Response Characteristics of PMP Compliant Condensation Particle Counters Toward Various Calibration Aerosols

Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011. For PN determination, solid exhaust particles are quantified by means of a condensation particle counter (CPC). In literature, deviations in...

Full description

Saved in:
Bibliographic Details
Published inAerosol science and technology Vol. 49; no. 2; pp. 98 - 108
Main Authors Kiwull, B., Wolf, J.-C., Niessner, R.
Format Journal Article
LanguageEnglish
Published New York Taylor & Francis 01.02.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0278-6826
1521-7388
DOI10.1080/02786826.2014.1002603

Cover

Loading…
Abstract Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011. For PN determination, solid exhaust particles are quantified by means of a condensation particle counter (CPC). In literature, deviations in PN of up to 30% are reported for a comparison of different measurement set-ups. Among others variations in the counting efficiency (CE) of different CPCs have to be considered as possible error sources that contribute to the overall deviation in PN. Thereby the uncertainties in CE may result from variations in the calibration procedure of different manufacturers (e.g., calibration aerosol). To investigate this circumstance, devices from three different manufacturers were directly compared according to their CE for model aerosols. The subject CPCs exhibited differences of up to 17% (23 nm particles) in the counting efficiency when measuring simultaneously the same test aerosol. Depending on the PN size distribution in real exhaust, this might result in an error (∼9%) in the finally determined PN. Additionally, the CPC response for selected volatile exhaust components was investigated. In this way, we found out that the fraction of detected nucleation mode particles increases approximately by factor 3 in case particles consist of or contain volatile material (e.g., sulfuric acid). Copyright 2015 American Association for Aerosol Research
AbstractList Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011. For PN determination, solid exhaust particles are quantified by means of a condensation particle counter (CPC). In literature, deviations in PN of up to 30% are reported for a comparison of different measurement set-ups. Among others variations in the counting efficiency (CE) of different CPCs have to be considered as possible error sources that contribute to the overall deviation in PN. Thereby the uncertainties in CE may result from variations in the calibration procedure of different manufacturers (e.g., calibration aerosol). To investigate this circumstance, devices from three different manufacturers were directly compared according to their CE for model aerosols. The subject CPCs exhibited differences of up to 17% (23 nm particles) in the counting efficiency when measuring simultaneously the same test aerosol. Depending on the PN size distribution in real exhaust, this might result in an error ( similar to 9%) in the finally determined PN. Additionally, the CPC response for selected volatile exhaust components was investigated. In this way, we found out that the fraction of detected nucleation mode particles increases approximately by factor 3 in case particles consist of or contain volatile material (e.g., sulfuric acid). Copyright 2015 American Association for Aerosol Research
Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011. For PN determination, solid exhaust particles are quantified by means of a condensation particle counter (CPC). In literature, deviations in PN of up to 30% are reported for a comparison of different measurement set-ups. Among others variations in the counting efficiency (CE) of different CPCs have to be considered as possible error sources that contribute to the overall deviation in PN. Thereby the uncertainties in CE may result from variations in the calibration procedure of different manufacturers (e.g., calibration aerosol). To investigate this circumstance, devices from three different manufacturers were directly compared according to their CE for model aerosols. The subject CPCs exhibited differences of up to 17% (23 nm particles) in the counting efficiency when measuring simultaneously the same test aerosol. Depending on the PN size distribution in real exhaust, this might result in an error (~9%) in the finally determined PN. Additionally, the CPC response for selected volatile exhaust components was investigated. In this way, we found out that the fraction of detected nucleation mode particles increases approximately by factor 3 in case particles consist of or contain volatile material (e.g., sulfuric acid).
Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011. For PN determination, solid exhaust particles are quantified by means of a condensation particle counter (CPC). In literature, deviations in PN of up to 30% are reported for a comparison of different measurement set-ups. Among others variations in the counting efficiency (CE) of different CPCs have to be considered as possible error sources that contribute to the overall deviation in PN. Thereby the uncertainties in CE may result from variations in the calibration procedure of different manufacturers (e.g., calibration aerosol). To investigate this circumstance, devices from three different manufacturers were directly compared according to their CE for model aerosols. The subject CPCs exhibited differences of up to 17% (23 nm particles) in the counting efficiency when measuring simultaneously the same test aerosol. Depending on the PN size distribution in real exhaust, this might result in an error (∼9%) in the finally determined PN. Additionally, the CPC response for selected volatile exhaust components was investigated. In this way, we found out that the fraction of detected nucleation mode particles increases approximately by factor 3 in case particles consist of or contain volatile material (e.g., sulfuric acid).Copyright 2015 American Association for Aerosol Research
Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011. For PN determination, solid exhaust particles are quantified by means of a condensation particle counter (CPC). In literature, deviations in PN of up to 30% are reported for a comparison of different measurement set-ups. Among others variations in the counting efficiency (CE) of different CPCs have to be considered as possible error sources that contribute to the overall deviation in PN. Thereby the uncertainties in CE may result from variations in the calibration procedure of different manufacturers (e.g., calibration aerosol). To investigate this circumstance, devices from three different manufacturers were directly compared according to their CE for model aerosols. The subject CPCs exhibited differences of up to 17% (23 nm particles) in the counting efficiency when measuring simultaneously the same test aerosol. Depending on the PN size distribution in real exhaust, this might result in an error (∼9%) in the finally determined PN. Additionally, the CPC response for selected volatile exhaust components was investigated. In this way, we found out that the fraction of detected nucleation mode particles increases approximately by factor 3 in case particles consist of or contain volatile material (e.g., sulfuric acid). Copyright 2015 American Association for Aerosol Research
Author Kiwull, B.
Wolf, J.-C.
Niessner, R.
Author_xml – sequence: 1
  givenname: B.
  surname: Kiwull
  fullname: Kiwull, B.
  organization: Institute of Hydrochemistry, Department of Analytical Chemistry, Technische Universität München, Munich
– sequence: 2
  givenname: J.-C.
  surname: Wolf
  fullname: Wolf, J.-C.
  organization: Institute of Hydrochemistry, Department of Analytical Chemistry, Technische Universität München, Munich
– sequence: 3
  givenname: R.
  surname: Niessner
  fullname: Niessner, R.
  email: reinhard.niessner@ch.tum.de
  organization: Institute of Hydrochemistry, Department of Analytical Chemistry, Technische Universität München, Munich
BookMark eNqNkU1rFTEUhoNU8Lb6E4QBN26mnnxMksGNZVArVLxIdRsymQRTcpNrkkvpvzfTWzddVFcJ4Xlecs57ik5iihah1xjOMUh4B0RILgk_J4BZewLCgT5DGzwQ3Asq5QnarEy_Qi_QaSk3AIAFwRsUvtuyT7HYbvqlszbVZl-qN6VLrtt-3XZT2u2D17G2W1xsLLr6FLutzo0KTUuH2KTSXadbnZfup84-HUo36eDnfIQvbE4lhfISPXc6FPvq4TxDPz59vJ4u-6tvn79MF1e9GTCvPQcOzNEFOJdssYwZh4klxFLHsTCLIGZc5pmRUQAIPHM6W8PAOjzDMGpOz9DbY-4-p98HW6ra-WJsCDra9jeFuRwkwWwk_4NSOtBxXFPfPEJv0iHHNogibekMsxb7FIU5BzFISUSj3h8p0zZTsnXK-Hq_rJq1DwqDWqtVf6tVa7XqodpmD4_sffY7ne_-6X04ej66lHf6NuWwqKrvQsou62h8UfTpiD_4y7tB
CitedBy_id crossref_primary_10_1080_02786826_2018_1536818
crossref_primary_10_1016_j_jaerosci_2018_06_014
crossref_primary_10_1016_j_measurement_2023_112839
crossref_primary_10_1016_j_jaerosci_2023_106182
crossref_primary_10_1016_j_jaerosci_2024_106483
crossref_primary_10_1080_02786826_2019_1623378
crossref_primary_10_3390_atmos13020155
crossref_primary_10_3390_atmos13060872
crossref_primary_10_1016_j_partic_2022_05_006
crossref_primary_10_1007_s40825_021_00189_z
crossref_primary_10_3390_atmos13111770
Cites_doi 10.1080/02786826.2013.802762
10.1080/02786826.2014.890694
10.1080/02786826.2012.661103
10.1080/02786829008959406
10.1016/0960-1686(93)90254-V
10.1021/es981095w
10.1021/es049427m
10.1016/0004-6981(77)90240-2
10.1080/02786820903242029
10.1016/j.jaerosci.2010.10.006
10.1029/2006GL027249
10.1016/j.jaerosci.2010.01.001
10.1016/S0021-8502(03)00069-7
10.1007/s11172-011-0212-x
10.1080/02786826.2012.716174
10.1016/j.scitotenv.2010.07.010
10.1016/0021-8502(86)90050-9
10.1021/ac50053a058
10.1016/j.jaerosci.2011.01.002
10.1080/02786826.2013.840357
10.1080/02786826.2014.904961
10.1016/j.jaerosci.2004.12.001
10.1016/S1352-2310(99)00455-0
10.1016/0021-8502(83)90035-6
10.1016/j.jaerosci.2014.01.001
10.1021/es402354y
10.1016/S0169-8095(02)00014-5
10.1080/02786820050121512
10.1016/j.jaerosci.2006.11.008
10.1016/j.jaerosci.2007.08.001
10.1016/0021-8502(85)90026-6
10.1016/0021-8502(88)90278-9
10.1021/ja00519a018
10.1021/es981187l
10.1080/02786826.2012.705448
10.1080/02786826.2014.899681
ContentType Journal Article
Copyright Copyright © American Association for Aerosol Research 2015
Copyright Taylor & Francis Ltd. 2015
Copyright © American Association for Aerosol Research
Copyright_xml – notice: Copyright © American Association for Aerosol Research 2015
– notice: Copyright Taylor & Francis Ltd. 2015
– notice: Copyright © American Association for Aerosol Research
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
KL.
DOI 10.1080/02786826.2014.1002603
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1521-7388
EndPage 108
ExternalDocumentID 3615212721
10_1080_02786826_2014_1002603
1002603
Genre Article
Feature
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID ---
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACBEA
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADDVE
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
E3Z
EBS
EJD
E~A
E~B
F5P
FIJ
FRP
GEVLZ
GTTXZ
H13
HF~
HH5
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
OK1
P2P
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TB
7TG
8FD
FR3
KL.
TASJS
ID FETCH-LOGICAL-c516t-60604f3d06684de44cf12e22e3f617cd72c9dbb42970071b63bec40ef1b059a63
ISSN 0278-6826
IngestDate Fri Jul 11 06:03:33 EDT 2025
Fri Jul 11 10:49:14 EDT 2025
Wed Aug 13 05:58:45 EDT 2025
Wed Aug 13 04:14:55 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Tue Jul 01 02:27:04 EDT 2025
Wed Dec 25 09:09:41 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c516t-60604f3d06684de44cf12e22e3f617cd72c9dbb42970071b63bec40ef1b059a63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/02786826.2014.1002603?needAccess=true&role=button
PQID 1660758827
PQPubID 45505
PageCount 11
ParticipantIDs proquest_journals_2100414685
crossref_primary_10_1080_02786826_2014_1002603
informaworld_taylorfrancis_310_1080_02786826_2014_1002603
proquest_miscellaneous_1685821492
crossref_citationtrail_10_1080_02786826_2014_1002603
proquest_journals_1660758827
proquest_miscellaneous_1683353996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Aerosol science and technology
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0033
cit0034
cit0031
cit0032
Giechaskiel B. (cit0011) 2013
Marshall I. (cit0030) 2007
cit0039
cit0037
cit0038
cit0035
cit0036
cit0023
cit0020
Jing L. (cit0021) 1999
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0012
cit0010
cit0019
cit0017
cit0018
cit0015
cit0016
cit0044
cit0045
cit0042
cit0043
cit0040
cit0041
Giechaskiel B. (cit0013) 2014
Andersson J. (cit0001) 2007
Giechaskiel B. (cit0014) 2007
cit0008
Khalek I. (cit0022) 2000
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0027
  doi: 10.1080/02786826.2013.802762
– ident: cit0035
  doi: 10.1080/02786826.2014.890694
– volume-title: Particle Measurement Programme (PMP), Light-Duty Inter-Laboratory Correlation Exercise (ILCE_LD), Final Report EUR 22775 EN
  year: 2007
  ident: cit0001
– ident: cit0012
  doi: 10.1080/02786826.2012.661103
– ident: cit0037
  doi: 10.1080/02786829008959406
– ident: cit0006
– ident: cit0019
  doi: 10.1016/0960-1686(93)90254-V
– ident: cit0031
  doi: 10.1021/es981095w
– ident: cit0043
  doi: 10.1021/es049427m
– ident: cit0025
  doi: 10.1016/0004-6981(77)90240-2
– ident: cit0016
  doi: 10.1080/02786820903242029
– ident: cit0015
  doi: 10.1016/j.jaerosci.2010.10.006
– ident: cit0040
  doi: 10.1029/2006GL027249
– ident: cit0007
– volume-title: PMP Inter-laboratory Correlation Exercise, Report on PART 3: JRC Tests in July’06
  year: 2007
  ident: cit0014
– ident: cit0048
  doi: 10.1016/j.jaerosci.2010.01.001
– ident: cit0008
  doi: 10.1016/S0021-8502(03)00069-7
– volume-title: 3rd ETH Workshop “Nanoparticle Measurement,” 9–10 August
  year: 1999
  ident: cit0021
– volume-title: Particle Number Counter Calibration Procedures
  year: 2007
  ident: cit0030
– ident: cit0002
  doi: 10.1007/s11172-011-0212-x
– ident: cit0026
  doi: 10.1080/02786826.2012.716174
– ident: cit0010
  doi: 10.1016/j.scitotenv.2010.07.010
– ident: cit0036
  doi: 10.1016/0021-8502(86)90050-9
– ident: cit0039
  doi: 10.1021/ac50053a058
– ident: cit0009
  doi: 10.1016/j.jaerosci.2011.01.002
– ident: cit0017
  doi: 10.1080/02786826.2013.840357
– volume-title: Review on Engine Exhaust Sub 23-nm Particles (Draft, PMP 30th Session)
  year: 2014
  ident: cit0013
– ident: cit0029
  doi: 10.1080/02786826.2014.904961
– ident: cit0003
  doi: 10.1016/j.jaerosci.2004.12.001
– ident: cit0033
  doi: 10.1016/S1352-2310(99)00455-0
– ident: cit0042
  doi: 10.1016/0021-8502(83)90035-6
– start-page: p. 5504
  year: 2013
  ident: cit0011
  publication-title: JSAE, 22–24 May 2013, Yokohama, Japan
– ident: cit0046
– ident: cit0018
  doi: 10.1016/j.jaerosci.2014.01.001
– year: 2000
  ident: cit0022
  publication-title: SAE Technical Paper, 2000-01-0515
– ident: cit0041
  doi: 10.1021/es402354y
– ident: cit0004
– ident: cit0044
  doi: 10.1016/S0169-8095(02)00014-5
– ident: cit0032
  doi: 10.1080/02786820050121512
– ident: cit0024
  doi: 10.1016/j.jaerosci.2006.11.008
– ident: cit0028
  doi: 10.1016/j.jaerosci.2007.08.001
– ident: cit0038
  doi: 10.1016/0021-8502(85)90026-6
– ident: cit0049
  doi: 10.1016/0021-8502(88)90278-9
– ident: cit0020
  doi: 10.1021/ja00519a018
– ident: cit0005
– ident: cit0045
  doi: 10.1021/es981187l
– ident: cit0047
– ident: cit0034
  doi: 10.1080/02786826.2012.705448
– ident: cit0023
  doi: 10.1080/02786826.2014.899681
SSID ssj0001721
Score 2.1557944
Snippet Within the European legislation, a new limit for particle emissions of light and heavy duty engines based on the particle number (PN) was established in 2011....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms Aerosol research
Aerosols
Calibration
Condensates
Condensation
Condensing
Counting
Deviation
Emissions
Engines
Exhaust
Legislation
Particle counters
Particle emission
Particle size distribution
Radiation counters
Sulfuric acid
Title Response Characteristics of PMP Compliant Condensation Particle Counters Toward Various Calibration Aerosols
URI https://www.tandfonline.com/doi/abs/10.1080/02786826.2014.1002603
https://www.proquest.com/docview/1660758827
https://www.proquest.com/docview/2100414685
https://www.proquest.com/docview/1683353996
https://www.proquest.com/docview/1685821492
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaq7QF4QDBAFAYyEm9VpsZxnOSxGpuqsRU0pVDxYjWOIyFVLaKpkPgb-KO584_MpdUGvERVUltpv8_nO_vuMyFvdTEfZqxhUR1ndcRVk0fzPE-i-TCuWK7Ax-ZY73w1EeMpv5ils17vV5C1tGmrE_Vzb13J_6AK9wBXrJL9B2S7TuEGfAZ84QoIw_WvML62Ca7abJqHssuY2Hb10Qx2XMZosbAPDIzN3AGv0XZlCtJRXXNQmuTZwScInDElFgu2KkeNkYZ5dLVYh16suzfwNUEmC3Nnjf791x8bt6nRmf7VwohAXkTd4uwEQvW1q7q5Dtcg4tSnLTvWlDvHgQQ5SWjJGISqImdO89pZWhZHWWLP9POm2KqXOsqxwK7ak6p3zL3Lj4TusXdM1ONGU1YMk5v5ze_pTz7I8-nlpSzPZuX2UzudC3wllqEqwSGDoAPM_OFo_O7L525mx3DZrNm5n-MrwlCrfd87bPk6W0q4OzO_cWfKR-Shi0PoyDLhMenp5RG5d-qP_zsiDwKlyidk4alG_6AaXTUUqEY7qtGQatRTjXqqUUs16qhGA6pRT7WnZHp-Vp6OI3dQR6TSWLSRQAWmJqnBfc15rTkM-ZhpxnTSgIOs6oypoq4qcH0ydGkrkYDl4EPdxBV493ORPCMHy9VSPyc0z5QWtS5UWqS8VkUFlkNVLKmZ4hBhNX3C_V8qlVOxx8NUFjL2YrcOCYlISIdEn5x0zb5ZGZe7GhQhXrI1FG8su2VyR9tjD6501mItYyHAO4d4Ntv7mKFyI5ZBpn3ypnsMkOP-3XypARHoAiskIaIQt34HS995wV7c_hYvyf2bkXxMDtrvG_0K_Ou2eu1o_xv6eMwn
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6a2AE4AGOglR-bJ3FNaRzHSY6oGuo2WvVQEDcr_nWhatGaXvjrec9JqnawceAWybGV2M_29-zvfQ_gwhVlL-OeRzbObCSMz6Myz5Oo7MWa5wYxtqB45-FIDm7Fr_v0fi0WhmiV5EP7WigirNU0uekwuqXEXdJtmURcTMwsEUREJQl-fkwLmdHkTHqj1WpMLk44Z0Fvieq0UTz_amZjf9pQL32xWoct6HofTPvxNfPkobusdNc8_aXr-L6_O4C9BqGyq9qkPsEHNzuE7X6bGO4Qdtc0DD8DOrCBZetYf1P7mc09Gw_HrB9I6ziA-ETpdmv6EBs3NssoKp4kPtkkMHjZHXrv8-WCUdSYru2TXTnsrPl0cQS31z8m_UHUpHCITBrLKpKkzeMTi8AmF9YJNIaYO85d4hE6GZtxU1itcVPMCOxomaBNiZ7zsUbcV8rkGLZm85n7AizPjJPWFSYtUmFNodGmjOaJ5UYg9vYdEO3AKdPom1OajamKWxnUpmMVdaxqOrYD3VW1x1rg460KxbpVqCqcrPg6DYpK3qh71pqQataKhYqlRNyGnk72ajEnTT8KkEs78H1VjENONzvlzOGIYBMUO4dYU_73HQqKFgU_eccffIPtwWR4o25-jn6fwg4WpTWH_Qy2qj9Ld44QrdJfwxx8BuQHLII
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwEB0hkJblAAu7iALLGolruo3jOMkRla2AhaoHWHGz4q8LqEU0vfDrmXGSigILB26RHFuJPbbf2G_eABy5ouxl3PPIxpmNhPF5VOZ5EpW9WPPcIMYWFO98OZSn1-L8Jm3ZhNOGVkk-tK-FIsJaTZP73vqWEfebLsskwmIiZomgISpJ73NF0iUfRXH0hvPFmDyccMyCzhLVaYN4_tfMwva0IF76arEOO9BgA3T77TXx5LY7q3TXPL6QdfzUz32D9QafsuPaoDZhyY23YLXfpoXbgrVnCobfAd3XwLF1rL-o_Mwmno0uR6wfKOs4fPhEyXZr8hAbNRbLKCaeBD7ZVeDvsn_ou09mU0YxY7q2TnbssK8md9MfcD34c9U_jZoEDpFJY1lFkpR5fGIR1uTCOoGmEHPHuUs8AidjM24KqzVuiRlBHS0TtCjRcz7WiPpKmWzD8ngydjvA8sw4aV1h0iIV1hQaLcponlhuBCJv3wHRjpsyjbo5Jdm4U3Ergtp0rKKOVU3HdqA7r3Zfy3t8VKF4bhSqCucqvk6CopIP6u63FqSalWKqYikRtaGfk71ZzEnRj8Lj0g4czotxyOlepxw7HBFsgiLnEGnKd9-hkGhR8N1P_MEv-DI6GaiLs-HfPfiKJWlNYN-H5eph5n4iPqv0QZiBT_-6KyY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+Characteristics+of+PMP+Compliant+Condensation+Particle+Counters+Toward+Various+Calibration+Aerosols&rft.jtitle=Aerosol+science+and+technology&rft.au=Kiwull%2C+B&rft.au=Wolf%2C+J-C&rft.au=Niessner%2C+R&rft.date=2015-02-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0278-6826&rft.eissn=1521-7388&rft.volume=49&rft.issue=2&rft.spage=98&rft_id=info:doi/10.1080%2F02786826.2014.1002603&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3615212721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6826&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6826&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6826&client=summon