (10.1016/j.bioactmat.2024.11.028_bib44) 2021; 15
Shen (10.1016/j.bioactmat.2024.11.028_bib21) 2007; 170
Sun (10.1016/j.bioactmat.2024.11.028_bib18) 2024; 36
Sun (10.1016/j.bioactmat.2024.11.028_bib19) 2024
Correa-Gallegos (10.1016/j.bioactmat.2024.11.028_bib54) 2019; 576
Wang (10.1016/j.bioactmat.2024.11.028_bib76) 2023; 9
Shim (10.1016/j.bioactmat.2024.11.028_bib27) 2018; 33
Taboada (10.1016/j.bioactmat.2024.11.028_bib36) 2020; 5
A (10.1016/j.bioactmat.2024.11.028_bib45) 2016; 5
Li (10.1016/j.bioactmat.2024.11.028_bib39) 2023; 18
Tan (10.1016/j.bioactmat.2024.11.028_bib31) 2018; 175
Lodyga (10.1016/j.bioactmat.2024.11.028_bib14) 2019; 12
Tan (10.1016/j.bioactmat.2024.11.028_bib53) 2009; 5
Gupta (10.1016/j.bioactmat.2024.11.028_bib62) 2019; 111
Zheng (10.1016/j.bioactmat.2024.11.028_bib32) 2019; 118
Son (10.1016/j.bioactmat.2024.11.028_bib71) 2021
Lagares (10.1016/j.bioactmat.2024.11.028_bib72) 2021
Medjebar (10.1016/j.bioactmat.2024.11.028_bib25) 2020; 9
Fang (10.1016/j.bioactmat.2024.11.028_bib28) 2018; 32
Wang (10.1016/j.bioactmat.2024.11.028_bib68) 2024; 35
Li (10.1016/j.bioactmat.2024.11.028_bib43) 2023; 14
Standard (10.1016/j.bioactmat.2024.11.028_bib63) 2009
Fang (10.1016/j.bioactmat.2024.11.028_bib69) 2018; 8
Suzuki (10.1016/j.bioactmat.2024.11.028_bib23) 2009; 36
Wang (10.1016/j.bioactmat.2024.11.028_bib73) 2013; 8
Gao (10.1016/j.bioactmat.2024.11.028_bib74) 2023; 10
Wu (10.1016/j.bioactmat.2024.11.028_bib12) 2022; 43
Feng (10.1016/j.bioactmat.2024.11.028_bib59) 2023; 10
Makadia (10.1016/j.bioactmat.2024.11.028_bib52) 2011; 3
Gurtner (10.1016/j.bioactmat.2024.11.028_bib1) 2008; 453
Rousselle (10.1016/j.bioactmat.2024.11.028_bib11) 2019; 146
Jiang (10.1016/j.bioactmat.2024.11.028_bib30) 2014; 11
Bian (10.1016/j.bioactmat.2024.11.028_bib38) 2022; 32
Mei (10.1016/j.bioactmat.2024.11.028_bib50) 2022; 14
Perillo (10.1016/j.bioactmat.2024.11.028_bib66) 2020; 52
Frech (10.1016/j.bioactmat.2024.11.028_bib6) 2023; 24
Zhao (10.1016/j.bioactmat.2024.11.028_bib16) 2022; 7
Li (10.1016/j.bioactmat.2024.11.028_bib37) 2016; 1
Qi (10.1016/j.bioactmat.2024.11.028_bib17) 2023; 35
Sun (10.1016/j.bioactmat.2024.11.028_bib35) 2021; 60
Ligorio (10.1016/j.bioactmat.2024.11.028_bib41) 2023; 1
Eming (10.1016/j.bioactmat.2024.11.028_bib9) 2017; 356
Li (10.1016/j.bioactmat.2024.11.028_bib49) 2012; 86
Junker (10.1016/j.bioactmat.2024.11.028_bib61) 2013; 2
Polez (10.1016/j.bioactmat.2024.11.028_bib57) 2022; 215
Hu (10.1016/j.bioactmat.2024.11.028_bib47) 2022; 219
Loo (10.1016/j.bioactmat.2024.11.028_bib65) 2011; 51
Cremers (10.1016/j.bioactmat.2024.11.028_bib70) 2015; 2
Hozumi (10.1016/j.bioactmat.2024.11.028_bib48) 2018; 19
Hasturk (10.1016/j.bioactmat.2024.11.028_bib42) 2020; 232
Zhang (10.1016/j.bioactmat.2024.11.028_bib2) 2020; 129
Monavarian (10.1016/j.bioactmat.2024.11.028_bib4) 2019; 25
Hedayatyanfard (10.1016/j.bioactmat.2024.11.028_bib29) 2020; 29
Bellu (10.1016/j.bioactmat.2024.11.028_bib3) 2021; 22
Boskabadi (10.1016/j.bioactmat.2024.11.028_bib22) 2018; 27
Sharifiaghdam (10.1016/j.bioactmat.2024.11.028_bib8) 2022; 30
Younesi (10.1016/j.bioactmat.2024.11.028_bib15) 2024; 25
Giles (10.1016/j.bioactmat.2024.11.028_bib34) 2022; 13
Singh (10.1016/j.bioactmat.2024.11.028_bib75) 2023; 7
Jiang (10.1016/j.bioactmat.2024.11.028_bib55) 2018; 20
Okwan-Duodu (10.1016/j.bioactmat.2024.11.028_bib20) 2010; 285
Redza-Dutordoir (10.1016/j.bioactmat.2024.11.028_bib67) 2016; 1863
Berry (10.1016/j.bioactmat.2024.11.028_bib5) 2023; 10
Na (10.1016/j.bioactmat.2024.11.028_bib51) 2019; 44
Wu (10.1016/j.bioactmat.2024.11.028_bib24) 2020
Willenborg (10.1016/j.bioactmat.2024.11.028_bib64) 2021; 33
Qian (10.1016/j.bioactmat.2024.11.028_bib10) 2022; 34
Chen (10.1016/j.bioactmat.2024.11.028_bib58) 2023; 10
Chatterjee (10.1016/j.bioactmat.2024.11.028_bib56) 2019; 9
Su (10.1016/j.bioactmat.2024.11.028_bib33) 2021; 28
Pourshahrestani (10.1016/j.bioactmat.2024.11.028_bib60) 2020; 9
Henderson (10.1016/j.bioactmat.2024.11.028_bib13) 2020; 587
Gao (10.1016/j.bioactmat.2024.11.028_bib7) 2020; 6
Zhang (10.1016/j.bioactmat.2024.11.028_bib46) 2011; 12
Song (10.1016/j.bioactmat.2024.11.028_bib40) 2019; 115
References_xml – volume: 8
  start-page: 302
  year: 2013
  end-page: 309
  ident: bib73
  article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation
  publication-title: Nat. Protoc.
– volume: 34
  year: 2022
  ident: bib10
  article-title: Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold
  publication-title: Adv. Mater.
– volume: 111
  start-page: 134
  year: 2019
  end-page: 151
  ident: bib62
  article-title: The production and application of hydrogels for wound management: a review
  publication-title: Eur. Polym. J.
– volume: 9
  year: 2019
  ident: bib56
  article-title: Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy
  publication-title: Sci. Rep.
– volume: 33
  start-page: 2398
  year: 2021
  end-page: 2414.e9
  ident: bib64
  article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing
  publication-title: Cell Metabol.
– volume: 9
  year: 2023
  ident: bib76
  article-title: Adipose‐derived stem cells enriched with therapeutic mRNA TGF‐β3 and IL‐10 synergistically promote scar‐less wound healing in preclinical models
  publication-title: Bioengineering & Translational Medicine
– volume: 7
  year: 2022
  ident: bib16
  article-title: Targeting fibrosis: mechanisms and clinical trials
  publication-title: Signal Transduct. Targeted Ther.
– volume: 453
  start-page: 314
  year: 2008
  end-page: 321
  ident: bib1
  article-title: Wound repair and regeneration
  publication-title: Nature
– volume: 24
  start-page: 225
  year: 2023
  end-page: 245
  ident: bib6
  article-title: Hypertrophic scars and keloids: advances in treatment and review of established therapies
  publication-title: Am. J. Clin. Dermatol.
– volume: 14
  start-page: 20538
  year: 2022
  end-page: 20550
  ident: bib50
  article-title: Injectable and self-healing probiotics-loaded hydrogel for promoting superbacteria-infected wound healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 2894
  year: 2011
  end-page: 2901
  ident: bib46
  article-title: Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules
  publication-title: Biomacromolecules
– volume: 44
  start-page: 22
  year: 2019
  end-page: 27
  ident: bib51
  article-title: Preparation of double-emulsion-templated microspheres with controllable porous structures by premix membrane emulsification
  publication-title: Particuology
– volume: 9
  year: 2020
  ident: bib25
  article-title: Angiotensin-converting enzyme (ACE) inhibitor prescription affects non-small-cell lung cancer (NSCLC) patients response to PD-1/PD-L1 immune checkpoint blockers
  publication-title: OncoImmunology
– volume: 18
  start-page: 4485
  year: 2023
  end-page: 4505
  ident: bib39
  article-title: Progress in pluronic F127 derivatives for application in wound healing and repair
  publication-title: Int. J. Nanomed.
– volume: 9
  year: 2020
  ident: bib60
  article-title: Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing
  publication-title: Adv. Healthcare Mater.
– volume: 36
  year: 2024
  ident: bib18
  article-title: An antioxidative and active shrinkage hydrogel integratedly promotes Re‐epithelization and skin constriction for enhancing wound closure
  publication-title: Adv. Mater.
– volume: 170
  start-page: 2122
  year: 2007
  end-page: 2134
  ident: bib21
  article-title: Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma
  publication-title: Am. J. Pathol.
– volume: 52
  start-page: 192
  year: 2020
  end-page: 203
  ident: bib66
  article-title: ROS in cancer therapy: the bright side of the moon
  publication-title: Exp. Mol. Med.
– volume: 36
  start-page: 665
  year: 2009
  end-page: 670
  ident: bib23
  article-title: Effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radical production and generation by murine lung alveolar macrophages
  publication-title: J. Asthma
– volume: 285
  start-page: 39051
  year: 2010
  end-page: 39060
  ident: bib20
  article-title: Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus
  publication-title: J. Biol. Chem.
– volume: 33
  start-page: 453
  year: 2018
  end-page: 461
  ident: bib27
  article-title: Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension
  publication-title: Kor. J. Intern. Med.
– volume: 356
  start-page: 1026
  year: 2017
  end-page: 1030
  ident: bib9
  article-title: Inflammation and metabolism in tissue repair and regeneration
  publication-title: Science
– volume: 28
  start-page: 1397
  year: 2021
  end-page: 1418
  ident: bib33
  article-title: PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application
  publication-title: Drug Deliv.
– volume: 2
  year: 2015
  ident: bib70
  article-title: Mechanical stress changes the complex interplay between HO-1, inflammation and fibrosis, during excisional wound repair
  publication-title: Front. Med.
– volume: 25
  start-page: 617
  year: 2024
  end-page: 638
  ident: bib15
  article-title: Fibroblast and myofibroblast activation in normal tissue repair and fibrosis
  publication-title: Nat. Rev. Mol. Cell Biol.
– year: 2009
  ident: bib63
  article-title: Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity
– volume: 219
  start-page: 96
  year: 2022
  end-page: 108
  ident: bib47
  article-title: An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair
  publication-title: Int. J. Biol. Macromol.
– volume: 12
  year: 2019
  ident: bib14
  article-title: Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta
  publication-title: Sci. Signal.
– volume: 129
  year: 2020
  ident: bib2
  article-title: Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation
  publication-title: Biomed. Pharmacother.
– volume: 43
  year: 2022
  ident: bib12
  article-title: Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy
  publication-title: Nano Today
– volume: 2
  start-page: 348
  year: 2013
  end-page: 356
  ident: bib61
  article-title: Clinical impact upon wound healing and inflammation in moist, wet, and dry environments
  publication-title: Adv. Wound Care
– volume: 10
  year: 2023
  ident: bib5
  article-title: The effects of mechanical force on fibroblast behavior in cutaneous injury
  publication-title: Frontiers in Surgery
– volume: 35
  year: 2023
  ident: bib17
  article-title: An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics
  publication-title: Adv. Mater.
– volume: 15
  start-page: 13041
  year: 2021
  end-page: 13054
  ident: bib44
  article-title: Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration
  publication-title: ACS Nano
– volume: 30
  start-page: 2891
  year: 2022
  end-page: 2908
  ident: bib8
  article-title: Macrophages as a therapeutic target to promote diabetic wound healing
  publication-title: Mol. Ther.
– volume: 118
  year: 2019
  ident: bib32
  article-title: The effect of topical ramipril and losartan cream in inhibiting scar formation
  publication-title: Biomed. Pharmacother.
– volume: 146
  start-page: 344
  year: 2019
  end-page: 365
  ident: bib11
  article-title: Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies
  publication-title: Adv. Drug Deliv. Rev.
– volume: 35
  start-page: 330
  year: 2024
  end-page: 345
  ident: bib68
  article-title: Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration
  publication-title: Bioact. Mater.
– volume: 14
  year: 2023
  ident: bib43
  article-title: An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment
  publication-title: Nat. Commun.
– volume: 587
  start-page: 555
  year: 2020
  end-page: 566
  ident: bib13
  article-title: Fibrosis: from mechanisms to medicines
  publication-title: Nature
– volume: 8
  year: 2018
  ident: bib69
  article-title: Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways
  publication-title: Sci. Rep.
– volume: 3
  start-page: 1377
  year: 2011
  end-page: 1397
  ident: bib52
  article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier
  publication-title: Polymers
– volume: 232
  year: 2020
  ident: bib42
  article-title: Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation
  publication-title: Biomaterials
– volume: 22
  year: 2021
  ident: bib3
  article-title: Nanomaterials in skin regeneration and Rejuvenation
  publication-title: Int. J. Mol. Sci.
– volume: 29
  start-page: 902
  year: 2020
  end-page: 909
  ident: bib29
  article-title: The renin‐angiotensin system in cutaneous hypertrophic scar and keloid formation
  publication-title: Exp. Dermatol.
– volume: 86
  start-page: 51
  year: 2012
  end-page: 55
  ident: bib49
  article-title: FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 215
  start-page: 691
  year: 2022
  end-page: 704
  ident: bib57
  article-title: Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum
  publication-title: Int. J. Biol. Macromol.
– volume: 387
  start-page: 2021
  year: 2022
  end-page: 2032
  ident: bib26
  article-title: Renin–angiotensin system inhibition in advanced chronic kidney disease
  publication-title: N. Engl. J. Med.
– start-page: 405
  year: 2021
  end-page: 417
  ident: bib71
  article-title: A rodent model of hypertrophic ScarringHypertrophic scarring: SplintingSplinting of rat wounds
  publication-title: Myofibroblasts: Methods and Protocols
– volume: 19
  start-page: 288
  year: 2018
  end-page: 297
  ident: bib48
  article-title: Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff's base formation
  publication-title: Biomacromolecules
– volume: 10
  year: 2023
  ident: bib74
  article-title: Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin
  publication-title: Regenerative Biomaterials
– volume: 60
  start-page: 23687
  year: 2021
  end-page: 23694
  ident: bib35
  article-title: Genetically engineered polypeptide adhesive coacervates for surgical applications
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  year: 2023
  ident: bib58
  article-title: High‐performance multi‐dynamic bond cross‐linked hydrogel with spatiotemporal siRNA delivery for gene–cell combination therapy of intervertebral disc degeneration
  publication-title: Adv. Sci.
– volume: 6
  year: 2020
  ident: bib7
  article-title: A polymer-based systemic hemostatic agent
  publication-title: Sci. Adv.
– volume: 11
  start-page: 413
  year: 2014
  end-page: 426
  ident: bib30
  article-title: Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets
  publication-title: Nat. Rev. Cardiol.
– volume: 32
  start-page: 5199
  year: 2018
  end-page: 5208
  ident: bib28
  article-title: The source of ACE during scar formation is from both bone marrow and skin tissue
  publication-title: Faseb. J.
– volume: 20
  start-page: 422
  year: 2018
  end-page: 431
  ident: bib55
  article-title: Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring
  publication-title: Nat. Cell Biol.
– volume: 7
  year: 2023
  ident: bib75
  article-title: Regulation of collagen I and collagen III in tissue injury and regeneration
  publication-title: Cardiology and Cardiovascular Medicine
– volume: 1863
  start-page: 2977
  year: 2016
  end-page: 2992
  ident: bib67
  article-title: Activation of apoptosis signalling pathways by reactive oxygen species
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 175
  start-page: 4239
  year: 2018
  end-page: 4252
  ident: bib31
  article-title: Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice
  publication-title: Br. J. Pharmacol.
– volume: 51
  start-page: 884
  year: 2011
  end-page: 892
  ident: bib65
  article-title: Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model
  publication-title: Free Radic. Biol. Med.
– year: 2024
  ident: bib19
  article-title: Novel natural polymer‐based hydrogel patches with janus asymmetric‐adhesion for emergency hemostasis and wound healing
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 518
  year: 2023
  end-page: 536
  ident: bib41
  article-title: Synthetic extracellular matrices with function-encoding peptides
  publication-title: Nature Reviews Bioengineering
– start-page: 277
  year: 2021
  end-page: 290
  ident: bib72
  article-title: Animal and human models of tissue RepairTissuerepair and fibrosis: an introduction
  publication-title: Myofibroblasts: Methods and Protocols
– volume: 1
  year: 2016
  ident: bib37
  article-title: Designing hydrogels for controlled drug delivery
  publication-title: Nat. Rev. Mater.
– volume: 25
  start-page: 294
  year: 2019
  end-page: 311
  ident: bib4
  article-title: Regenerative scar-free skin wound healing
  publication-title: Tissue Eng. B Rev.
– volume: 27
  start-page: 639
  year: 2018
  end-page: 647
  ident: bib22
  article-title: Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress
  publication-title: Inflammopharmacology
– volume: 5
  year: 2016
  ident: bib45
  article-title: Mechanical behaviour of skin: a review
  publication-title: J. Mater. Sci. Eng.
– volume: 576
  start-page: 287
  year: 2019
  end-page: 292
  ident: bib54
  article-title: Patch repair of deep wounds by mobilized fascia
  publication-title: Nature
– volume: 5
  start-page: 328
  year: 2009
  end-page: 337
  ident: bib53
  article-title: Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering
  publication-title: Acta Biomater.
– volume: 115
  start-page: 346
  year: 2019
  end-page: 355
  ident: bib40
  article-title: Single component Pluronic F127-lipoic acid hydrogels with self-healing and multi-responsive properties
  publication-title: Eur. Polym. J.
– volume: 5
  start-page: 310
  year: 2020
  end-page: 329
  ident: bib36
  article-title: Overcoming the translational barriers of tissue adhesives
  publication-title: Nat. Rev. Mater.
– volume: 10
  year: 2023
  ident: bib59
  article-title: Tailoring the swelling‐shrinkable behavior of hydrogels for biomedical applications
  publication-title: Adv. Sci.
– volume: 13
  year: 2022
  ident: bib34
  article-title: Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid)
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  ident: bib38
  article-title: An injectable rapid‐adhesion and anti‐swelling adhesive hydrogel for hemostasis and wound sealing
  publication-title: Adv. Funct. Mater.
– year: 2020
  ident: bib24
  article-title: Angiotensin II induces RAW264.7 macrophage polarization to the M1-type through the connexin 43/NF-κB pathway
  publication-title: Mol. Med. Rep.
– volume: 387
  start-page: 2021
  issue: 22
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib26
  article-title: Renin–angiotensin system inhibition in advanced chronic kidney disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2210639
– volume: 32
  start-page: 5199
  issue: 9
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib28
  article-title: The source of ACE during scar formation is from both bone marrow and skin tissue
  publication-title: Faseb. J.
  doi: 10.1096/fj.201701575RRR
– volume: 19
  start-page: 288
  issue: 2
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib48
  article-title: Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff's base formation
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01133
– volume: 18
  start-page: 4485
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib39
  article-title: Progress in pluronic F127 derivatives for application in wound healing and repair
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S418534
– volume: 118
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib32
  article-title: The effect of topical ramipril and losartan cream in inhibiting scar formation
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109394
– volume: 9
  issue: 20
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib60
  article-title: Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202000905
– volume: 1863
  start-page: 2977
  issue: 12
  year: 2016
  ident: 10.1016/j.bioactmat.2024.11.028_bib67
  article-title: Activation of apoptosis signalling pathways by reactive oxygen species
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2016.09.012
– volume: 33
  start-page: 453
  issue: 3
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib27
  article-title: Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension
  publication-title: Kor. J. Intern. Med.
  doi: 10.3904/kjim.2017.317
– volume: 5
  start-page: 310
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib36
  article-title: Overcoming the translational barriers of tissue adhesives
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0171-7
– volume: 111
  start-page: 134
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib62
  article-title: The production and application of hydrogels for wound management: a review
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.12.019
– volume: 43
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib12
  article-title: Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101380
– year: 2024
  ident: 10.1016/j.bioactmat.2024.11.028_bib19
  article-title: Novel natural polymer‐based hydrogel patches with janus asymmetric‐adhesion for emergency hemostasis and wound healing
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 2891
  issue: 9
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib8
  article-title: Macrophages as a therapeutic target to promote diabetic wound healing
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.07.016
– volume: 9
  issue: 2
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib76
  article-title: Adipose‐derived stem cells enriched with therapeutic mRNA TGF‐β3 and IL‐10 synergistically promote scar‐less wound healing in preclinical models
  publication-title: Bioengineering & Translational Medicine
  doi: 10.1002/btm2.10620
– volume: 60
  start-page: 23687
  issue: 44
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib35
  article-title: Genetically engineered polypeptide adhesive coacervates for surgical applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100064
– volume: 15
  start-page: 13041
  issue: 8
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib44
  article-title: Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02147
– volume: 9
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib25
  article-title: Angiotensin-converting enzyme (ACE) inhibitor prescription affects non-small-cell lung cancer (NSCLC) patients response to PD-1/PD-L1 immune checkpoint blockers
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2020.1836766
– volume: 12
  start-page: 2894
  issue: 8
  year: 2011
  ident: 10.1016/j.bioactmat.2024.11.028_bib46
  article-title: Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules
  publication-title: Biomacromolecules
  doi: 10.1021/bm200423f
– volume: 576
  start-page: 287
  issue: 7786
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib54
  article-title: Patch repair of deep wounds by mobilized fascia
  publication-title: Nature
  doi: 10.1038/s41586-019-1794-y
– volume: 35
  issue: 48
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib17
  article-title: An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202306632
– volume: 175
  start-page: 4239
  issue: 22
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib31
  article-title: Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14489
– volume: 3
  start-page: 1377
  issue: 3
  year: 2011
  ident: 10.1016/j.bioactmat.2024.11.028_bib52
  article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier
  publication-title: Polymers
  doi: 10.3390/polym3031377
– volume: 453
  start-page: 314
  issue: 7193
  year: 2008
  ident: 10.1016/j.bioactmat.2024.11.028_bib1
  article-title: Wound repair and regeneration
  publication-title: Nature
  doi: 10.1038/nature07039
– start-page: 405
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib71
  article-title: A rodent model of hypertrophic ScarringHypertrophic scarring: SplintingSplinting of rat wounds
– volume: 8
  start-page: 302
  issue: 2
  year: 2013
  ident: 10.1016/j.bioactmat.2024.11.028_bib73
  article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.002
– volume: 12
  issue: 564
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib14
  article-title: Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aao3469
– volume: 52
  start-page: 192
  issue: 2
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib66
  article-title: ROS in cancer therapy: the bright side of the moon
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-020-0384-2
– volume: 44
  start-page: 22
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib51
  article-title: Preparation of double-emulsion-templated microspheres with controllable porous structures by premix membrane emulsification
  publication-title: Particuology
  doi: 10.1016/j.partic.2018.07.007
– volume: 10
  issue: 28
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib59
  article-title: Tailoring the swelling‐shrinkable behavior of hydrogels for biomedical applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202303326
– volume: 35
  start-page: 330
  year: 2024
  ident: 10.1016/j.bioactmat.2024.11.028_bib68
  article-title: Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration
  publication-title: Bioact. Mater.
– volume: 10
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib5
  article-title: The effects of mechanical force on fibroblast behavior in cutaneous injury
  publication-title: Frontiers in Surgery
  doi: 10.3389/fsurg.2023.1167067
– volume: 170
  start-page: 2122
  issue: 6
  year: 2007
  ident: 10.1016/j.bioactmat.2024.11.028_bib21
  article-title: Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2007.061205
– volume: 10
  issue: 17
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib58
  article-title: High‐performance multi‐dynamic bond cross‐linked hydrogel with spatiotemporal siRNA delivery for gene–cell combination therapy of intervertebral disc degeneration
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206306
– volume: 587
  start-page: 555
  issue: 7835
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib13
  article-title: Fibrosis: from mechanisms to medicines
  publication-title: Nature
  doi: 10.1038/s41586-020-2938-9
– volume: 115
  start-page: 346
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib40
  article-title: Single component Pluronic F127-lipoic acid hydrogels with self-healing and multi-responsive properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.03.051
– volume: 36
  start-page: 665
  issue: 8
  year: 2009
  ident: 10.1016/j.bioactmat.2024.11.028_bib23
  article-title: Effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radical production and generation by murine lung alveolar macrophages
  publication-title: J. Asthma
  doi: 10.3109/02770909909055418
– volume: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib43
  article-title: An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment
  publication-title: Nat. Commun.
– volume: 2
  start-page: 348
  issue: 7
  year: 2013
  ident: 10.1016/j.bioactmat.2024.11.028_bib61
  article-title: Clinical impact upon wound healing and inflammation in moist, wet, and dry environments
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2012.0412
– volume: 215
  start-page: 691
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib57
  article-title: Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.06.153
– volume: 28
  start-page: 1397
  issue: 1
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib33
  article-title: PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2021.1938756
– volume: 25
  start-page: 294
  issue: 4
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib4
  article-title: Regenerative scar-free skin wound healing
  publication-title: Tissue Eng. B Rev.
  doi: 10.1089/ten.teb.2018.0350
– volume: 29
  start-page: 902
  issue: 9
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib29
  article-title: The renin‐angiotensin system in cutaneous hypertrophic scar and keloid formation
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.14154
– volume: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib34
  article-title: Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid)
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30813-7
– volume: 1
  issue: 12
  year: 2016
  ident: 10.1016/j.bioactmat.2024.11.028_bib37
  article-title: Designing hydrogels for controlled drug delivery
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.71
– volume: 7
  issue: 1
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib75
  article-title: Regulation of collagen I and collagen III in tissue injury and regeneration
  publication-title: Cardiology and Cardiovascular Medicine
  doi: 10.26502/fccm.92920302
– volume: 27
  start-page: 639
  issue: 3
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib22
  article-title: Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress
  publication-title: Inflammopharmacology
  doi: 10.1007/s10787-018-0535-4
– volume: 25
  start-page: 617
  issue: 8
  year: 2024
  ident: 10.1016/j.bioactmat.2024.11.028_bib15
  article-title: Fibroblast and myofibroblast activation in normal tissue repair and fibrosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-024-00716-0
– volume: 51
  start-page: 884
  issue: 4
  year: 2011
  ident: 10.1016/j.bioactmat.2024.11.028_bib65
  article-title: Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.06.001
– volume: 6
  issue: 31
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib7
  article-title: A polymer-based systemic hemostatic agent
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba0588
– volume: 34
  issue: 29
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib10
  article-title: Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200521
– volume: 285
  start-page: 39051
  issue: 50
  year: 2010
  ident: 10.1016/j.bioactmat.2024.11.028_bib20
  article-title: Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.163782
– volume: 14
  start-page: 20538
  issue: 18
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib50
  article-title: Injectable and self-healing probiotics-loaded hydrogel for promoting superbacteria-infected wound healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23713
– volume: 5
  start-page: 328
  issue: 1
  year: 2009
  ident: 10.1016/j.bioactmat.2024.11.028_bib53
  article-title: Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.07.030
– volume: 2
  year: 2015
  ident: 10.1016/j.bioactmat.2024.11.028_bib70
  article-title: Mechanical stress changes the complex interplay between HO-1, inflammation and fibrosis, during excisional wound repair
  publication-title: Front. Med.
  doi: 10.3389/fmed.2015.00086
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib56
  article-title: Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48254-6
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib69
  article-title: Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways
  publication-title: Sci. Rep.
– volume: 129
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib2
  article-title: Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110287
– volume: 232
  year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib42
  article-title: Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119720
– volume: 32
  issue: 46
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib38
  article-title: An injectable rapid‐adhesion and anti‐swelling adhesive hydrogel for hemostasis and wound sealing
  publication-title: Adv. Funct. Mater.
– volume: 356
  start-page: 1026
  issue: 6342
  year: 2017
  ident: 10.1016/j.bioactmat.2024.11.028_bib9
  article-title: Inflammation and metabolism in tissue repair and regeneration
  publication-title: Science
  doi: 10.1126/science.aam7928
– year: 2020
  ident: 10.1016/j.bioactmat.2024.11.028_bib24
  article-title: Angiotensin II induces RAW264.7 macrophage polarization to the M1-type through the connexin 43/NF-κB pathway
  publication-title: Mol. Med. Rep.
– start-page: 277
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib72
  article-title: Animal and human models of tissue RepairTissuerepair and fibrosis: an introduction
– volume: 146
  start-page: 344
  year: 2019
  ident: 10.1016/j.bioactmat.2024.11.028_bib11
  article-title: Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.06.019
– volume: 36
  issue: 21
  year: 2024
  ident: 10.1016/j.bioactmat.2024.11.028_bib18
  article-title: An antioxidative and active shrinkage hydrogel integratedly promotes Re‐epithelization and skin constriction for enhancing wound closure
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312440
– year: 2009
  ident: 10.1016/j.bioactmat.2024.11.028_bib63
– volume: 5
  issue: 4
  year: 2016
  ident: 10.1016/j.bioactmat.2024.11.028_bib45
  article-title: Mechanical behaviour of skin: a review
  publication-title: J. Mater. Sci. Eng.
– volume: 33
  start-page: 2398
  issue: 12
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib64
  article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2021.10.004
– volume: 22
  issue: 13
  year: 2021
  ident: 10.1016/j.bioactmat.2024.11.028_bib3
  article-title: Nanomaterials in skin regeneration and Rejuvenation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22137095
– volume: 24
  start-page: 225
  issue: 2
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib6
  article-title: Hypertrophic scars and keloids: advances in treatment and review of established therapies
  publication-title: Am. J. Clin. Dermatol.
  doi: 10.1007/s40257-022-00744-6
– volume: 20
  start-page: 422
  issue: 4
  year: 2018
  ident: 10.1016/j.bioactmat.2024.11.028_bib55
  article-title: Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0073-8
– volume: 11
  start-page: 413
  issue: 7
  year: 2014
  ident: 10.1016/j.bioactmat.2024.11.028_bib30
  article-title: Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2014.59
– volume: 10
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib74
  article-title: Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin
  publication-title: Regenerative Biomaterials
  doi: 10.1093/rb/rbac110
– volume: 7
  issue: 1
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib16
  article-title: Targeting fibrosis: mechanisms and clinical trials
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-022-01070-3
– volume: 86
  start-page: 51
  year: 2012
  ident: 10.1016/j.bioactmat.2024.11.028_bib49
  article-title: FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2011.09.056
– volume: 219
  start-page: 96
  year: 2022
  ident: 10.1016/j.bioactmat.2024.11.028_bib47
  article-title: An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.07.161
– volume: 1
  start-page: 518
  issue: 7
  year: 2023
  ident: 10.1016/j.bioactmat.2024.11.028_bib41
  article-title: Synthetic extracellular matrices with function-encoding peptides
  publication-title: Nature Reviews Bioengineering
  doi: 10.1038/s44222-023-00055-3
SSID ssj0001700007
Score 2.3405843
Snippet Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 322
SubjectTerms ACEI microspheres
Active shrinkage and antioxidative hydrogel
Anti-inflammation and anti-fibrosis
Biocompatibility
Biomechanics
Biomimetic mechanics
Biomimetics
Body temperature
Collagen
Contractility
Drug delivery systems
Drugs
Fibroblasts
Fibrosis
Genotype & phenotype
Hydrogels
Inflammation
Macrophages
Mechanical properties
Mechanics
Microenvironments
Modulus of elasticity
Oxidative stress
Phenotypes
Regeneration
Scars
Skin
Skin regeneration
Storage modulus
Wound healing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiFegICNxDcSJX-FWEFWFBCcq9Wb52U1hk2qTSuV38IeZcbKrXTj0wiGXxErimbHnm2TmG0LeBs2iSpyVrZWi5AAwSqdiKEVbp-Q456nCAuev3-TZOf9yIS72Wn1hTthMDzwL7n0rvFRVSLL2DY8yWVX5GrBWsMFZriPuvuDz9oKpq5kUBr3fQUKX6wbrJ8CBEBXW_B1yd2IP9j13lFn7D7zSv6jz7-TJPW90-pA8WGAkPZlf_xG5F_vH5PdJT23ev-i42kCQCXsFtX2AA8R_24VM8k1Xv8JmuIw_KX6DpVh_362xlJGuI5YBd36k6O2yQdL1ELDBVxwpmCJYz1zpmO-aINIexm6k00Cvc1YfPPdH19NNvMxk1jjyCTk__fz901m5NF0ovWByKqUOXHORIogdwE9sUisCDxaJykRgjXNCSK88D6CT5LzUrU9cyQhIz1Ztap6So37o43NCm8Qq7RKGPIpL7bTjurVKKdumGKIrSLWVvbmeuTXMNunsyuzUZVBdEKkYUFdBPqKOdsORHDufAJMxi8mYu0ymIB-2GjYLzpjxA9yqu_sNjrc2YZblPpqGSfwDzBkvyJvdZVio-PfF9nG4wTEcQkUAxHVBns0mtJtGA0Fny2pVEH1gXAfzPLzSd6tMBs4YMgyy-sX_kMxLcr_G_sY5x-6YHE2bm_gKQNfkXuf19QeRdjKX
  priority: 102
  providerName: Directory of Open Access Journals
Title An active shrinkage and antioxidative hydrogel with biomimetic mechanics functions modulates inflammation and fibrosis to promote skin regeneration
URI https://dx.doi.org/10.1016/j.bioactmat.2024.11.028
https://www.ncbi.nlm.nih.gov/pubmed/39669127
https://www.proquest.com/docview/3160130414
https://www.proquest.com/docview/3146666502
https://pubmed.ncbi.nlm.nih.gov/PMC11635612
https://doaj.org/article/95c670df62c34e6fa70c281bdadba48e
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfY9sILAvEVGJWReA3EiWM7vKAOVibEJgRM2lvkzzZAk9J0Evwd_MPcuWm3ggQPeWmsxOmdz7873_2OkGdOMS8DZ2mlRZlyABipkd6lZZWHYDjnIcMC59MzcXLO312UF0PArR_SKjc2MRpq11mMkb8omMBDNs74q8X3FLtG4enq0EJjjxyACVbgfB0cHZ99-HgVZZHxrA47zGWVTBngmZ0kL9N02q4AG4KnmPPnyOeJfdmvbVGRyX9np_obif6ZUHlth5rcJrcGaEnHa124Q2749i75NW6pjjaN9rMlOJ5gP6huHVwgkh-Ni8TfdPbTLbup_0YxLkuxJr-ZY3kjnXssDW5sT3EHjEpK553Dpl--p6CeoFHr6sf41ADed9c3PV11dBEz_eC9X5uWLv00ElzjyHvkfHL8-fVJOjRiSG3JxCoVynHFy-CtkACIfBGq0nGnkbysdKwwpiyFlZY7F0QwVqjKBi6FB_SnsyoU98l-27X-IaFFYJkyAd0gyYUyynBVaSmlroJ33iQk2_z39WLNt1FvEtG-1Ftx1Sgu8F5qEFdCjlBG2-FImB1_6JbTelh_dVXC3DOYXm4L7kXQMrM5QHanndFc-YS83Ei4HrDHGlPAo5r_z-BwoxP1YAL6-kphE_J0exsWL57I6NZ3lziGg_sIIDlPyIO1Cm0_owBHtGK5TIjaUa6d79y90zazSBDOGLIOsvzRv-f1mNzMsZtxzKg7JPur5aV_AhBrZUZkT03ejsjB-M3p-0-jYVWNYsDiNwYPL2w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOcAFgdgCBYwEx0CcOHaChFBZhildTq3UW7BjeyaFSYZkKujv4H_wG3nPmUw7IMGph1wSy3Hytu_ZbyHkmcmYlY6zMFciDTkAjFBLa8I0j53TnHMXYYLz_oEYH_FPx-nxBvk15MJgWOWgE72iNk2Je-QvEybwkI0z_mb-LcSuUXi6OrTQ6Nli1559B5ete73zHuj7PI5HHw7fjcNlV4GwTJlYhCIzPOOps6WQYN1t4vLUcKOwEldqWKJ1mopSltwYJ5wuRZaXjkthAcqoKHcJzHuFXOVJkqNEZaOP53s60p8MYj-7KJchA_S0FlKmq0aVC0Ci4JfG_AVWD8Uu8BcMou8bsGYX_8a9f4ZvXrCHo5vkxhLI0u2e826RDVvfJj-3a6q8BqXdtAU3F7QVVbWBCxjgR2V8mXE6PTNtM7FfKe4CU6wAUM0wmZLOLCYiV2VH0d56kaCzxmCLMdtREAbg3z7X0s_qwNdvuqqji4bOfVwhvPdLVdPWTnw5bRx5hxxdCoHuks26qe19QhPHokw7dLokF5nONM9yJaVUubPG6oBEw78v5n11j2IIezspVuQqkFzgKxVAroC8RRqthmN5bn-jaSfFUtqLPIW1R7C8uEy4FU7JqIzBQTDKaMUzG5BXA4WLJdLpEQxMVf1_BVsDTxRLhdMV5-IRkKerx6Aq8PxH1bY5xTEcnFWA5HFA7vUstPoMYGaRs1gGJFtjrrXvXH9SV1NfjpwxrHHI4gf_XtcTcm18uL9X7O0c7D4k12Pso-xj-bbI5qI9tY8A3C30Yy9RlHy-bBH-DZ6zZ-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+shrinkage+and+antioxidative+hydrogel+with+biomimetic+mechanics+functions+modulates+inflammation+and+fibrosis+to+promote+skin+regeneration&rft.jtitle=Bioactive+materials&rft.au=Zhang%2C+Tao&rft.au=Zhong%2C+Xin-Cao&rft.au=Feng%2C+Zi-Xuan&rft.au=Lin%2C+Xiao-Ying&rft.date=2025-03-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=45&rft.spage=322&rft.epage=344&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.11.028&rft.externalDocID=PMC11635612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon