Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells

Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified re...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 28; no. 6; pp. 1250 - 1262
Main Authors Kondo, Yuki, Nurani, Alif Meem, Saito, Chieko, Ichihashi, Yasunori, Saito, Masato, Yamazaki, Kyoko, Mitsuda, Nobutaka, Ohme-Takagi, Masaru, Fukuda, Hiroo
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.
AbstractList Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.
VISUAL, an ectopic induction system for phloem differentiation in Arabidopsis, allows the molecular mechanism underlying this crucial process to be analyzed, opening up new avenues of research. Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.
Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.
VISUAL, an ectopic induction system for phloem differentiation in Arabidopsis, allows the molecular mechanism underlying this crucial process to be analyzed, opening up new avenues of research. Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL . Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.
Author Ohme-Takagi, Masaru
Mitsuda, Nobutaka
Nurani, Alif Meem
Kondo, Yuki
Yamazaki, Kyoko
Saito, Chieko
Fukuda, Hiroo
Ichihashi, Yasunori
Saito, Masato
Author_xml – sequence: 1
  givenname: Yuki
  surname: Kondo
  fullname: Kondo, Yuki
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 2
  givenname: Alif Meem
  surname: Nurani
  fullname: Nurani, Alif Meem
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 3
  givenname: Chieko
  surname: Saito
  fullname: Saito, Chieko
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 4
  givenname: Yasunori
  surname: Ichihashi
  fullname: Ichihashi, Yasunori
  organization: RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama City, Kanagawa, Yokohama 230-0045, Japan
– sequence: 5
  givenname: Masato
  surname: Saito
  fullname: Saito, Masato
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 6
  givenname: Kyoko
  surname: Yamazaki
  fullname: Yamazaki, Kyoko
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 7
  givenname: Nobutaka
  surname: Mitsuda
  fullname: Mitsuda, Nobutaka
  organization: Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
– sequence: 8
  givenname: Masaru
  surname: Ohme-Takagi
  fullname: Ohme-Takagi, Masaru
  organization: Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
– sequence: 9
  givenname: Hiroo
  surname: Fukuda
  fullname: Fukuda, Hiroo
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27194709$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gxhn5WCSy2PFXckFaLS2sFAmJZStuljeZtC7ZOLWdlfob-NN102UFSEicxh_PvPOOZk7RUe96QOg1JTNKiXgfh3pG5YwQkqtn6IQKlmd5WXw_SmfCScaloMfoNITbhFBFyxfoOE-BK1KeoJ9XJtRjZzxeQNfhZd-MdbSux4uxi6MHvLoPEbZ4HWx_jefebGzjhmADrsDsIODzq-VqPa_e4q-wA9MFHG9SEtyN0EdrOvzRti346TLpuhavbELxRQfb9JxV9gdMxcNL9LxNCvBqH8_Q-vLi2-JzVn35tFzMq6wWVMZMCAomp5wzwRRw3hgFjSob1nIJxChJhVKMQas2RBXKlJLWjOeypBsqiGrYGfrwpDuMmy00dXLhTacHb7fG32tnrP7zp7c3-trtNC8556RIAud7Ae9SoyHqrQ11asH04MagaUEKKYRU5f-gTJWUFXlC3_xu6-Dn17AS8O4JqL0LwUN7QCjRj7ug0y5oKvW0CwnP_8JrG6chpKZs96-kvd_bEJ0_FBiS3_hoW-eFlprmgrAHvQzGcw
CitedBy_id crossref_primary_10_1016_j_pbi_2017_12_005
crossref_primary_10_1111_nph_19003
crossref_primary_10_1111_jipb_12606
crossref_primary_10_1038_s41477_018_0180_3
crossref_primary_10_1093_aob_mcae208
crossref_primary_10_3390_ijms24098110
crossref_primary_10_3390_ijms231710134
crossref_primary_10_3389_fpls_2021_825810
crossref_primary_10_1111_nph_14751
crossref_primary_10_1016_j_cub_2019_01_015
crossref_primary_10_1038_s41477_022_01113_1
crossref_primary_10_1073_pnas_1718263115
crossref_primary_10_1093_pcp_pcac161
crossref_primary_10_1016_j_plantsci_2018_09_006
crossref_primary_10_1093_jxb_erac253
crossref_primary_10_1016_j_semcdb_2017_08_050
crossref_primary_10_1016_j_pbi_2020_08_004
crossref_primary_10_1111_ppl_13118
crossref_primary_10_1271_kagakutoseibutsu_56_353
crossref_primary_10_1016_j_pbi_2019_04_002
crossref_primary_10_1007_s11240_023_02478_7
crossref_primary_10_1093_jxb_erz021
crossref_primary_10_5511_plantbiotechnology_21_1109a
crossref_primary_10_1038_s42003_021_01895_8
crossref_primary_10_1016_j_cpb_2019_100112
crossref_primary_10_1016_j_celrep_2022_111059
crossref_primary_10_3390_biom12121772
crossref_primary_10_1016_j_cub_2021_04_057
crossref_primary_10_1093_jxb_erw473
crossref_primary_10_1146_annurev_genet_120116_024525
crossref_primary_10_1038_s41586_018_0186_z
crossref_primary_10_1073_pnas_1703258114
crossref_primary_10_1093_pcp_pcae037
crossref_primary_10_1007_s10265_017_1002_9
crossref_primary_10_1016_j_pbi_2016_11_013
crossref_primary_10_3389_fpls_2020_00193
crossref_primary_10_1093_plcell_koaf011
crossref_primary_10_1111_tpj_15719
crossref_primary_10_3390_plants6040060
crossref_primary_10_5511_plantbiotechnology_18_1119b
crossref_primary_10_3390_plants9010039
crossref_primary_10_1017_qpb_2022_12
crossref_primary_10_1038_s41477_018_0157_2
crossref_primary_10_1093_plphys_kiab487
crossref_primary_10_1007_s10265_017_0998_1
crossref_primary_10_1111_tpj_14670
crossref_primary_10_5511_plantbiotechnology_21_1219a
crossref_primary_10_3389_fpls_2022_888201
crossref_primary_10_1038_s41467_023_37790_5
crossref_primary_10_1007_s10265_023_01513_0
crossref_primary_10_1016_j_molp_2021_05_028
crossref_primary_10_1016_j_xplc_2024_100978
crossref_primary_10_3390_agronomy13061527
crossref_primary_10_1016_j_pbi_2023_102404
crossref_primary_10_1073_pnas_1915396116
crossref_primary_10_1093_pcp_pcad039
crossref_primary_10_1093_pcp_pcaa002
crossref_primary_10_1186_s13007_023_01109_8
crossref_primary_10_3389_fpls_2017_01195
crossref_primary_10_1242_dev_200632
crossref_primary_10_3389_fpls_2021_810465
crossref_primary_10_1016_j_tplants_2023_09_011
crossref_primary_10_5685_plmorphol_32_3
crossref_primary_10_1016_j_devcel_2019_11_015
crossref_primary_10_1242_dev_162354
crossref_primary_10_1093_aob_mcy180
crossref_primary_10_1093_gbe_evab271
crossref_primary_10_1016_j_pbi_2023_102377
crossref_primary_10_1093_pcp_pcy012
crossref_primary_10_1093_plcell_koab076
crossref_primary_10_1016_j_pbi_2016_10_007
crossref_primary_10_1093_plcell_koab154
crossref_primary_10_1016_j_celrep_2019_06_041
crossref_primary_10_1016_j_copbio_2019_02_001
crossref_primary_10_1111_nph_17594
crossref_primary_10_3390_plants7040109
crossref_primary_10_1126_sciadv_aaz2963
crossref_primary_10_1093_plphys_kiab385
crossref_primary_10_1271_kagakutoseibutsu_59_225
crossref_primary_10_1016_j_cub_2017_03_014
crossref_primary_10_1093_jxb_erad232
crossref_primary_10_1111_1751_7915_14311
crossref_primary_10_1038_s42003_020_0907_3
crossref_primary_10_1093_plcell_koab151
crossref_primary_10_1038_s41477_022_01138_6
crossref_primary_10_1111_tpj_13840
crossref_primary_10_1242_dev_199766
crossref_primary_10_1111_nph_19617
crossref_primary_10_1007_s00018_020_03496_w
crossref_primary_10_1007_s10265_017_0999_0
crossref_primary_10_1016_j_ydbio_2018_06_013
Cites_doi 10.1186/1471-2105-9-559
10.1111/nph.13383
10.1093/pcp/pcu134
10.1073/pnas.1222314110
10.1038/ncomms4504
10.1016/j.pbi.2015.09.008
10.1016/j.cub.2015.08.033
10.3732/ajb.1400197
10.1038/nature02613
10.1105/tpc.9.7.1137
10.1111/j.1438-8677.1996.tb00577.x
10.1105/tpc.111.093179
10.1242/dev.072629
10.1038/nprot.2006.16
10.1104/pp.014712
10.1371/journal.pone.0105726
10.1105/tpc.110.075036
10.1104/pp.010479
10.1002/j.1537-2197.1963.tb07210.x
10.1073/pnas.1407337111
10.1016/S0022-5320(83)90101-6
10.1016/j.chembiol.2009.04.008
10.1126/science.1222597
10.1126/science.1146265
10.1126/science.1253736
10.1104/pp.110.166330
10.1111/j.1365-313X.2010.04399.x
10.1038/nature02100
10.1104/pp.123.3.1185
10.1016/j.molp.2014.10.008
10.1105/tpc.107.056069
10.1111/j.1365-313X.2011.04514.x
10.1126/science.1128436
10.1263/jbb.104.34
10.1038/nature14099
10.1016/j.pbi.2015.10.002
10.1105/tpc.108.061325
10.1038/emboj.2012.301
10.1105/tpc.11.5.769
10.1101/gad.1331305
10.1104/pp.65.1.57
10.1046/j.1365-313x.1998.00343.x
10.1007/BF00390835
10.1104/pp.103.027979
10.1038/nrm.2015.6
10.1093/jxb/ern041
10.1242/dev.094417
ContentType Journal Article
Copyright 2016 American Society of Plant Biologists
2016 American Society of Plant Biologists. All rights reserved.
2016 American Society of Plant Biologists. All rights reserved. 2016
Copyright_xml – notice: 2016 American Society of Plant Biologists
– notice: 2016 American Society of Plant Biologists. All rights reserved.
– notice: 2016 American Society of Plant Biologists. All rights reserved. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1105/tpc.16.00027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE
CrossRef
Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 1262
ExternalDocumentID PMC4944408
27194709
10_1105_tpc_16_00027
plantcell.28.6.1250
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
AAYXX
ALIPV
CITATION
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACUTJ
ACVCV
ACZBC
ADYWZ
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CGR
CUY
CVF
D1J
DWQXO
ECM
EIF
FRP
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
NPM
P0-
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c516t-551ea21443537e44da7ed79d3f46e0a76157733ef7b0787a961c342691b1507d3
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:12:42 EDT 2025
Thu Jul 10 19:20:25 EDT 2025
Fri Jul 11 07:57:21 EDT 2025
Thu Apr 03 07:10:01 EDT 2025
Tue Jul 01 03:49:45 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Sun Aug 24 12:10:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2016 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c516t-551ea21443537e44da7ed79d3f46e0a76157733ef7b0787a961c342691b1507d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
www.plantcell.org/cgi/doi/10.1105/tpc.16.00027
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Yuki Kondo (p@bs.s.u-tokyo.ac.jp).
OpenAccessLink http://doi.org/10.1105/tpc.16.00027
PMID 27194709
PQID 1803791382
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4944408
proquest_miscellaneous_1808655679
proquest_miscellaneous_1803791382
pubmed_primary_27194709
crossref_primary_10_1105_tpc_16_00027
crossref_citationtrail_10_1105_tpc_16_00027
jstor_primary_plantcell_28_6_1250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2016
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Kondo (2021040918325409400_b20) 2015; 8
Kondo (2021040918325409400_b21) 2015; 28
Derbyshire (2021040918325409400_b10) 2015; 27
Oda (2021040918325409400_b28) 2012; 337
Motose (2021040918325409400_b26) 2004; 429
Wetmore (2021040918325409400_b43) 1963; 50
Fukuda (2021040918325409400_b16) 1980; 65
Depuydt (2021040918325409400_b9) 2013; 110
Kubo (2021040918325409400_b23) 2005; 19
Rodriguez-Villalon (2021040918325409400_b32) 2014; 111
De Rybel (2021040918325409400_b11) 2009; 16
Zhou (2021040918325409400_b49) 2014; 9
Chisholm (2021040918325409400_b6) 2001; 127
Langfelder (2021040918325409400_b24) 2008; 9
Truernit (2021040918325409400_b41) 2012; 139
DeWitt (2021040918325409400_b13) 1995; 7
Zhao (2021040918325409400_b47) 2000; 123
Furuta (2021040918325409400_b17) 2014; 345
Zhong (2021040918325409400_b48) 2008; 20
Sjolund (2021040918325409400_b35) 1997; 9
Ito (2021040918325409400_b19) 2006; 313
Heo (2021040918325409400_b18) 2014; 101
Taylor (2021040918325409400_b40) 1999; 11
Nakagawa (2021040918325409400_b27) 2007; 104
Simmons (2021040918325409400_b34) 2016; 29
Yamaguchi (2021040918325409400_b45) 2011; 66
Curtis (2021040918325409400_b8) 2003; 133
Růžička (2021040918325409400_b33) 2015; 207
Yoshimoto (2021040918325409400_b46) 2003; 131
Bonke (2021040918325409400_b4) 2003; 426
Miyashima (2021040918325409400_b25) 2013; 32
Stadler (2021040918325409400_b37) 1996; 109
Froelich (2021040918325409400_b15) 2011; 23
Endo (2021040918325409400_b14) 2015; 56
Truernit (2021040918325409400_b42) 2008; 20
Takada (2021040918325409400_b38) 2013; 140
Sjolund (2021040918325409400_b36) 1983; 82
Kondo (2021040918325409400_b22) 2014; 5
Barratt (2021040918325409400_b3) 2011; 155
Anne (2021040918325409400_b2) 2015; 25
Paciorek (2021040918325409400_b31) 2006; 1
Taylor-Teeples (2021040918325409400_b39) 2015; 517
Pang (2021040918325409400_b30) 2008; 59
De Rybel (2021040918325409400_b12) 2016; 17
Xie (2021040918325409400_b44) 2011; 65
Brady (2021040918325409400_b5) 2007; 318
Ohashi-Ito (2021040918325409400_b29) 2010; 22
Clough (2021040918325409400_b7) 1998; 16
Aloni (2021040918325409400_b1) 1980; 150
21284754 - Plant J. 2011 May;66(4):579-90
23569225 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7074-9
19114008 - BMC Bioinformatics. 2008 Dec 29;9:559
25265867 - Plant Cell Physiol. 2015 Feb;56(2):242-54
15215864 - Nature. 2004 Jun 24;429(6994):873-8
10330464 - Plant Cell. 1999 May;11(5):769-80
11743111 - Plant Physiol. 2001 Dec;127(4):1667-75
14555774 - Plant Physiol. 2003 Oct;133(2):462-9
25809158 - New Phytol. 2015 Aug;207(3):519-35
17975066 - Science. 2007 Nov 2;318(5851):801-6
18375933 - J Exp Bot. 2008;59(6):1341-51
21098675 - Plant Physiol. 2011 Jan;155(1):328-41
18523061 - Plant Cell. 2008 Jun;20(6):1494-503
10069079 - Plant J. 1998 Dec;16(6):735-43
16902140 - Science. 2006 Aug 11;313(5788):842-5
21175885 - Plant J. 2011 Jan;65(1):1-14
6848770 - J Ultrastruct Res. 1983 Jan;82(1):111-21
24662460 - Nat Commun. 2014 Mar 24;5:3504
26387715 - Curr Biol. 2015 Oct 5;25(19):2584-90
25148240 - PLoS One. 2014 Aug 22;9(8):e105726
23515472 - Development. 2013 May;140(9):1919-23
23169537 - EMBO J. 2013 Jan 23;32(2):178-93
25049386 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11551-6
12237379 - Plant Cell. 1997 Jul;9(7):1137-1146
12692311 - Plant Physiol. 2003 Apr;131(4):1511-7
25253700 - Am J Bot. 2014 Sep;101(9):1393-402
25533953 - Nature. 2015 Jan 29;517(7536):571-5
18952777 - Plant Cell. 2008 Oct;20(10):2763-82
22395740 - Development. 2012 Apr;139(7):1306-15
16661142 - Plant Physiol. 1980 Jan;65(1):57-60
10889267 - Plant Physiol. 2000 Jul;123(3):1185-96
20952636 - Plant Cell. 2010 Oct;22(10):3461-73
8718619 - Plant Cell. 1995 Dec;7(12):2053-67
22198148 - Plant Cell. 2011 Dec;23(12):4428-45
19549598 - Chem Biol. 2009 Jun 26;16(6):594-604
14614507 - Nature. 2003 Nov 13;426(6963):181-6
26550938 - Curr Opin Plant Biol. 2015 Dec;28:106-10
24306691 - Planta. 1980 Nov;150(3):255-63
16103214 - Genes Dev. 2005 Aug 15;19(16):1855-60
25081480 - Science. 2014 Aug 22;345(6199):933-7
26580717 - Nat Rev Mol Cell Biol. 2016 Jan;17(1):30-40
17406219 - Nat Protoc. 2006;1(1):104-7
26550955 - Curr Opin Plant Biol. 2016 Feb;29:1-8
25624147 - Mol Plant. 2015 Apr;8(4):612-21
17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41
22984069 - Science. 2012 Sep 14;337(6100):1333-6
26432860 - Plant Cell. 2015 Oct;27(10):2709-26
References_xml – volume: 9
  start-page: 559
  year: 2008
  ident: 2021040918325409400_b24
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume: 207
  start-page: 519
  year: 2015
  ident: 2021040918325409400_b33
  article-title: Xylem development - from the cradle to the grave
  publication-title: New Phytol.
  doi: 10.1111/nph.13383
– volume: 56
  start-page: 242
  year: 2015
  ident: 2021040918325409400_b14
  article-title: Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu134
– volume: 110
  start-page: 7074
  year: 2013
  ident: 2021040918325409400_b9
  article-title: Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1222314110
– volume: 5
  start-page: 3504
  year: 2014
  ident: 2021040918325409400_b22
  article-title: Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4504
– volume: 29
  start-page: 1
  year: 2016
  ident: 2021040918325409400_b34
  article-title: Transcriptional control of cell fate in the stomatal lineage
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.09.008
– volume: 25
  start-page: 2584
  year: 2015
  ident: 2021040918325409400_b2
  article-title: OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.033
– volume: 101
  start-page: 1393
  year: 2014
  ident: 2021040918325409400_b18
  article-title: Phloem development: current knowledge and future perspectives
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1400197
– volume: 429
  start-page: 873
  year: 2004
  ident: 2021040918325409400_b26
  article-title: A proteoglycan mediates inductive interaction during plant vascular development
  publication-title: Nature
  doi: 10.1038/nature02613
– volume: 7
  start-page: 2053
  year: 1995
  ident: 2021040918325409400_b13
  article-title: Immunocytological localization of an epitope-tagged plasma membrane proton pump (H(+)-ATPase) in phloem companion cells
  publication-title: Plant Cell
– volume: 9
  start-page: 1137
  year: 1997
  ident: 2021040918325409400_b35
  article-title: The phloem sieve element: A river runs through it
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.7.1137
– volume: 109
  start-page: 299
  year: 1996
  ident: 2021040918325409400_b37
  article-title: The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells
  publication-title: Bot. Acta
  doi: 10.1111/j.1438-8677.1996.tb00577.x
– volume: 23
  start-page: 4428
  year: 2011
  ident: 2021040918325409400_b15
  article-title: Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.093179
– volume: 139
  start-page: 1306
  year: 2012
  ident: 2021040918325409400_b41
  article-title: OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana
  publication-title: Development
  doi: 10.1242/dev.072629
– volume: 1
  start-page: 104
  year: 2006
  ident: 2021040918325409400_b31
  article-title: Immunocytochemical technique for protein localization in sections of plant tissues
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.16
– volume: 131
  start-page: 1511
  year: 2003
  ident: 2021040918325409400_b46
  article-title: Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.014712
– volume: 9
  start-page: e105726
  year: 2014
  ident: 2021040918325409400_b49
  article-title: Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105726
– volume: 22
  start-page: 3461
  year: 2010
  ident: 2021040918325409400_b29
  article-title: Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075036
– volume: 27
  start-page: 2709
  year: 2015
  ident: 2021040918325409400_b10
  article-title: Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis
  publication-title: Plant Cell
– volume: 127
  start-page: 1667
  year: 2001
  ident: 2021040918325409400_b6
  article-title: Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010479
– volume: 50
  start-page: 418
  year: 1963
  ident: 2021040918325409400_b43
  article-title: Experimental induction of vascular tissues in callus of angiosperms
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1963.tb07210.x
– volume: 111
  start-page: 11551
  year: 2014
  ident: 2021040918325409400_b32
  article-title: Molecular genetic framework for protophloem formation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1407337111
– volume: 82
  start-page: 111
  year: 1983
  ident: 2021040918325409400_b36
  article-title: Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum
  publication-title: J. Ultrastruct. Res.
  doi: 10.1016/S0022-5320(83)90101-6
– volume: 16
  start-page: 594
  year: 2009
  ident: 2021040918325409400_b11
  article-title: Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2009.04.008
– volume: 337
  start-page: 1333
  year: 2012
  ident: 2021040918325409400_b28
  article-title: Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking
  publication-title: Science
  doi: 10.1126/science.1222597
– volume: 318
  start-page: 801
  year: 2007
  ident: 2021040918325409400_b5
  article-title: A high-resolution root spatiotemporal map reveals dominant expression patterns
  publication-title: Science
  doi: 10.1126/science.1146265
– volume: 345
  start-page: 933
  year: 2014
  ident: 2021040918325409400_b17
  article-title: Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation
  publication-title: Science
  doi: 10.1126/science.1253736
– volume: 155
  start-page: 328
  year: 2011
  ident: 2021040918325409400_b3
  article-title: Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.166330
– volume: 65
  start-page: 1
  year: 2011
  ident: 2021040918325409400_b44
  article-title: CalS7 encodes a callose synthase responsible for callose deposition in the phloem
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04399.x
– volume: 426
  start-page: 181
  year: 2003
  ident: 2021040918325409400_b4
  article-title: APL regulates vascular tissue identity in Arabidopsis
  publication-title: Nature
  doi: 10.1038/nature02100
– volume: 123
  start-page: 1185
  year: 2000
  ident: 2021040918325409400_b47
  article-title: Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases
  publication-title: Plant Physiol.
  doi: 10.1104/pp.123.3.1185
– volume: 8
  start-page: 612
  year: 2015
  ident: 2021040918325409400_b20
  article-title: A novel system for xylem cell differentiation in Arabidopsis thaliana
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2014.10.008
– volume: 20
  start-page: 1494
  year: 2008
  ident: 2021040918325409400_b42
  article-title: High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.056069
– volume: 66
  start-page: 579
  year: 2011
  ident: 2021040918325409400_b45
  article-title: VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04514.x
– volume: 313
  start-page: 842
  year: 2006
  ident: 2021040918325409400_b19
  article-title: Dodeca-CLE peptides as suppressors of plant stem cell differentiation
  publication-title: Science
  doi: 10.1126/science.1128436
– volume: 104
  start-page: 34
  year: 2007
  ident: 2021040918325409400_b27
  article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.104.34
– volume: 517
  start-page: 571
  year: 2015
  ident: 2021040918325409400_b39
  article-title: An Arabidopsis gene regulatory network for secondary cell wall synthesis
  publication-title: Nature
  doi: 10.1038/nature14099
– volume: 28
  start-page: 106
  year: 2015
  ident: 2021040918325409400_b21
  article-title: The TDIF signaling network
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.10.002
– volume: 20
  start-page: 2763
  year: 2008
  ident: 2021040918325409400_b48
  article-title: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061325
– volume: 32
  start-page: 178
  year: 2013
  ident: 2021040918325409400_b25
  article-title: Stem cell function during plant vascular development
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.301
– volume: 11
  start-page: 769
  year: 1999
  ident: 2021040918325409400_b40
  article-title: The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.5.769
– volume: 19
  start-page: 1855
  year: 2005
  ident: 2021040918325409400_b23
  article-title: Transcription switches for protoxylem and metaxylem vessel formation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1331305
– volume: 65
  start-page: 57
  year: 1980
  ident: 2021040918325409400_b16
  article-title: Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans
  publication-title: Plant Physiol.
  doi: 10.1104/pp.65.1.57
– volume: 16
  start-page: 735
  year: 1998
  ident: 2021040918325409400_b7
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 150
  start-page: 255
  year: 1980
  ident: 2021040918325409400_b1
  article-title: Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures
  publication-title: Planta
  doi: 10.1007/BF00390835
– volume: 133
  start-page: 462
  year: 2003
  ident: 2021040918325409400_b8
  article-title: A gateway cloning vector set for high-throughput functional analysis of genes in planta
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.027979
– volume: 17
  start-page: 30
  year: 2016
  ident: 2021040918325409400_b12
  article-title: Plant vascular development: from early specification to differentiation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.6
– volume: 59
  start-page: 1341
  year: 2008
  ident: 2021040918325409400_b30
  article-title: Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern041
– volume: 140
  start-page: 1919
  year: 2013
  ident: 2021040918325409400_b38
  article-title: ATML1 promotes epidermal cell differentiation in Arabidopsis shoots
  publication-title: Development
  doi: 10.1242/dev.094417
– reference: 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559
– reference: 26432860 - Plant Cell. 2015 Oct;27(10):2709-26
– reference: 22395740 - Development. 2012 Apr;139(7):1306-15
– reference: 16661142 - Plant Physiol. 1980 Jan;65(1):57-60
– reference: 18523061 - Plant Cell. 2008 Jun;20(6):1494-503
– reference: 25533953 - Nature. 2015 Jan 29;517(7536):571-5
– reference: 20952636 - Plant Cell. 2010 Oct;22(10):3461-73
– reference: 14614507 - Nature. 2003 Nov 13;426(6963):181-6
– reference: 19549598 - Chem Biol. 2009 Jun 26;16(6):594-604
– reference: 16902140 - Science. 2006 Aug 11;313(5788):842-5
– reference: 18375933 - J Exp Bot. 2008;59(6):1341-51
– reference: 25253700 - Am J Bot. 2014 Sep;101(9):1393-402
– reference: 17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41
– reference: 23515472 - Development. 2013 May;140(9):1919-23
– reference: 16103214 - Genes Dev. 2005 Aug 15;19(16):1855-60
– reference: 24662460 - Nat Commun. 2014 Mar 24;5:3504
– reference: 25148240 - PLoS One. 2014 Aug 22;9(8):e105726
– reference: 17406219 - Nat Protoc. 2006;1(1):104-7
– reference: 8718619 - Plant Cell. 1995 Dec;7(12):2053-67
– reference: 22198148 - Plant Cell. 2011 Dec;23(12):4428-45
– reference: 11743111 - Plant Physiol. 2001 Dec;127(4):1667-75
– reference: 25265867 - Plant Cell Physiol. 2015 Feb;56(2):242-54
– reference: 10889267 - Plant Physiol. 2000 Jul;123(3):1185-96
– reference: 12692311 - Plant Physiol. 2003 Apr;131(4):1511-7
– reference: 6848770 - J Ultrastruct Res. 1983 Jan;82(1):111-21
– reference: 14555774 - Plant Physiol. 2003 Oct;133(2):462-9
– reference: 25809158 - New Phytol. 2015 Aug;207(3):519-35
– reference: 24306691 - Planta. 1980 Nov;150(3):255-63
– reference: 10330464 - Plant Cell. 1999 May;11(5):769-80
– reference: 23569225 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7074-9
– reference: 26550955 - Curr Opin Plant Biol. 2016 Feb;29:1-8
– reference: 21284754 - Plant J. 2011 May;66(4):579-90
– reference: 26550938 - Curr Opin Plant Biol. 2015 Dec;28:106-10
– reference: 18952777 - Plant Cell. 2008 Oct;20(10):2763-82
– reference: 25081480 - Science. 2014 Aug 22;345(6199):933-7
– reference: 25624147 - Mol Plant. 2015 Apr;8(4):612-21
– reference: 26580717 - Nat Rev Mol Cell Biol. 2016 Jan;17(1):30-40
– reference: 17975066 - Science. 2007 Nov 2;318(5851):801-6
– reference: 26387715 - Curr Biol. 2015 Oct 5;25(19):2584-90
– reference: 21175885 - Plant J. 2011 Jan;65(1):1-14
– reference: 21098675 - Plant Physiol. 2011 Jan;155(1):328-41
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 23169537 - EMBO J. 2013 Jan 23;32(2):178-93
– reference: 15215864 - Nature. 2004 Jun 24;429(6994):873-8
– reference: 22984069 - Science. 2012 Sep 14;337(6100):1333-6
– reference: 25049386 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11551-6
– reference: 12237379 - Plant Cell. 1997 Jul;9(7):1137-1146
SSID ssj0001719
Score 2.5095592
Snippet Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells,...
VISUAL, an ectopic induction system for phloem differentiation in Arabidopsis, allows the molecular mechanism underlying this crucial process to be analyzed,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1250
SubjectTerms Arabidopsis
Arabidopsis - cytology
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Cell Differentiation - genetics
Cell Differentiation - physiology
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
Phloem - cytology
Phloem - metabolism
Plant Leaves - cytology
Plant Leaves - metabolism
Xylem - cytology
Xylem - metabolism
Title Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells
URI https://www.jstor.org/stable/plantcell.28.6.1250
https://www.ncbi.nlm.nih.gov/pubmed/27194709
https://www.proquest.com/docview/1803791382
https://www.proquest.com/docview/1808655679
https://pubmed.ncbi.nlm.nih.gov/PMC4944408
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tj5NAEN7U00S_GD3f6lvWRBNNQwUWWPhYmzOn9ky0d5f7RhZYUtJLaVq4RP-Cv8x_5cwubGk9zekX0pQNbJiH2dlh5nkIeRlKWNVEFloZJje8QCRWGObckpkvQjdP0yjEfuejz8HhiffxzD_r9X52qpbqKhmm3y_tK_kfq8J_YFfskv0Hy5qLwh_wG-wLR7AwHK9k49O2jHSMGThU4dDC35onUzZ05ANdFjBaiaTIyiUykEykuND51tMP05PRBHMDX-WFRC5ljESnqsC6KpRP1AoqVWGCy2kBQwcHuvDcmhRzqSaw7ga6CD8URKoG-GnAuHUUD1Fev54XJg9dr7Sw1GB0XuSDI9lkkzHvI4pK53JnhZyXBsfprJihCpS6lFjXi3JVdPMXTrCps-q0DKAva6pUsfRPTU-LcQLYO1lLBwsgUb5dL1-tz3YtN1IKxcapu2EHvF0PDQGd3VntHVcvBr-vJDaSblTLdOjg5ypbMxjscHMvcaL4GIduOAyGeO1r5LoLOxZ0uZ--bIjrHa40Zsz8TQ-G_7Z7j63oSBfIXrb12a3g7YREx3fI7WYvQ0camHdJTy72yY13Jew3vu2Tm-NWS_Ae-dEilSJQqEEqbZBKNVKpQirtIJVqpNLXGqdvaINSCiilG5TSHZTSMqcKpbSLUnXz9X1y8v7geHxoNTIgVuo7QWVBTC8FMvsxn3HpeZngMuNRxnIvkLbgEJNzzpjMeQLxLhdR4KQMO7SdBHc7GXtA9hblQj4iNJTMl24uMi9CJUo_Yl7E0pxlIs1EyJI-GbSPP04bjnyUajmP1V7Z9mMwVuxgJSgYq09emdFLzQ3zh3EvlCXNIAOb2A3jIEbYwJjWyjHYBk-KhSzrdeyENuMRUoX-dQw2mAc86pOHGhnmZi4gz-M2nOFbmDEDkGB--8yimCmieS_yUJD-8RXm_4Tc2rzcT8letarlMwjXq-S5ehF-AZDg8Sg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+Cell+Induction+Culture+System+Using+Arabidopsis+Leaves+%28VISUAL%29+Reveals+the+Sequential+Differentiation+of+Sieve+Element-Like+Cells&rft.jtitle=The+Plant+cell&rft.au=Kondo%2C+Yuki&rft.au=Nurani%2C+Alif+Meem&rft.au=Saito%2C+Chieko&rft.au=Ichihashi%2C+Yasunori&rft.date=2016-06-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=28&rft.issue=6&rft.spage=1250&rft.epage=1262&rft_id=info:doi/10.1105%2Ftpc.16.00027&rft.externalDocID=plantcell.28.6.1250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon