The Role of Reactive Oxygen Species in Arsenic Toxicity

Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 10; no. 2; p. 240
Main Authors Hu, Yuxin, Li, Jin, Lou, Bin, Wu, Ruirui, Wang, Gang, Lu, Chunwei, Wang, Huihui, Pi, Jingbo, Xu, Yuanyuan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 05.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
AbstractList Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Author Xu, Yuanyuan
Hu, Yuxin
Pi, Jingbo
Wu, Ruirui
Wang, Gang
Li, Jin
Lu, Chunwei
Lou, Bin
Wang, Huihui
AuthorAffiliation 1 Experimental Teaching Center, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; yxhu@cmu.edu.cn (Y.H.); gwang@cmu.edu.cn (G.W.); cwlu@cmu.edu.cn (C.L.)
2 Program of Environmental Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; L1019Jin@163.com (J.L.); binlougg@gmail.com (B.L.); rui1224984970@163.com (R.W.); hhwang@cmu.edu.cn (H.W.); jbpi@cmu.edu.cn (J.P.)
AuthorAffiliation_xml – name: 1 Experimental Teaching Center, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; yxhu@cmu.edu.cn (Y.H.); gwang@cmu.edu.cn (G.W.); cwlu@cmu.edu.cn (C.L.)
– name: 2 Program of Environmental Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; L1019Jin@163.com (J.L.); binlougg@gmail.com (B.L.); rui1224984970@163.com (R.W.); hhwang@cmu.edu.cn (H.W.); jbpi@cmu.edu.cn (J.P.)
Author_xml – sequence: 1
  givenname: Yuxin
  orcidid: 0000-0002-2589-3007
  surname: Hu
  fullname: Hu, Yuxin
– sequence: 2
  givenname: Jin
  surname: Li
  fullname: Li, Jin
– sequence: 3
  givenname: Bin
  surname: Lou
  fullname: Lou, Bin
– sequence: 4
  givenname: Ruirui
  surname: Wu
  fullname: Wu, Ruirui
– sequence: 5
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
– sequence: 6
  givenname: Chunwei
  surname: Lu
  fullname: Lu, Chunwei
– sequence: 7
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
– sequence: 8
  givenname: Jingbo
  surname: Pi
  fullname: Pi, Jingbo
– sequence: 9
  givenname: Yuanyuan
  orcidid: 0000-0003-2354-9453
  surname: Xu
  fullname: Xu, Yuanyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32033297$$D View this record in MEDLINE/PubMed
BookMark eNptkc9LXDEQx0OxVGu99VzesYdum0z25celIKJWEATdQm8hL5mskbcv2-StuP99s12VVQyBDMl3Pt_MzEeyN6QBCfnM6HfONf3RxbRglAKFKX1HDgCYmoDkf_Z24n1yVModrUvVDfwD2edAOQctD4ic3WJznXpsUmiu0box3mNz9bCe49DcLNFFLE0cmuNccIiumaWH6OK4_kTeB9sXPHo8D8nvs9PZya_J5dX5xcnx5cS1TIyTqdZgGbMsCPAWeKu6NkBnLQ9CMg0onVK266QWIMVUCMWDt077ABxaJfghudhyfbJ3Zpnjwua1STaa_xcpz43NY3Q9GsVl6HytMXg5dToop5V1ToIPKBT4yvq5ZS1X3QK9w2HMtn8BffkyxFszT_dGUgmgN5_5-gjI6e8Ky2gWsTjseztgWhVT6wPRtlzrKv2y6_Vs8tT5KoCtwOVUSsZgalvtGNPGOvaGUbOZsNmdcE369irpifum_B986aZ7
CitedBy_id crossref_primary_10_2478_aiht_2022_73_3669
crossref_primary_10_1007_s11356_023_27021_1
crossref_primary_10_1093_ckj_sfae358
crossref_primary_10_1016_j_freeradbiomed_2024_12_035
crossref_primary_10_1007_s12011_024_04211_7
crossref_primary_10_1080_19768354_2024_2349758
crossref_primary_10_1016_j_chemosphere_2023_138807
crossref_primary_10_1002_tox_24019
crossref_primary_10_1016_j_microc_2023_109672
crossref_primary_10_1007_s13530_023_00168_7
crossref_primary_10_1007_s00018_023_04992_5
crossref_primary_10_1590_1984_3143_ar2022_0119
crossref_primary_10_1016_j_jafr_2022_100379
crossref_primary_10_1016_j_jhazmat_2022_128532
crossref_primary_10_1016_j_plaphy_2025_109830
crossref_primary_10_1016_j_foohum_2023_10_012
crossref_primary_10_1007_s12011_023_03881_z
crossref_primary_10_1038_s41419_021_04478_x
crossref_primary_10_1016_j_taap_2021_115684
crossref_primary_10_1016_j_taap_2023_116775
crossref_primary_10_1007_s11356_022_20850_6
crossref_primary_10_1016_j_crtox_2023_100114
crossref_primary_10_1039_D2MO00246A
crossref_primary_10_1007_s12672_024_01417_y
crossref_primary_10_1016_j_taap_2024_117115
crossref_primary_10_1016_j_etap_2022_103922
crossref_primary_10_1016_j_scitotenv_2023_163771
crossref_primary_10_1093_nar_gkab1231
crossref_primary_10_1016_j_cbi_2023_110694
crossref_primary_10_1038_s41598_025_85617_8
crossref_primary_10_1007_s43188_024_00255_y
crossref_primary_10_1016_j_phrs_2024_107466
crossref_primary_10_1016_j_jtemb_2022_127067
crossref_primary_10_1016_j_sajb_2025_02_028
crossref_primary_10_1016_j_taap_2023_116763
crossref_primary_10_1039_D3BM00555K
crossref_primary_10_3390_antiox13030287
crossref_primary_10_3390_neuroglia6010004
crossref_primary_10_1007_s10534_025_00671_z
crossref_primary_10_1016_j_scitotenv_2023_165821
crossref_primary_10_1155_2022_1005255
crossref_primary_10_1007_s12403_021_00392_x
crossref_primary_10_1016_j_cbi_2025_111410
crossref_primary_10_1016_j_fct_2024_114845
crossref_primary_10_1016_j_jtemb_2023_127238
crossref_primary_10_1016_j_jhazmat_2020_124768
crossref_primary_10_1007_s00344_025_11676_w
crossref_primary_10_1002_tox_24008
crossref_primary_10_1002_jbt_23040
crossref_primary_10_1080_03067319_2024_2324371
crossref_primary_10_1002_mc_23408
crossref_primary_10_1007_s12011_021_02632_2
crossref_primary_10_1016_j_chemosphere_2023_137735
crossref_primary_10_1016_j_jhazmat_2021_128100
crossref_primary_10_22270_jddt_v14i11_6835
crossref_primary_10_1016_j_semcancer_2021_06_002
crossref_primary_10_3839_jabc_2024_017
crossref_primary_10_1016_j_scitotenv_2021_151218
crossref_primary_10_1016_j_tiv_2024_105877
crossref_primary_10_1007_s12011_023_03897_5
crossref_primary_10_1016_j_jhazmat_2024_136243
crossref_primary_10_3390_ijms241311031
crossref_primary_10_1016_j_tox_2024_153751
crossref_primary_10_1016_j_abb_2022_109487
crossref_primary_10_1016_j_lfs_2021_119942
crossref_primary_10_1039_D3FO00572K
crossref_primary_10_3390_jox12030016
crossref_primary_10_3390_toxics12020141
crossref_primary_10_1016_j_mehy_2023_111233
crossref_primary_10_1016_j_fpsl_2022_100888
crossref_primary_10_1016_j_plaphy_2025_109631
crossref_primary_10_3390_biom11020202
crossref_primary_10_1016_j_fct_2020_111809
crossref_primary_10_1016_j_chemosphere_2020_127305
crossref_primary_10_1016_j_cbpc_2025_110160
crossref_primary_10_1007_s41742_022_00442_5
crossref_primary_10_1016_j_scitotenv_2024_171491
crossref_primary_10_15407_ubj92_06_119
crossref_primary_10_3390_biology12020193
crossref_primary_10_3389_fenvs_2022_979049
crossref_primary_10_1016_j_jtemin_2023_100079
crossref_primary_10_14202_vetworld_2023_82_93
crossref_primary_10_1007_s11033_021_06669_3
crossref_primary_10_1002_cbin_11791
crossref_primary_10_1186_s40360_025_00906_2
crossref_primary_10_3390_pharmaceutics14091945
crossref_primary_10_1016_j_sajb_2024_11_026
crossref_primary_10_1007_s11356_023_30791_3
crossref_primary_10_1016_j_bios_2021_113031
crossref_primary_10_1177_09603271211045955
crossref_primary_10_1016_j_fct_2022_113360
crossref_primary_10_1016_j_envpol_2023_121084
crossref_primary_10_4068_cmj_2024_60_2_97
crossref_primary_10_3390_molecules27031037
crossref_primary_10_1007_s12011_024_04157_w
crossref_primary_10_1007_s11033_021_06377_y
crossref_primary_10_1080_09603123_2022_2159016
crossref_primary_10_25259_AJBPS_7_2023
crossref_primary_10_1038_s41392_023_01679_y
crossref_primary_10_1111_gtc_13122
crossref_primary_10_1016_j_chemosphere_2023_140946
crossref_primary_10_1016_j_jhazmat_2024_135736
crossref_primary_10_1007_s12291_024_01259_z
crossref_primary_10_1016_j_jhazmat_2024_134641
crossref_primary_10_1007_s11356_020_11035_0
crossref_primary_10_1007_s11356_021_18106_w
crossref_primary_10_1007_s11356_024_32177_5
crossref_primary_10_1007_s40572_021_00305_9
crossref_primary_10_1016_j_tox_2024_154033
crossref_primary_10_1007_s00210_024_03274_6
crossref_primary_10_1039_D4CC03722G
crossref_primary_10_1155_2022_3459855
crossref_primary_10_1007_s12011_024_04167_8
crossref_primary_10_1039_D2NA00167E
crossref_primary_10_1007_s11356_022_24776_x
crossref_primary_10_1016_j_semcancer_2021_05_009
crossref_primary_10_1016_j_etap_2024_104558
crossref_primary_10_1016_j_mrgentox_2022_503483
crossref_primary_10_1016_j_ecoenv_2021_113098
crossref_primary_10_1016_j_cbi_2024_111029
crossref_primary_10_1016_j_talanta_2024_126240
crossref_primary_10_1016_j_taap_2023_116709
crossref_primary_10_1016_j_taap_2021_115738
crossref_primary_10_3390_ijms25042161
crossref_primary_10_1038_s41467_023_39436_y
crossref_primary_10_1007_s12011_021_03026_0
crossref_primary_10_3390_antiox12010172
crossref_primary_10_1002_fsn3_3278
crossref_primary_10_1093_nar_gkaa376
crossref_primary_10_1155_2022_1546297
crossref_primary_10_1016_j_fct_2021_112523
crossref_primary_10_1007_s00204_024_03750_1
crossref_primary_10_1016_j_phymed_2024_155649
crossref_primary_10_1007_s00204_022_03279_1
crossref_primary_10_1016_j_intimp_2023_111325
crossref_primary_10_1016_j_envpol_2024_125516
crossref_primary_10_1186_s12889_024_19585_5
crossref_primary_10_3390_plants12081699
crossref_primary_10_1080_15569543_2022_2124420
crossref_primary_10_1016_j_ijbiomac_2024_136795
crossref_primary_10_1007_s10495_024_02054_0
crossref_primary_10_3390_brainsci13121633
crossref_primary_10_1155_2022_9865606
crossref_primary_10_5812_gct_131298
crossref_primary_10_3390_plants12091815
crossref_primary_10_3389_fpls_2024_1371748
crossref_primary_10_1007_s12011_021_02712_3
crossref_primary_10_1016_j_molstruc_2024_139338
crossref_primary_10_1016_j_sajb_2023_12_005
crossref_primary_10_1208_s12249_022_02478_4
crossref_primary_10_1016_j_chemosphere_2021_132406
crossref_primary_10_1111_pce_14926
crossref_primary_10_1007_s11356_023_31683_2
crossref_primary_10_1016_j_stress_2022_100055
crossref_primary_10_1080_17435889_2024_2367958
crossref_primary_10_3390_ijms25126662
crossref_primary_10_1016_j_etap_2022_103850
crossref_primary_10_3390_antiox14020184
crossref_primary_10_1155_2020_8815313
crossref_primary_10_1007_s12011_024_04510_z
crossref_primary_10_1007_s12011_021_02624_2
crossref_primary_10_1016_j_envpol_2021_117940
crossref_primary_10_3390_molecules27165263
crossref_primary_10_1016_j_envres_2024_120446
crossref_primary_10_1039_D4NJ03573A
crossref_primary_10_3390_cancers12092483
crossref_primary_10_2174_2210315513666230220145335
crossref_primary_10_1016_j_lfs_2020_118132
crossref_primary_10_3389_fenvs_2022_920957
crossref_primary_10_1016_j_dscb_2022_100050
crossref_primary_10_1007_s11356_024_32213_4
crossref_primary_10_3390_antiox11101983
crossref_primary_10_3390_ijms232213879
crossref_primary_10_1007_s10534_022_00482_6
crossref_primary_10_1002_wrna_1596
crossref_primary_10_3390_agriculture13071293
crossref_primary_10_1007_s12298_023_01355_z
crossref_primary_10_1016_j_bcp_2022_114973
crossref_primary_10_1016_j_hazadv_2023_100329
crossref_primary_10_1016_j_sajb_2024_03_020
crossref_primary_10_1016_j_jhazmat_2023_130735
crossref_primary_10_3389_fvets_2023_1128522
crossref_primary_10_1016_j_phyplu_2024_100712
crossref_primary_10_1016_j_plaphy_2024_109001
crossref_primary_10_1016_j_biomaterials_2024_122650
crossref_primary_10_1071_FP21196
crossref_primary_10_1016_j_taap_2020_115251
crossref_primary_10_3390_jox15010001
crossref_primary_10_3389_fphar_2020_594496
crossref_primary_10_3389_fmicb_2023_1240798
crossref_primary_10_1021_acs_chemrestox_2c00129
crossref_primary_10_2903_j_efsa_2024_8488
crossref_primary_10_1007_s12011_025_04513_4
crossref_primary_10_3390_su141710697
crossref_primary_10_1016_j_semcancer_2021_08_009
crossref_primary_10_1016_j_plaphy_2024_108956
crossref_primary_10_37349_ent_2022_00019
crossref_primary_10_1002_biof_2027
crossref_primary_10_1016_j_ecoenv_2024_117258
crossref_primary_10_1016_j_aquatox_2021_105901
crossref_primary_10_3390_antiox11051034
crossref_primary_10_1007_s00204_024_03903_2
crossref_primary_10_3390_agriculture13020401
crossref_primary_10_1016_j_taap_2021_115404
crossref_primary_10_3390_cells11081363
crossref_primary_10_1016_j_chemosphere_2020_128350
crossref_primary_10_3390_biom13091424
crossref_primary_10_1016_j_jhazmat_2023_132570
crossref_primary_10_1080_21622515_2024_2428447
crossref_primary_10_3390_ijerph182111446
crossref_primary_10_1016_j_plaphy_2024_108849
crossref_primary_10_1016_j_plaphy_2024_108608
crossref_primary_10_1016_j_mrgentox_2022_503500
crossref_primary_10_1007_s11356_022_22657_x
crossref_primary_10_1007_s11427_020_1912_4
crossref_primary_10_1002_jbt_23635
crossref_primary_10_3389_fphar_2022_877125
crossref_primary_10_3390_molecules27175657
crossref_primary_10_1038_s41598_021_03190_2
crossref_primary_10_1016_j_jbc_2023_102955
crossref_primary_10_1093_toxsci_kfae147
crossref_primary_10_1016_j_bbrc_2024_150258
crossref_primary_10_1016_j_stress_2023_100338
crossref_primary_10_1016_j_jhazmat_2023_133078
crossref_primary_10_1080_15569543_2021_1891938
crossref_primary_10_1002_bio_70119
crossref_primary_10_3390_toxics10030140
crossref_primary_10_1007_s12598_023_02466_y
crossref_primary_10_37349_ec_2023_00012
crossref_primary_10_1002_jat_4459
crossref_primary_10_1016_j_semcancer_2021_03_022
crossref_primary_10_3390_ijms22041949
crossref_primary_10_1007_s00204_022_03317_y
crossref_primary_10_1016_j_envint_2021_107034
crossref_primary_10_1016_j_chemosphere_2024_142349
crossref_primary_10_1016_j_scitotenv_2022_155004
crossref_primary_10_1021_jacs_3c11665
crossref_primary_10_1155_2021_6406318
crossref_primary_10_3390_antiox13080938
crossref_primary_10_1007_s00204_022_03232_2
crossref_primary_10_1016_j_matpr_2021_08_354
crossref_primary_10_1093_toxres_tfab007
crossref_primary_10_1016_j_ecoenv_2024_116183
crossref_primary_10_1007_s12298_022_01124_4
crossref_primary_10_3390_foods13121890
crossref_primary_10_1016_j_hazadv_2024_100543
crossref_primary_10_1016_j_scitotenv_2023_169493
Cites_doi 10.1038/cddis.2016.105
10.1083/jcb.201005012
10.1002/jcb.10269
10.1016/j.ccr.2012.05.016
10.1007/s002040000134
10.1182/blood-2012-04-422121
10.1289/ehp.99107593
10.1186/s12918-017-0407-3
10.1177/0960327115595682
10.1006/bbrc.1997.6943
10.2741/s465
10.3389/fimmu.2018.01605
10.1124/mol.109.058453
10.1016/S0014-4827(03)00341-0
10.1186/s13045-017-0424-0
10.1159/000494006
10.1016/j.biopha.2018.10.134
10.3109/15376516.2013.869778
10.1016/j.fct.2017.07.021
10.1371/journal.pone.0132499
10.18632/oncotarget.18582
10.1007/s00204-015-1600-z
10.1128/MCB.00248-10
10.2147/DDDT.S115339
10.1007/s00204-015-1579-5
10.1002/jat.1649
10.1016/j.fct.2019.02.022
10.1016/j.toxlet.2013.10.029
10.1124/jpet.105.092874
10.1128/MCB.01748-12
10.1016/j.cbi.2015.06.040
10.1080/15376516.2017.1422578
10.4103/0971-6580.84258
10.1021/tx000123x
10.1016/j.toxlet.2013.10.013
10.1074/jbc.M111.312694
10.1046/j.1523-1747.1999.00748.x
10.1016/j.taap.2012.04.003
10.1016/j.yrtph.2018.09.010
10.1006/abbi.2000.1770
10.1248/cpb.37.2753
10.1158/0008-5472.CAN-19-1363
10.1002/biof.1375
10.1289/ehp.9507
10.1289/ehp.02110s5807
10.1073/pnas.172398899
10.1007/s12011-017-1077-0
10.1016/j.fct.2013.03.048
10.1159/000153979
10.1078/1438-4639-00177
10.1128/MCB.18.9.5178
10.1615/JEnvironPatholToxicolOncol.v29.i2.30
10.1155/2019/1038932
10.1023/A:1015971118012
10.1016/j.taap.2018.01.014
10.1016/j.cell.2010.06.011
10.1080/10590500701201695
10.1016/j.toxlet.2016.06.1414
10.1016/S0891-5849(99)00186-0
10.3892/etm.2013.1381
10.1016/j.freeradbiomed.2012.10.525
10.3324/haematol.2019.229583
10.1107/S2053230X18011299
10.1016/j.freeradbiomed.2016.01.005
10.1182/blood.2019000760
10.1016/j.taap.2012.02.017
10.1074/jbc.M115.695825
10.18632/oncotarget.19822
10.1016/j.toxlet.2017.07.215
10.1007/s00204-012-0845-z
10.1016/j.freeradbiomed.2011.04.008
10.1016/j.redox.2019.101254
10.1016/j.tplants.2015.02.005
10.1155/2012/217580
10.1016/j.lfs.2018.11.050
10.1096/fasebj.12.9.665
10.3390/cancers11070955
10.1128/MCB.23.22.8137-8151.2003
10.1093/mutage/16.5.443
10.1016/j.taap.2011.04.022
10.2147/DDDT.S216156
10.1093/toxsci/60.2.279
10.1007/s11356-019-04502-w
10.1021/tx960139g
10.1016/j.freeradbiomed.2011.12.006
10.1096/fj.02-0287fje
10.1016/j.tiv.2017.07.027
10.1016/j.envpol.2017.11.083
10.1089/ars.2006.8.53
10.1002/biof.1276
10.1007/s001090050063
10.1016/j.tox.2014.09.002
10.1016/j.canlet.2014.01.002
10.1016/j.tox.2011.03.001
10.1016/j.ejps.2013.09.008
10.1038/oncsis.2017.67
10.1016/j.chemosphere.2019.07.002
10.1006/abbi.2000.2023
10.1016/j.jnutbio.2005.08.003
10.1016/j.cell.2010.08.023
10.1126/sciadv.aav4570
10.1002/mc.22331
10.1074/jbc.M110.118976
10.1182/blood.V98.13.3762
10.1161/01.RES.86.5.514
10.1016/j.biopha.2017.09.151
10.1016/j.tox.2017.01.011
10.1007/s00441-011-1181-y
10.1089/ars.2007.1957
10.1124/jpet.115.223289
10.1007/s11356-018-3349-4
10.1016/j.taap.2019.02.003
10.1177/0960327114543933
10.1016/j.phrs.2018.06.013
10.1016/j.freeradbiomed.2008.05.020
10.1007/s00204-019-02526-2
10.1016/j.taap.2013.04.020
10.1006/taap.1999.8872
10.1016/j.biochi.2014.08.017
10.1016/0006-291X(90)91674-H
10.1016/j.taap.2008.11.002
10.1016/j.taap.2017.09.004
10.3389/fphar.2019.00497
10.1128/MCB.00763-12
10.1002/jcp.27073
10.1093/toxsci/kfr184
10.1016/j.etap.2017.08.027
10.1016/j.molimm.2016.12.005
10.1146/annurev.pharmtox.47.120505.105144
10.1016/S0006-291X(03)00728-9
10.1093/toxsci/kfw093
10.1002/jbt.20062
10.1016/j.ccell.2017.10.011
10.1038/nature13236
10.1155/2019/8549035
10.1038/nature10189
10.1002/marc.201800205
10.1289/ehp.1307545
10.1016/j.taap.2008.02.001
10.1016/j.taap.2008.03.003
10.1007/s00204-013-1058-9
10.2147/NDT.S173632
10.1016/j.toxlet.2010.07.006
10.1073/pnas.0305902101
10.1016/S1383-5718(97)00130-7
10.1016/j.cellsig.2007.04.009
10.1159/000471911
10.18632/oncotarget.14733
10.1038/embor.2012.162
10.1093/jnci/91.9.772
10.1021/acs.chemrestox.8b00062
10.1023/A:1017974131948
10.1016/S1040-8428(01)00215-3
10.1080/15548627.2016.1166318
10.1007/s00204-012-0856-9
10.1016/j.biopha.2016.12.130
10.1016/j.tibs.2013.07.004
10.1038/ncb2021
10.1016/j.intimp.2017.06.011
10.1016/j.toxlet.2013.08.008
10.1136/pmj.79.933.391
10.1016/j.bbamcr.2008.01.002
10.1016/j.envpol.2019.07.065
10.2131/jts.40.577
10.18632/oncotarget.17745
10.3390/molecules22020194
10.1159/000494159
10.1007/s00204-017-2100-0
10.1074/jbc.R900003200
10.1152/ajplung.2000.279.6.L1005
10.1101/cshperspect.a020644
10.1186/s12943-017-0648-1
10.18632/oncotarget.13931
10.1016/j.jnutbio.2016.09.001
10.1155/2018/1421438
10.1016/j.tiv.2013.01.012
10.1016/j.chemosphere.2018.11.188
10.1006/taap.2001.9291
10.1016/bs.apha.2015.03.003
10.1074/jbc.M301211200
10.1074/jbc.M007204200
10.1002/jcb.26029
10.1023/B:MCBI.0000007262.26044.e8
10.1006/taap.1999.8723
10.3390/cells8080793
10.1016/j.immuni.2017.03.019
10.1007/s00204-018-2372-z
10.1371/journal.ppat.1006240
10.1177/0960327107087909
10.1111/cns.12325
10.1038/nature15726
10.1158/0008-5472.CAN-10-0007
10.1016/0891-5849(96)00174-8
10.1016/j.freeradbiomed.2016.09.010
10.1016/j.fct.2014.03.011
10.1016/j.scitotenv.2017.12.023
10.3892/ijmm.2018.4043
10.1016/j.cell.2018.09.048
10.1158/0008-5472.CAN-15-0614
10.1016/j.taap.2009.12.014
10.1016/j.chemosphere.2017.12.149
10.1897/IEAM_2004a-004.1
10.1007/s13181-013-0344-5
10.1016/j.taap.2003.07.017
10.1289/ehp.1104580
10.1038/cddis.2017.482
10.1074/jbc.271.23.13422
10.1016/j.apsb.2016.04.004
10.1016/j.bbadis.2016.11.005
10.1128/MCB.01639-08
10.1074/jbc.M113.540633
10.1016/j.jnutbio.2017.11.010
10.1007/s13277-014-2644-z
10.1016/S0039-9140(02)00268-0
10.4161/cbt.4.4.1652
10.1007/s00018-008-8224-x
10.1016/S0378-4274(02)00083-8
10.1002/pmic.201600257
10.1016/j.cbi.2019.02.001
10.1152/ajplung.00390.2001
10.1093/nar/gkq212
10.1016/j.phrs.2015.09.020
10.1016/j.envres.2009.08.012
10.7150/ijbs.12096
10.1016/j.taap.2004.10.023
10.1016/j.toxlet.2018.05.029
10.1007/s00204-004-0620-x
10.1016/j.canlet.2008.02.028
10.1007/s00204-014-1302-y
10.1016/j.cell.2016.11.035
10.1101/gad.189365.112
10.1016/j.cell.2016.07.002
10.1016/j.bbamcr.2018.02.010
10.1016/j.copbio.2008.03.003
10.1016/j.taap.2003.10.027
10.12965/jer.1836268.134
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/biom10020240
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-273X
ExternalDocumentID oai_doaj_org_article_837fbd800fd74c9f8c98acc72dfe682d
PMC7072296
32033297
10_3390_biom10020240
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Education Department of Liaoning Province, China
  grantid: to Y.X.
– fundername: Liaoning Pandeng Scholar Program
  grantid: to Y.X.
– fundername: Key R & D Plan Guidance Project
  grantid: to Y.X.
– fundername: Department of Science and Technology of Liaoning Province, China
  grantid: to Y.X.
– fundername: National Natural Science Foundation of China
  grantid: 81573187
– fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC1807225
GroupedDBID 53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBD
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c516t-4992a11a1f62da2358b5f2baa3f67192e7c88abb79627646683fdac9df2325863
IEDL.DBID M48
ISSN 2218-273X
IngestDate Wed Aug 27 01:24:28 EDT 2025
Thu Aug 21 18:36:08 EDT 2025
Thu Jul 10 19:07:15 EDT 2025
Thu Jan 02 22:57:47 EST 2025
Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 00:43:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords signaling pathway
arsenic
Nrf2
antioxidants
ROS
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-4992a11a1f62da2358b5f2baa3f67192e7c88abb79627646683fdac9df2325863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2354-9453
0000-0002-2589-3007
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biom10020240
PMID 32033297
PQID 2352655399
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_837fbd800fd74c9f8c98acc72dfe682d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072296
proquest_miscellaneous_2352655399
pubmed_primary_32033297
crossref_citationtrail_10_3390_biom10020240
crossref_primary_10_3390_biom10020240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200205
PublicationDateYYYYMMDD 2020-02-05
PublicationDate_xml – month: 2
  year: 2020
  text: 20200205
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Biomolecules (Basel, Switzerland)
PublicationTitleAlternate Biomolecules
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Rahman (ref_234) 2017; 196
Singh (ref_25) 2011; 18
Javadov (ref_49) 2018; 50
Guillebaud (ref_47) 2016; 291
Han (ref_99) 2019; 13
Guvvala (ref_220) 2017; 96
Lindberg (ref_22) 2008; 230
Chowdhury (ref_91) 2010; 198
Liu (ref_158) 2008; 1783
Ling (ref_203) 2017; 10
Bellezza (ref_154) 2018; 1865
Huang (ref_20) 2019; 93
Wu (ref_131) 1999; 277
Kalantari (ref_124) 2018; 25
Wu (ref_132) 2002; 282
Lin (ref_113) 2019; 26
Chen (ref_81) 1998; 18
Shi (ref_125) 2014; 20
Holtzclaw (ref_52) 2002; 99
Han (ref_210) 2017; 8
ref_245
Dopp (ref_18) 2010; 110
Rolfs (ref_96) 2015; 75
Kedersha (ref_178) 2013; 38
Ahmed (ref_155) 2017; 1863
Petrick (ref_16) 2000; 163
Yamanaka (ref_141) 1990; 168
Fan (ref_191) 2014; 510
Yamanaka (ref_32) 1994; 102
Lau (ref_43) 2013; 33
Zhuang (ref_239) 2016; 6
Wang (ref_86) 2013; 222
Zhong (ref_71) 2019; 234
Takahashi (ref_175) 2013; 33
Lau (ref_41) 2010; 30
Wang (ref_75) 2012; 86
Williams (ref_120) 2015; 102
Thannickal (ref_174) 2000; 279
Li (ref_213) 2016; 35
Fabian (ref_243) 2019; 93
Lynn (ref_140) 2000; 86
Kumar (ref_232) 2010; 29
Jeong (ref_138) 2017; 379
Mitsuishi (ref_56) 2012; 22
Kostewicz (ref_241) 2014; 57
Shi (ref_192) 2015; 36
Zhou (ref_172) 2017; 6
Simeonova (ref_167) 2001; 60
Wang (ref_88) 2013; 27
Ling (ref_230) 2017; 8
Komissarova (ref_171) 2010; 243
Wang (ref_202) 2015; 40
Li (ref_149) 2002; 87
Zhao (ref_196) 2017; 16
Malhotra (ref_97) 2010; 38
Levine (ref_117) 2019; 176
Chen (ref_107) 2017; 278
Yu (ref_219) 2017; 41
Samarakoon (ref_236) 2012; 347
He (ref_53) 2009; 76
Chouchane (ref_38) 2001; 14
Niture (ref_100) 2012; 287
Luz (ref_183) 2016; 152
Gao (ref_78) 2016; 92
Zhang (ref_168) 2009; 235
Ellinsworth (ref_30) 2015; 353
Drobna (ref_163) 2003; 17
Lu (ref_85) 2014; 224
Flora (ref_48) 2011; 51
Jomova (ref_9) 2011; 31
Kim (ref_164) 2016; 55
Corsini (ref_29) 1999; 113
Komatsu (ref_67) 2010; 12
Du (ref_24) 2018; 234
Huang (ref_144) 1999; 59
Kosnett (ref_200) 2013; 9
Kasote (ref_237) 2015; 11
Mukherjee (ref_70) 2017; 56
Pan (ref_228) 2011; 254
Barchowsky (ref_147) 1996; 21
Zhou (ref_227) 2019; 10
Tanaka (ref_15) 2018; 39
Yamanaka (ref_142) 1989; 37
Parvez (ref_10) 2008; 116
Panieri (ref_188) 2016; 7
Duan (ref_59) 2017; 81
Jiang (ref_62) 2018; 31
ref_118
Morris (ref_112) 2013; 56
Nutt (ref_122) 2005; 4
Aono (ref_58) 2003; 305
Kapahi (ref_150) 2000; 275
Tseng (ref_82) 2012; 86
Sharma (ref_240) 2018; 624
Gebel (ref_14) 2002; 205
Todoric (ref_173) 2017; 32
Dang (ref_189) 2012; 26
Zhang (ref_229) 2014; 7
Manno (ref_35) 2001; 177
Bode (ref_136) 2002; 42
Riley (ref_65) 2010; 191
Zhang (ref_54) 2003; 23
Pi (ref_74) 2008; 45
ref_108
Zhou (ref_45) 2018; 99
Liu (ref_64) 2017; 334
Lee (ref_181) 2016; 8
Maity (ref_216) 2018; 182
Gong (ref_209) 2016; 90
ref_102
Styblo (ref_17) 2000; 74
Xu (ref_68) 2019; 5
Yamanaka (ref_31) 1997; 394
Pinkus (ref_165) 1996; 271
Valko (ref_50) 2016; 90
Rushworth (ref_160) 2012; 120
Whitmarsh (ref_162) 1996; 74
Zhu (ref_143) 1999; 91
Ratnaike (ref_2) 2003; 79
Choudhury (ref_207) 2016; 38
Wang (ref_73) 2008; 230
Verheijen (ref_242) 2018; 294
Suc (ref_130) 1998; 12
Miltonprabu (ref_204) 2014; 24
Xie (ref_214) 2017; 8
Liu (ref_87) 2013; 87
Liu (ref_109) 2018; 14
Liu (ref_76) 2019; 367
Phan (ref_180) 2014; 11
Khairul (ref_19) 2017; 8
Sun (ref_69) 2009; 29
Rizwan (ref_221) 2014; 68
Hu (ref_166) 2002; 133
Wang (ref_199) 2014; 106
Hughes (ref_6) 2011; 123
Chen (ref_21) 2005; 206
Barchowsky (ref_139) 1999; 27
Khan (ref_105) 2017; 107
Xu (ref_26) 2019; 2019
Tseng (ref_23) 2007; 25
Kadirvel (ref_223) 2007; 26
He (ref_77) 2014; 122
Piskounova (ref_190) 2015; 527
Saha (ref_231) 2016; 42
Abernathy (ref_8) 1999; 107
Yeung (ref_185) 2008; 65
DeNicola (ref_95) 2011; 475
Garrido (ref_93) 2015; 238
Huang (ref_121) 2016; 12
Kumagai (ref_134) 2007; 47
Styblo (ref_39) 1997; 10
Huang (ref_148) 2001; 222
Chang (ref_42) 2010; 70
Mandal (ref_1) 2002; 58
Kato (ref_33) 1994; 102
Menendez (ref_169) 2001; 16
Guidarelli (ref_80) 2017; 43
Garty (ref_5) 1990; 254
Lemmon (ref_128) 2010; 141
Pi (ref_103) 2003; 290
(ref_198) 2016; 10
Mukherjee (ref_224) 2006; 17
Thangapandiyan (ref_212) 2019; 26
Ling (ref_244) 2005; 1
Xu (ref_233) 2013; 58
Macho (ref_127) 2015; 20
Miltonprabu (ref_218) 2017; 50
Holst (ref_238) 2008; 19
Barchowsky (ref_83) 1999; 159
Motohashi (ref_57) 2004; 101
Hou (ref_60) 2014; 325
Sun (ref_145) 2014; 346
Zhang (ref_101) 2017; 44
Kumar (ref_222) 2018; 7
Maldonado (ref_194) 2018; 134
Dodson (ref_40) 2018; 341
Yoo (ref_119) 2018; 14
Ahmad (ref_34) 2000; 382
Jomova (ref_13) 2011; 283
Elsby (ref_98) 2003; 278
Jain (ref_63) 2010; 285
Azadmanesh (ref_111) 2018; 74
Itoh (ref_55) 1997; 236
Hunter (ref_126) 2014; 6
ref_177
Niu (ref_110) 2018; 50
ref_179
He (ref_106) 2012; 13
Shi (ref_28) 2004; 255
Roussel (ref_153) 2000; 377
Zhang (ref_225) 2017; 8
Wu (ref_44) 2019; 2019
Zhao (ref_137) 2019; 253
Chatterjee (ref_206) 2017; 118
Das (ref_235) 2018; 2018
ref_61
Chen (ref_146) 2002; 110
Zhao (ref_94) 2012; 120
ref_66
Wang (ref_159) 2012; 52
Genestra (ref_133) 2007; 19
Vyas (ref_123) 2016; 166
Gong (ref_208) 2015; 89
Liu (ref_115) 2019; 219
Mak (ref_193) 2017; 46
Naranmandura (ref_36) 2012; 260
Massrieh (ref_72) 2006; 8
Galanis (ref_195) 2008; 266
Trachootham (ref_114) 2008; 10
Dai (ref_157) 2019; 235
Lv (ref_104) 2019; 302
Hosseinzadeh (ref_217) 2019; 217
Mahalanobish (ref_211) 2019; 126
Saha (ref_89) 2018; 55
Stueckle (ref_90) 2012; 261
Rao (ref_197) 2017; 8
Simeonova (ref_135) 2002; 234–235
Yih (ref_170) 2000; 60
Platanias (ref_46) 2009; 284
Angajala (ref_116) 2018; 9
Li (ref_184) 2014; 224
Zhao (ref_182) 2013; 271
Pan (ref_156) 2012; 2012
Lim (ref_129) 2010; 142
Luster (ref_84) 2004; 198
Aposhian (ref_11) 2004; 198
Mahieux (ref_152) 2001; 98
Mutter (ref_201) 2017; 91
Vineetha (ref_215) 2018; 28
Zhang (ref_79) 2019; 109
Yu (ref_226) 2017; 88
Hayakawa (ref_12) 2005; 79
ref_186
Sumedha (ref_205) 2015; 34
ref_187
Felix (ref_92) 2005; 19
Cuadrado (ref_161) 2014; 289
ref_3
Zhu (ref_51) 2016; 99
Hrycay (ref_27) 2015; 74
Grabocka (ref_176) 2016; 167
Lemarie (ref_151) 2006; 316
Zhu (ref_4) 2019; 134
Nordenson (ref_37) 1991; 41
ref_7
References_xml – volume: 60
  start-page: 6346
  year: 2000
  ident: ref_170
  article-title: Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts
  publication-title: Cancer Res.
– volume: 7
  start-page: e2253
  year: 2016
  ident: ref_188
  article-title: ROS homeostasis and metabolism: A dangerous liason in cancer cells
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.105
– volume: 191
  start-page: 537
  year: 2010
  ident: ref_65
  article-title: Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: A potential role for protein aggregation in autophagic substrate selection
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201005012
– volume: 87
  start-page: 29
  year: 2002
  ident: ref_149
  article-title: Arsenic induces oxidative stress and activates stress gene expressions in cultured lung epithelial cells
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.10269
– volume: 22
  start-page: 66
  year: 2012
  ident: ref_56
  article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.016
– volume: 74
  start-page: 289
  year: 2000
  ident: ref_17
  article-title: Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells
  publication-title: Arch. Toxicol.
  doi: 10.1007/s002040000134
– volume: 120
  start-page: 5188
  year: 2012
  ident: ref_160
  article-title: The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance
  publication-title: Blood
  doi: 10.1182/blood-2012-04-422121
– volume: 107
  start-page: 593
  year: 1999
  ident: ref_8
  article-title: Arsenic: Health effects, mechanisms of actions, and research issues
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.99107593
– ident: ref_245
  doi: 10.1186/s12918-017-0407-3
– volume: 35
  start-page: 491
  year: 2016
  ident: ref_213
  article-title: Lutein alleviates arsenic-induced reproductive toxicity in male mice via Nrf2 signaling
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327115595682
– volume: 236
  start-page: 313
  year: 1997
  ident: ref_55
  article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6943
– volume: 8
  start-page: 312
  year: 2016
  ident: ref_181
  article-title: Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis
  publication-title: Front. Biosci. (Schol Ed.)
  doi: 10.2741/s465
– volume: 9
  start-page: 1605
  year: 2018
  ident: ref_116
  article-title: Diverse Roles of Mitochondria in Immune Responses: Novel Insights into Immuno-Metabolism
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01605
– volume: 76
  start-page: 1265
  year: 2009
  ident: ref_53
  article-title: NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.109.058453
– volume: 290
  start-page: 234
  year: 2003
  ident: ref_103
  article-title: Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: Involvement of hydrogen peroxide
  publication-title: Exp. Cell Res.
  doi: 10.1016/S0014-4827(03)00341-0
– volume: 10
  start-page: 59
  year: 2017
  ident: ref_203
  article-title: Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: Roles of p38 MAPK, ERK3, and mTORC1
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-017-0424-0
– volume: 50
  start-page: 288
  year: 2018
  ident: ref_49
  article-title: Divergent Effects of Cyclophilin-D Inhibition on the Female Rat Heart: Acute Versus Chronic Post-Myocardial Infarction
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000494006
– volume: 109
  start-page: 815
  year: 2019
  ident: ref_79
  article-title: Taurine rescues the arsenic-induced injury in the pancreas of rat offsprings and in the INS-1 cells
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.10.134
– volume: 24
  start-page: 124
  year: 2014
  ident: ref_204
  article-title: Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by diallyl trisulfide
  publication-title: Toxicol. Mech. Methods
  doi: 10.3109/15376516.2013.869778
– volume: 107
  start-page: 406
  year: 2017
  ident: ref_105
  article-title: Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2017.07.021
– ident: ref_118
  doi: 10.1371/journal.pone.0132499
– volume: 8
  start-page: 65302
  year: 2017
  ident: ref_210
  article-title: The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2-induced hepatotoxicity
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18582
– volume: 90
  start-page: 2187
  year: 2016
  ident: ref_209
  article-title: 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-015-1600-z
– volume: 30
  start-page: 3275
  year: 2010
  ident: ref_41
  article-title: A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00248-10
– volume: 10
  start-page: 3425
  year: 2016
  ident: ref_198
  article-title: N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats
  publication-title: Drug Des. Devel. Ther.
  doi: 10.2147/DDDT.S115339
– volume: 90
  start-page: 1
  year: 2016
  ident: ref_50
  article-title: Redox- and non-redox-metal-induced formation of free radicals and their role in human disease
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-015-1579-5
– volume: 31
  start-page: 95
  year: 2011
  ident: ref_9
  article-title: Arsenic: Toxicity, oxidative stress and human disease
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1649
– volume: 126
  start-page: 41
  year: 2019
  ident: ref_211
  article-title: Mangiferin alleviates arsenic induced oxidative lung injury via upregulation of the Nrf2-HO1 axis
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2019.02.022
– volume: 224
  start-page: 165
  year: 2014
  ident: ref_184
  article-title: NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.10.029
– volume: 316
  start-page: 304
  year: 2006
  ident: ref_151
  article-title: Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.105.092874
– volume: 33
  start-page: 2436
  year: 2013
  ident: ref_43
  article-title: Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01748-12
– volume: 238
  start-page: 170
  year: 2015
  ident: ref_93
  article-title: Arsenic-induced S phase cell cycle lengthening is associated with ROS generation, p53 signaling and CDC25A expression
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2015.06.040
– volume: 28
  start-page: 353
  year: 2018
  ident: ref_215
  article-title: L-ascorbic acid and α-tocopherol attenuate arsenic trioxide-induced toxicity in H9c2 cardiomyocytes by the activation of Nrf2 and Bcl2 transcription factors
  publication-title: Toxicol. Mech. Methods
  doi: 10.1080/15376516.2017.1422578
– volume: 18
  start-page: 87
  year: 2011
  ident: ref_25
  article-title: Mechanisms pertaining to arsenic toxicity
  publication-title: Toxicol. Int.
  doi: 10.4103/0971-6580.84258
– volume: 14
  start-page: 517
  year: 2001
  ident: ref_38
  article-title: In vitro effect of arsenical compounds on glutathione-related enzymes
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx000123x
– volume: 224
  start-page: 130
  year: 2014
  ident: ref_85
  article-title: Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.10.013
– volume: 287
  start-page: 9873
  year: 2012
  ident: ref_100
  article-title: Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.312694
– volume: 113
  start-page: 760
  year: 1999
  ident: ref_29
  article-title: Sodium arsenate induces overproduction of interleukin-1alpha in murine keratinocytes: Role of mitochondria
  publication-title: J. Investig. Dermatol.
  doi: 10.1046/j.1523-1747.1999.00748.x
– volume: 261
  start-page: 204
  year: 2012
  ident: ref_90
  article-title: Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2012.04.003
– volume: 99
  start-page: 78
  year: 2018
  ident: ref_45
  article-title: A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2018.09.010
– volume: 377
  start-page: 204
  year: 2000
  ident: ref_153
  article-title: Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2000.1770
– volume: 37
  start-page: 2753
  year: 1989
  ident: ref_142
  article-title: Mutagenicity of dimethylated metabolites of inorganic arsenics
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.37.2753
– ident: ref_179
  doi: 10.1158/0008-5472.CAN-19-1363
– volume: 43
  start-page: 673
  year: 2017
  ident: ref_80
  article-title: Arsenite induces DNA damage via mitochondrial ROS and induction of mitochondrial permeability transition
  publication-title: Biofactors
  doi: 10.1002/biof.1375
– volume: 116
  start-page: 190
  year: 2008
  ident: ref_10
  article-title: Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.9507
– volume: 110
  start-page: 807
  year: 2002
  ident: ref_146
  article-title: Signaling from toxic metals to NF-kappaB and beyond: Not just a matter of reactive oxygen species
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.02110s5807
– volume: 99
  start-page: 11908
  year: 2002
  ident: ref_52
  article-title: Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.172398899
– volume: 182
  start-page: 78
  year: 2018
  ident: ref_216
  article-title: Arjunolic Acid Improves the Serum Level of Vitamin B
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-017-1077-0
– volume: 58
  start-page: 1
  year: 2013
  ident: ref_233
  article-title: Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2013.03.048
– volume: 41
  start-page: 71
  year: 1991
  ident: ref_37
  article-title: Is the genotoxic effect of arsenic mediated by oxygen free radicals?
  publication-title: Hum. Hered.
  doi: 10.1159/000153979
– volume: 205
  start-page: 505
  year: 2002
  ident: ref_14
  article-title: Arsenic methylation is a process of detoxification through accelerated excretion
  publication-title: Int. J. Hyg. Environ. Health
  doi: 10.1078/1438-4639-00177
– volume: 18
  start-page: 5178
  year: 1998
  ident: ref_81
  article-title: Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.9.5178
– volume: 254
  start-page: 1068
  year: 1990
  ident: ref_5
  article-title: Effects of clonidine on renal sympathetic nerve activity and norepinephrine spillover
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 29
  start-page: 91
  year: 2010
  ident: ref_232
  article-title: Protective role of zinc in ameliorating arsenic-induced oxidative stress and histological changes in rat liver
  publication-title: J. Environ. Pathol. Toxicol. Oncol.
  doi: 10.1615/JEnvironPatholToxicolOncol.v29.i2.30
– volume: 2019
  start-page: 1038932
  year: 2019
  ident: ref_44
  article-title: Enhanced p62-NRF2 Feedback Loop due to Impaired Autophagic Flux Contributes to Arsenic-Induced Malignant Transformation of Human Keratinocytes
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/1038932
– volume: 234–235
  start-page: 277
  year: 2002
  ident: ref_135
  article-title: Arsenic carcinogenicity: Relevance of c-Src activation
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1015971118012
– volume: 341
  start-page: 106
  year: 2018
  ident: ref_40
  article-title: Low-level arsenic causes proteotoxic stress and not oxidative stress
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2018.01.014
– volume: 141
  start-page: 1117
  year: 2010
  ident: ref_128
  article-title: Cell signaling by receptor tyrosine kinases
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.011
– volume: 25
  start-page: 1
  year: 2007
  ident: ref_23
  article-title: Arsenic methylation, urinary arsenic metabolites and human diseases: Current perspective
  publication-title: J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev.
  doi: 10.1080/10590500701201695
– ident: ref_61
  doi: 10.1016/j.toxlet.2016.06.1414
– volume: 27
  start-page: 1405
  year: 1999
  ident: ref_139
  article-title: Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00186-0
– volume: 7
  start-page: 260
  year: 2014
  ident: ref_229
  article-title: Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2013.1381
– volume: 56
  start-page: 133
  year: 2013
  ident: ref_112
  article-title: Seven sirtuins for seven deadly diseases of aging
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.10.525
– ident: ref_3
  doi: 10.3324/haematol.2019.229583
– volume: 74
  start-page: 677
  year: 2018
  ident: ref_111
  article-title: Redox manipulation of the manganese metal in human manganese superoxide dismutase for neutron diffraction
  publication-title: Acta Crystallogr. F Struct. Biol. Commun.
  doi: 10.1107/S2053230X18011299
– volume: 92
  start-page: 39
  year: 2016
  ident: ref_78
  article-title: miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.01.005
– volume: 134
  start-page: 597
  year: 2019
  ident: ref_4
  article-title: The simpler, the better: Oral arsenic for acute promyelocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood.2019000760
– volume: 260
  start-page: 241
  year: 2012
  ident: ref_36
  article-title: The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMAIII)-induced cytotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2012.02.017
– volume: 291
  start-page: 10263
  year: 2016
  ident: ref_47
  article-title: Loss of Mitochondrial Function Impairs Lysosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.695825
– volume: 8
  start-page: 68668
  year: 2017
  ident: ref_214
  article-title: Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19822
– volume: 278
  start-page: 38
  year: 2017
  ident: ref_107
  article-title: MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2017.07.215
– volume: 86
  start-page: 879
  year: 2012
  ident: ref_75
  article-title: Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: Roles of ROS, NF-κB, and MAPK pathways
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-012-0845-z
– volume: 51
  start-page: 257
  year: 2011
  ident: ref_48
  article-title: Arsenic-induced oxidative stress and its reversibility
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.04.008
– volume: 26
  start-page: 101254
  year: 2019
  ident: ref_113
  article-title: PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101254
– volume: 20
  start-page: 269
  year: 2015
  ident: ref_127
  article-title: Importance of tyrosine phosphorylation in receptor kinase complexes
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.02.005
– volume: 2012
  start-page: 217580
  year: 2012
  ident: ref_156
  article-title: The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2012/217580
– volume: 217
  start-page: 91
  year: 2019
  ident: ref_217
  article-title: Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hemato-toxicity in rats
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.11.050
– volume: 12
  start-page: 665
  year: 1998
  ident: ref_130
  article-title: Activation of EGF receptor by oxidized LDL
  publication-title: FASEB J.
  doi: 10.1096/fasebj.12.9.665
– ident: ref_186
  doi: 10.3390/cancers11070955
– volume: 23
  start-page: 8137
  year: 2003
  ident: ref_54
  article-title: Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.22.8137-8151.2003
– volume: 16
  start-page: 443
  year: 2001
  ident: ref_169
  article-title: ATM status confers sensitivity to arsenic cytotoxic effects
  publication-title: Mutagenesis
  doi: 10.1093/mutage/16.5.443
– volume: 254
  start-page: 323
  year: 2011
  ident: ref_228
  article-title: Inhibition of arsenic-induced rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2011.04.022
– volume: 13
  start-page: 2923
  year: 2019
  ident: ref_99
  article-title: Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury
  publication-title: Drug Des. Devel. Ther.
  doi: 10.2147/DDDT.S216156
– volume: 60
  start-page: 279
  year: 2001
  ident: ref_167
  article-title: Quantitative relationship between arsenic exposure and AP-1 activity in mouse urinary bladder epithelium
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/60.2.279
– volume: 26
  start-page: 12247
  year: 2019
  ident: ref_212
  article-title: Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-019-04502-w
– volume: 277
  start-page: L924
  year: 1999
  ident: ref_131
  article-title: Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals
  publication-title: Am. J. Physiol.
– volume: 10
  start-page: 27
  year: 1997
  ident: ref_39
  article-title: Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx960139g
– volume: 52
  start-page: 928
  year: 2012
  ident: ref_159
  article-title: Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.12.006
– volume: 17
  start-page: 67
  year: 2003
  ident: ref_163
  article-title: Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0287fje
– volume: 44
  start-page: 349
  year: 2017
  ident: ref_101
  article-title: Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2017.07.027
– volume: 234
  start-page: 590
  year: 2018
  ident: ref_24
  article-title: Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.083
– volume: 8
  start-page: 53
  year: 2006
  ident: ref_72
  article-title: Induction of endogenous Nrf2/small maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2006.8.53
– volume: 42
  start-page: 515
  year: 2016
  ident: ref_231
  article-title: Attenuative role of mangiferin in oxidative stress-mediated liver dysfunction in arsenic-intoxicated murines
  publication-title: Biofactors
  doi: 10.1002/biof.1276
– volume: 74
  start-page: 589
  year: 1996
  ident: ref_162
  article-title: Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways
  publication-title: J. Mol. Med. (Berl)
  doi: 10.1007/s001090050063
– ident: ref_7
– volume: 325
  start-page: 96
  year: 2014
  ident: ref_60
  article-title: Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: Differential roles of mitogen-activated protein kinases
  publication-title: Toxicology
  doi: 10.1016/j.tox.2014.09.002
– volume: 346
  start-page: 257
  year: 2014
  ident: ref_145
  article-title: Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2014.01.002
– volume: 283
  start-page: 65
  year: 2011
  ident: ref_13
  article-title: Advances in metal-induced oxidative stress and human disease
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.03.001
– volume: 57
  start-page: 300
  year: 2014
  ident: ref_241
  article-title: PBPK models for the prediction of in vivo performance of oral dosage forms
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2013.09.008
– volume: 6
  start-page: e370
  year: 2017
  ident: ref_172
  article-title: Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2017.67
– volume: 235
  start-page: 1134
  year: 2019
  ident: ref_157
  article-title: The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4-NFκB in A549cell exposed to layer house particulate matter 2.5 (PM)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.07.002
– volume: 382
  start-page: 195
  year: 2000
  ident: ref_34
  article-title: Arsenic species that cause release of iron from ferritin and generation of activated oxygen
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2000.2023
– volume: 17
  start-page: 319
  year: 2006
  ident: ref_224
  article-title: Synergistic effect of folic acid and vitamin B12 in ameliorating arsenic-induced oxidative damage in pancreatic tissue of rat
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2005.08.003
– volume: 11
  start-page: 1
  year: 2014
  ident: ref_180
  article-title: Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies
  publication-title: Cancer Biol. Med.
– volume: 142
  start-page: 661
  year: 2010
  ident: ref_129
  article-title: Phosphotyrosine signaling: Evolving a new cellular communication system
  publication-title: Cell
  doi: 10.1016/j.cell.2010.08.023
– volume: 5
  start-page: eaav4570
  year: 2019
  ident: ref_68
  article-title: The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav4570
– volume: 55
  start-page: 910
  year: 2016
  ident: ref_164
  article-title: p38alpha MAPK is required for arsenic-induced cell transformation
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.22331
– volume: 285
  start-page: 22576
  year: 2010
  ident: ref_63
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118976
– volume: 98
  start-page: 3762
  year: 2001
  ident: ref_152
  article-title: Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage
  publication-title: Blood
  doi: 10.1182/blood.V98.13.3762
– volume: 86
  start-page: 514
  year: 2000
  ident: ref_140
  article-title: NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.86.5.514
– volume: 96
  start-page: 685
  year: 2017
  ident: ref_220
  article-title: Protective role of epigallocatechin-3-gallate on arsenic induced testicular toxicity in Swiss albino mice
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.09.151
– volume: 379
  start-page: 31
  year: 2017
  ident: ref_138
  article-title: Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29
  publication-title: Toxicology
  doi: 10.1016/j.tox.2017.01.011
– volume: 347
  start-page: 117
  year: 2012
  ident: ref_236
  article-title: TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-011-1181-y
– volume: 10
  start-page: 1343
  year: 2008
  ident: ref_114
  article-title: Redox regulation of cell survival
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.1957
– volume: 353
  start-page: 458
  year: 2015
  ident: ref_30
  article-title: Arsenic, reactive oxygen, and endothelial dysfunction
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.115.223289
– volume: 25
  start-page: 34351
  year: 2018
  ident: ref_124
  article-title: Dysregulation of Sqstm1, mitophagy, and apoptotic genes in chronic exposure to arsenic and high-fat diet (HFD)
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-018-3349-4
– volume: 367
  start-page: 62
  year: 2019
  ident: ref_76
  article-title: Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2019.02.003
– volume: 34
  start-page: 506
  year: 2015
  ident: ref_205
  article-title: Diallyl trisulfide ameliorates arsenic-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327114543933
– volume: 102
  start-page: 37
  year: 1994
  ident: ref_32
  article-title: Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals
  publication-title: Environ. Health Perspect.
– volume: 134
  start-page: 92
  year: 2018
  ident: ref_194
  article-title: Canonical and non-canonical mechanisms of Nrf2 activation
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2018.06.013
– volume: 45
  start-page: 651
  year: 2008
  ident: ref_74
  article-title: Arsenic-induced malignant transformation of human keratinocytes: Involvement of Nrf2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.05.020
– volume: 93
  start-page: 2525
  year: 2019
  ident: ref_20
  article-title: Arsenite and its trivalent methylated metabolites inhibit glucose-stimulated calcium influx and insulin secretion in murine pancreatic islets
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-019-02526-2
– volume: 271
  start-page: 72
  year: 2013
  ident: ref_182
  article-title: Arsenic exposure induces the Warburg effect in cultured human cells
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2013.04.020
– volume: 163
  start-page: 203
  year: 2000
  ident: ref_16
  article-title: Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.1999.8872
– volume: 106
  start-page: 167
  year: 2014
  ident: ref_199
  article-title: Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2014.08.017
– volume: 168
  start-page: 58
  year: 1990
  ident: ref_141
  article-title: Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(90)91674-H
– volume: 235
  start-page: 18
  year: 2009
  ident: ref_168
  article-title: c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.11.002
– volume: 334
  start-page: 75
  year: 2017
  ident: ref_64
  article-title: Impaired autophagic flux and p62-mediated EMT are involved in arsenite-induced transformation of L-02 cells
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.09.004
– volume: 10
  start-page: 497
  year: 2019
  ident: ref_227
  article-title: Pterostilbene Activates the Nrf2-Dependent Antioxidant Response to Ameliorate Arsenic-Induced Intracellular Damage and Apoptosis in Human Keratinocytes
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00497
– volume: 33
  start-page: 815
  year: 2013
  ident: ref_175
  article-title: Stress granules inhibit apoptosis by reducing reactive oxygen species production
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00763-12
– volume: 234
  start-page: 2606
  year: 2019
  ident: ref_71
  article-title: Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2-like 2 (NFE2L2) protein and the Smad2/3 pathway
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27073
– volume: 123
  start-page: 305
  year: 2011
  ident: ref_6
  article-title: Arsenic exposure and toxicology: A historical perspective
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfr184
– volume: 56
  start-page: 172
  year: 2017
  ident: ref_70
  article-title: Elucidation of protective efficacy of Pentahydroxy flavone isolated from Madhuca indica against arsenite-induced cardiomyopathy: Role of Nrf-2, PPAR-γ, c-fos and c-jun
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/j.etap.2017.08.027
– volume: 81
  start-page: 160
  year: 2017
  ident: ref_59
  article-title: Acute arsenic exposure induces inflammatory responses and CD4(+) T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2016.12.005
– volume: 47
  start-page: 243
  year: 2007
  ident: ref_134
  article-title: Arsenic: Signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.47.120505.105144
– volume: 305
  start-page: 271
  year: 2003
  ident: ref_58
  article-title: Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)00728-9
– volume: 152
  start-page: 349
  year: 2016
  ident: ref_183
  article-title: From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfw093
– volume: 19
  start-page: 67
  year: 2005
  ident: ref_92
  article-title: Low levels of arsenite activates nuclear factor-kappaB and activator protein-1 in immortalized mesencephalic cells
  publication-title: J. Biochem. Mol. Toxicol.
  doi: 10.1002/jbt.20062
– volume: 32
  start-page: 824
  year: 2017
  ident: ref_173
  article-title: Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.10.011
– volume: 510
  start-page: 298
  year: 2014
  ident: ref_191
  article-title: Quantitative flux analysis reveals folate-dependent NADPH production
  publication-title: Nature
  doi: 10.1038/nature13236
– volume: 2019
  start-page: 8549035
  year: 2019
  ident: ref_26
  article-title: Proanthocyanidins Antagonize Arsenic-Induced Oxidative Damage and Promote Arsenic Methylation through Activation of the Nrf2 Signaling Pathway
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/8549035
– volume: 7
  start-page: 110
  year: 2018
  ident: ref_222
  article-title: Seed Extract Ameliorates Arsenic-Induced Blood Cell Genotoxicity and Hepatotoxicity in Wistar Albino Rats
  publication-title: Rep. Biochem. Mol. Biol.
– volume: 475
  start-page: 106
  year: 2011
  ident: ref_95
  article-title: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature10189
– volume: 39
  start-page: e1800205
  year: 2018
  ident: ref_15
  article-title: Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800205
– volume: 122
  start-page: 255
  year: 2014
  ident: ref_77
  article-title: Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1307545
– volume: 230
  start-page: 9
  year: 2008
  ident: ref_22
  article-title: The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.02.001
– volume: 230
  start-page: 383
  year: 2008
  ident: ref_73
  article-title: Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: Enhanced Keap1-Cul3 interaction
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.03.003
– volume: 87
  start-page: 981
  year: 2013
  ident: ref_87
  article-title: Oxidative stress and MAPK involved into ATF2 expression in immortalized human urothelial cells treated by arsenic
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-013-1058-9
– volume: 14
  start-page: 2773
  year: 2018
  ident: ref_109
  article-title: microRNA-451 protects neurons against ischemia/reperfusion injury-induced cell death by targeting CELF2
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S173632
– volume: 198
  start-page: 263
  year: 2010
  ident: ref_91
  article-title: Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.07.006
– volume: 101
  start-page: 6379
  year: 2004
  ident: ref_57
  article-title: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305902101
– volume: 394
  start-page: 95
  year: 1997
  ident: ref_31
  article-title: Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics
  publication-title: Mutat. Res.
  doi: 10.1016/S1383-5718(97)00130-7
– volume: 19
  start-page: 1807
  year: 2007
  ident: ref_133
  article-title: Oxyl radicals, redox-sensitive signalling cascades and antioxidants
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2007.04.009
– volume: 41
  start-page: 1788
  year: 2017
  ident: ref_219
  article-title: (-)-Epigallocatechin-3-Gallate Inhibits Arsenic-Induced Inflammation and Apoptosis through Suppression of Oxidative Stress in Mice
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000471911
– volume: 8
  start-page: 23905
  year: 2017
  ident: ref_19
  article-title: Metabolism, toxicity and anticancer activities of arsenic compounds
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14733
– volume: 13
  start-page: 1116
  year: 2012
  ident: ref_106
  article-title: Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2012.162
– volume: 91
  start-page: 772
  year: 1999
  ident: ref_143
  article-title: Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/91.9.772
– volume: 31
  start-page: 380
  year: 2018
  ident: ref_62
  article-title: Arsenite Targets the RING Finger Domain of Rbx1 E3 Ubiquitin Ligase to Inhibit Proteasome-Mediated Degradation of Nrf2
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.8b00062
– volume: 222
  start-page: 29
  year: 2001
  ident: ref_148
  article-title: Arsenic-induced NFkappaB transactivation through Erks- and JNKs-dependent pathways in mouse epidermal JB6 cells
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1017974131948
– volume: 42
  start-page: 5
  year: 2002
  ident: ref_136
  article-title: The paradox of arsenic: Molecular mechanisms of cell transformation and chemotherapeutic effects
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/S1040-8428(01)00215-3
– volume: 12
  start-page: 999
  year: 2016
  ident: ref_121
  article-title: Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1166318
– volume: 86
  start-page: 935
  year: 2012
  ident: ref_82
  article-title: NADPH oxidase-produced superoxide mediates EGFR transactivation by c-Src in arsenic trioxide-stimulated human keratinocytes
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-012-0856-9
– volume: 88
  start-page: 1
  year: 2017
  ident: ref_226
  article-title: Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl. flavonoids protect against arsenic trioxide-induced cardiotoxicity
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.12.130
– volume: 38
  start-page: 494
  year: 2013
  ident: ref_178
  article-title: Stress granules and cell signaling: More than just a passing phase?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.07.004
– volume: 12
  start-page: 213
  year: 2010
  ident: ref_67
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2021
– volume: 50
  start-page: 107
  year: 2017
  ident: ref_218
  article-title: Diallyl trisulfide, a garlic polysulfide protects against As-induced renal oxidative nephrotoxicity, apoptosis and inflammation in rats by activating the Nrf2/ARE signaling pathway
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2017.06.011
– volume: 222
  start-page: 303
  year: 2013
  ident: ref_86
  article-title: Arsenic induces the expressions of angiogenesis-related factors through PI3K and MAPK pathways in SV-HUC-1 human uroepithelial cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.08.008
– volume: 79
  start-page: 391
  year: 2003
  ident: ref_2
  article-title: Acute and chronic arsenic toxicity
  publication-title: Postgrad Med. J.
  doi: 10.1136/pmj.79.933.391
– volume: 1783
  start-page: 713
  year: 2008
  ident: ref_158
  article-title: NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.01.002
– volume: 253
  start-page: 741
  year: 2019
  ident: ref_137
  article-title: The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.07.065
– volume: 40
  start-page: 577
  year: 2015
  ident: ref_202
  article-title: Effects of glutathione on the in vivo metabolism and oxidative stress of arsenic in mice
  publication-title: J. Toxicol. Sci.
  doi: 10.2131/jts.40.577
– volume: 8
  start-page: 57605
  year: 2017
  ident: ref_197
  article-title: Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17745
– ident: ref_66
  doi: 10.3390/molecules22020194
– volume: 50
  start-page: 460
  year: 2018
  ident: ref_110
  article-title: Lycium Barbarum Polysaccharides Alleviates Oxidative Damage Induced by H2O2 Through Down-Regulating MicroRNA-194 in PC-12 and SH-SY5Y Cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000494159
– volume: 91
  start-page: 3787
  year: 2017
  ident: ref_201
  article-title: Metal chelators and neurotoxicity: Lead, mercury, and arsenic
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-017-2100-0
– volume: 284
  start-page: 18583
  year: 2009
  ident: ref_46
  article-title: Biological responses to arsenic compounds
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R900003200
– volume: 279
  start-page: L1005
  year: 2000
  ident: ref_174
  article-title: Reactive oxygen species in cell signaling
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.2000.279.6.L1005
– volume: 6
  start-page: a020644
  year: 2014
  ident: ref_126
  article-title: The genesis of tyrosine phosphorylation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a020644
– volume: 16
  start-page: 79
  year: 2017
  ident: ref_196
  article-title: ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-017-0648-1
– volume: 8
  start-page: 3773
  year: 2017
  ident: ref_225
  article-title: Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13931
– volume: 38
  start-page: 25
  year: 2016
  ident: ref_207
  article-title: Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2016.09.001
– volume: 2018
  start-page: 1421438
  year: 2018
  ident: ref_235
  article-title: Carnosic Acid, a Natural Diterpene, Attenuates Arsenic-Induced Hepatotoxicity via Reducing Oxidative Stress, MAPK Activation, and Apoptotic Cell Death Pathway
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2018/1421438
– volume: 27
  start-page: 1043
  year: 2013
  ident: ref_88
  article-title: Sodium arsenite induces cyclooxygenase-2 expression in human uroepithelial cells through MAPK pathway activation and reactive oxygen species induction
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2013.01.012
– volume: 219
  start-page: 227
  year: 2019
  ident: ref_115
  article-title: Arsenic trioxide and/or copper sulfate induced apoptosis and autophagy associated with oxidative stress and perturbation of mitochondrial dynamics in the thymus of Gallus gallus
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.188
– volume: 177
  start-page: 132
  year: 2001
  ident: ref_35
  article-title: Stress proteins induced by arsenic
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.2001.9291
– volume: 102
  start-page: 285
  year: 1994
  ident: ref_33
  article-title: DNA damage induced in cultured human alveolar (L-132) cells by exposure to dimethylarsinic acid
  publication-title: Environ. Health Perspect.
– volume: 59
  start-page: 3053
  year: 1999
  ident: ref_144
  article-title: Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway
  publication-title: Cancer Res.
– volume: 74
  start-page: 35
  year: 2015
  ident: ref_27
  article-title: Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer
  publication-title: Adv. Pharmacol.
  doi: 10.1016/bs.apha.2015.03.003
– volume: 278
  start-page: 22243
  year: 2003
  ident: ref_98
  article-title: Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301211200
– volume: 275
  start-page: 36062
  year: 2000
  ident: ref_150
  article-title: Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M007204200
– volume: 118
  start-page: 3796
  year: 2017
  ident: ref_206
  article-title: All-Trans Retinoic Acid Ameliorates Arsenic-Induced Oxidative Stress and Apoptosis in the Rat Uterus by Modulating MAPK Signaling Proteins
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.26029
– volume: 255
  start-page: 67
  year: 2004
  ident: ref_28
  article-title: Oxidative mechanism of arsenic toxicity and carcinogenesis
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/B:MCBI.0000007262.26044.e8
– volume: 159
  start-page: 65
  year: 1999
  ident: ref_83
  article-title: Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.1999.8723
– ident: ref_187
  doi: 10.3390/cells8080793
– volume: 46
  start-page: 675
  year: 2017
  ident: ref_193
  article-title: Glutathione Primes T Cell Metabolism for Inflammation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.03.019
– volume: 93
  start-page: 401
  year: 2019
  ident: ref_243
  article-title: In Vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-018-2372-z
– ident: ref_177
  doi: 10.1371/journal.ppat.1006240
– volume: 26
  start-page: 939
  year: 2007
  ident: ref_223
  article-title: Supplementation of ascorbic acid and alpha-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327107087909
– volume: 20
  start-page: 1045
  year: 2014
  ident: ref_125
  article-title: BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.12325
– volume: 527
  start-page: 186
  year: 2015
  ident: ref_190
  article-title: Oxidative stress inhibits distant metastasis by human melanoma cells
  publication-title: Nature
  doi: 10.1038/nature15726
– volume: 70
  start-page: 5127
  year: 2010
  ident: ref_42
  article-title: Reduced reactive oxygen species-generating capacity contributes to the enhanced cell growth of arsenic-transformed epithelial cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-0007
– volume: 21
  start-page: 783
  year: 1996
  ident: ref_147
  article-title: Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(96)00174-8
– volume: 99
  start-page: 544
  year: 2016
  ident: ref_51
  article-title: An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.09.010
– volume: 68
  start-page: 99
  year: 2014
  ident: ref_221
  article-title: Protective effect of dietary flaxseed oil on arsenic-induced nephrotoxicity and oxidative damage in rat kidney
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2014.03.011
– volume: 624
  start-page: 55
  year: 2018
  ident: ref_240
  article-title: The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.023
– ident: ref_108
  doi: 10.3892/ijmm.2018.4043
– volume: 176
  start-page: 11
  year: 2019
  ident: ref_117
  article-title: Biological Functions of Autophagy Genes: A Disease Perspective
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.048
– volume: 75
  start-page: 4817
  year: 2015
  ident: ref_96
  article-title: Nrf2 Activation Promotes Keratinocyte Survival during Early Skin Carcinogenesis via Metabolic Alterations
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0614
– volume: 243
  start-page: 399
  year: 2010
  ident: ref_171
  article-title: Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2009.12.014
– volume: 196
  start-page: 453
  year: 2017
  ident: ref_234
  article-title: Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12cells via modulating autophagy/apoptosis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.149
– volume: 1
  start-page: 40
  year: 2005
  ident: ref_244
  article-title: A PBTK/TD modeling-based approach can assess arsenic bioaccumulation in farmed tilapia (Oreochromis mossambicus) and human health risks
  publication-title: Integr. Environ. Assess. Manag.
  doi: 10.1897/IEAM_2004a-004.1
– volume: 9
  start-page: 347
  year: 2013
  ident: ref_200
  article-title: The role of chelation in the treatment of arsenic and mercury poisoning
  publication-title: J. Med. Toxicol.
  doi: 10.1007/s13181-013-0344-5
– volume: 198
  start-page: 419
  year: 2004
  ident: ref_84
  article-title: Arsenic and urinary bladder cell proliferation
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2003.07.017
– volume: 120
  start-page: 583
  year: 2012
  ident: ref_94
  article-title: Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104580
– volume: 8
  start-page: e3159
  year: 2017
  ident: ref_230
  article-title: Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.482
– volume: 271
  start-page: 13422
  year: 1996
  ident: ref_165
  article-title: Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.23.13422
– volume: 6
  start-page: 430
  year: 2016
  ident: ref_239
  article-title: PBPK modeling and simulation in drug research and development
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2016.04.004
– volume: 1863
  start-page: 585
  year: 2017
  ident: ref_155
  article-title: Nrf2 signaling pathway: Pivotal roles in inflammation
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2016.11.005
– volume: 29
  start-page: 2658
  year: 2009
  ident: ref_69
  article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01639-08
– volume: 289
  start-page: 15244
  year: 2014
  ident: ref_161
  article-title: Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.540633
– volume: 55
  start-page: 26
  year: 2018
  ident: ref_89
  article-title: Ameliorative role of genistein against age-dependent chronic arsenic toxicity in murine brains via the regulation of oxidative stress and inflammatory signaling cascades
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2017.11.010
– volume: 36
  start-page: 655
  year: 2015
  ident: ref_192
  article-title: Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation
  publication-title: Tumour. Biol.
  doi: 10.1007/s13277-014-2644-z
– volume: 58
  start-page: 201
  year: 2002
  ident: ref_1
  article-title: Arsenic round the world: A review
  publication-title: Talanta
  doi: 10.1016/S0039-9140(02)00268-0
– volume: 4
  start-page: 459
  year: 2005
  ident: ref_122
  article-title: Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.4.4.1652
– volume: 65
  start-page: 3981
  year: 2008
  ident: ref_185
  article-title: Roles of p53, MYC and HIF-1 in regulating glycolysis—The seventh hallmark of cancer
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-8224-x
– volume: 133
  start-page: 33
  year: 2002
  ident: ref_166
  article-title: Effect of arsenic on transcription factor AP-1 and NF-kappaB DNA binding activity and related gene expression
  publication-title: Toxicol. Lett.
  doi: 10.1016/S0378-4274(02)00083-8
– ident: ref_102
  doi: 10.1002/pmic.201600257
– volume: 302
  start-page: 93
  year: 2019
  ident: ref_104
  article-title: Daphnetin activates the Nrf2-dependent antioxidant response to prevent arsenic-induced oxidative insult in human lung epithelial cells
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.02.001
– volume: 282
  start-page: L1040
  year: 2002
  ident: ref_132
  article-title: Role of Ras in metal-induced EGF receptor signaling and NF-kappaB activation in human airway epithelial cells
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00390.2001
– volume: 38
  start-page: 5718
  year: 2010
  ident: ref_97
  article-title: Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq212
– volume: 102
  start-page: 264
  year: 2015
  ident: ref_120
  article-title: Targeting Pink1-Parkin-mediated mitophagy for treating liver injury
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.09.020
– volume: 110
  start-page: 435
  year: 2010
  ident: ref_18
  article-title: Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2009.08.012
– volume: 11
  start-page: 982
  year: 2015
  ident: ref_237
  article-title: Significance of antioxidant potential of plants and its relevance to therapeutic applications
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.12096
– volume: 206
  start-page: 198
  year: 2005
  ident: ref_21
  article-title: Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.10.023
– volume: 294
  start-page: 184
  year: 2018
  ident: ref_242
  article-title: Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2018.05.029
– volume: 79
  start-page: 183
  year: 2005
  ident: ref_12
  article-title: A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-004-0620-x
– volume: 266
  start-page: 12
  year: 2008
  ident: ref_195
  article-title: Reactive oxygen species and HIF-1 signalling in cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2008.02.028
– volume: 89
  start-page: 1057
  year: 2015
  ident: ref_208
  article-title: Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-014-1302-y
– volume: 167
  start-page: 1803
  year: 2016
  ident: ref_176
  article-title: Mutant KRAS Enhances Tumor Cell Fitness by Upregulating Stress Granules
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.035
– volume: 26
  start-page: 877
  year: 2012
  ident: ref_189
  article-title: Links between metabolism and cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.189365.112
– volume: 166
  start-page: 555
  year: 2016
  ident: ref_123
  article-title: Mitochondria and Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– volume: 1865
  start-page: 721
  year: 2018
  ident: ref_154
  article-title: Nrf2-Keap1 signaling in oxidative and reductive stress
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2018.02.010
– volume: 19
  start-page: 73
  year: 2008
  ident: ref_238
  article-title: Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2008.03.003
– volume: 198
  start-page: 327
  year: 2004
  ident: ref_11
  article-title: A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2003.10.027
– volume: 14
  start-page: 551
  year: 2018
  ident: ref_119
  article-title: Role of exercise in age-related sarcopenia
  publication-title: J. Exerc. Rehabil.
  doi: 10.12965/jer.1836268.134
SSID ssj0000800823
Score 2.5834415
SecondaryResourceType review_article
Snippet Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 240
SubjectTerms Animals
antioxidants
Antioxidants - metabolism
Apoptosis - drug effects
arsenic
Arsenic - toxicity
Arsenic Poisoning
Cell Proliferation
Epigenesis, Genetic
Humans
Inflammation
MAP Kinase Signaling System
Mice
MicroRNAs - metabolism
Mitophagy
NF-E2-Related Factor 2 - metabolism
NF-kappa B - metabolism
nrf2
Oxidation-Reduction
Oxidative Stress - drug effects
Phosphorylation
Reactive Oxygen Species - metabolism
Review
ros
signaling pathway
Transcription Factor AP-1 - metabolism
Tumor Suppressor Protein p53 - metabolism
Tyrosine - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS_QwFA3iyo34tr6IoG6kOJO0eSxVFBFUEAV3JU8c0fbjmxH033tvWocZUdzYZRvacE-bnJPenEvInjcuKqVtzqwOeVHomNvC81w771UMqijSmu7Vtbi4Ly4fyoeJUl-YE9baA7eBOwIBFa0HWhO9LJyOymllnJPMxyAU8zj6wpw3IaaeOh6kGG8z3Tno-iPczY52o-jpNTUHJav-7_jl1zTJiXnnfIHMd4SRHrcdXSQzoV4iy8c1iOWXd3pAUwpnWhtfJhJAp7fNc6BNpLfBpLGM3ry9w1tCU6X5MKSDGm42DPXA0bvmbeCAhq-Q-_Ozu9OLvKuMkLuyL0Y5yBRm-n3Tj4J5g7tdbRmZNYZHIYGzBemUMtZKLK0jCiEUj4CK9hEIVKkEXyWzdVOHdUIDoIGkwFoOVKQnNAxhEg8PVMDoMiOHn7GqXGcbjtUrniuQDxjZajKyGdkft_7X2mX80O4Ewz5ugybX6QRAX3XQV79Bn5HdT9Aq-CjwT4epQ_M6rFhy_UfT3YystSCOH8VZj3OmZUbkFLxTfZm-Ug8ek_G27EnGtNj4i85vkjmG0h0TwMstMjv6_xq2gd-M7E56lT8ARUD5cQ
  priority: 102
  providerName: Directory of Open Access Journals
Title The Role of Reactive Oxygen Species in Arsenic Toxicity
URI https://www.ncbi.nlm.nih.gov/pubmed/32033297
https://www.proquest.com/docview/2352655399
https://pubmed.ncbi.nlm.nih.gov/PMC7072296
https://doaj.org/article/837fbd800fd74c9f8c98acc72dfe682d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71ceGCCuURHtEiARdkSNb2Pg4ItahVhdSCokbKzdpnCQp2SVIp-ffMbJyogSLho71aWzO7O9-sZ78P4LU3LiqlbcatDllR6JjZwueZdt6rGFRRpD3d8wtxNiy-jMrRDqzVRlsDzu5M7UhPajidvF_8Wn7CCf-RMk5M2T_QQXViEiW6rl3Yx5gkScvgvAX6P1pcpJLWG8eYRudRRqsq-L862IpPicb_Luz5ZwnlrZh0egD3WzDJjlbefwA7oX4Ih0c1JtI_l-wtS-Wdad_8ECQOCDZoJoE1kQ2CSesc-7pY4ghiSYU-zNi4xs5moR47dtksxg4h-iMYnp5cfj7LWtWEzJV9Mc8wheGm3zf9KLg3dBLWlpFbY_IoJOK5IJ1SxlpJsjuiEELlET2mfURwVSqRP4a9uqnDU2ABPUWAwdocYUpPaFzeJF0eYYLRZQferW1VuZZSnJQtJhWmFmTZ6rZlO_Bm0_p6RaXxj3bHZPZNGyLATjea6VXVzqcK8-poPXo1elk4HZXTyjgnuY9BKO478GrttAonDP0FMXVobmYVT4oARMjbgScrJ25elfNennMtOyC33Lv1LdtP6vH3RMote5JzLZ79x3ufwz1OWTvVfpcvYG8-vQkvEdrMbRd25Uh2Yf_45OLboJs2CLppJP8Gyu75lw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Reactive+Oxygen+Species+in+Arsenic+Toxicity&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Yuxin&rft.au=Li%2C+Jin&rft.au=Lou%2C+Bin&rft.au=Wu%2C+Ruirui&rft.date=2020-02-05&rft.issn=2218-273X&rft.eissn=2218-273X&rft.volume=10&rft.issue=2&rft_id=info:doi/10.3390%2Fbiom10020240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon