Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells
Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified re...
Saved in:
Published in | The Plant cell Vol. 28; no. 6; pp. 1250 - 1262 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. |
---|---|
AbstractList | Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. VISUAL, an ectopic induction system for phloem differentiation in Arabidopsis, allows the molecular mechanism underlying this crucial process to be analyzed, opening up new avenues of research. Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. VISUAL, an ectopic induction system for phloem differentiation in Arabidopsis, allows the molecular mechanism underlying this crucial process to be analyzed, opening up new avenues of research. Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL . Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. |
Author | Ohme-Takagi, Masaru Mitsuda, Nobutaka Nurani, Alif Meem Kondo, Yuki Yamazaki, Kyoko Saito, Chieko Fukuda, Hiroo Ichihashi, Yasunori Saito, Masato |
Author_xml | – sequence: 1 givenname: Yuki surname: Kondo fullname: Kondo, Yuki organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 2 givenname: Alif Meem surname: Nurani fullname: Nurani, Alif Meem organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 3 givenname: Chieko surname: Saito fullname: Saito, Chieko organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 4 givenname: Yasunori surname: Ichihashi fullname: Ichihashi, Yasunori organization: RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama City, Kanagawa, Yokohama 230-0045, Japan – sequence: 5 givenname: Masato surname: Saito fullname: Saito, Masato organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 6 givenname: Kyoko surname: Yamazaki fullname: Yamazaki, Kyoko organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 7 givenname: Nobutaka surname: Mitsuda fullname: Mitsuda, Nobutaka organization: Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan – sequence: 8 givenname: Masaru surname: Ohme-Takagi fullname: Ohme-Takagi, Masaru organization: Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan – sequence: 9 givenname: Hiroo surname: Fukuda fullname: Fukuda, Hiroo organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27194709$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gxhn5WCSy2PFXckFaLS2sFAmJZStuljeZtC7ZOLWdlfob-NN102UFSEicxh_PvPOOZk7RUe96QOg1JTNKiXgfh3pG5YwQkqtn6IQKlmd5WXw_SmfCScaloMfoNITbhFBFyxfoOE-BK1KeoJ9XJtRjZzxeQNfhZd-MdbSux4uxi6MHvLoPEbZ4HWx_jefebGzjhmADrsDsIODzq-VqPa_e4q-wA9MFHG9SEtyN0EdrOvzRti346TLpuhavbELxRQfb9JxV9gdMxcNL9LxNCvBqH8_Q-vLi2-JzVn35tFzMq6wWVMZMCAomp5wzwRRw3hgFjSob1nIJxChJhVKMQas2RBXKlJLWjOeypBsqiGrYGfrwpDuMmy00dXLhTacHb7fG32tnrP7zp7c3-trtNC8556RIAud7Ae9SoyHqrQ11asH04MagaUEKKYRU5f-gTJWUFXlC3_xu6-Dn17AS8O4JqL0LwUN7QCjRj7ug0y5oKvW0CwnP_8JrG6chpKZs96-kvd_bEJ0_FBiS3_hoW-eFlprmgrAHvQzGcw |
CitedBy_id | crossref_primary_10_1016_j_pbi_2017_12_005 crossref_primary_10_1111_nph_19003 crossref_primary_10_1111_jipb_12606 crossref_primary_10_1038_s41477_018_0180_3 crossref_primary_10_1093_aob_mcae208 crossref_primary_10_3390_ijms24098110 crossref_primary_10_3390_ijms231710134 crossref_primary_10_3389_fpls_2021_825810 crossref_primary_10_1111_nph_14751 crossref_primary_10_1016_j_cub_2019_01_015 crossref_primary_10_1038_s41477_022_01113_1 crossref_primary_10_1073_pnas_1718263115 crossref_primary_10_1093_pcp_pcac161 crossref_primary_10_1016_j_plantsci_2018_09_006 crossref_primary_10_1093_jxb_erac253 crossref_primary_10_1016_j_semcdb_2017_08_050 crossref_primary_10_1016_j_pbi_2020_08_004 crossref_primary_10_1111_ppl_13118 crossref_primary_10_1271_kagakutoseibutsu_56_353 crossref_primary_10_1016_j_pbi_2019_04_002 crossref_primary_10_1007_s11240_023_02478_7 crossref_primary_10_1093_jxb_erz021 crossref_primary_10_5511_plantbiotechnology_21_1109a crossref_primary_10_1038_s42003_021_01895_8 crossref_primary_10_1016_j_cpb_2019_100112 crossref_primary_10_1016_j_celrep_2022_111059 crossref_primary_10_3390_biom12121772 crossref_primary_10_1016_j_cub_2021_04_057 crossref_primary_10_1093_jxb_erw473 crossref_primary_10_1146_annurev_genet_120116_024525 crossref_primary_10_1038_s41586_018_0186_z crossref_primary_10_1073_pnas_1703258114 crossref_primary_10_1093_pcp_pcae037 crossref_primary_10_1007_s10265_017_1002_9 crossref_primary_10_1016_j_pbi_2016_11_013 crossref_primary_10_3389_fpls_2020_00193 crossref_primary_10_1093_plcell_koaf011 crossref_primary_10_1111_tpj_15719 crossref_primary_10_3390_plants6040060 crossref_primary_10_5511_plantbiotechnology_18_1119b crossref_primary_10_3390_plants9010039 crossref_primary_10_1017_qpb_2022_12 crossref_primary_10_1038_s41477_018_0157_2 crossref_primary_10_1093_plphys_kiab487 crossref_primary_10_1007_s10265_017_0998_1 crossref_primary_10_1111_tpj_14670 crossref_primary_10_5511_plantbiotechnology_21_1219a crossref_primary_10_3389_fpls_2022_888201 crossref_primary_10_1038_s41467_023_37790_5 crossref_primary_10_1007_s10265_023_01513_0 crossref_primary_10_1016_j_molp_2021_05_028 crossref_primary_10_1016_j_xplc_2024_100978 crossref_primary_10_3390_agronomy13061527 crossref_primary_10_1016_j_pbi_2023_102404 crossref_primary_10_1073_pnas_1915396116 crossref_primary_10_1093_pcp_pcad039 crossref_primary_10_1093_pcp_pcaa002 crossref_primary_10_1186_s13007_023_01109_8 crossref_primary_10_3389_fpls_2017_01195 crossref_primary_10_1242_dev_200632 crossref_primary_10_3389_fpls_2021_810465 crossref_primary_10_1016_j_tplants_2023_09_011 crossref_primary_10_5685_plmorphol_32_3 crossref_primary_10_1016_j_devcel_2019_11_015 crossref_primary_10_1242_dev_162354 crossref_primary_10_1093_aob_mcy180 crossref_primary_10_1093_gbe_evab271 crossref_primary_10_1016_j_pbi_2023_102377 crossref_primary_10_1093_pcp_pcy012 crossref_primary_10_1093_plcell_koab076 crossref_primary_10_1016_j_pbi_2016_10_007 crossref_primary_10_1093_plcell_koab154 crossref_primary_10_1016_j_celrep_2019_06_041 crossref_primary_10_1016_j_copbio_2019_02_001 crossref_primary_10_1111_nph_17594 crossref_primary_10_3390_plants7040109 crossref_primary_10_1126_sciadv_aaz2963 crossref_primary_10_1093_plphys_kiab385 crossref_primary_10_1271_kagakutoseibutsu_59_225 crossref_primary_10_1016_j_cub_2017_03_014 crossref_primary_10_1093_jxb_erad232 crossref_primary_10_1111_1751_7915_14311 crossref_primary_10_1038_s42003_020_0907_3 crossref_primary_10_1093_plcell_koab151 crossref_primary_10_1038_s41477_022_01138_6 crossref_primary_10_1111_tpj_13840 crossref_primary_10_1242_dev_199766 crossref_primary_10_1111_nph_19617 crossref_primary_10_1007_s00018_020_03496_w crossref_primary_10_1007_s10265_017_0999_0 crossref_primary_10_1016_j_ydbio_2018_06_013 |
Cites_doi | 10.1186/1471-2105-9-559 10.1111/nph.13383 10.1093/pcp/pcu134 10.1073/pnas.1222314110 10.1038/ncomms4504 10.1016/j.pbi.2015.09.008 10.1016/j.cub.2015.08.033 10.3732/ajb.1400197 10.1038/nature02613 10.1105/tpc.9.7.1137 10.1111/j.1438-8677.1996.tb00577.x 10.1105/tpc.111.093179 10.1242/dev.072629 10.1038/nprot.2006.16 10.1104/pp.014712 10.1371/journal.pone.0105726 10.1105/tpc.110.075036 10.1104/pp.010479 10.1002/j.1537-2197.1963.tb07210.x 10.1073/pnas.1407337111 10.1016/S0022-5320(83)90101-6 10.1016/j.chembiol.2009.04.008 10.1126/science.1222597 10.1126/science.1146265 10.1126/science.1253736 10.1104/pp.110.166330 10.1111/j.1365-313X.2010.04399.x 10.1038/nature02100 10.1104/pp.123.3.1185 10.1016/j.molp.2014.10.008 10.1105/tpc.107.056069 10.1111/j.1365-313X.2011.04514.x 10.1126/science.1128436 10.1263/jbb.104.34 10.1038/nature14099 10.1016/j.pbi.2015.10.002 10.1105/tpc.108.061325 10.1038/emboj.2012.301 10.1105/tpc.11.5.769 10.1101/gad.1331305 10.1104/pp.65.1.57 10.1046/j.1365-313x.1998.00343.x 10.1007/BF00390835 10.1104/pp.103.027979 10.1038/nrm.2015.6 10.1093/jxb/ern041 10.1242/dev.094417 |
ContentType | Journal Article |
Copyright | 2016 American Society of Plant Biologists 2016 American Society of Plant Biologists. All rights reserved. 2016 American Society of Plant Biologists. All rights reserved. 2016 |
Copyright_xml | – notice: 2016 American Society of Plant Biologists – notice: 2016 American Society of Plant Biologists. All rights reserved. – notice: 2016 American Society of Plant Biologists. All rights reserved. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1105/tpc.16.00027 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE CrossRef Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1262 |
ExternalDocumentID | PMC4944408 27194709 10_1105_tpc_16_00027 plantcell.28.6.1250 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM AAYXX ALIPV CITATION 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ ABIME ABPIB ABUWG ABZEO ACFRR ACUTJ ACVCV ACZBC ADYWZ AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AJDVS ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CGR CUY CVF D1J DWQXO ECM EIF FRP FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU LK8 M0K M1P M2P M2Q M7P MVM NEJ NPM P0- PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG 7X8 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c516t-551ea21443537e44da7ed79d3f46e0a76157733ef7b0787a961c342691b1507d3 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:12:42 EDT 2025 Thu Jul 10 19:20:25 EDT 2025 Fri Jul 11 07:57:21 EDT 2025 Thu Apr 03 07:10:01 EDT 2025 Tue Jul 01 03:49:45 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Sun Aug 24 12:10:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2016 American Society of Plant Biologists. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c516t-551ea21443537e44da7ed79d3f46e0a76157733ef7b0787a961c342691b1507d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 www.plantcell.org/cgi/doi/10.1105/tpc.16.00027 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Yuki Kondo (p@bs.s.u-tokyo.ac.jp). |
OpenAccessLink | http://doi.org/10.1105/tpc.16.00027 |
PMID | 27194709 |
PQID | 1803791382 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4944408 proquest_miscellaneous_1808655679 proquest_miscellaneous_1803791382 pubmed_primary_27194709 crossref_primary_10_1105_tpc_16_00027 crossref_citationtrail_10_1105_tpc_16_00027 jstor_primary_plantcell_28_6_1250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2016 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Kondo (2021040918325409400_b20) 2015; 8 Kondo (2021040918325409400_b21) 2015; 28 Derbyshire (2021040918325409400_b10) 2015; 27 Oda (2021040918325409400_b28) 2012; 337 Motose (2021040918325409400_b26) 2004; 429 Wetmore (2021040918325409400_b43) 1963; 50 Fukuda (2021040918325409400_b16) 1980; 65 Depuydt (2021040918325409400_b9) 2013; 110 Kubo (2021040918325409400_b23) 2005; 19 Rodriguez-Villalon (2021040918325409400_b32) 2014; 111 De Rybel (2021040918325409400_b11) 2009; 16 Zhou (2021040918325409400_b49) 2014; 9 Chisholm (2021040918325409400_b6) 2001; 127 Langfelder (2021040918325409400_b24) 2008; 9 Truernit (2021040918325409400_b41) 2012; 139 DeWitt (2021040918325409400_b13) 1995; 7 Zhao (2021040918325409400_b47) 2000; 123 Furuta (2021040918325409400_b17) 2014; 345 Zhong (2021040918325409400_b48) 2008; 20 Sjolund (2021040918325409400_b35) 1997; 9 Ito (2021040918325409400_b19) 2006; 313 Heo (2021040918325409400_b18) 2014; 101 Taylor (2021040918325409400_b40) 1999; 11 Nakagawa (2021040918325409400_b27) 2007; 104 Simmons (2021040918325409400_b34) 2016; 29 Yamaguchi (2021040918325409400_b45) 2011; 66 Curtis (2021040918325409400_b8) 2003; 133 Růžička (2021040918325409400_b33) 2015; 207 Yoshimoto (2021040918325409400_b46) 2003; 131 Bonke (2021040918325409400_b4) 2003; 426 Miyashima (2021040918325409400_b25) 2013; 32 Stadler (2021040918325409400_b37) 1996; 109 Froelich (2021040918325409400_b15) 2011; 23 Endo (2021040918325409400_b14) 2015; 56 Truernit (2021040918325409400_b42) 2008; 20 Takada (2021040918325409400_b38) 2013; 140 Sjolund (2021040918325409400_b36) 1983; 82 Kondo (2021040918325409400_b22) 2014; 5 Barratt (2021040918325409400_b3) 2011; 155 Anne (2021040918325409400_b2) 2015; 25 Paciorek (2021040918325409400_b31) 2006; 1 Taylor-Teeples (2021040918325409400_b39) 2015; 517 Pang (2021040918325409400_b30) 2008; 59 De Rybel (2021040918325409400_b12) 2016; 17 Xie (2021040918325409400_b44) 2011; 65 Brady (2021040918325409400_b5) 2007; 318 Ohashi-Ito (2021040918325409400_b29) 2010; 22 Clough (2021040918325409400_b7) 1998; 16 Aloni (2021040918325409400_b1) 1980; 150 21284754 - Plant J. 2011 May;66(4):579-90 23569225 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7074-9 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559 25265867 - Plant Cell Physiol. 2015 Feb;56(2):242-54 15215864 - Nature. 2004 Jun 24;429(6994):873-8 10330464 - Plant Cell. 1999 May;11(5):769-80 11743111 - Plant Physiol. 2001 Dec;127(4):1667-75 14555774 - Plant Physiol. 2003 Oct;133(2):462-9 25809158 - New Phytol. 2015 Aug;207(3):519-35 17975066 - Science. 2007 Nov 2;318(5851):801-6 18375933 - J Exp Bot. 2008;59(6):1341-51 21098675 - Plant Physiol. 2011 Jan;155(1):328-41 18523061 - Plant Cell. 2008 Jun;20(6):1494-503 10069079 - Plant J. 1998 Dec;16(6):735-43 16902140 - Science. 2006 Aug 11;313(5788):842-5 21175885 - Plant J. 2011 Jan;65(1):1-14 6848770 - J Ultrastruct Res. 1983 Jan;82(1):111-21 24662460 - Nat Commun. 2014 Mar 24;5:3504 26387715 - Curr Biol. 2015 Oct 5;25(19):2584-90 25148240 - PLoS One. 2014 Aug 22;9(8):e105726 23515472 - Development. 2013 May;140(9):1919-23 23169537 - EMBO J. 2013 Jan 23;32(2):178-93 25049386 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11551-6 12237379 - Plant Cell. 1997 Jul;9(7):1137-1146 12692311 - Plant Physiol. 2003 Apr;131(4):1511-7 25253700 - Am J Bot. 2014 Sep;101(9):1393-402 25533953 - Nature. 2015 Jan 29;517(7536):571-5 18952777 - Plant Cell. 2008 Oct;20(10):2763-82 22395740 - Development. 2012 Apr;139(7):1306-15 16661142 - Plant Physiol. 1980 Jan;65(1):57-60 10889267 - Plant Physiol. 2000 Jul;123(3):1185-96 20952636 - Plant Cell. 2010 Oct;22(10):3461-73 8718619 - Plant Cell. 1995 Dec;7(12):2053-67 22198148 - Plant Cell. 2011 Dec;23(12):4428-45 19549598 - Chem Biol. 2009 Jun 26;16(6):594-604 14614507 - Nature. 2003 Nov 13;426(6963):181-6 26550938 - Curr Opin Plant Biol. 2015 Dec;28:106-10 24306691 - Planta. 1980 Nov;150(3):255-63 16103214 - Genes Dev. 2005 Aug 15;19(16):1855-60 25081480 - Science. 2014 Aug 22;345(6199):933-7 26580717 - Nat Rev Mol Cell Biol. 2016 Jan;17(1):30-40 17406219 - Nat Protoc. 2006;1(1):104-7 26550955 - Curr Opin Plant Biol. 2016 Feb;29:1-8 25624147 - Mol Plant. 2015 Apr;8(4):612-21 17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41 22984069 - Science. 2012 Sep 14;337(6100):1333-6 26432860 - Plant Cell. 2015 Oct;27(10):2709-26 |
References_xml | – volume: 9 start-page: 559 year: 2008 ident: 2021040918325409400_b24 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 207 start-page: 519 year: 2015 ident: 2021040918325409400_b33 article-title: Xylem development - from the cradle to the grave publication-title: New Phytol. doi: 10.1111/nph.13383 – volume: 56 start-page: 242 year: 2015 ident: 2021040918325409400_b14 article-title: Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu134 – volume: 110 start-page: 7074 year: 2013 ident: 2021040918325409400_b9 article-title: Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1222314110 – volume: 5 start-page: 3504 year: 2014 ident: 2021040918325409400_b22 article-title: Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling publication-title: Nat. Commun. doi: 10.1038/ncomms4504 – volume: 29 start-page: 1 year: 2016 ident: 2021040918325409400_b34 article-title: Transcriptional control of cell fate in the stomatal lineage publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.09.008 – volume: 25 start-page: 2584 year: 2015 ident: 2021040918325409400_b2 article-title: OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.033 – volume: 101 start-page: 1393 year: 2014 ident: 2021040918325409400_b18 article-title: Phloem development: current knowledge and future perspectives publication-title: Am. J. Bot. doi: 10.3732/ajb.1400197 – volume: 429 start-page: 873 year: 2004 ident: 2021040918325409400_b26 article-title: A proteoglycan mediates inductive interaction during plant vascular development publication-title: Nature doi: 10.1038/nature02613 – volume: 7 start-page: 2053 year: 1995 ident: 2021040918325409400_b13 article-title: Immunocytological localization of an epitope-tagged plasma membrane proton pump (H(+)-ATPase) in phloem companion cells publication-title: Plant Cell – volume: 9 start-page: 1137 year: 1997 ident: 2021040918325409400_b35 article-title: The phloem sieve element: A river runs through it publication-title: Plant Cell doi: 10.1105/tpc.9.7.1137 – volume: 109 start-page: 299 year: 1996 ident: 2021040918325409400_b37 article-title: The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells publication-title: Bot. Acta doi: 10.1111/j.1438-8677.1996.tb00577.x – volume: 23 start-page: 4428 year: 2011 ident: 2021040918325409400_b15 article-title: Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation publication-title: Plant Cell doi: 10.1105/tpc.111.093179 – volume: 139 start-page: 1306 year: 2012 ident: 2021040918325409400_b41 article-title: OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana publication-title: Development doi: 10.1242/dev.072629 – volume: 1 start-page: 104 year: 2006 ident: 2021040918325409400_b31 article-title: Immunocytochemical technique for protein localization in sections of plant tissues publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.16 – volume: 131 start-page: 1511 year: 2003 ident: 2021040918325409400_b46 article-title: Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.014712 – volume: 9 start-page: e105726 year: 2014 ident: 2021040918325409400_b49 article-title: Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels publication-title: PLoS One doi: 10.1371/journal.pone.0105726 – volume: 22 start-page: 3461 year: 2010 ident: 2021040918325409400_b29 article-title: Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation publication-title: Plant Cell doi: 10.1105/tpc.110.075036 – volume: 27 start-page: 2709 year: 2015 ident: 2021040918325409400_b10 article-title: Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis publication-title: Plant Cell – volume: 127 start-page: 1667 year: 2001 ident: 2021040918325409400_b6 article-title: Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus publication-title: Plant Physiol. doi: 10.1104/pp.010479 – volume: 50 start-page: 418 year: 1963 ident: 2021040918325409400_b43 article-title: Experimental induction of vascular tissues in callus of angiosperms publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1963.tb07210.x – volume: 111 start-page: 11551 year: 2014 ident: 2021040918325409400_b32 article-title: Molecular genetic framework for protophloem formation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1407337111 – volume: 82 start-page: 111 year: 1983 ident: 2021040918325409400_b36 article-title: Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum publication-title: J. Ultrastruct. Res. doi: 10.1016/S0022-5320(83)90101-6 – volume: 16 start-page: 594 year: 2009 ident: 2021040918325409400_b11 article-title: Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2009.04.008 – volume: 337 start-page: 1333 year: 2012 ident: 2021040918325409400_b28 article-title: Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking publication-title: Science doi: 10.1126/science.1222597 – volume: 318 start-page: 801 year: 2007 ident: 2021040918325409400_b5 article-title: A high-resolution root spatiotemporal map reveals dominant expression patterns publication-title: Science doi: 10.1126/science.1146265 – volume: 345 start-page: 933 year: 2014 ident: 2021040918325409400_b17 article-title: Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation publication-title: Science doi: 10.1126/science.1253736 – volume: 155 start-page: 328 year: 2011 ident: 2021040918325409400_b3 article-title: Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.110.166330 – volume: 65 start-page: 1 year: 2011 ident: 2021040918325409400_b44 article-title: CalS7 encodes a callose synthase responsible for callose deposition in the phloem publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04399.x – volume: 426 start-page: 181 year: 2003 ident: 2021040918325409400_b4 article-title: APL regulates vascular tissue identity in Arabidopsis publication-title: Nature doi: 10.1038/nature02100 – volume: 123 start-page: 1185 year: 2000 ident: 2021040918325409400_b47 article-title: Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases publication-title: Plant Physiol. doi: 10.1104/pp.123.3.1185 – volume: 8 start-page: 612 year: 2015 ident: 2021040918325409400_b20 article-title: A novel system for xylem cell differentiation in Arabidopsis thaliana publication-title: Mol. Plant doi: 10.1016/j.molp.2014.10.008 – volume: 20 start-page: 1494 year: 2008 ident: 2021040918325409400_b42 article-title: High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.107.056069 – volume: 66 start-page: 579 year: 2011 ident: 2021040918325409400_b45 article-title: VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04514.x – volume: 313 start-page: 842 year: 2006 ident: 2021040918325409400_b19 article-title: Dodeca-CLE peptides as suppressors of plant stem cell differentiation publication-title: Science doi: 10.1126/science.1128436 – volume: 104 start-page: 34 year: 2007 ident: 2021040918325409400_b27 article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.104.34 – volume: 517 start-page: 571 year: 2015 ident: 2021040918325409400_b39 article-title: An Arabidopsis gene regulatory network for secondary cell wall synthesis publication-title: Nature doi: 10.1038/nature14099 – volume: 28 start-page: 106 year: 2015 ident: 2021040918325409400_b21 article-title: The TDIF signaling network publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.10.002 – volume: 20 start-page: 2763 year: 2008 ident: 2021040918325409400_b48 article-title: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.061325 – volume: 32 start-page: 178 year: 2013 ident: 2021040918325409400_b25 article-title: Stem cell function during plant vascular development publication-title: EMBO J. doi: 10.1038/emboj.2012.301 – volume: 11 start-page: 769 year: 1999 ident: 2021040918325409400_b40 article-title: The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis publication-title: Plant Cell doi: 10.1105/tpc.11.5.769 – volume: 19 start-page: 1855 year: 2005 ident: 2021040918325409400_b23 article-title: Transcription switches for protoxylem and metaxylem vessel formation publication-title: Genes Dev. doi: 10.1101/gad.1331305 – volume: 65 start-page: 57 year: 1980 ident: 2021040918325409400_b16 article-title: Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans publication-title: Plant Physiol. doi: 10.1104/pp.65.1.57 – volume: 16 start-page: 735 year: 1998 ident: 2021040918325409400_b7 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. publication-title: Plant J. doi: 10.1046/j.1365-313x.1998.00343.x – volume: 150 start-page: 255 year: 1980 ident: 2021040918325409400_b1 article-title: Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures publication-title: Planta doi: 10.1007/BF00390835 – volume: 133 start-page: 462 year: 2003 ident: 2021040918325409400_b8 article-title: A gateway cloning vector set for high-throughput functional analysis of genes in planta publication-title: Plant Physiol. doi: 10.1104/pp.103.027979 – volume: 17 start-page: 30 year: 2016 ident: 2021040918325409400_b12 article-title: Plant vascular development: from early specification to differentiation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.6 – volume: 59 start-page: 1341 year: 2008 ident: 2021040918325409400_b30 article-title: Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv publication-title: J. Exp. Bot. doi: 10.1093/jxb/ern041 – volume: 140 start-page: 1919 year: 2013 ident: 2021040918325409400_b38 article-title: ATML1 promotes epidermal cell differentiation in Arabidopsis shoots publication-title: Development doi: 10.1242/dev.094417 – reference: 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559 – reference: 26432860 - Plant Cell. 2015 Oct;27(10):2709-26 – reference: 22395740 - Development. 2012 Apr;139(7):1306-15 – reference: 16661142 - Plant Physiol. 1980 Jan;65(1):57-60 – reference: 18523061 - Plant Cell. 2008 Jun;20(6):1494-503 – reference: 25533953 - Nature. 2015 Jan 29;517(7536):571-5 – reference: 20952636 - Plant Cell. 2010 Oct;22(10):3461-73 – reference: 14614507 - Nature. 2003 Nov 13;426(6963):181-6 – reference: 19549598 - Chem Biol. 2009 Jun 26;16(6):594-604 – reference: 16902140 - Science. 2006 Aug 11;313(5788):842-5 – reference: 18375933 - J Exp Bot. 2008;59(6):1341-51 – reference: 25253700 - Am J Bot. 2014 Sep;101(9):1393-402 – reference: 17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41 – reference: 23515472 - Development. 2013 May;140(9):1919-23 – reference: 16103214 - Genes Dev. 2005 Aug 15;19(16):1855-60 – reference: 24662460 - Nat Commun. 2014 Mar 24;5:3504 – reference: 25148240 - PLoS One. 2014 Aug 22;9(8):e105726 – reference: 17406219 - Nat Protoc. 2006;1(1):104-7 – reference: 8718619 - Plant Cell. 1995 Dec;7(12):2053-67 – reference: 22198148 - Plant Cell. 2011 Dec;23(12):4428-45 – reference: 11743111 - Plant Physiol. 2001 Dec;127(4):1667-75 – reference: 25265867 - Plant Cell Physiol. 2015 Feb;56(2):242-54 – reference: 10889267 - Plant Physiol. 2000 Jul;123(3):1185-96 – reference: 12692311 - Plant Physiol. 2003 Apr;131(4):1511-7 – reference: 6848770 - J Ultrastruct Res. 1983 Jan;82(1):111-21 – reference: 14555774 - Plant Physiol. 2003 Oct;133(2):462-9 – reference: 25809158 - New Phytol. 2015 Aug;207(3):519-35 – reference: 24306691 - Planta. 1980 Nov;150(3):255-63 – reference: 10330464 - Plant Cell. 1999 May;11(5):769-80 – reference: 23569225 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7074-9 – reference: 26550955 - Curr Opin Plant Biol. 2016 Feb;29:1-8 – reference: 21284754 - Plant J. 2011 May;66(4):579-90 – reference: 26550938 - Curr Opin Plant Biol. 2015 Dec;28:106-10 – reference: 18952777 - Plant Cell. 2008 Oct;20(10):2763-82 – reference: 25081480 - Science. 2014 Aug 22;345(6199):933-7 – reference: 25624147 - Mol Plant. 2015 Apr;8(4):612-21 – reference: 26580717 - Nat Rev Mol Cell Biol. 2016 Jan;17(1):30-40 – reference: 17975066 - Science. 2007 Nov 2;318(5851):801-6 – reference: 26387715 - Curr Biol. 2015 Oct 5;25(19):2584-90 – reference: 21175885 - Plant J. 2011 Jan;65(1):1-14 – reference: 21098675 - Plant Physiol. 2011 Jan;155(1):328-41 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 23169537 - EMBO J. 2013 Jan 23;32(2):178-93 – reference: 15215864 - Nature. 2004 Jun 24;429(6994):873-8 – reference: 22984069 - Science. 2012 Sep 14;337(6100):1333-6 – reference: 25049386 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11551-6 – reference: 12237379 - Plant Cell. 1997 Jul;9(7):1137-1146 |
SSID | ssj0001719 |
Score | 2.5095592 |
Snippet | Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells,... VISUAL, an ectopic induction system for phloem differentiation in Arabidopsis, allows the molecular mechanism underlying this crucial process to be analyzed,... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1250 |
SubjectTerms | Arabidopsis Arabidopsis - cytology Arabidopsis - metabolism Arabidopsis Proteins - metabolism Arabidopsis thaliana Cell Differentiation - genetics Cell Differentiation - physiology Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology Phloem - cytology Phloem - metabolism Plant Leaves - cytology Plant Leaves - metabolism Xylem - cytology Xylem - metabolism |
Title | Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells |
URI | https://www.jstor.org/stable/plantcell.28.6.1250 https://www.ncbi.nlm.nih.gov/pubmed/27194709 https://www.proquest.com/docview/1803791382 https://www.proquest.com/docview/1808655679 https://pubmed.ncbi.nlm.nih.gov/PMC4944408 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tj5NAEN7U00S_GD3f6lvWRBNNQwUWWPhYmzOn9ky0d5f7RhZYUtJLaVq4RP-Cv8x_5cwubGk9zekX0pQNbJiH2dlh5nkIeRlKWNVEFloZJje8QCRWGObckpkvQjdP0yjEfuejz8HhiffxzD_r9X52qpbqKhmm3y_tK_kfq8J_YFfskv0Hy5qLwh_wG-wLR7AwHK9k49O2jHSMGThU4dDC35onUzZ05ANdFjBaiaTIyiUykEykuND51tMP05PRBHMDX-WFRC5ljESnqsC6KpRP1AoqVWGCy2kBQwcHuvDcmhRzqSaw7ga6CD8URKoG-GnAuHUUD1Fev54XJg9dr7Sw1GB0XuSDI9lkkzHvI4pK53JnhZyXBsfprJihCpS6lFjXi3JVdPMXTrCps-q0DKAva6pUsfRPTU-LcQLYO1lLBwsgUb5dL1-tz3YtN1IKxcapu2EHvF0PDQGd3VntHVcvBr-vJDaSblTLdOjg5ypbMxjscHMvcaL4GIduOAyGeO1r5LoLOxZ0uZ--bIjrHa40Zsz8TQ-G_7Z7j63oSBfIXrb12a3g7YREx3fI7WYvQ0camHdJTy72yY13Jew3vu2Tm-NWS_Ae-dEilSJQqEEqbZBKNVKpQirtIJVqpNLXGqdvaINSCiilG5TSHZTSMqcKpbSLUnXz9X1y8v7geHxoNTIgVuo7QWVBTC8FMvsxn3HpeZngMuNRxnIvkLbgEJNzzpjMeQLxLhdR4KQMO7SdBHc7GXtA9hblQj4iNJTMl24uMi9CJUo_Yl7E0pxlIs1EyJI-GbSPP04bjnyUajmP1V7Z9mMwVuxgJSgYq09emdFLzQ3zh3EvlCXNIAOb2A3jIEbYwJjWyjHYBk-KhSzrdeyENuMRUoX-dQw2mAc86pOHGhnmZi4gz-M2nOFbmDEDkGB--8yimCmieS_yUJD-8RXm_4Tc2rzcT8letarlMwjXq-S5ehF-AZDg8Sg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+Cell+Induction+Culture+System+Using+Arabidopsis+Leaves+%28VISUAL%29+Reveals+the+Sequential+Differentiation+of+Sieve+Element-Like+Cells&rft.jtitle=The+Plant+cell&rft.au=Kondo%2C+Yuki&rft.au=Nurani%2C+Alif+Meem&rft.au=Saito%2C+Chieko&rft.au=Ichihashi%2C+Yasunori&rft.date=2016-06-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=28&rft.issue=6&rft.spage=1250&rft.epage=1262&rft_id=info:doi/10.1105%2Ftpc.16.00027&rft.externalDocID=plantcell.28.6.1250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |