The Role of Reactive Oxygen Species in Arsenic Toxicity
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell...
Saved in:
Published in | Biomolecules (Basel, Switzerland) Vol. 10; no. 2; p. 240 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
05.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants. |
---|---|
AbstractList | Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants. Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants. |
Author | Xu, Yuanyuan Hu, Yuxin Pi, Jingbo Wu, Ruirui Wang, Gang Li, Jin Lu, Chunwei Lou, Bin Wang, Huihui |
AuthorAffiliation | 1 Experimental Teaching Center, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; yxhu@cmu.edu.cn (Y.H.); gwang@cmu.edu.cn (G.W.); cwlu@cmu.edu.cn (C.L.) 2 Program of Environmental Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; L1019Jin@163.com (J.L.); binlougg@gmail.com (B.L.); rui1224984970@163.com (R.W.); hhwang@cmu.edu.cn (H.W.); jbpi@cmu.edu.cn (J.P.) |
AuthorAffiliation_xml | – name: 1 Experimental Teaching Center, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; yxhu@cmu.edu.cn (Y.H.); gwang@cmu.edu.cn (G.W.); cwlu@cmu.edu.cn (C.L.) – name: 2 Program of Environmental Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; L1019Jin@163.com (J.L.); binlougg@gmail.com (B.L.); rui1224984970@163.com (R.W.); hhwang@cmu.edu.cn (H.W.); jbpi@cmu.edu.cn (J.P.) |
Author_xml | – sequence: 1 givenname: Yuxin orcidid: 0000-0002-2589-3007 surname: Hu fullname: Hu, Yuxin – sequence: 2 givenname: Jin surname: Li fullname: Li, Jin – sequence: 3 givenname: Bin surname: Lou fullname: Lou, Bin – sequence: 4 givenname: Ruirui surname: Wu fullname: Wu, Ruirui – sequence: 5 givenname: Gang surname: Wang fullname: Wang, Gang – sequence: 6 givenname: Chunwei surname: Lu fullname: Lu, Chunwei – sequence: 7 givenname: Huihui surname: Wang fullname: Wang, Huihui – sequence: 8 givenname: Jingbo surname: Pi fullname: Pi, Jingbo – sequence: 9 givenname: Yuanyuan orcidid: 0000-0003-2354-9453 surname: Xu fullname: Xu, Yuanyuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32033297$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9LXDEQx0OxVGu99VzesYdum0z25celIKJWEATdQm8hL5mskbcv2-StuP99s12VVQyBDMl3Pt_MzEeyN6QBCfnM6HfONf3RxbRglAKFKX1HDgCYmoDkf_Z24n1yVModrUvVDfwD2edAOQctD4ic3WJznXpsUmiu0box3mNz9bCe49DcLNFFLE0cmuNccIiumaWH6OK4_kTeB9sXPHo8D8nvs9PZya_J5dX5xcnx5cS1TIyTqdZgGbMsCPAWeKu6NkBnLQ9CMg0onVK266QWIMVUCMWDt077ABxaJfghudhyfbJ3Zpnjwua1STaa_xcpz43NY3Q9GsVl6HytMXg5dToop5V1ToIPKBT4yvq5ZS1X3QK9w2HMtn8BffkyxFszT_dGUgmgN5_5-gjI6e8Ky2gWsTjseztgWhVT6wPRtlzrKv2y6_Vs8tT5KoCtwOVUSsZgalvtGNPGOvaGUbOZsNmdcE369irpifum_B986aZ7 |
CitedBy_id | crossref_primary_10_2478_aiht_2022_73_3669 crossref_primary_10_1007_s11356_023_27021_1 crossref_primary_10_1093_ckj_sfae358 crossref_primary_10_1016_j_freeradbiomed_2024_12_035 crossref_primary_10_1007_s12011_024_04211_7 crossref_primary_10_1080_19768354_2024_2349758 crossref_primary_10_1016_j_chemosphere_2023_138807 crossref_primary_10_1002_tox_24019 crossref_primary_10_1016_j_microc_2023_109672 crossref_primary_10_1007_s13530_023_00168_7 crossref_primary_10_1007_s00018_023_04992_5 crossref_primary_10_1590_1984_3143_ar2022_0119 crossref_primary_10_1016_j_jafr_2022_100379 crossref_primary_10_1016_j_jhazmat_2022_128532 crossref_primary_10_1016_j_plaphy_2025_109830 crossref_primary_10_1016_j_foohum_2023_10_012 crossref_primary_10_1007_s12011_023_03881_z crossref_primary_10_1038_s41419_021_04478_x crossref_primary_10_1016_j_taap_2021_115684 crossref_primary_10_1016_j_taap_2023_116775 crossref_primary_10_1007_s11356_022_20850_6 crossref_primary_10_1016_j_crtox_2023_100114 crossref_primary_10_1039_D2MO00246A crossref_primary_10_1007_s12672_024_01417_y crossref_primary_10_1016_j_taap_2024_117115 crossref_primary_10_1016_j_etap_2022_103922 crossref_primary_10_1016_j_scitotenv_2023_163771 crossref_primary_10_1093_nar_gkab1231 crossref_primary_10_1016_j_cbi_2023_110694 crossref_primary_10_1038_s41598_025_85617_8 crossref_primary_10_1007_s43188_024_00255_y crossref_primary_10_1016_j_phrs_2024_107466 crossref_primary_10_1016_j_jtemb_2022_127067 crossref_primary_10_1016_j_sajb_2025_02_028 crossref_primary_10_1016_j_taap_2023_116763 crossref_primary_10_1039_D3BM00555K crossref_primary_10_3390_antiox13030287 crossref_primary_10_3390_neuroglia6010004 crossref_primary_10_1007_s10534_025_00671_z crossref_primary_10_1016_j_scitotenv_2023_165821 crossref_primary_10_1155_2022_1005255 crossref_primary_10_1007_s12403_021_00392_x crossref_primary_10_1016_j_cbi_2025_111410 crossref_primary_10_1016_j_fct_2024_114845 crossref_primary_10_1016_j_jtemb_2023_127238 crossref_primary_10_1016_j_jhazmat_2020_124768 crossref_primary_10_1007_s00344_025_11676_w crossref_primary_10_1002_tox_24008 crossref_primary_10_1002_jbt_23040 crossref_primary_10_1080_03067319_2024_2324371 crossref_primary_10_1002_mc_23408 crossref_primary_10_1007_s12011_021_02632_2 crossref_primary_10_1016_j_chemosphere_2023_137735 crossref_primary_10_1016_j_jhazmat_2021_128100 crossref_primary_10_22270_jddt_v14i11_6835 crossref_primary_10_1016_j_semcancer_2021_06_002 crossref_primary_10_3839_jabc_2024_017 crossref_primary_10_1016_j_scitotenv_2021_151218 crossref_primary_10_1016_j_tiv_2024_105877 crossref_primary_10_1007_s12011_023_03897_5 crossref_primary_10_1016_j_jhazmat_2024_136243 crossref_primary_10_3390_ijms241311031 crossref_primary_10_1016_j_tox_2024_153751 crossref_primary_10_1016_j_abb_2022_109487 crossref_primary_10_1016_j_lfs_2021_119942 crossref_primary_10_1039_D3FO00572K crossref_primary_10_3390_jox12030016 crossref_primary_10_3390_toxics12020141 crossref_primary_10_1016_j_mehy_2023_111233 crossref_primary_10_1016_j_fpsl_2022_100888 crossref_primary_10_1016_j_plaphy_2025_109631 crossref_primary_10_3390_biom11020202 crossref_primary_10_1016_j_fct_2020_111809 crossref_primary_10_1016_j_chemosphere_2020_127305 crossref_primary_10_1016_j_cbpc_2025_110160 crossref_primary_10_1007_s41742_022_00442_5 crossref_primary_10_1016_j_scitotenv_2024_171491 crossref_primary_10_15407_ubj92_06_119 crossref_primary_10_3390_biology12020193 crossref_primary_10_3389_fenvs_2022_979049 crossref_primary_10_1016_j_jtemin_2023_100079 crossref_primary_10_14202_vetworld_2023_82_93 crossref_primary_10_1007_s11033_021_06669_3 crossref_primary_10_1002_cbin_11791 crossref_primary_10_1186_s40360_025_00906_2 crossref_primary_10_3390_pharmaceutics14091945 crossref_primary_10_1016_j_sajb_2024_11_026 crossref_primary_10_1007_s11356_023_30791_3 crossref_primary_10_1016_j_bios_2021_113031 crossref_primary_10_1177_09603271211045955 crossref_primary_10_1016_j_fct_2022_113360 crossref_primary_10_1016_j_envpol_2023_121084 crossref_primary_10_4068_cmj_2024_60_2_97 crossref_primary_10_3390_molecules27031037 crossref_primary_10_1007_s12011_024_04157_w crossref_primary_10_1007_s11033_021_06377_y crossref_primary_10_1080_09603123_2022_2159016 crossref_primary_10_25259_AJBPS_7_2023 crossref_primary_10_1038_s41392_023_01679_y crossref_primary_10_1111_gtc_13122 crossref_primary_10_1016_j_chemosphere_2023_140946 crossref_primary_10_1016_j_jhazmat_2024_135736 crossref_primary_10_1007_s12291_024_01259_z crossref_primary_10_1016_j_jhazmat_2024_134641 crossref_primary_10_1007_s11356_020_11035_0 crossref_primary_10_1007_s11356_021_18106_w crossref_primary_10_1007_s11356_024_32177_5 crossref_primary_10_1007_s40572_021_00305_9 crossref_primary_10_1016_j_tox_2024_154033 crossref_primary_10_1007_s00210_024_03274_6 crossref_primary_10_1039_D4CC03722G crossref_primary_10_1155_2022_3459855 crossref_primary_10_1007_s12011_024_04167_8 crossref_primary_10_1039_D2NA00167E crossref_primary_10_1007_s11356_022_24776_x crossref_primary_10_1016_j_semcancer_2021_05_009 crossref_primary_10_1016_j_etap_2024_104558 crossref_primary_10_1016_j_mrgentox_2022_503483 crossref_primary_10_1016_j_ecoenv_2021_113098 crossref_primary_10_1016_j_cbi_2024_111029 crossref_primary_10_1016_j_talanta_2024_126240 crossref_primary_10_1016_j_taap_2023_116709 crossref_primary_10_1016_j_taap_2021_115738 crossref_primary_10_3390_ijms25042161 crossref_primary_10_1038_s41467_023_39436_y crossref_primary_10_1007_s12011_021_03026_0 crossref_primary_10_3390_antiox12010172 crossref_primary_10_1002_fsn3_3278 crossref_primary_10_1093_nar_gkaa376 crossref_primary_10_1155_2022_1546297 crossref_primary_10_1016_j_fct_2021_112523 crossref_primary_10_1007_s00204_024_03750_1 crossref_primary_10_1016_j_phymed_2024_155649 crossref_primary_10_1007_s00204_022_03279_1 crossref_primary_10_1016_j_intimp_2023_111325 crossref_primary_10_1016_j_envpol_2024_125516 crossref_primary_10_1186_s12889_024_19585_5 crossref_primary_10_3390_plants12081699 crossref_primary_10_1080_15569543_2022_2124420 crossref_primary_10_1016_j_ijbiomac_2024_136795 crossref_primary_10_1007_s10495_024_02054_0 crossref_primary_10_3390_brainsci13121633 crossref_primary_10_1155_2022_9865606 crossref_primary_10_5812_gct_131298 crossref_primary_10_3390_plants12091815 crossref_primary_10_3389_fpls_2024_1371748 crossref_primary_10_1007_s12011_021_02712_3 crossref_primary_10_1016_j_molstruc_2024_139338 crossref_primary_10_1016_j_sajb_2023_12_005 crossref_primary_10_1208_s12249_022_02478_4 crossref_primary_10_1016_j_chemosphere_2021_132406 crossref_primary_10_1111_pce_14926 crossref_primary_10_1007_s11356_023_31683_2 crossref_primary_10_1016_j_stress_2022_100055 crossref_primary_10_1080_17435889_2024_2367958 crossref_primary_10_3390_ijms25126662 crossref_primary_10_1016_j_etap_2022_103850 crossref_primary_10_3390_antiox14020184 crossref_primary_10_1155_2020_8815313 crossref_primary_10_1007_s12011_024_04510_z crossref_primary_10_1007_s12011_021_02624_2 crossref_primary_10_1016_j_envpol_2021_117940 crossref_primary_10_3390_molecules27165263 crossref_primary_10_1016_j_envres_2024_120446 crossref_primary_10_1039_D4NJ03573A crossref_primary_10_3390_cancers12092483 crossref_primary_10_2174_2210315513666230220145335 crossref_primary_10_1016_j_lfs_2020_118132 crossref_primary_10_3389_fenvs_2022_920957 crossref_primary_10_1016_j_dscb_2022_100050 crossref_primary_10_1007_s11356_024_32213_4 crossref_primary_10_3390_antiox11101983 crossref_primary_10_3390_ijms232213879 crossref_primary_10_1007_s10534_022_00482_6 crossref_primary_10_1002_wrna_1596 crossref_primary_10_3390_agriculture13071293 crossref_primary_10_1007_s12298_023_01355_z crossref_primary_10_1016_j_bcp_2022_114973 crossref_primary_10_1016_j_hazadv_2023_100329 crossref_primary_10_1016_j_sajb_2024_03_020 crossref_primary_10_1016_j_jhazmat_2023_130735 crossref_primary_10_3389_fvets_2023_1128522 crossref_primary_10_1016_j_phyplu_2024_100712 crossref_primary_10_1016_j_plaphy_2024_109001 crossref_primary_10_1016_j_biomaterials_2024_122650 crossref_primary_10_1071_FP21196 crossref_primary_10_1016_j_taap_2020_115251 crossref_primary_10_3390_jox15010001 crossref_primary_10_3389_fphar_2020_594496 crossref_primary_10_3389_fmicb_2023_1240798 crossref_primary_10_1021_acs_chemrestox_2c00129 crossref_primary_10_2903_j_efsa_2024_8488 crossref_primary_10_1007_s12011_025_04513_4 crossref_primary_10_3390_su141710697 crossref_primary_10_1016_j_semcancer_2021_08_009 crossref_primary_10_1016_j_plaphy_2024_108956 crossref_primary_10_37349_ent_2022_00019 crossref_primary_10_1002_biof_2027 crossref_primary_10_1016_j_ecoenv_2024_117258 crossref_primary_10_1016_j_aquatox_2021_105901 crossref_primary_10_3390_antiox11051034 crossref_primary_10_1007_s00204_024_03903_2 crossref_primary_10_3390_agriculture13020401 crossref_primary_10_1016_j_taap_2021_115404 crossref_primary_10_3390_cells11081363 crossref_primary_10_1016_j_chemosphere_2020_128350 crossref_primary_10_3390_biom13091424 crossref_primary_10_1016_j_jhazmat_2023_132570 crossref_primary_10_1080_21622515_2024_2428447 crossref_primary_10_3390_ijerph182111446 crossref_primary_10_1016_j_plaphy_2024_108849 crossref_primary_10_1016_j_plaphy_2024_108608 crossref_primary_10_1016_j_mrgentox_2022_503500 crossref_primary_10_1007_s11356_022_22657_x crossref_primary_10_1007_s11427_020_1912_4 crossref_primary_10_1002_jbt_23635 crossref_primary_10_3389_fphar_2022_877125 crossref_primary_10_3390_molecules27175657 crossref_primary_10_1038_s41598_021_03190_2 crossref_primary_10_1016_j_jbc_2023_102955 crossref_primary_10_1093_toxsci_kfae147 crossref_primary_10_1016_j_bbrc_2024_150258 crossref_primary_10_1016_j_stress_2023_100338 crossref_primary_10_1016_j_jhazmat_2023_133078 crossref_primary_10_1080_15569543_2021_1891938 crossref_primary_10_1002_bio_70119 crossref_primary_10_3390_toxics10030140 crossref_primary_10_1007_s12598_023_02466_y crossref_primary_10_37349_ec_2023_00012 crossref_primary_10_1002_jat_4459 crossref_primary_10_1016_j_semcancer_2021_03_022 crossref_primary_10_3390_ijms22041949 crossref_primary_10_1007_s00204_022_03317_y crossref_primary_10_1016_j_envint_2021_107034 crossref_primary_10_1016_j_chemosphere_2024_142349 crossref_primary_10_1016_j_scitotenv_2022_155004 crossref_primary_10_1021_jacs_3c11665 crossref_primary_10_1155_2021_6406318 crossref_primary_10_3390_antiox13080938 crossref_primary_10_1007_s00204_022_03232_2 crossref_primary_10_1016_j_matpr_2021_08_354 crossref_primary_10_1093_toxres_tfab007 crossref_primary_10_1016_j_ecoenv_2024_116183 crossref_primary_10_1007_s12298_022_01124_4 crossref_primary_10_3390_foods13121890 crossref_primary_10_1016_j_hazadv_2024_100543 crossref_primary_10_1016_j_scitotenv_2023_169493 |
Cites_doi | 10.1038/cddis.2016.105 10.1083/jcb.201005012 10.1002/jcb.10269 10.1016/j.ccr.2012.05.016 10.1007/s002040000134 10.1182/blood-2012-04-422121 10.1289/ehp.99107593 10.1186/s12918-017-0407-3 10.1177/0960327115595682 10.1006/bbrc.1997.6943 10.2741/s465 10.3389/fimmu.2018.01605 10.1124/mol.109.058453 10.1016/S0014-4827(03)00341-0 10.1186/s13045-017-0424-0 10.1159/000494006 10.1016/j.biopha.2018.10.134 10.3109/15376516.2013.869778 10.1016/j.fct.2017.07.021 10.1371/journal.pone.0132499 10.18632/oncotarget.18582 10.1007/s00204-015-1600-z 10.1128/MCB.00248-10 10.2147/DDDT.S115339 10.1007/s00204-015-1579-5 10.1002/jat.1649 10.1016/j.fct.2019.02.022 10.1016/j.toxlet.2013.10.029 10.1124/jpet.105.092874 10.1128/MCB.01748-12 10.1016/j.cbi.2015.06.040 10.1080/15376516.2017.1422578 10.4103/0971-6580.84258 10.1021/tx000123x 10.1016/j.toxlet.2013.10.013 10.1074/jbc.M111.312694 10.1046/j.1523-1747.1999.00748.x 10.1016/j.taap.2012.04.003 10.1016/j.yrtph.2018.09.010 10.1006/abbi.2000.1770 10.1248/cpb.37.2753 10.1158/0008-5472.CAN-19-1363 10.1002/biof.1375 10.1289/ehp.9507 10.1289/ehp.02110s5807 10.1073/pnas.172398899 10.1007/s12011-017-1077-0 10.1016/j.fct.2013.03.048 10.1159/000153979 10.1078/1438-4639-00177 10.1128/MCB.18.9.5178 10.1615/JEnvironPatholToxicolOncol.v29.i2.30 10.1155/2019/1038932 10.1023/A:1015971118012 10.1016/j.taap.2018.01.014 10.1016/j.cell.2010.06.011 10.1080/10590500701201695 10.1016/j.toxlet.2016.06.1414 10.1016/S0891-5849(99)00186-0 10.3892/etm.2013.1381 10.1016/j.freeradbiomed.2012.10.525 10.3324/haematol.2019.229583 10.1107/S2053230X18011299 10.1016/j.freeradbiomed.2016.01.005 10.1182/blood.2019000760 10.1016/j.taap.2012.02.017 10.1074/jbc.M115.695825 10.18632/oncotarget.19822 10.1016/j.toxlet.2017.07.215 10.1007/s00204-012-0845-z 10.1016/j.freeradbiomed.2011.04.008 10.1016/j.redox.2019.101254 10.1016/j.tplants.2015.02.005 10.1155/2012/217580 10.1016/j.lfs.2018.11.050 10.1096/fasebj.12.9.665 10.3390/cancers11070955 10.1128/MCB.23.22.8137-8151.2003 10.1093/mutage/16.5.443 10.1016/j.taap.2011.04.022 10.2147/DDDT.S216156 10.1093/toxsci/60.2.279 10.1007/s11356-019-04502-w 10.1021/tx960139g 10.1016/j.freeradbiomed.2011.12.006 10.1096/fj.02-0287fje 10.1016/j.tiv.2017.07.027 10.1016/j.envpol.2017.11.083 10.1089/ars.2006.8.53 10.1002/biof.1276 10.1007/s001090050063 10.1016/j.tox.2014.09.002 10.1016/j.canlet.2014.01.002 10.1016/j.tox.2011.03.001 10.1016/j.ejps.2013.09.008 10.1038/oncsis.2017.67 10.1016/j.chemosphere.2019.07.002 10.1006/abbi.2000.2023 10.1016/j.jnutbio.2005.08.003 10.1016/j.cell.2010.08.023 10.1126/sciadv.aav4570 10.1002/mc.22331 10.1074/jbc.M110.118976 10.1182/blood.V98.13.3762 10.1161/01.RES.86.5.514 10.1016/j.biopha.2017.09.151 10.1016/j.tox.2017.01.011 10.1007/s00441-011-1181-y 10.1089/ars.2007.1957 10.1124/jpet.115.223289 10.1007/s11356-018-3349-4 10.1016/j.taap.2019.02.003 10.1177/0960327114543933 10.1016/j.phrs.2018.06.013 10.1016/j.freeradbiomed.2008.05.020 10.1007/s00204-019-02526-2 10.1016/j.taap.2013.04.020 10.1006/taap.1999.8872 10.1016/j.biochi.2014.08.017 10.1016/0006-291X(90)91674-H 10.1016/j.taap.2008.11.002 10.1016/j.taap.2017.09.004 10.3389/fphar.2019.00497 10.1128/MCB.00763-12 10.1002/jcp.27073 10.1093/toxsci/kfr184 10.1016/j.etap.2017.08.027 10.1016/j.molimm.2016.12.005 10.1146/annurev.pharmtox.47.120505.105144 10.1016/S0006-291X(03)00728-9 10.1093/toxsci/kfw093 10.1002/jbt.20062 10.1016/j.ccell.2017.10.011 10.1038/nature13236 10.1155/2019/8549035 10.1038/nature10189 10.1002/marc.201800205 10.1289/ehp.1307545 10.1016/j.taap.2008.02.001 10.1016/j.taap.2008.03.003 10.1007/s00204-013-1058-9 10.2147/NDT.S173632 10.1016/j.toxlet.2010.07.006 10.1073/pnas.0305902101 10.1016/S1383-5718(97)00130-7 10.1016/j.cellsig.2007.04.009 10.1159/000471911 10.18632/oncotarget.14733 10.1038/embor.2012.162 10.1093/jnci/91.9.772 10.1021/acs.chemrestox.8b00062 10.1023/A:1017974131948 10.1016/S1040-8428(01)00215-3 10.1080/15548627.2016.1166318 10.1007/s00204-012-0856-9 10.1016/j.biopha.2016.12.130 10.1016/j.tibs.2013.07.004 10.1038/ncb2021 10.1016/j.intimp.2017.06.011 10.1016/j.toxlet.2013.08.008 10.1136/pmj.79.933.391 10.1016/j.bbamcr.2008.01.002 10.1016/j.envpol.2019.07.065 10.2131/jts.40.577 10.18632/oncotarget.17745 10.3390/molecules22020194 10.1159/000494159 10.1007/s00204-017-2100-0 10.1074/jbc.R900003200 10.1152/ajplung.2000.279.6.L1005 10.1101/cshperspect.a020644 10.1186/s12943-017-0648-1 10.18632/oncotarget.13931 10.1016/j.jnutbio.2016.09.001 10.1155/2018/1421438 10.1016/j.tiv.2013.01.012 10.1016/j.chemosphere.2018.11.188 10.1006/taap.2001.9291 10.1016/bs.apha.2015.03.003 10.1074/jbc.M301211200 10.1074/jbc.M007204200 10.1002/jcb.26029 10.1023/B:MCBI.0000007262.26044.e8 10.1006/taap.1999.8723 10.3390/cells8080793 10.1016/j.immuni.2017.03.019 10.1007/s00204-018-2372-z 10.1371/journal.ppat.1006240 10.1177/0960327107087909 10.1111/cns.12325 10.1038/nature15726 10.1158/0008-5472.CAN-10-0007 10.1016/0891-5849(96)00174-8 10.1016/j.freeradbiomed.2016.09.010 10.1016/j.fct.2014.03.011 10.1016/j.scitotenv.2017.12.023 10.3892/ijmm.2018.4043 10.1016/j.cell.2018.09.048 10.1158/0008-5472.CAN-15-0614 10.1016/j.taap.2009.12.014 10.1016/j.chemosphere.2017.12.149 10.1897/IEAM_2004a-004.1 10.1007/s13181-013-0344-5 10.1016/j.taap.2003.07.017 10.1289/ehp.1104580 10.1038/cddis.2017.482 10.1074/jbc.271.23.13422 10.1016/j.apsb.2016.04.004 10.1016/j.bbadis.2016.11.005 10.1128/MCB.01639-08 10.1074/jbc.M113.540633 10.1016/j.jnutbio.2017.11.010 10.1007/s13277-014-2644-z 10.1016/S0039-9140(02)00268-0 10.4161/cbt.4.4.1652 10.1007/s00018-008-8224-x 10.1016/S0378-4274(02)00083-8 10.1002/pmic.201600257 10.1016/j.cbi.2019.02.001 10.1152/ajplung.00390.2001 10.1093/nar/gkq212 10.1016/j.phrs.2015.09.020 10.1016/j.envres.2009.08.012 10.7150/ijbs.12096 10.1016/j.taap.2004.10.023 10.1016/j.toxlet.2018.05.029 10.1007/s00204-004-0620-x 10.1016/j.canlet.2008.02.028 10.1007/s00204-014-1302-y 10.1016/j.cell.2016.11.035 10.1101/gad.189365.112 10.1016/j.cell.2016.07.002 10.1016/j.bbamcr.2018.02.010 10.1016/j.copbio.2008.03.003 10.1016/j.taap.2003.10.027 10.12965/jer.1836268.134 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/biom10020240 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-273X |
ExternalDocumentID | oai_doaj_org_article_837fbd800fd74c9f8c98acc72dfe682d PMC7072296 32033297 10_3390_biom10020240 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Education Department of Liaoning Province, China grantid: to Y.X. – fundername: Liaoning Pandeng Scholar Program grantid: to Y.X. – fundername: Key R & D Plan Guidance Project grantid: to Y.X. – fundername: Department of Science and Technology of Liaoning Province, China grantid: to Y.X. – fundername: National Natural Science Foundation of China grantid: 81573187 – fundername: LiaoNing Revitalization Talents Program grantid: XLYC1807225 |
GroupedDBID | 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBD ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM UKHRP 3V. CGR CUY CVF ECM EIF NPM 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c516t-4992a11a1f62da2358b5f2baa3f67192e7c88abb79627646683fdac9df2325863 |
IEDL.DBID | M48 |
ISSN | 2218-273X |
IngestDate | Wed Aug 27 01:24:28 EDT 2025 Thu Aug 21 18:36:08 EDT 2025 Thu Jul 10 19:07:15 EDT 2025 Thu Jan 02 22:57:47 EST 2025 Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 00:43:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | signaling pathway arsenic Nrf2 antioxidants ROS |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-4992a11a1f62da2358b5f2baa3f67192e7c88abb79627646683fdac9df2325863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2354-9453 0000-0002-2589-3007 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biom10020240 |
PMID | 32033297 |
PQID | 2352655399 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_837fbd800fd74c9f8c98acc72dfe682d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072296 proquest_miscellaneous_2352655399 pubmed_primary_32033297 crossref_citationtrail_10_3390_biom10020240 crossref_primary_10_3390_biom10020240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200205 |
PublicationDateYYYYMMDD | 2020-02-05 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200205 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Biomolecules (Basel, Switzerland) |
PublicationTitleAlternate | Biomolecules |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Rahman (ref_234) 2017; 196 Singh (ref_25) 2011; 18 Javadov (ref_49) 2018; 50 Guillebaud (ref_47) 2016; 291 Han (ref_99) 2019; 13 Guvvala (ref_220) 2017; 96 Lindberg (ref_22) 2008; 230 Chowdhury (ref_91) 2010; 198 Liu (ref_158) 2008; 1783 Ling (ref_203) 2017; 10 Bellezza (ref_154) 2018; 1865 Huang (ref_20) 2019; 93 Wu (ref_131) 1999; 277 Kalantari (ref_124) 2018; 25 Wu (ref_132) 2002; 282 Lin (ref_113) 2019; 26 Chen (ref_81) 1998; 18 Shi (ref_125) 2014; 20 Holtzclaw (ref_52) 2002; 99 Han (ref_210) 2017; 8 ref_245 Dopp (ref_18) 2010; 110 Rolfs (ref_96) 2015; 75 Kedersha (ref_178) 2013; 38 Ahmed (ref_155) 2017; 1863 Petrick (ref_16) 2000; 163 Yamanaka (ref_141) 1990; 168 Fan (ref_191) 2014; 510 Yamanaka (ref_32) 1994; 102 Lau (ref_43) 2013; 33 Zhuang (ref_239) 2016; 6 Wang (ref_86) 2013; 222 Zhong (ref_71) 2019; 234 Takahashi (ref_175) 2013; 33 Lau (ref_41) 2010; 30 Wang (ref_75) 2012; 86 Williams (ref_120) 2015; 102 Thannickal (ref_174) 2000; 279 Li (ref_213) 2016; 35 Fabian (ref_243) 2019; 93 Lynn (ref_140) 2000; 86 Kumar (ref_232) 2010; 29 Jeong (ref_138) 2017; 379 Mitsuishi (ref_56) 2012; 22 Kostewicz (ref_241) 2014; 57 Shi (ref_192) 2015; 36 Zhou (ref_172) 2017; 6 Simeonova (ref_167) 2001; 60 Wang (ref_88) 2013; 27 Ling (ref_230) 2017; 8 Komissarova (ref_171) 2010; 243 Wang (ref_202) 2015; 40 Li (ref_149) 2002; 87 Zhao (ref_196) 2017; 16 Malhotra (ref_97) 2010; 38 Levine (ref_117) 2019; 176 Chen (ref_107) 2017; 278 Yu (ref_219) 2017; 41 Samarakoon (ref_236) 2012; 347 He (ref_53) 2009; 76 Chouchane (ref_38) 2001; 14 Niture (ref_100) 2012; 287 Luz (ref_183) 2016; 152 Gao (ref_78) 2016; 92 Zhang (ref_168) 2009; 235 Ellinsworth (ref_30) 2015; 353 Drobna (ref_163) 2003; 17 Lu (ref_85) 2014; 224 Flora (ref_48) 2011; 51 Jomova (ref_9) 2011; 31 Kim (ref_164) 2016; 55 Corsini (ref_29) 1999; 113 Komatsu (ref_67) 2010; 12 Du (ref_24) 2018; 234 Huang (ref_144) 1999; 59 Kosnett (ref_200) 2013; 9 Kasote (ref_237) 2015; 11 Mukherjee (ref_70) 2017; 56 Pan (ref_228) 2011; 254 Barchowsky (ref_147) 1996; 21 Zhou (ref_227) 2019; 10 Tanaka (ref_15) 2018; 39 Yamanaka (ref_142) 1989; 37 Parvez (ref_10) 2008; 116 Panieri (ref_188) 2016; 7 Duan (ref_59) 2017; 81 Jiang (ref_62) 2018; 31 ref_118 Morris (ref_112) 2013; 56 Nutt (ref_122) 2005; 4 Aono (ref_58) 2003; 305 Kapahi (ref_150) 2000; 275 Tseng (ref_82) 2012; 86 Sharma (ref_240) 2018; 624 Gebel (ref_14) 2002; 205 Todoric (ref_173) 2017; 32 Dang (ref_189) 2012; 26 Zhang (ref_229) 2014; 7 Manno (ref_35) 2001; 177 Bode (ref_136) 2002; 42 Riley (ref_65) 2010; 191 Zhang (ref_54) 2003; 23 Pi (ref_74) 2008; 45 ref_108 Zhou (ref_45) 2018; 99 Liu (ref_64) 2017; 334 Lee (ref_181) 2016; 8 Maity (ref_216) 2018; 182 Gong (ref_209) 2016; 90 ref_102 Styblo (ref_17) 2000; 74 Xu (ref_68) 2019; 5 Yamanaka (ref_31) 1997; 394 Pinkus (ref_165) 1996; 271 Valko (ref_50) 2016; 90 Rushworth (ref_160) 2012; 120 Whitmarsh (ref_162) 1996; 74 Zhu (ref_143) 1999; 91 Ratnaike (ref_2) 2003; 79 Choudhury (ref_207) 2016; 38 Wang (ref_73) 2008; 230 Verheijen (ref_242) 2018; 294 Suc (ref_130) 1998; 12 Miltonprabu (ref_204) 2014; 24 Xie (ref_214) 2017; 8 Liu (ref_87) 2013; 87 Liu (ref_109) 2018; 14 Liu (ref_76) 2019; 367 Phan (ref_180) 2014; 11 Khairul (ref_19) 2017; 8 Sun (ref_69) 2009; 29 Rizwan (ref_221) 2014; 68 Hu (ref_166) 2002; 133 Wang (ref_199) 2014; 106 Hughes (ref_6) 2011; 123 Chen (ref_21) 2005; 206 Barchowsky (ref_139) 1999; 27 Khan (ref_105) 2017; 107 Xu (ref_26) 2019; 2019 Tseng (ref_23) 2007; 25 Kadirvel (ref_223) 2007; 26 He (ref_77) 2014; 122 Piskounova (ref_190) 2015; 527 Saha (ref_231) 2016; 42 Abernathy (ref_8) 1999; 107 Yeung (ref_185) 2008; 65 DeNicola (ref_95) 2011; 475 Garrido (ref_93) 2015; 238 Huang (ref_121) 2016; 12 Kumagai (ref_134) 2007; 47 Styblo (ref_39) 1997; 10 Huang (ref_148) 2001; 222 Chang (ref_42) 2010; 70 Mandal (ref_1) 2002; 58 Kato (ref_33) 1994; 102 Menendez (ref_169) 2001; 16 Guidarelli (ref_80) 2017; 43 Garty (ref_5) 1990; 254 Lemmon (ref_128) 2010; 141 Pi (ref_103) 2003; 290 (ref_198) 2016; 10 Mukherjee (ref_224) 2006; 17 Thangapandiyan (ref_212) 2019; 26 Ling (ref_244) 2005; 1 Xu (ref_233) 2013; 58 Macho (ref_127) 2015; 20 Miltonprabu (ref_218) 2017; 50 Holst (ref_238) 2008; 19 Barchowsky (ref_83) 1999; 159 Motohashi (ref_57) 2004; 101 Hou (ref_60) 2014; 325 Sun (ref_145) 2014; 346 Zhang (ref_101) 2017; 44 Kumar (ref_222) 2018; 7 Maldonado (ref_194) 2018; 134 Dodson (ref_40) 2018; 341 Yoo (ref_119) 2018; 14 Ahmad (ref_34) 2000; 382 Jomova (ref_13) 2011; 283 Elsby (ref_98) 2003; 278 Jain (ref_63) 2010; 285 Azadmanesh (ref_111) 2018; 74 Itoh (ref_55) 1997; 236 Hunter (ref_126) 2014; 6 ref_177 Niu (ref_110) 2018; 50 ref_179 He (ref_106) 2012; 13 Shi (ref_28) 2004; 255 Roussel (ref_153) 2000; 377 Zhang (ref_225) 2017; 8 Wu (ref_44) 2019; 2019 Zhao (ref_137) 2019; 253 Chatterjee (ref_206) 2017; 118 Das (ref_235) 2018; 2018 ref_61 Chen (ref_146) 2002; 110 Zhao (ref_94) 2012; 120 ref_66 Wang (ref_159) 2012; 52 Genestra (ref_133) 2007; 19 Vyas (ref_123) 2016; 166 Gong (ref_208) 2015; 89 Liu (ref_115) 2019; 219 Mak (ref_193) 2017; 46 Naranmandura (ref_36) 2012; 260 Massrieh (ref_72) 2006; 8 Galanis (ref_195) 2008; 266 Trachootham (ref_114) 2008; 10 Dai (ref_157) 2019; 235 Lv (ref_104) 2019; 302 Hosseinzadeh (ref_217) 2019; 217 Mahalanobish (ref_211) 2019; 126 Saha (ref_89) 2018; 55 Stueckle (ref_90) 2012; 261 Rao (ref_197) 2017; 8 Simeonova (ref_135) 2002; 234–235 Yih (ref_170) 2000; 60 Platanias (ref_46) 2009; 284 Angajala (ref_116) 2018; 9 Li (ref_184) 2014; 224 Zhao (ref_182) 2013; 271 Pan (ref_156) 2012; 2012 Lim (ref_129) 2010; 142 Luster (ref_84) 2004; 198 Aposhian (ref_11) 2004; 198 Mahieux (ref_152) 2001; 98 Mutter (ref_201) 2017; 91 Vineetha (ref_215) 2018; 28 Zhang (ref_79) 2019; 109 Yu (ref_226) 2017; 88 Hayakawa (ref_12) 2005; 79 ref_186 Sumedha (ref_205) 2015; 34 ref_187 Felix (ref_92) 2005; 19 Cuadrado (ref_161) 2014; 289 ref_3 Zhu (ref_51) 2016; 99 Hrycay (ref_27) 2015; 74 Grabocka (ref_176) 2016; 167 Lemarie (ref_151) 2006; 316 Zhu (ref_4) 2019; 134 Nordenson (ref_37) 1991; 41 ref_7 |
References_xml | – volume: 60 start-page: 6346 year: 2000 ident: ref_170 article-title: Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts publication-title: Cancer Res. – volume: 7 start-page: e2253 year: 2016 ident: ref_188 article-title: ROS homeostasis and metabolism: A dangerous liason in cancer cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.105 – volume: 191 start-page: 537 year: 2010 ident: ref_65 article-title: Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: A potential role for protein aggregation in autophagic substrate selection publication-title: J. Cell Biol. doi: 10.1083/jcb.201005012 – volume: 87 start-page: 29 year: 2002 ident: ref_149 article-title: Arsenic induces oxidative stress and activates stress gene expressions in cultured lung epithelial cells publication-title: J. Cell. Biochem. doi: 10.1002/jcb.10269 – volume: 22 start-page: 66 year: 2012 ident: ref_56 article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.05.016 – volume: 74 start-page: 289 year: 2000 ident: ref_17 article-title: Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells publication-title: Arch. Toxicol. doi: 10.1007/s002040000134 – volume: 120 start-page: 5188 year: 2012 ident: ref_160 article-title: The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance publication-title: Blood doi: 10.1182/blood-2012-04-422121 – volume: 107 start-page: 593 year: 1999 ident: ref_8 article-title: Arsenic: Health effects, mechanisms of actions, and research issues publication-title: Environ. Health Perspect. doi: 10.1289/ehp.99107593 – ident: ref_245 doi: 10.1186/s12918-017-0407-3 – volume: 35 start-page: 491 year: 2016 ident: ref_213 article-title: Lutein alleviates arsenic-induced reproductive toxicity in male mice via Nrf2 signaling publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327115595682 – volume: 236 start-page: 313 year: 1997 ident: ref_55 article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6943 – volume: 8 start-page: 312 year: 2016 ident: ref_181 article-title: Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis publication-title: Front. Biosci. (Schol Ed.) doi: 10.2741/s465 – volume: 9 start-page: 1605 year: 2018 ident: ref_116 article-title: Diverse Roles of Mitochondria in Immune Responses: Novel Insights into Immuno-Metabolism publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01605 – volume: 76 start-page: 1265 year: 2009 ident: ref_53 article-title: NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation publication-title: Mol. Pharmacol. doi: 10.1124/mol.109.058453 – volume: 290 start-page: 234 year: 2003 ident: ref_103 article-title: Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: Involvement of hydrogen peroxide publication-title: Exp. Cell Res. doi: 10.1016/S0014-4827(03)00341-0 – volume: 10 start-page: 59 year: 2017 ident: ref_203 article-title: Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: Roles of p38 MAPK, ERK3, and mTORC1 publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-017-0424-0 – volume: 50 start-page: 288 year: 2018 ident: ref_49 article-title: Divergent Effects of Cyclophilin-D Inhibition on the Female Rat Heart: Acute Versus Chronic Post-Myocardial Infarction publication-title: Cell. Physiol. Biochem. doi: 10.1159/000494006 – volume: 109 start-page: 815 year: 2019 ident: ref_79 article-title: Taurine rescues the arsenic-induced injury in the pancreas of rat offsprings and in the INS-1 cells publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.10.134 – volume: 24 start-page: 124 year: 2014 ident: ref_204 article-title: Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by diallyl trisulfide publication-title: Toxicol. Mech. Methods doi: 10.3109/15376516.2013.869778 – volume: 107 start-page: 406 year: 2017 ident: ref_105 article-title: Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2017.07.021 – ident: ref_118 doi: 10.1371/journal.pone.0132499 – volume: 8 start-page: 65302 year: 2017 ident: ref_210 article-title: The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2-induced hepatotoxicity publication-title: Oncotarget doi: 10.18632/oncotarget.18582 – volume: 90 start-page: 2187 year: 2016 ident: ref_209 article-title: 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells publication-title: Arch. Toxicol. doi: 10.1007/s00204-015-1600-z – volume: 30 start-page: 3275 year: 2010 ident: ref_41 article-title: A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00248-10 – volume: 10 start-page: 3425 year: 2016 ident: ref_198 article-title: N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats publication-title: Drug Des. Devel. Ther. doi: 10.2147/DDDT.S115339 – volume: 90 start-page: 1 year: 2016 ident: ref_50 article-title: Redox- and non-redox-metal-induced formation of free radicals and their role in human disease publication-title: Arch. Toxicol. doi: 10.1007/s00204-015-1579-5 – volume: 31 start-page: 95 year: 2011 ident: ref_9 article-title: Arsenic: Toxicity, oxidative stress and human disease publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1649 – volume: 126 start-page: 41 year: 2019 ident: ref_211 article-title: Mangiferin alleviates arsenic induced oxidative lung injury via upregulation of the Nrf2-HO1 axis publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2019.02.022 – volume: 224 start-page: 165 year: 2014 ident: ref_184 article-title: NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.10.029 – volume: 316 start-page: 304 year: 2006 ident: ref_151 article-title: Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.105.092874 – volume: 33 start-page: 2436 year: 2013 ident: ref_43 article-title: Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01748-12 – volume: 238 start-page: 170 year: 2015 ident: ref_93 article-title: Arsenic-induced S phase cell cycle lengthening is associated with ROS generation, p53 signaling and CDC25A expression publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2015.06.040 – volume: 28 start-page: 353 year: 2018 ident: ref_215 article-title: L-ascorbic acid and α-tocopherol attenuate arsenic trioxide-induced toxicity in H9c2 cardiomyocytes by the activation of Nrf2 and Bcl2 transcription factors publication-title: Toxicol. Mech. Methods doi: 10.1080/15376516.2017.1422578 – volume: 18 start-page: 87 year: 2011 ident: ref_25 article-title: Mechanisms pertaining to arsenic toxicity publication-title: Toxicol. Int. doi: 10.4103/0971-6580.84258 – volume: 14 start-page: 517 year: 2001 ident: ref_38 article-title: In vitro effect of arsenical compounds on glutathione-related enzymes publication-title: Chem. Res. Toxicol. doi: 10.1021/tx000123x – volume: 224 start-page: 130 year: 2014 ident: ref_85 article-title: Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.10.013 – volume: 287 start-page: 9873 year: 2012 ident: ref_100 article-title: Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.312694 – volume: 113 start-page: 760 year: 1999 ident: ref_29 article-title: Sodium arsenate induces overproduction of interleukin-1alpha in murine keratinocytes: Role of mitochondria publication-title: J. Investig. Dermatol. doi: 10.1046/j.1523-1747.1999.00748.x – volume: 261 start-page: 204 year: 2012 ident: ref_90 article-title: Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2012.04.003 – volume: 99 start-page: 78 year: 2018 ident: ref_45 article-title: A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes publication-title: Regul. Toxicol. Pharmacol. doi: 10.1016/j.yrtph.2018.09.010 – volume: 377 start-page: 204 year: 2000 ident: ref_153 article-title: Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2000.1770 – volume: 37 start-page: 2753 year: 1989 ident: ref_142 article-title: Mutagenicity of dimethylated metabolites of inorganic arsenics publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.37.2753 – ident: ref_179 doi: 10.1158/0008-5472.CAN-19-1363 – volume: 43 start-page: 673 year: 2017 ident: ref_80 article-title: Arsenite induces DNA damage via mitochondrial ROS and induction of mitochondrial permeability transition publication-title: Biofactors doi: 10.1002/biof.1375 – volume: 116 start-page: 190 year: 2008 ident: ref_10 article-title: Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh publication-title: Environ. Health Perspect. doi: 10.1289/ehp.9507 – volume: 110 start-page: 807 year: 2002 ident: ref_146 article-title: Signaling from toxic metals to NF-kappaB and beyond: Not just a matter of reactive oxygen species publication-title: Environ. Health Perspect. doi: 10.1289/ehp.02110s5807 – volume: 99 start-page: 11908 year: 2002 ident: ref_52 article-title: Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.172398899 – volume: 182 start-page: 78 year: 2018 ident: ref_216 article-title: Arjunolic Acid Improves the Serum Level of Vitamin B publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-017-1077-0 – volume: 58 start-page: 1 year: 2013 ident: ref_233 article-title: Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2013.03.048 – volume: 41 start-page: 71 year: 1991 ident: ref_37 article-title: Is the genotoxic effect of arsenic mediated by oxygen free radicals? publication-title: Hum. Hered. doi: 10.1159/000153979 – volume: 205 start-page: 505 year: 2002 ident: ref_14 article-title: Arsenic methylation is a process of detoxification through accelerated excretion publication-title: Int. J. Hyg. Environ. Health doi: 10.1078/1438-4639-00177 – volume: 18 start-page: 5178 year: 1998 ident: ref_81 article-title: Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.9.5178 – volume: 254 start-page: 1068 year: 1990 ident: ref_5 article-title: Effects of clonidine on renal sympathetic nerve activity and norepinephrine spillover publication-title: J. Pharmacol. Exp. Ther. – volume: 29 start-page: 91 year: 2010 ident: ref_232 article-title: Protective role of zinc in ameliorating arsenic-induced oxidative stress and histological changes in rat liver publication-title: J. Environ. Pathol. Toxicol. Oncol. doi: 10.1615/JEnvironPatholToxicolOncol.v29.i2.30 – volume: 2019 start-page: 1038932 year: 2019 ident: ref_44 article-title: Enhanced p62-NRF2 Feedback Loop due to Impaired Autophagic Flux Contributes to Arsenic-Induced Malignant Transformation of Human Keratinocytes publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/1038932 – volume: 234–235 start-page: 277 year: 2002 ident: ref_135 article-title: Arsenic carcinogenicity: Relevance of c-Src activation publication-title: Mol. Cell. Biochem. doi: 10.1023/A:1015971118012 – volume: 341 start-page: 106 year: 2018 ident: ref_40 article-title: Low-level arsenic causes proteotoxic stress and not oxidative stress publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2018.01.014 – volume: 141 start-page: 1117 year: 2010 ident: ref_128 article-title: Cell signaling by receptor tyrosine kinases publication-title: Cell doi: 10.1016/j.cell.2010.06.011 – volume: 25 start-page: 1 year: 2007 ident: ref_23 article-title: Arsenic methylation, urinary arsenic metabolites and human diseases: Current perspective publication-title: J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. doi: 10.1080/10590500701201695 – ident: ref_61 doi: 10.1016/j.toxlet.2016.06.1414 – volume: 27 start-page: 1405 year: 1999 ident: ref_139 article-title: Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00186-0 – volume: 7 start-page: 260 year: 2014 ident: ref_229 article-title: Grape seed extract attenuates arsenic-induced nephrotoxicity in rats publication-title: Exp. Ther. Med. doi: 10.3892/etm.2013.1381 – volume: 56 start-page: 133 year: 2013 ident: ref_112 article-title: Seven sirtuins for seven deadly diseases of aging publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.10.525 – ident: ref_3 doi: 10.3324/haematol.2019.229583 – volume: 74 start-page: 677 year: 2018 ident: ref_111 article-title: Redox manipulation of the manganese metal in human manganese superoxide dismutase for neutron diffraction publication-title: Acta Crystallogr. F Struct. Biol. Commun. doi: 10.1107/S2053230X18011299 – volume: 92 start-page: 39 year: 2016 ident: ref_78 article-title: miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.01.005 – volume: 134 start-page: 597 year: 2019 ident: ref_4 article-title: The simpler, the better: Oral arsenic for acute promyelocytic leukemia publication-title: Blood doi: 10.1182/blood.2019000760 – volume: 260 start-page: 241 year: 2012 ident: ref_36 article-title: The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMAIII)-induced cytotoxicity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2012.02.017 – volume: 291 start-page: 10263 year: 2016 ident: ref_47 article-title: Loss of Mitochondrial Function Impairs Lysosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.695825 – volume: 8 start-page: 68668 year: 2017 ident: ref_214 article-title: Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2 publication-title: Oncotarget doi: 10.18632/oncotarget.19822 – volume: 278 start-page: 38 year: 2017 ident: ref_107 article-title: MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.07.215 – volume: 86 start-page: 879 year: 2012 ident: ref_75 article-title: Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: Roles of ROS, NF-κB, and MAPK pathways publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0845-z – volume: 51 start-page: 257 year: 2011 ident: ref_48 article-title: Arsenic-induced oxidative stress and its reversibility publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.04.008 – volume: 26 start-page: 101254 year: 2019 ident: ref_113 article-title: PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101254 – volume: 20 start-page: 269 year: 2015 ident: ref_127 article-title: Importance of tyrosine phosphorylation in receptor kinase complexes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.02.005 – volume: 2012 start-page: 217580 year: 2012 ident: ref_156 article-title: The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes publication-title: Mediat. Inflamm. doi: 10.1155/2012/217580 – volume: 217 start-page: 91 year: 2019 ident: ref_217 article-title: Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hemato-toxicity in rats publication-title: Life Sci. doi: 10.1016/j.lfs.2018.11.050 – volume: 12 start-page: 665 year: 1998 ident: ref_130 article-title: Activation of EGF receptor by oxidized LDL publication-title: FASEB J. doi: 10.1096/fasebj.12.9.665 – ident: ref_186 doi: 10.3390/cancers11070955 – volume: 23 start-page: 8137 year: 2003 ident: ref_54 article-title: Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.22.8137-8151.2003 – volume: 16 start-page: 443 year: 2001 ident: ref_169 article-title: ATM status confers sensitivity to arsenic cytotoxic effects publication-title: Mutagenesis doi: 10.1093/mutage/16.5.443 – volume: 254 start-page: 323 year: 2011 ident: ref_228 article-title: Inhibition of arsenic-induced rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2011.04.022 – volume: 13 start-page: 2923 year: 2019 ident: ref_99 article-title: Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury publication-title: Drug Des. Devel. Ther. doi: 10.2147/DDDT.S216156 – volume: 60 start-page: 279 year: 2001 ident: ref_167 article-title: Quantitative relationship between arsenic exposure and AP-1 activity in mouse urinary bladder epithelium publication-title: Toxicol. Sci. doi: 10.1093/toxsci/60.2.279 – volume: 26 start-page: 12247 year: 2019 ident: ref_212 article-title: Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-019-04502-w – volume: 277 start-page: L924 year: 1999 ident: ref_131 article-title: Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals publication-title: Am. J. Physiol. – volume: 10 start-page: 27 year: 1997 ident: ref_39 article-title: Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols publication-title: Chem. Res. Toxicol. doi: 10.1021/tx960139g – volume: 52 start-page: 928 year: 2012 ident: ref_159 article-title: Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.12.006 – volume: 17 start-page: 67 year: 2003 ident: ref_163 article-title: Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals publication-title: FASEB J. doi: 10.1096/fj.02-0287fje – volume: 44 start-page: 349 year: 2017 ident: ref_101 article-title: Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2017.07.027 – volume: 234 start-page: 590 year: 2018 ident: ref_24 article-title: Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.083 – volume: 8 start-page: 53 year: 2006 ident: ref_72 article-title: Induction of endogenous Nrf2/small maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.53 – volume: 42 start-page: 515 year: 2016 ident: ref_231 article-title: Attenuative role of mangiferin in oxidative stress-mediated liver dysfunction in arsenic-intoxicated murines publication-title: Biofactors doi: 10.1002/biof.1276 – volume: 74 start-page: 589 year: 1996 ident: ref_162 article-title: Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways publication-title: J. Mol. Med. (Berl) doi: 10.1007/s001090050063 – ident: ref_7 – volume: 325 start-page: 96 year: 2014 ident: ref_60 article-title: Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: Differential roles of mitogen-activated protein kinases publication-title: Toxicology doi: 10.1016/j.tox.2014.09.002 – volume: 346 start-page: 257 year: 2014 ident: ref_145 article-title: Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation publication-title: Cancer Lett. doi: 10.1016/j.canlet.2014.01.002 – volume: 283 start-page: 65 year: 2011 ident: ref_13 article-title: Advances in metal-induced oxidative stress and human disease publication-title: Toxicology doi: 10.1016/j.tox.2011.03.001 – volume: 57 start-page: 300 year: 2014 ident: ref_241 article-title: PBPK models for the prediction of in vivo performance of oral dosage forms publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.09.008 – volume: 6 start-page: e370 year: 2017 ident: ref_172 article-title: Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes publication-title: Oncogenesis doi: 10.1038/oncsis.2017.67 – volume: 235 start-page: 1134 year: 2019 ident: ref_157 article-title: The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4-NFκB in A549cell exposed to layer house particulate matter 2.5 (PM) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.07.002 – volume: 382 start-page: 195 year: 2000 ident: ref_34 article-title: Arsenic species that cause release of iron from ferritin and generation of activated oxygen publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2000.2023 – volume: 17 start-page: 319 year: 2006 ident: ref_224 article-title: Synergistic effect of folic acid and vitamin B12 in ameliorating arsenic-induced oxidative damage in pancreatic tissue of rat publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2005.08.003 – volume: 11 start-page: 1 year: 2014 ident: ref_180 article-title: Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies publication-title: Cancer Biol. Med. – volume: 142 start-page: 661 year: 2010 ident: ref_129 article-title: Phosphotyrosine signaling: Evolving a new cellular communication system publication-title: Cell doi: 10.1016/j.cell.2010.08.023 – volume: 5 start-page: eaav4570 year: 2019 ident: ref_68 article-title: The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav4570 – volume: 55 start-page: 910 year: 2016 ident: ref_164 article-title: p38alpha MAPK is required for arsenic-induced cell transformation publication-title: Mol. Carcinog. doi: 10.1002/mc.22331 – volume: 285 start-page: 22576 year: 2010 ident: ref_63 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118976 – volume: 98 start-page: 3762 year: 2001 ident: ref_152 article-title: Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage publication-title: Blood doi: 10.1182/blood.V98.13.3762 – volume: 86 start-page: 514 year: 2000 ident: ref_140 article-title: NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells publication-title: Circ. Res. doi: 10.1161/01.RES.86.5.514 – volume: 96 start-page: 685 year: 2017 ident: ref_220 article-title: Protective role of epigallocatechin-3-gallate on arsenic induced testicular toxicity in Swiss albino mice publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.09.151 – volume: 379 start-page: 31 year: 2017 ident: ref_138 article-title: Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29 publication-title: Toxicology doi: 10.1016/j.tox.2017.01.011 – volume: 347 start-page: 117 year: 2012 ident: ref_236 article-title: TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis publication-title: Cell Tissue Res. doi: 10.1007/s00441-011-1181-y – volume: 10 start-page: 1343 year: 2008 ident: ref_114 article-title: Redox regulation of cell survival publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.1957 – volume: 353 start-page: 458 year: 2015 ident: ref_30 article-title: Arsenic, reactive oxygen, and endothelial dysfunction publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.115.223289 – volume: 25 start-page: 34351 year: 2018 ident: ref_124 article-title: Dysregulation of Sqstm1, mitophagy, and apoptotic genes in chronic exposure to arsenic and high-fat diet (HFD) publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-018-3349-4 – volume: 367 start-page: 62 year: 2019 ident: ref_76 article-title: Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2019.02.003 – volume: 34 start-page: 506 year: 2015 ident: ref_205 article-title: Diallyl trisulfide ameliorates arsenic-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327114543933 – volume: 102 start-page: 37 year: 1994 ident: ref_32 article-title: Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals publication-title: Environ. Health Perspect. – volume: 134 start-page: 92 year: 2018 ident: ref_194 article-title: Canonical and non-canonical mechanisms of Nrf2 activation publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2018.06.013 – volume: 45 start-page: 651 year: 2008 ident: ref_74 article-title: Arsenic-induced malignant transformation of human keratinocytes: Involvement of Nrf2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.05.020 – volume: 93 start-page: 2525 year: 2019 ident: ref_20 article-title: Arsenite and its trivalent methylated metabolites inhibit glucose-stimulated calcium influx and insulin secretion in murine pancreatic islets publication-title: Arch. Toxicol. doi: 10.1007/s00204-019-02526-2 – volume: 271 start-page: 72 year: 2013 ident: ref_182 article-title: Arsenic exposure induces the Warburg effect in cultured human cells publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2013.04.020 – volume: 163 start-page: 203 year: 2000 ident: ref_16 article-title: Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.1999.8872 – volume: 106 start-page: 167 year: 2014 ident: ref_199 article-title: Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic publication-title: Biochimie doi: 10.1016/j.biochi.2014.08.017 – volume: 168 start-page: 58 year: 1990 ident: ref_141 article-title: Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(90)91674-H – volume: 235 start-page: 18 year: 2009 ident: ref_168 article-title: c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.11.002 – volume: 334 start-page: 75 year: 2017 ident: ref_64 article-title: Impaired autophagic flux and p62-mediated EMT are involved in arsenite-induced transformation of L-02 cells publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.09.004 – volume: 10 start-page: 497 year: 2019 ident: ref_227 article-title: Pterostilbene Activates the Nrf2-Dependent Antioxidant Response to Ameliorate Arsenic-Induced Intracellular Damage and Apoptosis in Human Keratinocytes publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00497 – volume: 33 start-page: 815 year: 2013 ident: ref_175 article-title: Stress granules inhibit apoptosis by reducing reactive oxygen species production publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00763-12 – volume: 234 start-page: 2606 year: 2019 ident: ref_71 article-title: Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2-like 2 (NFE2L2) protein and the Smad2/3 pathway publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27073 – volume: 123 start-page: 305 year: 2011 ident: ref_6 article-title: Arsenic exposure and toxicology: A historical perspective publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfr184 – volume: 56 start-page: 172 year: 2017 ident: ref_70 article-title: Elucidation of protective efficacy of Pentahydroxy flavone isolated from Madhuca indica against arsenite-induced cardiomyopathy: Role of Nrf-2, PPAR-γ, c-fos and c-jun publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2017.08.027 – volume: 81 start-page: 160 year: 2017 ident: ref_59 article-title: Acute arsenic exposure induces inflammatory responses and CD4(+) T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2016.12.005 – volume: 47 start-page: 243 year: 2007 ident: ref_134 article-title: Arsenic: Signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.47.120505.105144 – volume: 305 start-page: 271 year: 2003 ident: ref_58 article-title: Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)00728-9 – volume: 152 start-page: 349 year: 2016 ident: ref_183 article-title: From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfw093 – volume: 19 start-page: 67 year: 2005 ident: ref_92 article-title: Low levels of arsenite activates nuclear factor-kappaB and activator protein-1 in immortalized mesencephalic cells publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.20062 – volume: 32 start-page: 824 year: 2017 ident: ref_173 article-title: Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.10.011 – volume: 510 start-page: 298 year: 2014 ident: ref_191 article-title: Quantitative flux analysis reveals folate-dependent NADPH production publication-title: Nature doi: 10.1038/nature13236 – volume: 2019 start-page: 8549035 year: 2019 ident: ref_26 article-title: Proanthocyanidins Antagonize Arsenic-Induced Oxidative Damage and Promote Arsenic Methylation through Activation of the Nrf2 Signaling Pathway publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/8549035 – volume: 7 start-page: 110 year: 2018 ident: ref_222 article-title: Seed Extract Ameliorates Arsenic-Induced Blood Cell Genotoxicity and Hepatotoxicity in Wistar Albino Rats publication-title: Rep. Biochem. Mol. Biol. – volume: 475 start-page: 106 year: 2011 ident: ref_95 article-title: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis publication-title: Nature doi: 10.1038/nature10189 – volume: 39 start-page: e1800205 year: 2018 ident: ref_15 article-title: Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800205 – volume: 122 start-page: 255 year: 2014 ident: ref_77 article-title: Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1307545 – volume: 230 start-page: 9 year: 2008 ident: ref_22 article-title: The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.02.001 – volume: 230 start-page: 383 year: 2008 ident: ref_73 article-title: Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: Enhanced Keap1-Cul3 interaction publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.03.003 – volume: 87 start-page: 981 year: 2013 ident: ref_87 article-title: Oxidative stress and MAPK involved into ATF2 expression in immortalized human urothelial cells treated by arsenic publication-title: Arch. Toxicol. doi: 10.1007/s00204-013-1058-9 – volume: 14 start-page: 2773 year: 2018 ident: ref_109 article-title: microRNA-451 protects neurons against ischemia/reperfusion injury-induced cell death by targeting CELF2 publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S173632 – volume: 198 start-page: 263 year: 2010 ident: ref_91 article-title: Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.07.006 – volume: 101 start-page: 6379 year: 2004 ident: ref_57 article-title: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305902101 – volume: 394 start-page: 95 year: 1997 ident: ref_31 article-title: Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics publication-title: Mutat. Res. doi: 10.1016/S1383-5718(97)00130-7 – volume: 19 start-page: 1807 year: 2007 ident: ref_133 article-title: Oxyl radicals, redox-sensitive signalling cascades and antioxidants publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2007.04.009 – volume: 41 start-page: 1788 year: 2017 ident: ref_219 article-title: (-)-Epigallocatechin-3-Gallate Inhibits Arsenic-Induced Inflammation and Apoptosis through Suppression of Oxidative Stress in Mice publication-title: Cell. Physiol. Biochem. doi: 10.1159/000471911 – volume: 8 start-page: 23905 year: 2017 ident: ref_19 article-title: Metabolism, toxicity and anticancer activities of arsenic compounds publication-title: Oncotarget doi: 10.18632/oncotarget.14733 – volume: 13 start-page: 1116 year: 2012 ident: ref_106 article-title: Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation publication-title: EMBO Rep. doi: 10.1038/embor.2012.162 – volume: 91 start-page: 772 year: 1999 ident: ref_143 article-title: Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/91.9.772 – volume: 31 start-page: 380 year: 2018 ident: ref_62 article-title: Arsenite Targets the RING Finger Domain of Rbx1 E3 Ubiquitin Ligase to Inhibit Proteasome-Mediated Degradation of Nrf2 publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.8b00062 – volume: 222 start-page: 29 year: 2001 ident: ref_148 article-title: Arsenic-induced NFkappaB transactivation through Erks- and JNKs-dependent pathways in mouse epidermal JB6 cells publication-title: Mol. Cell. Biochem. doi: 10.1023/A:1017974131948 – volume: 42 start-page: 5 year: 2002 ident: ref_136 article-title: The paradox of arsenic: Molecular mechanisms of cell transformation and chemotherapeutic effects publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/S1040-8428(01)00215-3 – volume: 12 start-page: 999 year: 2016 ident: ref_121 article-title: Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways publication-title: Autophagy doi: 10.1080/15548627.2016.1166318 – volume: 86 start-page: 935 year: 2012 ident: ref_82 article-title: NADPH oxidase-produced superoxide mediates EGFR transactivation by c-Src in arsenic trioxide-stimulated human keratinocytes publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0856-9 – volume: 88 start-page: 1 year: 2017 ident: ref_226 article-title: Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl. flavonoids protect against arsenic trioxide-induced cardiotoxicity publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.12.130 – volume: 38 start-page: 494 year: 2013 ident: ref_178 article-title: Stress granules and cell signaling: More than just a passing phase? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.07.004 – volume: 12 start-page: 213 year: 2010 ident: ref_67 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2021 – volume: 50 start-page: 107 year: 2017 ident: ref_218 article-title: Diallyl trisulfide, a garlic polysulfide protects against As-induced renal oxidative nephrotoxicity, apoptosis and inflammation in rats by activating the Nrf2/ARE signaling pathway publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2017.06.011 – volume: 222 start-page: 303 year: 2013 ident: ref_86 article-title: Arsenic induces the expressions of angiogenesis-related factors through PI3K and MAPK pathways in SV-HUC-1 human uroepithelial cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.08.008 – volume: 79 start-page: 391 year: 2003 ident: ref_2 article-title: Acute and chronic arsenic toxicity publication-title: Postgrad Med. J. doi: 10.1136/pmj.79.933.391 – volume: 1783 start-page: 713 year: 2008 ident: ref_158 article-title: NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.01.002 – volume: 253 start-page: 741 year: 2019 ident: ref_137 article-title: The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.07.065 – volume: 40 start-page: 577 year: 2015 ident: ref_202 article-title: Effects of glutathione on the in vivo metabolism and oxidative stress of arsenic in mice publication-title: J. Toxicol. Sci. doi: 10.2131/jts.40.577 – volume: 8 start-page: 57605 year: 2017 ident: ref_197 article-title: Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo publication-title: Oncotarget doi: 10.18632/oncotarget.17745 – ident: ref_66 doi: 10.3390/molecules22020194 – volume: 50 start-page: 460 year: 2018 ident: ref_110 article-title: Lycium Barbarum Polysaccharides Alleviates Oxidative Damage Induced by H2O2 Through Down-Regulating MicroRNA-194 in PC-12 and SH-SY5Y Cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000494159 – volume: 91 start-page: 3787 year: 2017 ident: ref_201 article-title: Metal chelators and neurotoxicity: Lead, mercury, and arsenic publication-title: Arch. Toxicol. doi: 10.1007/s00204-017-2100-0 – volume: 284 start-page: 18583 year: 2009 ident: ref_46 article-title: Biological responses to arsenic compounds publication-title: J. Biol. Chem. doi: 10.1074/jbc.R900003200 – volume: 279 start-page: L1005 year: 2000 ident: ref_174 article-title: Reactive oxygen species in cell signaling publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.2000.279.6.L1005 – volume: 6 start-page: a020644 year: 2014 ident: ref_126 article-title: The genesis of tyrosine phosphorylation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a020644 – volume: 16 start-page: 79 year: 2017 ident: ref_196 article-title: ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway publication-title: Mol. Cancer doi: 10.1186/s12943-017-0648-1 – volume: 8 start-page: 3773 year: 2017 ident: ref_225 article-title: Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway publication-title: Oncotarget doi: 10.18632/oncotarget.13931 – volume: 38 start-page: 25 year: 2016 ident: ref_207 article-title: Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2016.09.001 – volume: 2018 start-page: 1421438 year: 2018 ident: ref_235 article-title: Carnosic Acid, a Natural Diterpene, Attenuates Arsenic-Induced Hepatotoxicity via Reducing Oxidative Stress, MAPK Activation, and Apoptotic Cell Death Pathway publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2018/1421438 – volume: 27 start-page: 1043 year: 2013 ident: ref_88 article-title: Sodium arsenite induces cyclooxygenase-2 expression in human uroepithelial cells through MAPK pathway activation and reactive oxygen species induction publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2013.01.012 – volume: 219 start-page: 227 year: 2019 ident: ref_115 article-title: Arsenic trioxide and/or copper sulfate induced apoptosis and autophagy associated with oxidative stress and perturbation of mitochondrial dynamics in the thymus of Gallus gallus publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.188 – volume: 177 start-page: 132 year: 2001 ident: ref_35 article-title: Stress proteins induced by arsenic publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.2001.9291 – volume: 102 start-page: 285 year: 1994 ident: ref_33 article-title: DNA damage induced in cultured human alveolar (L-132) cells by exposure to dimethylarsinic acid publication-title: Environ. Health Perspect. – volume: 59 start-page: 3053 year: 1999 ident: ref_144 article-title: Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway publication-title: Cancer Res. – volume: 74 start-page: 35 year: 2015 ident: ref_27 article-title: Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer publication-title: Adv. Pharmacol. doi: 10.1016/bs.apha.2015.03.003 – volume: 278 start-page: 22243 year: 2003 ident: ref_98 article-title: Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301211200 – volume: 275 start-page: 36062 year: 2000 ident: ref_150 article-title: Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007204200 – volume: 118 start-page: 3796 year: 2017 ident: ref_206 article-title: All-Trans Retinoic Acid Ameliorates Arsenic-Induced Oxidative Stress and Apoptosis in the Rat Uterus by Modulating MAPK Signaling Proteins publication-title: J. Cell. Biochem. doi: 10.1002/jcb.26029 – volume: 255 start-page: 67 year: 2004 ident: ref_28 article-title: Oxidative mechanism of arsenic toxicity and carcinogenesis publication-title: Mol. Cell. Biochem. doi: 10.1023/B:MCBI.0000007262.26044.e8 – volume: 159 start-page: 65 year: 1999 ident: ref_83 article-title: Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.1999.8723 – ident: ref_187 doi: 10.3390/cells8080793 – volume: 46 start-page: 675 year: 2017 ident: ref_193 article-title: Glutathione Primes T Cell Metabolism for Inflammation publication-title: Immunity doi: 10.1016/j.immuni.2017.03.019 – volume: 93 start-page: 401 year: 2019 ident: ref_243 article-title: In Vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds publication-title: Arch. Toxicol. doi: 10.1007/s00204-018-2372-z – ident: ref_177 doi: 10.1371/journal.ppat.1006240 – volume: 26 start-page: 939 year: 2007 ident: ref_223 article-title: Supplementation of ascorbic acid and alpha-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327107087909 – volume: 20 start-page: 1045 year: 2014 ident: ref_125 article-title: BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12325 – volume: 527 start-page: 186 year: 2015 ident: ref_190 article-title: Oxidative stress inhibits distant metastasis by human melanoma cells publication-title: Nature doi: 10.1038/nature15726 – volume: 70 start-page: 5127 year: 2010 ident: ref_42 article-title: Reduced reactive oxygen species-generating capacity contributes to the enhanced cell growth of arsenic-transformed epithelial cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-0007 – volume: 21 start-page: 783 year: 1996 ident: ref_147 article-title: Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(96)00174-8 – volume: 99 start-page: 544 year: 2016 ident: ref_51 article-title: An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.09.010 – volume: 68 start-page: 99 year: 2014 ident: ref_221 article-title: Protective effect of dietary flaxseed oil on arsenic-induced nephrotoxicity and oxidative damage in rat kidney publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2014.03.011 – volume: 624 start-page: 55 year: 2018 ident: ref_240 article-title: The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.023 – ident: ref_108 doi: 10.3892/ijmm.2018.4043 – volume: 176 start-page: 11 year: 2019 ident: ref_117 article-title: Biological Functions of Autophagy Genes: A Disease Perspective publication-title: Cell doi: 10.1016/j.cell.2018.09.048 – volume: 75 start-page: 4817 year: 2015 ident: ref_96 article-title: Nrf2 Activation Promotes Keratinocyte Survival during Early Skin Carcinogenesis via Metabolic Alterations publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-0614 – volume: 243 start-page: 399 year: 2010 ident: ref_171 article-title: Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2009.12.014 – volume: 196 start-page: 453 year: 2017 ident: ref_234 article-title: Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12cells via modulating autophagy/apoptosis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.149 – volume: 1 start-page: 40 year: 2005 ident: ref_244 article-title: A PBTK/TD modeling-based approach can assess arsenic bioaccumulation in farmed tilapia (Oreochromis mossambicus) and human health risks publication-title: Integr. Environ. Assess. Manag. doi: 10.1897/IEAM_2004a-004.1 – volume: 9 start-page: 347 year: 2013 ident: ref_200 article-title: The role of chelation in the treatment of arsenic and mercury poisoning publication-title: J. Med. Toxicol. doi: 10.1007/s13181-013-0344-5 – volume: 198 start-page: 419 year: 2004 ident: ref_84 article-title: Arsenic and urinary bladder cell proliferation publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2003.07.017 – volume: 120 start-page: 583 year: 2012 ident: ref_94 article-title: Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104580 – volume: 8 start-page: e3159 year: 2017 ident: ref_230 article-title: Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.482 – volume: 271 start-page: 13422 year: 1996 ident: ref_165 article-title: Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.23.13422 – volume: 6 start-page: 430 year: 2016 ident: ref_239 article-title: PBPK modeling and simulation in drug research and development publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2016.04.004 – volume: 1863 start-page: 585 year: 2017 ident: ref_155 article-title: Nrf2 signaling pathway: Pivotal roles in inflammation publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2016.11.005 – volume: 29 start-page: 2658 year: 2009 ident: ref_69 article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01639-08 – volume: 289 start-page: 15244 year: 2014 ident: ref_161 article-title: Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.540633 – volume: 55 start-page: 26 year: 2018 ident: ref_89 article-title: Ameliorative role of genistein against age-dependent chronic arsenic toxicity in murine brains via the regulation of oxidative stress and inflammatory signaling cascades publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2017.11.010 – volume: 36 start-page: 655 year: 2015 ident: ref_192 article-title: Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation publication-title: Tumour. Biol. doi: 10.1007/s13277-014-2644-z – volume: 58 start-page: 201 year: 2002 ident: ref_1 article-title: Arsenic round the world: A review publication-title: Talanta doi: 10.1016/S0039-9140(02)00268-0 – volume: 4 start-page: 459 year: 2005 ident: ref_122 article-title: Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.4.4.1652 – volume: 65 start-page: 3981 year: 2008 ident: ref_185 article-title: Roles of p53, MYC and HIF-1 in regulating glycolysis—The seventh hallmark of cancer publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-8224-x – volume: 133 start-page: 33 year: 2002 ident: ref_166 article-title: Effect of arsenic on transcription factor AP-1 and NF-kappaB DNA binding activity and related gene expression publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(02)00083-8 – ident: ref_102 doi: 10.1002/pmic.201600257 – volume: 302 start-page: 93 year: 2019 ident: ref_104 article-title: Daphnetin activates the Nrf2-dependent antioxidant response to prevent arsenic-induced oxidative insult in human lung epithelial cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.02.001 – volume: 282 start-page: L1040 year: 2002 ident: ref_132 article-title: Role of Ras in metal-induced EGF receptor signaling and NF-kappaB activation in human airway epithelial cells publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00390.2001 – volume: 38 start-page: 5718 year: 2010 ident: ref_97 article-title: Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq212 – volume: 102 start-page: 264 year: 2015 ident: ref_120 article-title: Targeting Pink1-Parkin-mediated mitophagy for treating liver injury publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.09.020 – volume: 110 start-page: 435 year: 2010 ident: ref_18 article-title: Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells publication-title: Environ. Res. doi: 10.1016/j.envres.2009.08.012 – volume: 11 start-page: 982 year: 2015 ident: ref_237 article-title: Significance of antioxidant potential of plants and its relevance to therapeutic applications publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.12096 – volume: 206 start-page: 198 year: 2005 ident: ref_21 article-title: Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2004.10.023 – volume: 294 start-page: 184 year: 2018 ident: ref_242 article-title: Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2018.05.029 – volume: 79 start-page: 183 year: 2005 ident: ref_12 article-title: A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19 publication-title: Arch. Toxicol. doi: 10.1007/s00204-004-0620-x – volume: 266 start-page: 12 year: 2008 ident: ref_195 article-title: Reactive oxygen species and HIF-1 signalling in cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2008.02.028 – volume: 89 start-page: 1057 year: 2015 ident: ref_208 article-title: Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death publication-title: Arch. Toxicol. doi: 10.1007/s00204-014-1302-y – volume: 167 start-page: 1803 year: 2016 ident: ref_176 article-title: Mutant KRAS Enhances Tumor Cell Fitness by Upregulating Stress Granules publication-title: Cell doi: 10.1016/j.cell.2016.11.035 – volume: 26 start-page: 877 year: 2012 ident: ref_189 article-title: Links between metabolism and cancer publication-title: Genes Dev. doi: 10.1101/gad.189365.112 – volume: 166 start-page: 555 year: 2016 ident: ref_123 article-title: Mitochondria and Cancer publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – volume: 1865 start-page: 721 year: 2018 ident: ref_154 article-title: Nrf2-Keap1 signaling in oxidative and reductive stress publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2018.02.010 – volume: 19 start-page: 73 year: 2008 ident: ref_238 article-title: Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2008.03.003 – volume: 198 start-page: 327 year: 2004 ident: ref_11 article-title: A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2003.10.027 – volume: 14 start-page: 551 year: 2018 ident: ref_119 article-title: Role of exercise in age-related sarcopenia publication-title: J. Exerc. Rehabil. doi: 10.12965/jer.1836268.134 |
SSID | ssj0000800823 |
Score | 2.5834415 |
SecondaryResourceType | review_article |
Snippet | Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 240 |
SubjectTerms | Animals antioxidants Antioxidants - metabolism Apoptosis - drug effects arsenic Arsenic - toxicity Arsenic Poisoning Cell Proliferation Epigenesis, Genetic Humans Inflammation MAP Kinase Signaling System Mice MicroRNAs - metabolism Mitophagy NF-E2-Related Factor 2 - metabolism NF-kappa B - metabolism nrf2 Oxidation-Reduction Oxidative Stress - drug effects Phosphorylation Reactive Oxygen Species - metabolism Review ros signaling pathway Transcription Factor AP-1 - metabolism Tumor Suppressor Protein p53 - metabolism Tyrosine - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS_QwFA3iyo34tr6IoG6kOJO0eSxVFBFUEAV3JU8c0fbjmxH033tvWocZUdzYZRvacE-bnJPenEvInjcuKqVtzqwOeVHomNvC81w771UMqijSmu7Vtbi4Ly4fyoeJUl-YE9baA7eBOwIBFa0HWhO9LJyOymllnJPMxyAU8zj6wpw3IaaeOh6kGG8z3Tno-iPczY52o-jpNTUHJav-7_jl1zTJiXnnfIHMd4SRHrcdXSQzoV4iy8c1iOWXd3pAUwpnWhtfJhJAp7fNc6BNpLfBpLGM3ry9w1tCU6X5MKSDGm42DPXA0bvmbeCAhq-Q-_Ozu9OLvKuMkLuyL0Y5yBRm-n3Tj4J5g7tdbRmZNYZHIYGzBemUMtZKLK0jCiEUj4CK9hEIVKkEXyWzdVOHdUIDoIGkwFoOVKQnNAxhEg8PVMDoMiOHn7GqXGcbjtUrniuQDxjZajKyGdkft_7X2mX80O4Ewz5ugybX6QRAX3XQV79Bn5HdT9Aq-CjwT4epQ_M6rFhy_UfT3YystSCOH8VZj3OmZUbkFLxTfZm-Ug8ek_G27EnGtNj4i85vkjmG0h0TwMstMjv6_xq2gd-M7E56lT8ARUD5cQ priority: 102 providerName: Directory of Open Access Journals |
Title | The Role of Reactive Oxygen Species in Arsenic Toxicity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32033297 https://www.proquest.com/docview/2352655399 https://pubmed.ncbi.nlm.nih.gov/PMC7072296 https://doaj.org/article/837fbd800fd74c9f8c98acc72dfe682d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71ceGCCuURHtEiARdkSNb2Pg4ItahVhdSCokbKzdpnCQp2SVIp-ffMbJyogSLho71aWzO7O9-sZ78P4LU3LiqlbcatDllR6JjZwueZdt6rGFRRpD3d8wtxNiy-jMrRDqzVRlsDzu5M7UhPajidvF_8Wn7CCf-RMk5M2T_QQXViEiW6rl3Yx5gkScvgvAX6P1pcpJLWG8eYRudRRqsq-L862IpPicb_Luz5ZwnlrZh0egD3WzDJjlbefwA7oX4Ih0c1JtI_l-wtS-Wdad_8ECQOCDZoJoE1kQ2CSesc-7pY4ghiSYU-zNi4xs5moR47dtksxg4h-iMYnp5cfj7LWtWEzJV9Mc8wheGm3zf9KLg3dBLWlpFbY_IoJOK5IJ1SxlpJsjuiEELlET2mfURwVSqRP4a9uqnDU2ABPUWAwdocYUpPaFzeJF0eYYLRZQferW1VuZZSnJQtJhWmFmTZ6rZlO_Bm0_p6RaXxj3bHZPZNGyLATjea6VXVzqcK8-poPXo1elk4HZXTyjgnuY9BKO478GrttAonDP0FMXVobmYVT4oARMjbgScrJ25elfNennMtOyC33Lv1LdtP6vH3RMote5JzLZ79x3ufwz1OWTvVfpcvYG8-vQkvEdrMbRd25Uh2Yf_45OLboJs2CLppJP8Gyu75lw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Reactive+Oxygen+Species+in+Arsenic+Toxicity&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Yuxin&rft.au=Li%2C+Jin&rft.au=Lou%2C+Bin&rft.au=Wu%2C+Ruirui&rft.date=2020-02-05&rft.issn=2218-273X&rft.eissn=2218-273X&rft.volume=10&rft.issue=2&rft_id=info:doi/10.3390%2Fbiom10020240&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon |