An active shrinkage and antioxidative hydrogel with biomimetic mechanics functions modulates inflammation and fibrosis to promote skin regeneration
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repa...
Saved in:
Published in | Bioactive materials Vol. 45; pp. 322 - 344 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.03.2025
KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.
[Display omitted]
•The hydrogel possessed heat-shrinkable and antioxidant capabilities.•The hydrogel regulated the inflammatory niche and was anti-fibrotic.•The hydrogel partially substituted for myofibroblast-induced wound contraction.•The hydrogel's skin-like elastic modulus restored wounds' mechanical integrity.•The hydrogel promoted skin regeneration. |
---|---|
AbstractList | Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogels immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the antiinflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. [Display omitted] •The hydrogel possessed heat-shrinkable and antioxidant capabilities.•The hydrogel regulated the inflammatory niche and was anti-fibrotic.•The hydrogel partially substituted for myofibroblast-induced wound contraction.•The hydrogel's skin-like elastic modulus restored wounds' mechanical integrity.•The hydrogel promoted skin regeneration. Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration. Image 1 • The hydrogel possessed heat-shrinkable and antioxidant capabilities. • The hydrogel regulated the inflammatory niche and was anti-fibrotic. • The hydrogel partially substituted for myofibroblast-induced wound contraction. • The hydrogel's skin-like elastic modulus restored wounds' mechanical integrity. • The hydrogel promoted skin regeneration. |
Author | Lin, Xiao-Ying Zhuang, Ze-Ming Chen, Jun Guo, Kai Wang, Yong Tan, Wei-Qiang Wang, Yi Du, Yong-Zhong Feng, Zi-Xuan Zhong, Xin-Cao Chen, Chun-Ye Wang, Xiao-Wei Zhang, Tao |
Author_xml | – sequence: 1 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 2 givenname: Xin-Cao surname: Zhong fullname: Zhong, Xin-Cao organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 3 givenname: Zi-Xuan orcidid: 0009-0002-9302-6455 surname: Feng fullname: Feng, Zi-Xuan organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 4 givenname: Xiao-Ying surname: Lin fullname: Lin, Xiao-Ying organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 5 givenname: Chun-Ye surname: Chen fullname: Chen, Chun-Ye organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 6 givenname: Xiao-Wei surname: Wang fullname: Wang, Xiao-Wei organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 7 givenname: Kai surname: Guo fullname: Guo, Kai organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 8 givenname: Yi surname: Wang fullname: Wang, Yi organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 9 givenname: Jun surname: Chen fullname: Chen, Jun organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 10 givenname: Yong-Zhong surname: Du fullname: Du, Yong-Zhong organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 11 givenname: Ze-Ming surname: Zhuang fullname: Zhuang, Ze-Ming email: 12218001@zju.edu.cn organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 12 givenname: Yong surname: Wang fullname: Wang, Yong email: wongyong@zju.edu.cn organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China – sequence: 13 givenname: Wei-Qiang orcidid: 0000-0003-4951-0960 surname: Tan fullname: Tan, Wei-Qiang email: tanweixxxx@zju.edu.cn organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39669127$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEQx1eoiJbSVwBLXLgk2Lu2d_eEqoqPSpW4gMTN8trjxOmuHWwnpc_BCzNJStRywZI_NP7Pb8aeeVmdhBigqt4wOmeUyfer-eCjNmXSZV7Tms8Zm9O6e1ad1VzUM9b3P04enU-ri5xXlFLW4kLbF9Vp00vZs7o9q35fBoIovwWSl8mHW70AooPFWXz85a3e3y3vbYoLGMmdL0uC4Sc_QfGGTGCWOniTidsE5MSQyRTtZtQFMvHBjXrCPNG-pzo_pJh9JiWSdYpTLBj31geSYAEB0l75qnru9Jjh4mE_r75_-vjt6svs5uvn66vLm5kRTJaZ7CzvuHBgZMtqAY3rheVWC9kxYVkzDEJI0xpurZNuMLLrjeOtBEE7TXvXnFfXB66NeqXWyU863auovdobYloonfCRI6heYBCKnNo0HKTTLTV1xwar7aB5B8j6cGCtN8ME1kAoSY9PoE9vgl-qRdwqxmQjJKuR8O6BkOLPDeSiJp8NjKMOEDdZNYxLHILupG__ka7iJgX8K1RJyhrKGUfV68cpHXP5W3wUtAeBwZrkBO4oYVTtOk2t1LHT1K7TMFuFnYaelwdPwPJsPSSVjYdgwPoEpuD_-f8y_gAUzOUD |
Cites_doi | 10.1056/NEJMoa2210639 10.1096/fj.201701575RRR 10.1021/acs.biomac.7b01133 10.2147/IJN.S418534 10.1016/j.biopha.2019.109394 10.1002/adhm.202000905 10.1016/j.bbamcr.2016.09.012 10.3904/kjim.2017.317 10.1038/s41578-019-0171-7 10.1016/j.eurpolymj.2018.12.019 10.1016/j.nantod.2022.101380 10.1016/j.ymthe.2022.07.016 10.1002/btm2.10620 10.1002/anie.202100064 10.1021/acsnano.1c02147 10.1080/2162402X.2020.1836766 10.1021/bm200423f 10.1038/s41586-019-1794-y 10.1002/adma.202306632 10.1111/bph.14489 10.3390/polym3031377 10.1038/nature07039 10.1038/nprot.2013.002 10.1126/scisignal.aao3469 10.1038/s12276-020-0384-2 10.1016/j.partic.2018.07.007 10.1002/advs.202303326 10.3389/fsurg.2023.1167067 10.2353/ajpath.2007.061205 10.1002/advs.202206306 10.1038/s41586-020-2938-9 10.1016/j.eurpolymj.2019.03.051 10.3109/02770909909055418 10.1089/wound.2012.0412 10.1016/j.ijbiomac.2022.06.153 10.1080/10717544.2021.1938756 10.1089/ten.teb.2018.0350 10.1111/exd.14154 10.1038/s41467-022-30813-7 10.1038/natrevmats.2016.71 10.26502/fccm.92920302 10.1007/s10787-018-0535-4 10.1038/s41580-024-00716-0 10.1016/j.freeradbiomed.2011.06.001 10.1126/sciadv.aba0588 10.1002/adma.202200521 10.1074/jbc.M110.163782 10.1021/acsami.1c23713 10.1016/j.actbio.2008.07.030 10.3389/fmed.2015.00086 10.1038/s41598-019-48254-6 10.1016/j.biopha.2020.110287 10.1016/j.biomaterials.2019.119720 10.1126/science.aam7928 10.1016/j.addr.2018.06.019 10.1002/adma.202312440 10.1016/j.cmet.2021.10.004 10.3390/ijms22137095 10.1007/s40257-022-00744-6 10.1038/s41556-018-0073-8 10.1038/nrcardio.2014.59 10.1093/rb/rbac110 10.1038/s41392-022-01070-3 10.1016/j.saa.2011.09.056 10.1016/j.ijbiomac.2022.07.161 10.1038/s44222-023-00055-3 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2024.11.028 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 344 |
ExternalDocumentID | oai_doaj_org_article_95c670df62c34e6fa70c281bdadba48e PMC11635612 39669127 10_1016_j_bioactmat_2024_11_028 S2452199X2400519X |
Genre | Journal Article |
GroupedDBID | 0R~ 6I. AACTN AAEDW AAFTH AALRI AAXUO ABJCF ABMAC ACGFS ADBBV ADMLS ADVLN AEXQZ AFKRA AFTJW AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ HYE KB. M41 M7P M~E OK1 PDBOC PHGZT PIMPY ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION PHGZM NPM 8FE 8FG 8FH ABUWG AZQEC D1I DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c516t-68d4845fec67125e3f95d4da56815d13bb556c7c4ddf6fbc689cf476e508a09f3 |
IEDL.DBID | BENPR |
ISSN | 2452-199X 2097-1192 |
IngestDate | Wed Aug 27 00:44:12 EDT 2025 Thu Aug 21 18:29:29 EDT 2025 Fri Jul 11 09:14:04 EDT 2025 Fri Jul 25 11:46:23 EDT 2025 Thu Apr 03 07:04:51 EDT 2025 Tue Jul 01 05:28:12 EDT 2025 Sat Mar 01 15:45:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomimetic mechanics Skin regeneration Anti-inflammation and anti-fibrosis ACEI microspheres Active shrinkage and antioxidative hydrogel |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-68d4845fec67125e3f95d4da56815d13bb556c7c4ddf6fbc689cf476e508a09f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-4951-0960 0009-0002-9302-6455 |
OpenAccessLink | https://www.proquest.com/docview/3160130414?pq-origsite=%requestingapplication% |
PMID | 39669127 |
PQID | 3160130414 |
PQPubID | 6865030 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_95c670df62c34e6fa70c281bdadba48e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11635612 proquest_miscellaneous_3146666502 proquest_journals_3160130414 pubmed_primary_39669127 crossref_primary_10_1016_j_bioactmat_2024_11_028 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_11_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China – name: Beijing |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2025 |
Publisher | Elsevier B.V KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing Communications Ltd – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Junker, Kamel, Caterson, Eriksson (bib61) 2013; 2 Hedayatyanfard, Haddadi, Ziai, Karim, Niazi, Steckelings, Habibi, Modarressi, Dehpour (bib29) 2020; 29 Chatterjee, Hui, Kan, Wang (bib56) 2019; 9 Fang, Wang, Zhao, Ding, Shi, Xia, Yang, Wu, Li, Tan (bib69) 2018; 8 Cremers, Suttorp, Gerritsen, Wong, van Run-van Breda, van Dam, Brouwer, Kuijpers-Jagtman, Carels, Lundvig, Wagener (bib70) 2015; 2 Eming, Wynn, Martin (bib9) 2017; 356 Feng, Wang (bib59) 2023; 10 Li, Liu, Chen, Zhao, Xu, Weng, Yu, Xiong, Udduttula, Wang, Liu, Chen, Zeng (bib43) 2023; 14 Perillo, Di Donato, Pezone, Di Zazzo, Giovannelli, Galasso, Castoria, Migliaccio (bib66) 2020; 52 Li, Yang, Li, Zhang, Zhu, Song, Guo, Wang, Gan, Shi, Ma, Gao, Su (bib39) 2023; 18 Polez, Morits, Jonkergouw, Phiri, Valle-Delgado, Linder, Maloney, Rojas, Österberg (bib57) 2022; 215 Jiang, Correa-Gallegos, Christ, Stefanska, Liu, Ramesh, Rajendran, De Santis, Wagner, Rinkevich (bib55) 2018; 20 Hasturk, Jordan, Choi, Kaplan (bib42) 2020; 232 Okwan-Duodu, Datta, Shen, Goodridge, Bernstein, Fuchs, Liu, Bernstein (bib20) 2010; 285 Medjebar, Truntzer, Perrichet, Limagne, Fumet, Richard, Elkrief, Routy, Rébé, Ghiringhelli (bib25) 2020; 9 Wu, Chen, Xiao, Xin, Zhang, Li, Li, Si, Wang, Ma (bib24) 2020 Taboada, Yang, Pereira, Liu, Hu, Karp, Artzi, Lee (bib36) 2020; 5 Li, Mooney (bib37) 2016; 1 Wu, Zhu, Dai, Wang, Zhong, Fang, Peng, Wei, Qian, Chen, Wang, Zha, Cheng (bib12) 2022; 43 Willenborg, Sanin, Jais, Ding, Ulas, Nüchel, Popović, MacVicar, Langer, Schultze, Gerbaulet, Roers, Pearce, Brüning, Trifunovic, Eming (bib64) 2021; 33 Shen, Li, Weiss, Fuchs, Xiao, Adams, Williams, Capecchi, Taylor, Bernstein (bib21) 2007; 170 Correa-Gallegos, Jiang, Christ, Ramesh, Ye, Wannemacher, Kalgudde Gopal, Yu, Aichler, Walch, Mirastschijski, Volz, Rinkevich (bib54) 2019; 576 Henderson, Rieder, Wynn (bib13) 2020; 587 Sun, Zhou, Lai, Zheng, Wang, Lu, Huang, Zhang (bib19) 2024 Wang, Ge, Tredget, Wu (bib73) 2013; 8 Shim, Eom, Kim, Kang, Baik (bib27) 2018; 33 Su, Zhang, Sun, Liu, Zhu, Zhang, Wang, Chen (bib33) 2021; 28 Wang, Chen, Zhang, Wang, Dong, Zhu, Fu, Liu (bib76) 2023; 9 Jiang, Yang, Zhang, Dong, Wang, Zhang, Liu, Zhang, Zhang (bib30) 2014; 11 Hozumi, Kageyama, Ohta, Fukuda, Ito (bib48) 2018; 19 Lodyga, Cambridge, Karvonen, Pakshir, Wu, Boo, Kiebalo, Kaarteenaho, Glogauer, Kapoor, Ask, Hinz (bib14) 2019; 12 Younesi, Miller, Barker, Rossi, Hinz (bib15) 2024; 25 Chen, Zhu, Xia, Zhu, Xia, Hu, Jin, Wang, He, Dai, Hu (bib58) 2023; 10 Qian, Zheng, Jin, Wu, Xu, Dai, Niu, Zheng, He, Shen (bib10) 2022; 34 Fang, Wang, Zhao, Chen, Zhang, Shi, Zhang, Tan (bib28) 2018; 32 Pourshahrestani, Zeimaran, Kadri, Mutlu, Boccaccini (bib60) 2020; 9 Son, Hinz (bib71) 2021 Gupta, Kowalczuk, Heaselgrave, Britland, Martin, Radecka (bib62) 2019; 111 Redza-Dutordoir, Averill-Bates (bib67) 2016; 1863 Mei, Zhang, Shao, Hao, Zhang, Zheng, Ji, Ling, Lu, Zhou (bib50) 2022; 14 Zhang, Wang, Wang, Lou, Fang, Hu, Zhao, Zhang, Wu, Tan (bib2) 2020; 129 Boskabadi, Askari, Hosseini, Boskabady (bib22) 2018; 27 Standard (bib63) 2009 Li, Zhang, Liu (bib49) 2012; 86 Suzuki, Teramoto, Katayama, Ohga, Matsuse, Ouchi (bib23) 2009; 36 Hu, Xie, Liao, Huang, Yang, Zhou, Liu, Deng (bib47) 2022; 219 Ligorio, Mata (bib41) 2023; 1 Sun, Xiao, Li, Zhao, Wang, Zhou, Ma, Li, Zhang, Herrmann, Liu (bib35) 2021; 60 Gao, Guo, Zhang, Liu, Xing, Wang, Luo, Kong, Zhang (bib74) 2023; 10 Berry, Downer, Morgan, Griffin, Liang, Kameni, Laufey Parker, Guo, Longaker, Wan (bib5) 2023; 10 Giles, Hong, Liu, Tang, Li, Beig, Schwendeman, Schwendeman (bib34) 2022; 13 Na, Zhou, Li, Hong, Li, Ma (bib51) 2019; 44 Bellu, Medici, Coradduzza, Cruciani, Amler, Maioli (bib3) 2021; 22 A, A (bib45) 2016; 5 Gao, Sarode, Kokoroskos, Ukidve, Zhao, Guo, Flaumenhaft, Gupta, Saillant, Mitragotri (bib7) 2020; 6 Zheng, Fang, Wang, Shi, Zhao, Chen, Zhang, Zhang, Hu, Shi, Ma, Tan (bib32) 2019; 118 Zhao, Wang, Wang, Zhou, Lu, Cui, Racanelli, Zhang, Ye, Ding, Zhang, Yang, Yao (bib16) 2022; 7 Bhandari, Mehta, Khwaja, Cleland, Ives, Brettell, Chadburn, Cockwell (bib26) 2022; 387 Song, Zhang, Gao, Xiao, Li (bib40) 2019; 115 Gurtner, Werner, Barrandon, Longaker (bib1) 2008; 453 Loo, Ho, Halliwell (bib65) 2011; 51 Tan, Wu, Lao, Gao (bib53) 2009; 5 Wang, Zhang, Yang, Jin, Huang, Zhuang, Zhang, Cao, Lin, Chen, Du, Chen, Tan (bib68) 2024; 35 Qi, Cai, Xiang, Zhang, Ge, Wang, Lan, Xu, Hu, Shen (bib17) 2023; 35 Tan, Fang, Shen, Giani, Zhao, Shi, Zhang, Khan, Li, Li, Xu, Bernstein, Bernstein (bib31) 2018; 175 Lagares, Hinz (bib72) 2021 Zhao, Li, Ruan, Chen, Cai, Lu, Li, Deng, Cai, Cui (bib44) 2021; 15 Rousselle, Braye, Dayan (bib11) 2019; 146 Zhang, Tao, Li, Wei (bib46) 2011; 12 Monavarian, Kader, Moeinzadeh, Jabbari (bib4) 2019; 25 Bian, Hao, Qiu, Wu, Chang, Kuang, Zhang, Hu, Dai, Zhou, Huang, Liu, Zou, Liu, Lu, Pan, Zhao (bib38) 2022; 32 Singh, Rai, Agrawal (bib75) 2023; 7 Sharifiaghdam, Shaabani, Faridi-Majidi, De Smedt, Braeckmans, Fraire (bib8) 2022; 30 Sun, Jia, Qi, Huo, Liao, Xu, Wang, Sun, Liu, Liu, Zhen, Wang, Bai (bib18) 2024; 36 Frech, Hernandez, Urbonas, Zaken, Dreyfuss, Nouri (bib6) 2023; 24 Makadia, Siegel (bib52) 2011; 3 Bhandari (10.1016/j.bioactmat.2024.11.028_bib26) 2022; 387 Zhao (10.1016/j.bioactmat.2024.11.028_bib44) 2021; 15 Shen (10.1016/j.bioactmat.2024.11.028_bib21) 2007; 170 Sun (10.1016/j.bioactmat.2024.11.028_bib18) 2024; 36 Sun (10.1016/j.bioactmat.2024.11.028_bib19) 2024 Correa-Gallegos (10.1016/j.bioactmat.2024.11.028_bib54) 2019; 576 Wang (10.1016/j.bioactmat.2024.11.028_bib76) 2023; 9 Shim (10.1016/j.bioactmat.2024.11.028_bib27) 2018; 33 Taboada (10.1016/j.bioactmat.2024.11.028_bib36) 2020; 5 A (10.1016/j.bioactmat.2024.11.028_bib45) 2016; 5 Li (10.1016/j.bioactmat.2024.11.028_bib39) 2023; 18 Tan (10.1016/j.bioactmat.2024.11.028_bib31) 2018; 175 Lodyga (10.1016/j.bioactmat.2024.11.028_bib14) 2019; 12 Tan (10.1016/j.bioactmat.2024.11.028_bib53) 2009; 5 Gupta (10.1016/j.bioactmat.2024.11.028_bib62) 2019; 111 Zheng (10.1016/j.bioactmat.2024.11.028_bib32) 2019; 118 Son (10.1016/j.bioactmat.2024.11.028_bib71) 2021 Lagares (10.1016/j.bioactmat.2024.11.028_bib72) 2021 Medjebar (10.1016/j.bioactmat.2024.11.028_bib25) 2020; 9 Fang (10.1016/j.bioactmat.2024.11.028_bib28) 2018; 32 Wang (10.1016/j.bioactmat.2024.11.028_bib68) 2024; 35 Li (10.1016/j.bioactmat.2024.11.028_bib43) 2023; 14 Standard (10.1016/j.bioactmat.2024.11.028_bib63) 2009 Fang (10.1016/j.bioactmat.2024.11.028_bib69) 2018; 8 Suzuki (10.1016/j.bioactmat.2024.11.028_bib23) 2009; 36 Wang (10.1016/j.bioactmat.2024.11.028_bib73) 2013; 8 Gao (10.1016/j.bioactmat.2024.11.028_bib74) 2023; 10 Wu (10.1016/j.bioactmat.2024.11.028_bib12) 2022; 43 Feng (10.1016/j.bioactmat.2024.11.028_bib59) 2023; 10 Makadia (10.1016/j.bioactmat.2024.11.028_bib52) 2011; 3 Gurtner (10.1016/j.bioactmat.2024.11.028_bib1) 2008; 453 Rousselle (10.1016/j.bioactmat.2024.11.028_bib11) 2019; 146 Jiang (10.1016/j.bioactmat.2024.11.028_bib30) 2014; 11 Bian (10.1016/j.bioactmat.2024.11.028_bib38) 2022; 32 Mei (10.1016/j.bioactmat.2024.11.028_bib50) 2022; 14 Perillo (10.1016/j.bioactmat.2024.11.028_bib66) 2020; 52 Frech (10.1016/j.bioactmat.2024.11.028_bib6) 2023; 24 Zhao (10.1016/j.bioactmat.2024.11.028_bib16) 2022; 7 Li (10.1016/j.bioactmat.2024.11.028_bib37) 2016; 1 Qi (10.1016/j.bioactmat.2024.11.028_bib17) 2023; 35 Sun (10.1016/j.bioactmat.2024.11.028_bib35) 2021; 60 Ligorio (10.1016/j.bioactmat.2024.11.028_bib41) 2023; 1 Eming (10.1016/j.bioactmat.2024.11.028_bib9) 2017; 356 Li (10.1016/j.bioactmat.2024.11.028_bib49) 2012; 86 Junker (10.1016/j.bioactmat.2024.11.028_bib61) 2013; 2 Polez (10.1016/j.bioactmat.2024.11.028_bib57) 2022; 215 Hu (10.1016/j.bioactmat.2024.11.028_bib47) 2022; 219 Loo (10.1016/j.bioactmat.2024.11.028_bib65) 2011; 51 Cremers (10.1016/j.bioactmat.2024.11.028_bib70) 2015; 2 Hozumi (10.1016/j.bioactmat.2024.11.028_bib48) 2018; 19 Hasturk (10.1016/j.bioactmat.2024.11.028_bib42) 2020; 232 Zhang (10.1016/j.bioactmat.2024.11.028_bib2) 2020; 129 Monavarian (10.1016/j.bioactmat.2024.11.028_bib4) 2019; 25 Hedayatyanfard (10.1016/j.bioactmat.2024.11.028_bib29) 2020; 29 Bellu (10.1016/j.bioactmat.2024.11.028_bib3) 2021; 22 Boskabadi (10.1016/j.bioactmat.2024.11.028_bib22) 2018; 27 Sharifiaghdam (10.1016/j.bioactmat.2024.11.028_bib8) 2022; 30 Younesi (10.1016/j.bioactmat.2024.11.028_bib15) 2024; 25 Giles (10.1016/j.bioactmat.2024.11.028_bib34) 2022; 13 Singh (10.1016/j.bioactmat.2024.11.028_bib75) 2023; 7 Jiang (10.1016/j.bioactmat.2024.11.028_bib55) 2018; 20 Okwan-Duodu (10.1016/j.bioactmat.2024.11.028_bib20) 2010; 285 Redza-Dutordoir (10.1016/j.bioactmat.2024.11.028_bib67) 2016; 1863 Berry (10.1016/j.bioactmat.2024.11.028_bib5) 2023; 10 Na (10.1016/j.bioactmat.2024.11.028_bib51) 2019; 44 Wu (10.1016/j.bioactmat.2024.11.028_bib24) 2020 Willenborg (10.1016/j.bioactmat.2024.11.028_bib64) 2021; 33 Qian (10.1016/j.bioactmat.2024.11.028_bib10) 2022; 34 Chen (10.1016/j.bioactmat.2024.11.028_bib58) 2023; 10 Chatterjee (10.1016/j.bioactmat.2024.11.028_bib56) 2019; 9 Su (10.1016/j.bioactmat.2024.11.028_bib33) 2021; 28 Pourshahrestani (10.1016/j.bioactmat.2024.11.028_bib60) 2020; 9 Henderson (10.1016/j.bioactmat.2024.11.028_bib13) 2020; 587 Gao (10.1016/j.bioactmat.2024.11.028_bib7) 2020; 6 Zhang (10.1016/j.bioactmat.2024.11.028_bib46) 2011; 12 Song (10.1016/j.bioactmat.2024.11.028_bib40) 2019; 115 |
References_xml | – volume: 8 start-page: 302 year: 2013 end-page: 309 ident: bib73 article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation publication-title: Nat. Protoc. – volume: 34 year: 2022 ident: bib10 article-title: Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold publication-title: Adv. Mater. – volume: 111 start-page: 134 year: 2019 end-page: 151 ident: bib62 article-title: The production and application of hydrogels for wound management: a review publication-title: Eur. Polym. J. – volume: 9 year: 2019 ident: bib56 article-title: Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy publication-title: Sci. Rep. – volume: 33 start-page: 2398 year: 2021 end-page: 2414.e9 ident: bib64 article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing publication-title: Cell Metabol. – volume: 9 year: 2023 ident: bib76 article-title: Adipose‐derived stem cells enriched with therapeutic mRNA TGF‐β3 and IL‐10 synergistically promote scar‐less wound healing in preclinical models publication-title: Bioengineering & Translational Medicine – volume: 7 year: 2022 ident: bib16 article-title: Targeting fibrosis: mechanisms and clinical trials publication-title: Signal Transduct. Targeted Ther. – volume: 453 start-page: 314 year: 2008 end-page: 321 ident: bib1 article-title: Wound repair and regeneration publication-title: Nature – volume: 24 start-page: 225 year: 2023 end-page: 245 ident: bib6 article-title: Hypertrophic scars and keloids: advances in treatment and review of established therapies publication-title: Am. J. Clin. Dermatol. – volume: 14 start-page: 20538 year: 2022 end-page: 20550 ident: bib50 article-title: Injectable and self-healing probiotics-loaded hydrogel for promoting superbacteria-infected wound healing publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 2894 year: 2011 end-page: 2901 ident: bib46 article-title: Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules publication-title: Biomacromolecules – volume: 44 start-page: 22 year: 2019 end-page: 27 ident: bib51 article-title: Preparation of double-emulsion-templated microspheres with controllable porous structures by premix membrane emulsification publication-title: Particuology – volume: 9 year: 2020 ident: bib25 article-title: Angiotensin-converting enzyme (ACE) inhibitor prescription affects non-small-cell lung cancer (NSCLC) patients response to PD-1/PD-L1 immune checkpoint blockers publication-title: OncoImmunology – volume: 18 start-page: 4485 year: 2023 end-page: 4505 ident: bib39 article-title: Progress in pluronic F127 derivatives for application in wound healing and repair publication-title: Int. J. Nanomed. – volume: 9 year: 2020 ident: bib60 article-title: Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing publication-title: Adv. Healthcare Mater. – volume: 36 year: 2024 ident: bib18 article-title: An antioxidative and active shrinkage hydrogel integratedly promotes Re‐epithelization and skin constriction for enhancing wound closure publication-title: Adv. Mater. – volume: 170 start-page: 2122 year: 2007 end-page: 2134 ident: bib21 article-title: Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma publication-title: Am. J. Pathol. – volume: 52 start-page: 192 year: 2020 end-page: 203 ident: bib66 article-title: ROS in cancer therapy: the bright side of the moon publication-title: Exp. Mol. Med. – volume: 36 start-page: 665 year: 2009 end-page: 670 ident: bib23 article-title: Effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radical production and generation by murine lung alveolar macrophages publication-title: J. Asthma – volume: 285 start-page: 39051 year: 2010 end-page: 39060 ident: bib20 article-title: Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus publication-title: J. Biol. Chem. – volume: 33 start-page: 453 year: 2018 end-page: 461 ident: bib27 article-title: Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension publication-title: Kor. J. Intern. Med. – volume: 356 start-page: 1026 year: 2017 end-page: 1030 ident: bib9 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science – volume: 28 start-page: 1397 year: 2021 end-page: 1418 ident: bib33 article-title: PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application publication-title: Drug Deliv. – volume: 2 year: 2015 ident: bib70 article-title: Mechanical stress changes the complex interplay between HO-1, inflammation and fibrosis, during excisional wound repair publication-title: Front. Med. – volume: 25 start-page: 617 year: 2024 end-page: 638 ident: bib15 article-title: Fibroblast and myofibroblast activation in normal tissue repair and fibrosis publication-title: Nat. Rev. Mol. Cell Biol. – year: 2009 ident: bib63 article-title: Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity – volume: 219 start-page: 96 year: 2022 end-page: 108 ident: bib47 article-title: An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair publication-title: Int. J. Biol. Macromol. – volume: 12 year: 2019 ident: bib14 article-title: Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta publication-title: Sci. Signal. – volume: 129 year: 2020 ident: bib2 article-title: Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation publication-title: Biomed. Pharmacother. – volume: 43 year: 2022 ident: bib12 article-title: Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy publication-title: Nano Today – volume: 2 start-page: 348 year: 2013 end-page: 356 ident: bib61 article-title: Clinical impact upon wound healing and inflammation in moist, wet, and dry environments publication-title: Adv. Wound Care – volume: 10 year: 2023 ident: bib5 article-title: The effects of mechanical force on fibroblast behavior in cutaneous injury publication-title: Frontiers in Surgery – volume: 35 year: 2023 ident: bib17 article-title: An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics publication-title: Adv. Mater. – volume: 15 start-page: 13041 year: 2021 end-page: 13054 ident: bib44 article-title: Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration publication-title: ACS Nano – volume: 30 start-page: 2891 year: 2022 end-page: 2908 ident: bib8 article-title: Macrophages as a therapeutic target to promote diabetic wound healing publication-title: Mol. Ther. – volume: 118 year: 2019 ident: bib32 article-title: The effect of topical ramipril and losartan cream in inhibiting scar formation publication-title: Biomed. Pharmacother. – volume: 146 start-page: 344 year: 2019 end-page: 365 ident: bib11 article-title: Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies publication-title: Adv. Drug Deliv. Rev. – volume: 35 start-page: 330 year: 2024 end-page: 345 ident: bib68 article-title: Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration publication-title: Bioact. Mater. – volume: 14 year: 2023 ident: bib43 article-title: An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment publication-title: Nat. Commun. – volume: 587 start-page: 555 year: 2020 end-page: 566 ident: bib13 article-title: Fibrosis: from mechanisms to medicines publication-title: Nature – volume: 8 year: 2018 ident: bib69 article-title: Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways publication-title: Sci. Rep. – volume: 3 start-page: 1377 year: 2011 end-page: 1397 ident: bib52 article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier publication-title: Polymers – volume: 232 year: 2020 ident: bib42 article-title: Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation publication-title: Biomaterials – volume: 22 year: 2021 ident: bib3 article-title: Nanomaterials in skin regeneration and Rejuvenation publication-title: Int. J. Mol. Sci. – volume: 29 start-page: 902 year: 2020 end-page: 909 ident: bib29 article-title: The renin‐angiotensin system in cutaneous hypertrophic scar and keloid formation publication-title: Exp. Dermatol. – volume: 86 start-page: 51 year: 2012 end-page: 55 ident: bib49 article-title: FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 215 start-page: 691 year: 2022 end-page: 704 ident: bib57 article-title: Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum publication-title: Int. J. Biol. Macromol. – volume: 387 start-page: 2021 year: 2022 end-page: 2032 ident: bib26 article-title: Renin–angiotensin system inhibition in advanced chronic kidney disease publication-title: N. Engl. J. Med. – start-page: 405 year: 2021 end-page: 417 ident: bib71 article-title: A rodent model of hypertrophic ScarringHypertrophic scarring: SplintingSplinting of rat wounds publication-title: Myofibroblasts: Methods and Protocols – volume: 19 start-page: 288 year: 2018 end-page: 297 ident: bib48 article-title: Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff's base formation publication-title: Biomacromolecules – volume: 10 year: 2023 ident: bib74 article-title: Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin publication-title: Regenerative Biomaterials – volume: 60 start-page: 23687 year: 2021 end-page: 23694 ident: bib35 article-title: Genetically engineered polypeptide adhesive coacervates for surgical applications publication-title: Angew. Chem. Int. Ed. – volume: 10 year: 2023 ident: bib58 article-title: High‐performance multi‐dynamic bond cross‐linked hydrogel with spatiotemporal siRNA delivery for gene–cell combination therapy of intervertebral disc degeneration publication-title: Adv. Sci. – volume: 6 year: 2020 ident: bib7 article-title: A polymer-based systemic hemostatic agent publication-title: Sci. Adv. – volume: 11 start-page: 413 year: 2014 end-page: 426 ident: bib30 article-title: Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets publication-title: Nat. Rev. Cardiol. – volume: 32 start-page: 5199 year: 2018 end-page: 5208 ident: bib28 article-title: The source of ACE during scar formation is from both bone marrow and skin tissue publication-title: Faseb. J. – volume: 20 start-page: 422 year: 2018 end-page: 431 ident: bib55 article-title: Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring publication-title: Nat. Cell Biol. – volume: 7 year: 2023 ident: bib75 article-title: Regulation of collagen I and collagen III in tissue injury and regeneration publication-title: Cardiology and Cardiovascular Medicine – volume: 1863 start-page: 2977 year: 2016 end-page: 2992 ident: bib67 article-title: Activation of apoptosis signalling pathways by reactive oxygen species publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 175 start-page: 4239 year: 2018 end-page: 4252 ident: bib31 article-title: Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice publication-title: Br. J. Pharmacol. – volume: 51 start-page: 884 year: 2011 end-page: 892 ident: bib65 article-title: Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model publication-title: Free Radic. Biol. Med. – year: 2024 ident: bib19 article-title: Novel natural polymer‐based hydrogel patches with janus asymmetric‐adhesion for emergency hemostasis and wound healing publication-title: Adv. Funct. Mater. – volume: 1 start-page: 518 year: 2023 end-page: 536 ident: bib41 article-title: Synthetic extracellular matrices with function-encoding peptides publication-title: Nature Reviews Bioengineering – start-page: 277 year: 2021 end-page: 290 ident: bib72 article-title: Animal and human models of tissue RepairTissuerepair and fibrosis: an introduction publication-title: Myofibroblasts: Methods and Protocols – volume: 1 year: 2016 ident: bib37 article-title: Designing hydrogels for controlled drug delivery publication-title: Nat. Rev. Mater. – volume: 25 start-page: 294 year: 2019 end-page: 311 ident: bib4 article-title: Regenerative scar-free skin wound healing publication-title: Tissue Eng. B Rev. – volume: 27 start-page: 639 year: 2018 end-page: 647 ident: bib22 article-title: Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress publication-title: Inflammopharmacology – volume: 5 year: 2016 ident: bib45 article-title: Mechanical behaviour of skin: a review publication-title: J. Mater. Sci. Eng. – volume: 576 start-page: 287 year: 2019 end-page: 292 ident: bib54 article-title: Patch repair of deep wounds by mobilized fascia publication-title: Nature – volume: 5 start-page: 328 year: 2009 end-page: 337 ident: bib53 article-title: Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering publication-title: Acta Biomater. – volume: 115 start-page: 346 year: 2019 end-page: 355 ident: bib40 article-title: Single component Pluronic F127-lipoic acid hydrogels with self-healing and multi-responsive properties publication-title: Eur. Polym. J. – volume: 5 start-page: 310 year: 2020 end-page: 329 ident: bib36 article-title: Overcoming the translational barriers of tissue adhesives publication-title: Nat. Rev. Mater. – volume: 10 year: 2023 ident: bib59 article-title: Tailoring the swelling‐shrinkable behavior of hydrogels for biomedical applications publication-title: Adv. Sci. – volume: 13 year: 2022 ident: bib34 article-title: Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid) publication-title: Nat. Commun. – volume: 32 year: 2022 ident: bib38 article-title: An injectable rapid‐adhesion and anti‐swelling adhesive hydrogel for hemostasis and wound sealing publication-title: Adv. Funct. Mater. – year: 2020 ident: bib24 article-title: Angiotensin II induces RAW264.7 macrophage polarization to the M1-type through the connexin 43/NF-κB pathway publication-title: Mol. Med. Rep. – volume: 387 start-page: 2021 issue: 22 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib26 article-title: Renin–angiotensin system inhibition in advanced chronic kidney disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2210639 – volume: 32 start-page: 5199 issue: 9 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib28 article-title: The source of ACE during scar formation is from both bone marrow and skin tissue publication-title: Faseb. J. doi: 10.1096/fj.201701575RRR – volume: 19 start-page: 288 issue: 2 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib48 article-title: Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff's base formation publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01133 – volume: 18 start-page: 4485 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib39 article-title: Progress in pluronic F127 derivatives for application in wound healing and repair publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S418534 – volume: 118 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib32 article-title: The effect of topical ramipril and losartan cream in inhibiting scar formation publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109394 – volume: 9 issue: 20 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib60 article-title: Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202000905 – volume: 1863 start-page: 2977 issue: 12 year: 2016 ident: 10.1016/j.bioactmat.2024.11.028_bib67 article-title: Activation of apoptosis signalling pathways by reactive oxygen species publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2016.09.012 – volume: 33 start-page: 453 issue: 3 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib27 article-title: Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension publication-title: Kor. J. Intern. Med. doi: 10.3904/kjim.2017.317 – volume: 5 start-page: 310 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib36 article-title: Overcoming the translational barriers of tissue adhesives publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0171-7 – volume: 111 start-page: 134 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib62 article-title: The production and application of hydrogels for wound management: a review publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.12.019 – volume: 43 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib12 article-title: Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy publication-title: Nano Today doi: 10.1016/j.nantod.2022.101380 – year: 2024 ident: 10.1016/j.bioactmat.2024.11.028_bib19 article-title: Novel natural polymer‐based hydrogel patches with janus asymmetric‐adhesion for emergency hemostasis and wound healing publication-title: Adv. Funct. Mater. – volume: 30 start-page: 2891 issue: 9 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib8 article-title: Macrophages as a therapeutic target to promote diabetic wound healing publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.07.016 – volume: 9 issue: 2 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib76 article-title: Adipose‐derived stem cells enriched with therapeutic mRNA TGF‐β3 and IL‐10 synergistically promote scar‐less wound healing in preclinical models publication-title: Bioengineering & Translational Medicine doi: 10.1002/btm2.10620 – volume: 60 start-page: 23687 issue: 44 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib35 article-title: Genetically engineered polypeptide adhesive coacervates for surgical applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100064 – volume: 15 start-page: 13041 issue: 8 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib44 article-title: Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration publication-title: ACS Nano doi: 10.1021/acsnano.1c02147 – volume: 9 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib25 article-title: Angiotensin-converting enzyme (ACE) inhibitor prescription affects non-small-cell lung cancer (NSCLC) patients response to PD-1/PD-L1 immune checkpoint blockers publication-title: OncoImmunology doi: 10.1080/2162402X.2020.1836766 – volume: 12 start-page: 2894 issue: 8 year: 2011 ident: 10.1016/j.bioactmat.2024.11.028_bib46 article-title: Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules publication-title: Biomacromolecules doi: 10.1021/bm200423f – volume: 576 start-page: 287 issue: 7786 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib54 article-title: Patch repair of deep wounds by mobilized fascia publication-title: Nature doi: 10.1038/s41586-019-1794-y – volume: 35 issue: 48 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib17 article-title: An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics publication-title: Adv. Mater. doi: 10.1002/adma.202306632 – volume: 175 start-page: 4239 issue: 22 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib31 article-title: Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14489 – volume: 3 start-page: 1377 issue: 3 year: 2011 ident: 10.1016/j.bioactmat.2024.11.028_bib52 article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier publication-title: Polymers doi: 10.3390/polym3031377 – volume: 453 start-page: 314 issue: 7193 year: 2008 ident: 10.1016/j.bioactmat.2024.11.028_bib1 article-title: Wound repair and regeneration publication-title: Nature doi: 10.1038/nature07039 – start-page: 405 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib71 article-title: A rodent model of hypertrophic ScarringHypertrophic scarring: SplintingSplinting of rat wounds – volume: 8 start-page: 302 issue: 2 year: 2013 ident: 10.1016/j.bioactmat.2024.11.028_bib73 article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.002 – volume: 12 issue: 564 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib14 article-title: Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta publication-title: Sci. Signal. doi: 10.1126/scisignal.aao3469 – volume: 52 start-page: 192 issue: 2 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib66 article-title: ROS in cancer therapy: the bright side of the moon publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-0384-2 – volume: 44 start-page: 22 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib51 article-title: Preparation of double-emulsion-templated microspheres with controllable porous structures by premix membrane emulsification publication-title: Particuology doi: 10.1016/j.partic.2018.07.007 – volume: 10 issue: 28 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib59 article-title: Tailoring the swelling‐shrinkable behavior of hydrogels for biomedical applications publication-title: Adv. Sci. doi: 10.1002/advs.202303326 – volume: 35 start-page: 330 year: 2024 ident: 10.1016/j.bioactmat.2024.11.028_bib68 article-title: Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration publication-title: Bioact. Mater. – volume: 10 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib5 article-title: The effects of mechanical force on fibroblast behavior in cutaneous injury publication-title: Frontiers in Surgery doi: 10.3389/fsurg.2023.1167067 – volume: 170 start-page: 2122 issue: 6 year: 2007 ident: 10.1016/j.bioactmat.2024.11.028_bib21 article-title: Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2007.061205 – volume: 10 issue: 17 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib58 article-title: High‐performance multi‐dynamic bond cross‐linked hydrogel with spatiotemporal siRNA delivery for gene–cell combination therapy of intervertebral disc degeneration publication-title: Adv. Sci. doi: 10.1002/advs.202206306 – volume: 587 start-page: 555 issue: 7835 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib13 article-title: Fibrosis: from mechanisms to medicines publication-title: Nature doi: 10.1038/s41586-020-2938-9 – volume: 115 start-page: 346 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib40 article-title: Single component Pluronic F127-lipoic acid hydrogels with self-healing and multi-responsive properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.03.051 – volume: 36 start-page: 665 issue: 8 year: 2009 ident: 10.1016/j.bioactmat.2024.11.028_bib23 article-title: Effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radical production and generation by murine lung alveolar macrophages publication-title: J. Asthma doi: 10.3109/02770909909055418 – volume: 14 issue: 1 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib43 article-title: An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment publication-title: Nat. Commun. – volume: 2 start-page: 348 issue: 7 year: 2013 ident: 10.1016/j.bioactmat.2024.11.028_bib61 article-title: Clinical impact upon wound healing and inflammation in moist, wet, and dry environments publication-title: Adv. Wound Care doi: 10.1089/wound.2012.0412 – volume: 215 start-page: 691 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib57 article-title: Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.06.153 – volume: 28 start-page: 1397 issue: 1 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib33 article-title: PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application publication-title: Drug Deliv. doi: 10.1080/10717544.2021.1938756 – volume: 25 start-page: 294 issue: 4 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib4 article-title: Regenerative scar-free skin wound healing publication-title: Tissue Eng. B Rev. doi: 10.1089/ten.teb.2018.0350 – volume: 29 start-page: 902 issue: 9 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib29 article-title: The renin‐angiotensin system in cutaneous hypertrophic scar and keloid formation publication-title: Exp. Dermatol. doi: 10.1111/exd.14154 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib34 article-title: Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid) publication-title: Nat. Commun. doi: 10.1038/s41467-022-30813-7 – volume: 1 issue: 12 year: 2016 ident: 10.1016/j.bioactmat.2024.11.028_bib37 article-title: Designing hydrogels for controlled drug delivery publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.71 – volume: 7 issue: 1 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib75 article-title: Regulation of collagen I and collagen III in tissue injury and regeneration publication-title: Cardiology and Cardiovascular Medicine doi: 10.26502/fccm.92920302 – volume: 27 start-page: 639 issue: 3 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib22 article-title: Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress publication-title: Inflammopharmacology doi: 10.1007/s10787-018-0535-4 – volume: 25 start-page: 617 issue: 8 year: 2024 ident: 10.1016/j.bioactmat.2024.11.028_bib15 article-title: Fibroblast and myofibroblast activation in normal tissue repair and fibrosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-024-00716-0 – volume: 51 start-page: 884 issue: 4 year: 2011 ident: 10.1016/j.bioactmat.2024.11.028_bib65 article-title: Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.06.001 – volume: 6 issue: 31 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib7 article-title: A polymer-based systemic hemostatic agent publication-title: Sci. Adv. doi: 10.1126/sciadv.aba0588 – volume: 34 issue: 29 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib10 article-title: Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold publication-title: Adv. Mater. doi: 10.1002/adma.202200521 – volume: 285 start-page: 39051 issue: 50 year: 2010 ident: 10.1016/j.bioactmat.2024.11.028_bib20 article-title: Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.163782 – volume: 14 start-page: 20538 issue: 18 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib50 article-title: Injectable and self-healing probiotics-loaded hydrogel for promoting superbacteria-infected wound healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23713 – volume: 5 start-page: 328 issue: 1 year: 2009 ident: 10.1016/j.bioactmat.2024.11.028_bib53 article-title: Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.07.030 – volume: 2 year: 2015 ident: 10.1016/j.bioactmat.2024.11.028_bib70 article-title: Mechanical stress changes the complex interplay between HO-1, inflammation and fibrosis, during excisional wound repair publication-title: Front. Med. doi: 10.3389/fmed.2015.00086 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib56 article-title: Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy publication-title: Sci. Rep. doi: 10.1038/s41598-019-48254-6 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib69 article-title: Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways publication-title: Sci. Rep. – volume: 129 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib2 article-title: Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110287 – volume: 232 year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib42 article-title: Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119720 – volume: 32 issue: 46 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib38 article-title: An injectable rapid‐adhesion and anti‐swelling adhesive hydrogel for hemostasis and wound sealing publication-title: Adv. Funct. Mater. – volume: 356 start-page: 1026 issue: 6342 year: 2017 ident: 10.1016/j.bioactmat.2024.11.028_bib9 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science doi: 10.1126/science.aam7928 – year: 2020 ident: 10.1016/j.bioactmat.2024.11.028_bib24 article-title: Angiotensin II induces RAW264.7 macrophage polarization to the M1-type through the connexin 43/NF-κB pathway publication-title: Mol. Med. Rep. – start-page: 277 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib72 article-title: Animal and human models of tissue RepairTissuerepair and fibrosis: an introduction – volume: 146 start-page: 344 year: 2019 ident: 10.1016/j.bioactmat.2024.11.028_bib11 article-title: Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.06.019 – volume: 36 issue: 21 year: 2024 ident: 10.1016/j.bioactmat.2024.11.028_bib18 article-title: An antioxidative and active shrinkage hydrogel integratedly promotes Re‐epithelization and skin constriction for enhancing wound closure publication-title: Adv. Mater. doi: 10.1002/adma.202312440 – year: 2009 ident: 10.1016/j.bioactmat.2024.11.028_bib63 – volume: 5 issue: 4 year: 2016 ident: 10.1016/j.bioactmat.2024.11.028_bib45 article-title: Mechanical behaviour of skin: a review publication-title: J. Mater. Sci. Eng. – volume: 33 start-page: 2398 issue: 12 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib64 article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing publication-title: Cell Metabol. doi: 10.1016/j.cmet.2021.10.004 – volume: 22 issue: 13 year: 2021 ident: 10.1016/j.bioactmat.2024.11.028_bib3 article-title: Nanomaterials in skin regeneration and Rejuvenation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22137095 – volume: 24 start-page: 225 issue: 2 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib6 article-title: Hypertrophic scars and keloids: advances in treatment and review of established therapies publication-title: Am. J. Clin. Dermatol. doi: 10.1007/s40257-022-00744-6 – volume: 20 start-page: 422 issue: 4 year: 2018 ident: 10.1016/j.bioactmat.2024.11.028_bib55 article-title: Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0073-8 – volume: 11 start-page: 413 issue: 7 year: 2014 ident: 10.1016/j.bioactmat.2024.11.028_bib30 article-title: Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2014.59 – volume: 10 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib74 article-title: Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin publication-title: Regenerative Biomaterials doi: 10.1093/rb/rbac110 – volume: 7 issue: 1 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib16 article-title: Targeting fibrosis: mechanisms and clinical trials publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-022-01070-3 – volume: 86 start-page: 51 year: 2012 ident: 10.1016/j.bioactmat.2024.11.028_bib49 article-title: FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2011.09.056 – volume: 219 start-page: 96 year: 2022 ident: 10.1016/j.bioactmat.2024.11.028_bib47 article-title: An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.07.161 – volume: 1 start-page: 518 issue: 7 year: 2023 ident: 10.1016/j.bioactmat.2024.11.028_bib41 article-title: Synthetic extracellular matrices with function-encoding peptides publication-title: Nature Reviews Bioengineering doi: 10.1038/s44222-023-00055-3 |
SSID | ssj0001700007 |
Score | 2.3405843 |
Snippet | Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 322 |
SubjectTerms | ACEI microspheres Active shrinkage and antioxidative hydrogel Anti-inflammation and anti-fibrosis Biocompatibility Biomechanics Biomimetic mechanics Biomimetics Body temperature Collagen Contractility Drug delivery systems Drugs Fibroblasts Fibrosis Genotype & phenotype Hydrogels Inflammation Macrophages Mechanical properties Mechanics Microenvironments Modulus of elasticity Oxidative stress Phenotypes Regeneration Scars Skin Skin regeneration Storage modulus Wound healing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiFegICNxDcSJX-FWEFWFBCcq9Wb52U1hk2qTSuV38IeZcbKrXTj0wiGXxErimbHnm2TmG0LeBs2iSpyVrZWi5AAwSqdiKEVbp-Q456nCAuev3-TZOf9yIS72Wn1hTthMDzwL7n0rvFRVSLL2DY8yWVX5GrBWsMFZriPuvuDz9oKpq5kUBr3fQUKX6wbrJ8CBEBXW_B1yd2IP9j13lFn7D7zSv6jz7-TJPW90-pA8WGAkPZlf_xG5F_vH5PdJT23ev-i42kCQCXsFtX2AA8R_24VM8k1Xv8JmuIw_KX6DpVh_362xlJGuI5YBd36k6O2yQdL1ELDBVxwpmCJYz1zpmO-aINIexm6k00Cvc1YfPPdH19NNvMxk1jjyCTk__fz901m5NF0ovWByKqUOXHORIogdwE9sUisCDxaJykRgjXNCSK88D6CT5LzUrU9cyQhIz1Ztap6So37o43NCm8Qq7RKGPIpL7bTjurVKKdumGKIrSLWVvbmeuTXMNunsyuzUZVBdEKkYUFdBPqKOdsORHDufAJMxi8mYu0ymIB-2GjYLzpjxA9yqu_sNjrc2YZblPpqGSfwDzBkvyJvdZVio-PfF9nG4wTEcQkUAxHVBns0mtJtGA0Fny2pVEH1gXAfzPLzSd6tMBs4YMgyy-sX_kMxLcr_G_sY5x-6YHE2bm_gKQNfkXuf19QeRdjKX priority: 102 providerName: Directory of Open Access Journals |
Title | An active shrinkage and antioxidative hydrogel with biomimetic mechanics functions modulates inflammation and fibrosis to promote skin regeneration |
URI | https://dx.doi.org/10.1016/j.bioactmat.2024.11.028 https://www.ncbi.nlm.nih.gov/pubmed/39669127 https://www.proquest.com/docview/3160130414 https://www.proquest.com/docview/3146666502 https://pubmed.ncbi.nlm.nih.gov/PMC11635612 https://doaj.org/article/95c670df62c34e6fa70c281bdadba48e |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfY9sILAvEVGJWReA3EiWM7vKAOVibEJgRM2lvkzzZAk9J0Evwd_MPcuWm3ggQPeWmsxOmdz7873_2OkGdOMS8DZ2mlRZlyABipkd6lZZWHYDjnIcMC59MzcXLO312UF0PArR_SKjc2MRpq11mMkb8omMBDNs74q8X3FLtG4enq0EJjjxyACVbgfB0cHZ99-HgVZZHxrA47zGWVTBngmZ0kL9N02q4AG4KnmPPnyOeJfdmvbVGRyX9np_obif6ZUHlth5rcJrcGaEnHa124Q2749i75NW6pjjaN9rMlOJ5gP6huHVwgkh-Ni8TfdPbTLbup_0YxLkuxJr-ZY3kjnXssDW5sT3EHjEpK553Dpl--p6CeoFHr6sf41ADed9c3PV11dBEz_eC9X5uWLv00ElzjyHvkfHL8-fVJOjRiSG3JxCoVynHFy-CtkACIfBGq0nGnkbysdKwwpiyFlZY7F0QwVqjKBi6FB_SnsyoU98l-27X-IaFFYJkyAd0gyYUyynBVaSmlroJ33iQk2_z39WLNt1FvEtG-1Ftx1Sgu8F5qEFdCjlBG2-FImB1_6JbTelh_dVXC3DOYXm4L7kXQMrM5QHanndFc-YS83Ei4HrDHGlPAo5r_z-BwoxP1YAL6-kphE_J0exsWL57I6NZ3lziGg_sIIDlPyIO1Cm0_owBHtGK5TIjaUa6d79y90zazSBDOGLIOsvzRv-f1mNzMsZtxzKg7JPur5aV_AhBrZUZkT03ejsjB-M3p-0-jYVWNYsDiNwYPL2w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOcAFgdgCBYwEx0CcOHaChFBZhildTq3UW7BjeyaFSYZkKujv4H_wG3nPmUw7IMGph1wSy3Hytu_ZbyHkmcmYlY6zMFciDTkAjFBLa8I0j53TnHMXYYLz_oEYH_FPx-nxBvk15MJgWOWgE72iNk2Je-QvEybwkI0z_mb-LcSuUXi6OrTQ6Nli1559B5ete73zHuj7PI5HHw7fjcNlV4GwTJlYhCIzPOOps6WQYN1t4vLUcKOwEldqWKJ1mopSltwYJ5wuRZaXjkthAcqoKHcJzHuFXOVJkqNEZaOP53s60p8MYj-7KJchA_S0FlKmq0aVC0Ci4JfG_AVWD8Uu8BcMou8bsGYX_8a9f4ZvXrCHo5vkxhLI0u2e826RDVvfJj-3a6q8BqXdtAU3F7QVVbWBCxjgR2V8mXE6PTNtM7FfKe4CU6wAUM0wmZLOLCYiV2VH0d56kaCzxmCLMdtREAbg3z7X0s_qwNdvuqqji4bOfVwhvPdLVdPWTnw5bRx5hxxdCoHuks26qe19QhPHokw7dLokF5nONM9yJaVUubPG6oBEw78v5n11j2IIezspVuQqkFzgKxVAroC8RRqthmN5bn-jaSfFUtqLPIW1R7C8uEy4FU7JqIzBQTDKaMUzG5BXA4WLJdLpEQxMVf1_BVsDTxRLhdMV5-IRkKerx6Aq8PxH1bY5xTEcnFWA5HFA7vUstPoMYGaRs1gGJFtjrrXvXH9SV1NfjpwxrHHI4gf_XtcTcm18uL9X7O0c7D4k12Pso-xj-bbI5qI9tY8A3C30Yy9RlHy-bBH-DZ6zZ-8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+shrinkage+and+antioxidative+hydrogel+with+biomimetic+mechanics+functions+modulates+inflammation+and+fibrosis+to+promote+skin+regeneration&rft.jtitle=Bioactive+materials&rft.au=Zhang%2C+Tao&rft.au=Zhong%2C+Xin-Cao&rft.au=Feng%2C+Zi-Xuan&rft.au=Lin%2C+Xiao-Ying&rft.date=2025-03-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=45&rft.spage=322&rft.epage=344&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.11.028&rft.externalDocID=PMC11635612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |