Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level

Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 5; no. 2; pp. 418 - 429
Main Authors Bowne, Jairus B., Erwin, Tim A., Juttner, Juan, Schnurbusch, Thorsten, Langridge, Peter, Bacic, Antony, Roessner, Ute
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.03.2012
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.
AbstractList Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.
Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.
Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. [PUBLICATION ABSTRACT]
Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.
Author Jairus B. Bowne Tim A. Erwin Juan Juttner Thorsten Schnurbusch Peter Langridge Antony Bacic Ute Roessner
AuthorAffiliation Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, The University of Melbourne, 3010 Victoria, Australia ARC Centre for Excellence for Plant Cell Walls, School of Botany, The University of Melbourne, 3010 Victoria, Australia Metabolomics Australia, School of Botany, The University of Melbourne, 3010 Victoria, Australia
Author_xml – sequence: 1
  givenname: Jairus B.
  surname: Bowne
  fullname: Bowne, Jairus B.
  organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia
– sequence: 2
  givenname: Tim A.
  surname: Erwin
  fullname: Erwin, Tim A.
  organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia
– sequence: 3
  givenname: Juan
  surname: Juttner
  fullname: Juttner, Juan
  organization: Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia
– sequence: 4
  givenname: Thorsten
  surname: Schnurbusch
  fullname: Schnurbusch, Thorsten
  organization: Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia
– sequence: 5
  givenname: Peter
  surname: Langridge
  fullname: Langridge, Peter
  organization: Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia
– sequence: 6
  givenname: Antony
  surname: Bacic
  fullname: Bacic, Antony
  organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia
– sequence: 7
  givenname: Ute
  surname: Roessner
  fullname: Roessner, Ute
  email: u.roessner@unimelb.edu.au
  organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22207720$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvEzEUhS1URB90wR9Ag1hULIb47XiJUl5SEBIKYmk5nuvEaGY8tT2R-PcYknZRdWVb-s7xvedcorMxjoDQK4LfE6zZYpgWOSdC-DN0QZSgrV5KdVbvUvGWYkHP0XXOYYspZURowl-gc0opVoriCzTcpjjv9qX5AXmKY4bcRN-swfpmE3Ke69unODS_9mBLs5r7Eg42_Ydug_eQwrhr7j02sYdkRwdNZcsemm9Q7Db2oUC1PED_Ej33ts9wfTqv0M9PHzerL-36--evqw_r1gkiS8slAeFlR5Tj2mEqgBKwRDLvsQTPhOQWqNRcdcxJCs6DoqKTQjBBATp2hW6OvlOKd3WHYoaQHfS9HSHO2Wi-XGqpNa7k20fk7zinsQ5nCKZESc6XvFKvT9S8HaAzUwqDTX_MfY4VeHcEXIq1DfAPCMHmX01mmMyxpsouHrEuFFtCHEuyoX9SwY4KqJkdAiSTXYCacxcSuGK6GJ5UvTn9s4_j7q4W9TAUJ0JwhSX7Cxd-stM
CitedBy_id crossref_primary_10_1098_rsta_2015_0370
crossref_primary_10_3390_molecules27092966
crossref_primary_10_1186_s12870_018_1404_4
crossref_primary_10_1590_s0100_204x2018000700001
crossref_primary_10_1007_s11356_021_14777_7
crossref_primary_10_1071_FP17051
crossref_primary_10_1155_2017_3065251
crossref_primary_10_1371_journal_pone_0145646
crossref_primary_10_1016_j_ijbiomac_2022_06_002
crossref_primary_10_1080_07352689_2020_1778924
crossref_primary_10_2139_ssrn_3307427
crossref_primary_10_1007_s11103_017_0585_9
crossref_primary_10_3390_agronomy11081534
crossref_primary_10_1016_j_cj_2018_05_006
crossref_primary_10_1007_s10681_018_2245_9
crossref_primary_10_1007_s11306_017_1267_y
crossref_primary_10_3389_fmicb_2018_00284
crossref_primary_10_1111_ppl_13034
crossref_primary_10_1007_s41204_021_00117_0
crossref_primary_10_1016_j_plaphy_2012_10_012
crossref_primary_10_1111_ppl_13036
crossref_primary_10_1111_1462_2920_14530
crossref_primary_10_1186_s40529_016_0134_x
crossref_primary_10_1002_jssc_201400097
crossref_primary_10_1093_jxb_erz224
crossref_primary_10_1093_jxb_ert244
crossref_primary_10_3390_antiox11050820
crossref_primary_10_3390_agronomy14040704
crossref_primary_10_1007_s00425_023_04115_1
crossref_primary_10_3390_d15040481
crossref_primary_10_3390_plants12020240
crossref_primary_10_1007_s00425_019_03228_w
crossref_primary_10_3390_agronomy12030725
crossref_primary_10_1093_hr_uhae286
crossref_primary_10_2135_cropsci2013_09_0606
crossref_primary_10_1007_s00018_012_1091_5
crossref_primary_10_3389_fpls_2022_945441
crossref_primary_10_3389_fpls_2019_00266
crossref_primary_10_1016_j_jcs_2013_10_002
crossref_primary_10_1039_C4NP00072B
crossref_primary_10_1080_10408398_2018_1552245
crossref_primary_10_1017_S0007485322000463
crossref_primary_10_1093_aob_mcae085
crossref_primary_10_3389_fpls_2020_00715
crossref_primary_10_1002_jsfa_9986
crossref_primary_10_1016_j_foodchem_2016_07_005
crossref_primary_10_5936_csbj_201301003
crossref_primary_10_3389_fsufs_2022_827758
crossref_primary_10_1021_acs_jafc_8b04098
crossref_primary_10_3390_agronomy11091792
crossref_primary_10_3390_ijms23031704
crossref_primary_10_1111_pce_14407
crossref_primary_10_1186_s13059_022_02719_6
crossref_primary_10_3390_plants11101331
crossref_primary_10_1016_j_jprot_2023_104923
crossref_primary_10_3390_plants12020249
crossref_primary_10_1016_j_sajb_2023_07_051
crossref_primary_10_1007_s10725_020_00627_y
crossref_primary_10_1016_j_plantsci_2018_05_008
crossref_primary_10_1111_ppl_12649
crossref_primary_10_1186_s12864_015_1535_z
crossref_primary_10_1016_j_plaphy_2021_10_015
crossref_primary_10_1002_tpg2_20444
crossref_primary_10_1007_s10343_022_00795_z
crossref_primary_10_1002_jsfa_7561
crossref_primary_10_3390_metabo15040217
crossref_primary_10_1111_ppl_12883
crossref_primary_10_1016_j_jplph_2013_07_006
crossref_primary_10_1093_pcp_pct163
crossref_primary_10_4014_jmb_2003_03034
crossref_primary_10_1007_s10343_024_01097_2
crossref_primary_10_1016_j_chemosphere_2017_11_087
crossref_primary_10_1093_jxb_erw059
crossref_primary_10_1016_j_foodchem_2019_125621
crossref_primary_10_1371_journal_pone_0198093
crossref_primary_10_1093_jxb_erw298
crossref_primary_10_1016_j_envexpbot_2021_104393
crossref_primary_10_1371_journal_pone_0077869
crossref_primary_10_3390_plants9050591
crossref_primary_10_1016_j_scitotenv_2021_148856
crossref_primary_10_1071_FP20332
crossref_primary_10_1371_journal_pone_0048661
crossref_primary_10_1371_journal_pone_0196102
crossref_primary_10_3389_fpls_2021_756741
crossref_primary_10_3389_fpls_2022_919166
crossref_primary_10_1007_s12042_021_09302_6
crossref_primary_10_1007_s42976_024_00588_2
crossref_primary_10_3390_plants12061209
crossref_primary_10_1007_s12298_024_01540_8
crossref_primary_10_1007_s11240_015_0744_0
crossref_primary_10_3390_metabo14050272
crossref_primary_10_3390_molecules26040795
crossref_primary_10_1007_s11738_019_2860_7
crossref_primary_10_1016_j_cj_2020_02_006
crossref_primary_10_1016_j_plantsci_2020_110789
crossref_primary_10_1080_26895293_2021_1917456
crossref_primary_10_2135_cropsci2013_01_0045
crossref_primary_10_1038_s41598_024_77871_z
crossref_primary_10_3389_fpls_2022_896408
crossref_primary_10_1186_s12870_017_1033_3
crossref_primary_10_1094_PHYTO_11_16_0410_R
crossref_primary_10_3390_ijms20092330
crossref_primary_10_1007_s00344_024_11515_4
crossref_primary_10_1111_ppl_13597
crossref_primary_10_3390_ijms22137182
crossref_primary_10_1186_s12870_024_05719_9
crossref_primary_10_1186_1939_8433_6_23
crossref_primary_10_3389_fpls_2021_656074
crossref_primary_10_1016_j_jprot_2017_05_011
crossref_primary_10_1111_ppl_13917
crossref_primary_10_1021_pr400799a
crossref_primary_10_3390_plants11040510
crossref_primary_10_3390_genes15070870
crossref_primary_10_1002_agj2_20846
crossref_primary_10_1016_j_envpol_2019_113496
crossref_primary_10_3389_fpls_2016_00584
crossref_primary_10_1016_j_plaphy_2024_109415
crossref_primary_10_1155_2018_9415409
crossref_primary_10_1371_journal_pone_0274915
crossref_primary_10_3390_agriculture13102014
crossref_primary_10_1038_s41598_017_06773_0
crossref_primary_10_3389_fpls_2016_00206
crossref_primary_10_3389_fpls_2022_962622
crossref_primary_10_1016_j_plantsci_2014_04_007
crossref_primary_10_4236_ajps_2017_812205
crossref_primary_10_1139_er_2013_0011
crossref_primary_10_1016_j_rhisph_2021_100367
crossref_primary_10_1093_mp_sss019
crossref_primary_10_3390_plants12203650
crossref_primary_10_1021_acs_jafc_9b00747
crossref_primary_10_1007_s11104_024_06795_4
crossref_primary_10_1016_j_envpol_2022_119008
crossref_primary_10_3389_fpls_2017_02048
crossref_primary_10_3389_fpls_2023_1147390
crossref_primary_10_3390_agronomy13020578
crossref_primary_10_1007_s11033_024_09345_4
crossref_primary_10_1016_j_jes_2020_03_009
crossref_primary_10_3389_fpls_2019_00995
crossref_primary_10_1016_j_indcrop_2022_114844
crossref_primary_10_1016_j_indcrop_2022_115011
crossref_primary_10_1111_jac_12527
crossref_primary_10_1016_j_plaphy_2024_108464
crossref_primary_10_1038_srep03782
crossref_primary_10_3390_agronomy8110247
crossref_primary_10_1007_s12517_021_06846_5
crossref_primary_10_3390_agronomy11020241
crossref_primary_10_1186_s12284_017_0189_7
crossref_primary_10_3389_fpls_2021_563953
crossref_primary_10_3390_ijms222413287
crossref_primary_10_3390_metabo11070427
crossref_primary_10_2139_ssrn_4517869
crossref_primary_10_1007_s00344_012_9303_7
crossref_primary_10_3389_fpls_2022_1035038
crossref_primary_10_14720_abs_66_1_14710
crossref_primary_10_1016_j_micres_2021_126771
crossref_primary_10_1111_pce_12682
crossref_primary_10_3389_fpls_2024_1428631
crossref_primary_10_1038_s41477_019_0361_8
crossref_primary_10_1080_00103624_2020_1744626
crossref_primary_10_3389_fpls_2022_881032
crossref_primary_10_3390_ijms20133137
crossref_primary_10_3389_fgene_2022_1010272
crossref_primary_10_1007_s11738_017_2449_y
crossref_primary_10_1007_s11738_018_2651_6
crossref_primary_10_1038_s41438_021_00521_2
crossref_primary_10_1093_jxb_erw102
crossref_primary_10_12688_f1000research_131413_1
crossref_primary_10_3389_fgene_2017_00141
crossref_primary_10_1016_j_envexpbot_2017_08_008
crossref_primary_10_1080_17429145_2018_1562110
crossref_primary_10_1007_s13562_014_0295_1
crossref_primary_10_1093_mp_ssr102
crossref_primary_10_1111_plb_12305
crossref_primary_10_1021_pr401165b
crossref_primary_10_1017_S1479262118000151
crossref_primary_10_3389_fgene_2022_846449
crossref_primary_10_3390_ijms23169194
crossref_primary_10_1016_j_indcrop_2024_118509
crossref_primary_10_1016_j_foodchem_2013_12_051
crossref_primary_10_3390_ijms24098429
crossref_primary_10_1371_journal_pone_0264847
crossref_primary_10_1080_17429145_2022_2085335
crossref_primary_10_1016_j_envexpbot_2022_105169
crossref_primary_10_3390_ijms22105314
crossref_primary_10_1016_j_plaphy_2018_04_020
crossref_primary_10_1016_j_scienta_2021_110490
crossref_primary_10_3389_fpls_2016_01108
crossref_primary_10_3390_cells11111765
crossref_primary_10_1007_s41101_024_00272_w
crossref_primary_10_1021_acs_jafc_8b07097
crossref_primary_10_3390_cells9041025
crossref_primary_10_2139_ssrn_4170499
crossref_primary_10_32615_ps_2019_156
crossref_primary_10_1007_s42976_023_00418_x
crossref_primary_10_1111_pce_13628
crossref_primary_10_1071_FP21168
crossref_primary_10_1038_srep37434
crossref_primary_10_1007_s42729_023_01164_z
crossref_primary_10_1007_s11356_022_18846_3
crossref_primary_10_1186_s12870_023_04467_6
crossref_primary_10_3389_fpls_2017_01224
crossref_primary_10_3390_ijerph16173222
crossref_primary_10_1111_pce_13195
crossref_primary_10_1111_pbr_13096
crossref_primary_10_1016_j_foodres_2022_112388
crossref_primary_10_1016_j_plantsci_2019_110278
crossref_primary_10_3390_agriculture13091823
crossref_primary_10_3390_plants11243574
crossref_primary_10_1007_s00425_019_03211_5
crossref_primary_10_1038_s41598_020_74303_6
crossref_primary_10_1093_plphys_kiac560
crossref_primary_10_1186_s12870_019_1880_1
crossref_primary_10_1016_j_genrep_2021_101040
crossref_primary_10_1016_j_ab_2017_02_006
crossref_primary_10_1002_pca_2702
crossref_primary_10_3390_ijms22073294
crossref_primary_10_1111_pce_12501
crossref_primary_10_3390_metabo11070457
crossref_primary_10_1016_j_plaphy_2023_107849
crossref_primary_10_1371_journal_pone_0125302
crossref_primary_10_1007_s11103_020_01087_8
crossref_primary_10_1080_11263504_2020_1869118
crossref_primary_10_1016_j_phytochem_2021_113044
crossref_primary_10_1186_s12870_022_03943_9
crossref_primary_10_3389_fpls_2017_00580
crossref_primary_10_1007_s00122_022_04174_0
crossref_primary_10_1111_nph_13245
crossref_primary_10_1007_s11306_024_02143_w
crossref_primary_10_1111_1365_2435_12858
crossref_primary_10_3390_agronomy11061190
crossref_primary_10_1016_j_indcrop_2021_114402
crossref_primary_10_1111_ppl_14544
crossref_primary_10_3390_plants12030447
crossref_primary_10_1134_S1021443716040178
crossref_primary_10_1016_j_foodcont_2023_109930
crossref_primary_10_1016_j_plaphy_2019_10_017
crossref_primary_10_1016_j_envexpbot_2020_104094
crossref_primary_10_1016_j_foodres_2021_110128
crossref_primary_10_1093_jxb_eraa049
crossref_primary_10_1007_s11103_019_00831_z
crossref_primary_10_1007_s42729_021_00529_6
crossref_primary_10_3390_plants12112180
crossref_primary_10_3390_plants9091147
crossref_primary_10_1016_j_jbiosc_2016_09_013
crossref_primary_10_3389_fpls_2020_00891
crossref_primary_10_1007_s11306_013_0545_6
crossref_primary_10_1038_s41598_018_24012_y
crossref_primary_10_1111_ppl_14319
crossref_primary_10_1111_ppl_14551
crossref_primary_10_3390_life14111502
crossref_primary_10_3390_agronomy11030486
crossref_primary_10_1007_s11306_015_0834_3
crossref_primary_10_1146_annurev_arplant_043015_112213
crossref_primary_10_3390_agriculture13030660
crossref_primary_10_3390_agronomy12010189
crossref_primary_10_1021_jf403015a
crossref_primary_10_1093_jxb_erab044
crossref_primary_10_1371_journal_pone_0108020
crossref_primary_10_1038_s41598_020_60265_2
crossref_primary_10_3390_agronomy11050824
crossref_primary_10_1016_j_pbi_2013_04_001
crossref_primary_10_3390_plants10112236
crossref_primary_10_3389_fpls_2025_1565635
crossref_primary_10_1038_s41598_022_21035_4
crossref_primary_10_1186_s12864_023_09246_z
crossref_primary_10_1371_journal_pone_0212411
crossref_primary_10_1111_pce_13028
crossref_primary_10_1093_treephys_tpt080
crossref_primary_10_3389_fpls_2020_01053
crossref_primary_10_3390_metabo12060487
crossref_primary_10_1186_s12870_016_0922_1
crossref_primary_10_1111_jipb_12245
crossref_primary_10_3389_fenvs_2014_00039
crossref_primary_10_3390_agronomy15010211
crossref_primary_10_1016_j_jfca_2024_107140
crossref_primary_10_1016_j_sajb_2024_07_039
crossref_primary_10_1186_s12870_024_05620_5
crossref_primary_10_1021_acs_jafc_5b01114
crossref_primary_10_1021_es5012548
crossref_primary_10_1016_j_jplph_2015_10_004
crossref_primary_10_3390_plants10081636
crossref_primary_10_15407_frg2022_03_187
crossref_primary_10_4236_ajps_2020_1112152
crossref_primary_10_1007_s11738_013_1315_9
crossref_primary_10_1186_s13068_015_0342_8
crossref_primary_10_3390_ijms23105716
crossref_primary_10_1016_j_jclepro_2022_131135
crossref_primary_10_1002_jsfa_7152
crossref_primary_10_3389_fpls_2016_01276
crossref_primary_10_1186_s12870_018_1239_z
crossref_primary_10_3389_fpls_2022_937392
crossref_primary_10_1002_jsfa_8458
crossref_primary_10_1017_S0021859617000946
crossref_primary_10_1371_journal_pcbi_1002859
crossref_primary_10_3390_ijms25147561
crossref_primary_10_1016_j_indcrop_2024_119490
crossref_primary_10_3146_0095_3679_43_1_24
crossref_primary_10_1007_s11306_019_1515_4
crossref_primary_10_1039_D1MO00223F
crossref_primary_10_1038_s41598_021_92449_9
crossref_primary_10_1038_srep16346
crossref_primary_10_1093_treephys_tpz047
crossref_primary_10_1371_journal_pone_0094704
crossref_primary_10_1093_treephys_tpz049
crossref_primary_10_1371_journal_pone_0283347
crossref_primary_10_1007_s11033_020_05398_3
crossref_primary_10_1093_mp_sss098
crossref_primary_10_1093_pcp_pcz181
crossref_primary_10_1111_pce_12032
crossref_primary_10_1016_j_isci_2022_104144
crossref_primary_10_3389_fpls_2015_01012
crossref_primary_10_1093_aobpla_ply016
crossref_primary_10_3390_agronomy10101588
crossref_primary_10_3390_su11092584
crossref_primary_10_7717_peerj_14312
crossref_primary_10_3389_fpls_2016_00953
crossref_primary_10_1021_acs_jproteome_7b00929
crossref_primary_10_1016_j_foodchem_2023_136035
crossref_primary_10_1039_C9EN00973F
crossref_primary_10_1080_01904167_2016_1262417
crossref_primary_10_1007_s00468_019_01937_z
crossref_primary_10_1016_j_plaphy_2020_02_036
crossref_primary_10_1155_2014_703874
crossref_primary_10_1007_s11356_021_15570_2
crossref_primary_10_3389_fpls_2024_1515944
crossref_primary_10_1371_journal_pone_0307393
crossref_primary_10_1016_j_foodchem_2018_07_061
crossref_primary_10_3390_agriculture13030587
crossref_primary_10_1016_j_foodchem_2020_127351
crossref_primary_10_1016_j_envexpbot_2020_104329
crossref_primary_10_1016_j_ecoenv_2024_116181
crossref_primary_10_3390_plants9040520
crossref_primary_10_1016_j_stress_2024_100509
Cites_doi 10.1016/j.abb.2005.10.018
10.1007/s11306-007-0056-4
10.1139/b94-222
10.1105/tpc.012609
10.1007/s00425-003-1105-5
10.1186/1471-2105-7-109
10.1016/S1360-1385(01)02052-0
10.1007/s10681-007-9605-1
10.1111/j.1365-313X.2006.02864.x
10.1016/j.plaphy.2006.10.028
10.1093/jxb/erm179
10.1093/mp/ssr102
10.1016/S1011-1344(96)07470-2
10.1093/jxb/ern199
10.1105/tpc.13.1.11
10.1093/jxb/erl163
10.1093/mp/ssq016
10.1111/j.1439-037X.2007.00289.x
10.1016/j.jplph.2004.01.013
10.1104/pp.103.033431
10.1111/j.1365-313X.2008.03748.x
10.1007/s11103-007-9150-2
10.1046/j.1365-313X.1999.00438.x
10.1111/j.1365-3040.2009.02092.x
10.1093/mp/ssr013
10.1023/A:1001009812864
10.1023/A:1014875215580
10.1111/j.1365-3040.2006.01588.x
10.1111/j.1469-8137.2010.03440.x
10.1016/j.bbabio.2004.03.003
10.1007/s11306-008-0128-0
10.1093/mp/ssq044
10.1093/mp/ssq028
10.1126/science.218.4571.443
10.1093/jxb/erl152
10.1021/pr800561r
10.1093/jxb/erj073
10.1016/j.tplants.2009.11.009
10.1093/emboj/20.20.5587
10.1093/jexbot/51.350.1531
10.1104/pp.106.084053
10.1016/S0166-4328(01)00297-2
10.1023/A:1002704327076
10.1016/j.indcrop.2009.09.007
10.1111/j.1365-3040.2009.02041.x
10.1093/mp/ssr030
10.1104/pp.103.035675
10.1016/j.plantsci.2005.12.008
10.1007/s11306-006-0037-z
10.1111/j.1365-3040.2007.01770.x
10.1104/pp.108.115733
10.1146/annurev.pp.44.060193.001311
10.1007/s00122-008-0846-8
10.1242/jeb.01730
10.1007/BF01955150
10.1007/s00122-006-0339-6
10.1104/pp.006858
10.3389/fpls.2011.00044
10.1111/j.1365-313X.2007.03052.x
ContentType Journal Article
Copyright 2012 The Authors. All rights reserved.
The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Copyright_xml – notice: 2012 The Authors. All rights reserved.
– notice: The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
DBID 2RA
92L
CQIGP
W94
WU4
~WA
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1093/mp/ssr114
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level
EISSN 1752-9867
EndPage 429
ExternalDocumentID 2694269301
22207720
10_1093_mp_ssr114
S1674205214601295
41554706
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--M
.2P
.I3
0R~
123
1RT
2RA
2WC
4.4
457
53G
6I.
7-5
70D
8P~
92L
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABXDB
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJBFU
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CKLRP
CQIGP
CS3
CW9
CZ4
DU5
E3Z
EBS
EDH
EE~
EFJIC
EFLBG
EJD
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NCXOZ
NU-
O0~
O9-
OAUVE
OK1
OVD
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TEORI
TR2
W8F
W94
WU4
X7H
~91
~G-
~WA
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
H13
SSH
TGP
CGR
CUY
CVF
ECM
EIF
NPM
EFKBS
K9.
7X8
ID FETCH-LOGICAL-c516t-461e5f6d17c49c025e21ea163ff06ef3564ae26947d3c62ecfe725d655352eed3
IEDL.DBID IXB
ISSN 1674-2052
1752-9867
IngestDate Mon Jul 21 09:36:25 EDT 2025
Wed Aug 13 11:00:17 EDT 2025
Thu Apr 03 07:01:45 EDT 2025
Tue Jul 01 01:40:43 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Fri Feb 23 02:34:42 EST 2024
Wed Feb 14 10:47:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords wheat
abiotic/environmental stress
metabolomics
drought
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-461e5f6d17c49c025e21ea163ff06ef3564ae26947d3c62ecfe725d655352eed3
Notes 31-2013/Q
abiotic/environmental stress; metabolomics; drought; wheat.
Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1674205214601295
PMID 22207720
PQID 1021764484
PQPubID 135333
PageCount 12
ParticipantIDs proquest_miscellaneous_948896990
proquest_journals_1021764484
pubmed_primary_22207720
crossref_primary_10_1093_mp_ssr114
crossref_citationtrail_10_1093_mp_ssr114
elsevier_sciencedirect_doi_10_1093_mp_ssr114
chongqing_primary_41554706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Molecular plant
PublicationTitleAlternate Molecular Plant
PublicationYear 2012
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Alia, Saradhi, Mohanty (bib1) 1997; 38
Roessner, Patterson, Forbes, Fincher, Langridge, Bacic (bib47) 2006; 142
Alvarez, Marsh, Schroeder, Schachtman (bib3) 2008; 31
Less, Galili (bib30) 2008; 147
Street (bib55) 2006; 48
Nanjo (bib37) 1999; 18
Izanloo, Condon, Langridge, Tester, Schnurbusch (bib22) 2008; 59
Norouzi, Toorchi, Hosseini Salekdeh, Mohammadi, Neyshabouri, Aharizad (bib39) 2008; 6
Díaz, Betti, Sánchez, Udvardi, Monza, Márquez (bib11) 2010; 188
Rizhsky, Liang, Mittler (bib44) 2002; 130
Xue, Way, Richardson, Drenth, Joyce, McIntyre (bib63) 2011; 4
Sairam, Shukla, Saxena (bib49) 1997; 40
Mahajan, Tuteja (bib32) 2005; 444
Silva (bib53) 2003; 15
Malatrasi, Corradi, Svensson, Close, Gulli, Marmiroli (bib33) 2006; 113
Kilian (bib28) 2007; 50
Rampino, Pataleo, Gerardi, Mita, Perrotta (bib41) 2006; 29
Kato, Hirotsu, Nemoto, Yamagishi (bib25) 2008; 160
Boyer (bib7) 1982; 218
Galinski (bib14) 1993; 49
Liu, Wu, Huang, Sun, Xie (bib31) 2011; 4
Steudle (bib54) 2000; 51
Kieffer (bib27) 2009; 8
Dubouzet, Ishihara, Matsuda, Miyagawa, Iwata, Wakasa (bib12) 2007; 58
Bartels, Phillips (bib4) 2010
Jacobs, Lunde, Bacic, Tester, Roessner (bib23) 2007; 3
Reddy, Chaitanya, Vivekanandan (bib42) 2004; 161
Gorantla, Babu, Lachagari, Feltus, Paterson, Reddy (bib17) 2005; 89
Vogelmann (bib60) 1993; 44
Bogdan, Zagdanska (bib6) 2006; 44
Talamè, Ozturk, Bohnert, Tuberosa (bib57) 2007; 58
Witt (bib62) 2012; 5
González, Martín, Ayerbe (bib15) 2008; 194
Nishiyama, Yamamoto, Allakhverdiev, Inaba, Yokota, Murata (bib38) 2001; 20
Yang, Vanderbeld, Wan, Huang (bib65) 2010; 3
Savé, Biel, de Herralde (bib51) 2000; 43
Ford, Cassin, Bacic (bib13) 2011; 2
Hannah, Zuther, Buchel, Heyer (bib20) 2006; 57
Deyholos (bib10) 2010; 33
Korkina (bib29) 2007; 53
Charlton (bib9) 2008; 4
Mathews (bib34) 2008; 117
Grammatikopoulos, Manetas (bib18) 1994; 72
Junker, Klukas, Schreiber (bib24) 2006; 7
Wang, Vinocur, Altman (bib61) 2003; 218
Ruan, Jin, Yang, Li, Boyer (bib48) 2010; 3
Hajlaoui, Ayeb, Garrec, Denden (bib19) 2010; 31
Yancey (bib64) 2005; 208
Sanchez, Schwabe, Erban, Udvardi, Kopka (bib50) 2011
Broadhurst, Kell (bib8) 2006; 2
Hoekstra, Golovina, Buitink (bib21) 2001; 6
Roessner (bib46) 2001; 13
Monneveux, Rekika, Acevedo, Merah (bib36) 2006; 170
Ozturk (bib40) 2002; 48
Rizhsky, Liang, Shuman, Shulaev, Davletova, Mittler (bib45) 2004; 134
Taylor, Heazlewood, Day, Millar (bib58) 2004; 134
Urano (bib59) 2009; 57
Allakhverdiev, Murata (bib2) 2004; 1657
Keppler, Showalter (bib26) 2010; 3
Richards, Rawson, Johnson (bib43) 1986; 13
Sharma, Dietz (bib52) 2006; 57
Miller, Suzuki, Ciftci-Yilmaz, Mittler (bib35) 2010; 33
Goodwin, Jenks (bib16) 2005
Zhang, Broeckling, Sumner, Wang (bib66) 2007; 64
Benjamini, Drai, Elmer, Kafkafi, Golani (bib5) 2001; 125
Szabados, Savouré (bib56) 2010; 15
Mathews (10.1093/mp/ssr114_bib34) 2008; 117
Keppler (10.1093/mp/ssr114_bib26) 2010; 3
Yang (10.1093/mp/ssr114_bib65) 2010; 3
Kilian (10.1093/mp/ssr114_bib28) 2007; 50
Deyholos (10.1093/mp/ssr114_bib10) 2010; 33
Alvarez (10.1093/mp/ssr114_bib3) 2008; 31
Charlton (10.1093/mp/ssr114_bib9) 2008; 4
Grammatikopoulos (10.1093/mp/ssr114_bib18) 1994; 72
Alia (10.1093/mp/ssr114_bib1) 1997; 38
Sanchez (10.1093/mp/ssr114_bib50) 2011
Nanjo (10.1093/mp/ssr114_bib37) 1999; 18
Roessner (10.1093/mp/ssr114_bib46) 2001; 13
Ruan (10.1093/mp/ssr114_bib48) 2010; 3
Ozturk (10.1093/mp/ssr114_bib40) 2002; 48
Urano (10.1093/mp/ssr114_bib59) 2009; 57
Silva (10.1093/mp/ssr114_bib53) 2003; 15
Kieffer (10.1093/mp/ssr114_bib27) 2009; 8
Savé (10.1093/mp/ssr114_bib51) 2000; 43
Liu (10.1093/mp/ssr114_bib31) 2011; 4
Vogelmann (10.1093/mp/ssr114_bib60) 1993; 44
Ford (10.1093/mp/ssr114_bib13) 2011; 2
Street (10.1093/mp/ssr114_bib55) 2006; 48
Rampino (10.1093/mp/ssr114_bib41) 2006; 29
Wang (10.1093/mp/ssr114_bib61) 2003; 218
Xue (10.1093/mp/ssr114_bib63) 2011; 4
Monneveux (10.1093/mp/ssr114_bib36) 2006; 170
Talamè (10.1093/mp/ssr114_bib57) 2007; 58
Galinski (10.1093/mp/ssr114_bib14) 1993; 49
Roessner (10.1093/mp/ssr114_bib47) 2006; 142
Jacobs (10.1093/mp/ssr114_bib23) 2007; 3
Bartels (10.1093/mp/ssr114_bib4) 2010
Yancey (10.1093/mp/ssr114_bib64) 2005; 208
Sharma (10.1093/mp/ssr114_bib52) 2006; 57
Hannah (10.1093/mp/ssr114_bib20) 2006; 57
Less (10.1093/mp/ssr114_bib30) 2008; 147
Nishiyama (10.1093/mp/ssr114_bib38) 2001; 20
Miller (10.1093/mp/ssr114_bib35) 2010; 33
Dubouzet (10.1093/mp/ssr114_bib12) 2007; 58
Rizhsky (10.1093/mp/ssr114_bib45) 2004; 134
Malatrasi (10.1093/mp/ssr114_bib33) 2006; 113
Rizhsky (10.1093/mp/ssr114_bib44) 2002; 130
Reddy (10.1093/mp/ssr114_bib42) 2004; 161
Benjamini (10.1093/mp/ssr114_bib5) 2001; 125
Mahajan (10.1093/mp/ssr114_bib32) 2005; 444
Zhang (10.1093/mp/ssr114_bib66) 2007; 64
Goodwin (10.1093/mp/ssr114_bib16) 2005
Boyer (10.1093/mp/ssr114_bib7) 1982; 218
Norouzi (10.1093/mp/ssr114_bib39) 2008; 6
Sairam (10.1093/mp/ssr114_bib49) 1997; 40
Steudle (10.1093/mp/ssr114_bib54) 2000; 51
Richards (10.1093/mp/ssr114_bib43) 1986; 13
Hajlaoui (10.1093/mp/ssr114_bib19) 2010; 31
Gorantla (10.1093/mp/ssr114_bib17) 2005; 89
Taylor (10.1093/mp/ssr114_bib58) 2004; 134
Korkina (10.1093/mp/ssr114_bib29) 2007; 53
Bogdan (10.1093/mp/ssr114_bib6) 2006; 44
González (10.1093/mp/ssr114_bib15) 2008; 194
Junker (10.1093/mp/ssr114_bib24) 2006; 7
Izanloo (10.1093/mp/ssr114_bib22) 2008; 59
Witt (10.1093/mp/ssr114_bib62) 2012; 5
Kato (10.1093/mp/ssr114_bib25) 2008; 160
Broadhurst (10.1093/mp/ssr114_bib8) 2006; 2
Díaz (10.1093/mp/ssr114_bib11) 2010; 188
Allakhverdiev (10.1093/mp/ssr114_bib2) 2004; 1657
Szabados (10.1093/mp/ssr114_bib56) 2010; 15
Hoekstra (10.1093/mp/ssr114_bib21) 2001; 6
References_xml – volume: 51
  start-page: 1531
  year: 2000
  end-page: 1542
  ident: bib54
  article-title: Water uptake by roots: effects of water deficit
  publication-title: J. Exper. Bot.
– volume: 13
  start-page: 465
  year: 1986
  end-page: 473
  ident: bib43
  article-title: Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures
  publication-title: Australian J. Plant Physiol
– volume: 6
  start-page: 312
  year: 2008
  end-page: 318
  ident: bib39
  article-title: Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed
  publication-title: J. Food Agriculture Environ
– volume: 50
  start-page: 347
  year: 2007
  end-page: 363
  ident: bib28
  article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses
  publication-title: Plant J
– volume: 38
  start-page: 253
  year: 1997
  end-page: 257
  ident: bib1
  article-title: Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage
  publication-title: J. Photochem. Photobiol. B: Biol
– volume: 4
  start-page: 312
  year: 2008
  end-page: 327
  ident: bib9
  article-title: Responses of the pea (
  publication-title: Metabolomics
– volume: 31
  start-page: 122
  year: 2010
  end-page: 130
  ident: bib19
  article-title: Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (
  publication-title: Industrial Crops Products
– start-page: 14
  year: 2005
  end-page: 36
  ident: bib16
  article-title: Plant cuticle function as a barrier to water loss
  publication-title: Plant Abiotic Stress
– volume: 44
  start-page: 787
  year: 2006
  end-page: 794
  ident: bib6
  article-title: Changes in the pool of soluble sugars induced by dehydration at the heterotrophic phase of growth of wheat seedlings
  publication-title: Plant Physiol. Biochem
– volume: 2
  start-page: 44
  year: 2011
  ident: bib13
  article-title: Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance
  publication-title: Frontiers Plant Sci
– volume: 72
  start-page: 1805
  year: 1994
  end-page: 1811
  ident: bib18
  article-title: Direct absorption of water by hairy leaves of
  publication-title: Canadian J. Bot.
– volume: 31
  start-page: 325
  year: 2008
  end-page: 340
  ident: bib3
  article-title: Metabolomic and proteomic changes in the xylem sap of maize under drought
  publication-title: Plant Cell Environ
– volume: 117
  start-page: 1077
  year: 2008
  end-page: 1091
  ident: bib34
  article-title: Multi-environment QTL mixed models for drought stress adaptation in wheat
  publication-title: Theoretical Applied Genet
– volume: 142
  start-page: 1087
  year: 2006
  end-page: 1101
  ident: bib47
  article-title: An investigation of boron toxicity in barley using metabolomics
  publication-title: Plant Physiol
– volume: 188
  start-page: 1001
  year: 2010
  end-page: 1013
  ident: bib11
  article-title: Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in
  publication-title: New Phytol
– volume: 147
  start-page: 316
  year: 2008
  end-page: 330
  ident: bib30
  article-title: Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses
  publication-title: Plant Physiol
– volume: 3
  start-page: 942
  year: 2010
  end-page: 955
  ident: bib48
  article-title: Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat
  publication-title: Mol. Plant
– volume: 59
  start-page: 3327
  year: 2008
  end-page: 3346
  ident: bib22
  article-title: Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars
  publication-title: J. Exper. Bot.
– volume: 43
  start-page: 239
  year: 2000
  end-page: 244
  ident: bib51
  article-title: Leaf pubescence, water relations and chlorophyll fluorescence in two subspecies of
  publication-title: Biologia Plantarum
– volume: 218
  start-page: 443
  year: 1982
  end-page: 448
  ident: bib7
  article-title: Plant productivity and environment
  publication-title: Science
– volume: 58
  start-page: 229
  year: 2007
  end-page: 240
  ident: bib57
  article-title: Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis
  publication-title: J. Exper. Bot.
– volume: 18
  start-page: 185
  year: 1999
  end-page: 193
  ident: bib37
  article-title: Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic
  publication-title: Plant J
– volume: 57
  start-page: 711
  year: 2006
  end-page: 726
  ident: bib52
  article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress
  publication-title: J. Exper. Bot.
– volume: 48
  start-page: 551
  year: 2002
  end-page: 573
  ident: bib40
  article-title: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley
  publication-title: Plant Mol. Biol.
– volume: 64
  start-page: 265
  year: 2007
  end-page: 278
  ident: bib66
  article-title: Heterologous expression of two
  publication-title: Plant Mol. Biol.
– volume: 44
  start-page: 231
  year: 1993
  end-page: 251
  ident: bib60
  article-title: Plant tissue optics
  publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol
– volume: 58
  start-page: 3309
  year: 2007
  end-page: 3321
  ident: bib12
  article-title: Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit
  publication-title: J. Exper. Bot.
– volume: 2
  start-page: 171
  year: 2006
  end-page: 196
  ident: bib8
  article-title: Statistical strategies for avoiding false discoveries in metabolomics and related experiments
  publication-title: Metabolomics
– volume: 15
  start-page: 2152
  year: 2003
  end-page: 2164
  ident: bib53
  article-title: FtsH is involved in the early stages of repair of Photosystem II in
  publication-title: Plant Cell
– volume: 170
  start-page: 867
  year: 2006
  end-page: 872
  ident: bib36
  article-title: Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes
  publication-title: Plant Sci
– volume: 33
  start-page: 648
  year: 2010
  end-page: 654
  ident: bib10
  article-title: Making the most of drought and salinity transcriptomics
  publication-title: Plant Cell Environ
– volume: 161
  start-page: 1189
  year: 2004
  end-page: 1202
  ident: bib42
  article-title: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants
  publication-title: J. Plant Physiol
– volume: 53
  start-page: 15
  year: 2007
  end-page: 25
  ident: bib29
  article-title: Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health
  publication-title: Cell. Mol. Biol.
– volume: 1657
  start-page: 23
  year: 2004
  end-page: 32
  ident: bib2
  article-title: Environmental stress inhibits the synthesis
  publication-title: Biochim. Biophys. Acta—Bioenergetics
– volume: 57
  start-page: 1065
  year: 2009
  end-page: 1078
  ident: bib59
  article-title: Characterization of the ABA-regulated global responses to dehydration in
  publication-title: Plant J
– volume: 48
  start-page: 321
  year: 2006
  end-page: 341
  ident: bib55
  article-title: The genetics and genomics of the drought response in
  publication-title: Plant J
– volume: 3
  start-page: 834
  year: 2010
  end-page: 841
  ident: bib26
  article-title: IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in
  publication-title: Mol. Plant.
– volume: 89
  start-page: 496
  year: 2005
  end-page: 514
  ident: bib17
  article-title: Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an
  publication-title: Curr. Sci.
– volume: 13
  start-page: 11
  year: 2001
  end-page: 29
  ident: bib46
  article-title: Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems
  publication-title: Plant Cell
– volume: 40
  start-page: 357
  year: 1997
  end-page: 364
  ident: bib49
  article-title: Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes
  publication-title: Biologia Plantarum
– volume: 8
  start-page: 400
  year: 2009
  end-page: 417
  ident: bib27
  article-title: Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves
  publication-title: J. Proteome Res
– volume: 3
  start-page: 469
  year: 2010
  end-page: 490
  ident: bib65
  article-title: Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops
  publication-title: Mol. Plant
– volume: 49
  start-page: 487
  year: 1993
  end-page: 496
  ident: bib14
  article-title: Compatible solutes of halophilic eubacteria: molecular principles, water–solute interaction, stress protection
  publication-title: Cell. Mol. Life Sci
– year: 2011
  ident: bib50
  article-title: Comparative metabolomics of drought acclimation in model and forage legumes
  publication-title: Plant Cell Environ
– volume: 130
  start-page: 1143
  year: 2002
  end-page: 1151
  ident: bib44
  article-title: The combined effect of drought stress and heat shock on gene expression in tobacco
  publication-title: Plant Physiol
– volume: 125
  start-page: 279
  year: 2001
  end-page: 284
  ident: bib5
  article-title: Controlling the false discovery rate in behavior genetics research
  publication-title: Behavioural Brain Res
– volume: 57
  start-page: 3801
  year: 2006
  end-page: 3811
  ident: bib20
  article-title: Transport and metabolism of raffinose family oligosaccharides in transgenic potato
  publication-title: J. Exper. Bot.
– volume: 29
  start-page: 2143
  year: 2006
  end-page: 2152
  ident: bib41
  article-title: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes
  publication-title: Plant Cell Environ
– volume: 5
  start-page: 401
  year: 2012
  end-page: 417
  ident: bib62
  article-title: Metabolic and phenotypic responses of greenhouse grown maize hybrids to experimentally controlled drought stress
  publication-title: Mol. Plant
– volume: 7
  start-page: 109
  year: 2006
  ident: bib24
  article-title: VANTED: a system for advanced data analysis and visualization in the context of biological networks
  publication-title: BMC Bioinformatics
– volume: 208
  start-page: 2819
  year: 2005
  end-page: 2830
  ident: bib64
  article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
  publication-title: J. Exper. Biol.
– volume: 134
  start-page: 1683
  year: 2004
  end-page: 1696
  ident: bib45
  article-title: When defense pathways collide: the response of
  publication-title: Plant Physiol
– volume: 134
  start-page: 838
  year: 2004
  end-page: 848
  ident: bib58
  article-title: Lipoic acid-dependent oxidative catabolism of α-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in
  publication-title: Plant Physiol
– volume: 218
  start-page: 1
  year: 2003
  end-page: 14
  ident: bib61
  article-title: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance
  publication-title: Planta
– volume: 6
  start-page: 431
  year: 2001
  end-page: 438
  ident: bib21
  article-title: Mechanisms of plant desiccation tolerance
  publication-title: Trends Plant Sci
– volume: 160
  start-page: 423
  year: 2008
  end-page: 430
  ident: bib25
  article-title: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture
  publication-title: Euphytica
– volume: 4
  start-page: 697
  year: 2011
  end-page: 712
  ident: bib63
  article-title: Overexpression of
  publication-title: Mol. Plant
– volume: 20
  start-page: 5587
  year: 2001
  end-page: 5594
  ident: bib38
  article-title: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery
  publication-title: EMBO J
– volume: 444
  start-page: 139
  year: 2005
  end-page: 158
  ident: bib32
  article-title: Cold, salinity and drought stresses: an overview
  publication-title: Archives Biochem. Biophys
– volume: 113
  start-page: 967
  year: 2006
  end-page: 976
  ident: bib33
  article-title: A branched-chain amino acid aminotransferase gene isolated from
  publication-title: Theoretical Applied Genet
– start-page: 139
  year: 2010
  end-page: 157
  ident: bib4
  article-title: Drought stress tolerance
  publication-title: Genetic Modification of Plants
– volume: 3
  start-page: 307
  year: 2007
  end-page: 317
  ident: bib23
  article-title: The impact of constitutive expression of a moss Na
  publication-title: Metabolomics
– volume: 194
  start-page: 81
  year: 2008
  end-page: 91
  ident: bib15
  article-title: Yield and osmotic adjustment capacity of barley under terminal water-stress conditions
  publication-title: J. Agronomy Crop Sci
– volume: 33
  start-page: 453
  year: 2010
  end-page: 467
  ident: bib35
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant Cell Environ
– volume: 15
  start-page: 89
  year: 2010
  end-page: 97
  ident: bib56
  article-title: Proline: a multifunctional amino acid
  publication-title: Trends Plant Sci
– volume: 4
  start-page: 938
  year: 2011
  end-page: 946
  ident: bib31
  article-title: AtPUB19, a U-Box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in
  publication-title: Mol. Plant
– volume: 444
  start-page: 139
  year: 2005
  ident: 10.1093/mp/ssr114_bib32
  article-title: Cold, salinity and drought stresses: an overview
  publication-title: Archives Biochem. Biophys
  doi: 10.1016/j.abb.2005.10.018
– volume: 3
  start-page: 307
  year: 2007
  ident: 10.1093/mp/ssr114_bib23
  article-title: The impact of constitutive expression of a moss Na+ transporter on the metabolomes of rice and barley
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0056-4
– volume: 72
  start-page: 1805
  year: 1994
  ident: 10.1093/mp/ssr114_bib18
  article-title: Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance
  publication-title: Canadian J. Bot.
  doi: 10.1139/b94-222
– volume: 15
  start-page: 2152
  year: 2003
  ident: 10.1093/mp/ssr114_bib53
  article-title: FtsH is involved in the early stages of repair of Photosystem II in Synechocystis sp PCC 6803
  publication-title: Plant Cell
  doi: 10.1105/tpc.012609
– volume: 218
  start-page: 1
  year: 2003
  ident: 10.1093/mp/ssr114_bib61
  article-title: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance
  publication-title: Planta
  doi: 10.1007/s00425-003-1105-5
– volume: 7
  start-page: 109
  year: 2006
  ident: 10.1093/mp/ssr114_bib24
  article-title: VANTED: a system for advanced data analysis and visualization in the context of biological networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-109
– volume: 6
  start-page: 431
  year: 2001
  ident: 10.1093/mp/ssr114_bib21
  article-title: Mechanisms of plant desiccation tolerance
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(01)02052-0
– volume: 160
  start-page: 423
  year: 2008
  ident: 10.1093/mp/ssr114_bib25
  article-title: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture
  publication-title: Euphytica
  doi: 10.1007/s10681-007-9605-1
– volume: 48
  start-page: 321
  year: 2006
  ident: 10.1093/mp/ssr114_bib55
  article-title: The genetics and genomics of the drought response in Populus
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02864.x
– volume: 44
  start-page: 787
  year: 2006
  ident: 10.1093/mp/ssr114_bib6
  article-title: Changes in the pool of soluble sugars induced by dehydration at the heterotrophic phase of growth of wheat seedlings
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2006.10.028
– volume: 58
  start-page: 3309
  year: 2007
  ident: 10.1093/mp/ssr114_bib12
  article-title: Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit
  publication-title: J. Exper. Bot.
  doi: 10.1093/jxb/erm179
– volume: 5
  start-page: 401
  year: 2012
  ident: 10.1093/mp/ssr114_bib62
  article-title: Metabolic and phenotypic responses of greenhouse grown maize hybrids to experimentally controlled drought stress
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr102
– volume: 38
  start-page: 253
  year: 1997
  ident: 10.1093/mp/ssr114_bib1
  article-title: Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage
  publication-title: J. Photochem. Photobiol. B: Biol
  doi: 10.1016/S1011-1344(96)07470-2
– volume: 59
  start-page: 3327
  year: 2008
  ident: 10.1093/mp/ssr114_bib22
  article-title: Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars
  publication-title: J. Exper. Bot.
  doi: 10.1093/jxb/ern199
– volume: 13
  start-page: 11
  year: 2001
  ident: 10.1093/mp/ssr114_bib46
  article-title: Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems
  publication-title: Plant Cell
  doi: 10.1105/tpc.13.1.11
– volume: 58
  start-page: 229
  year: 2007
  ident: 10.1093/mp/ssr114_bib57
  article-title: Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis
  publication-title: J. Exper. Bot.
  doi: 10.1093/jxb/erl163
– volume: 3
  start-page: 469
  year: 2010
  ident: 10.1093/mp/ssr114_bib65
  article-title: Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq016
– volume: 194
  start-page: 81
  year: 2008
  ident: 10.1093/mp/ssr114_bib15
  article-title: Yield and osmotic adjustment capacity of barley under terminal water-stress conditions
  publication-title: J. Agronomy Crop Sci
  doi: 10.1111/j.1439-037X.2007.00289.x
– volume: 161
  start-page: 1189
  year: 2004
  ident: 10.1093/mp/ssr114_bib42
  article-title: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2004.01.013
– volume: 134
  start-page: 1683
  year: 2004
  ident: 10.1093/mp/ssr114_bib45
  article-title: When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.033431
– start-page: 139
  year: 2010
  ident: 10.1093/mp/ssr114_bib4
  article-title: Drought stress tolerance
– volume: 57
  start-page: 1065
  year: 2009
  ident: 10.1093/mp/ssr114_bib59
  article-title: Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03748.x
– volume: 64
  start-page: 265
  year: 2007
  ident: 10.1093/mp/ssr114_bib66
  article-title: Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-007-9150-2
– volume: 53
  start-page: 15
  year: 2007
  ident: 10.1093/mp/ssr114_bib29
  article-title: Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health
  publication-title: Cell. Mol. Biol.
– volume: 18
  start-page: 185
  year: 1999
  ident: 10.1093/mp/ssr114_bib37
  article-title: Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00438.x
– volume: 33
  start-page: 648
  year: 2010
  ident: 10.1093/mp/ssr114_bib10
  article-title: Making the most of drought and salinity transcriptomics
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.02092.x
– volume: 4
  start-page: 697
  year: 2011
  ident: 10.1093/mp/ssr114_bib63
  article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr013
– volume: 40
  start-page: 357
  year: 1997
  ident: 10.1093/mp/ssr114_bib49
  article-title: Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes
  publication-title: Biologia Plantarum
  doi: 10.1023/A:1001009812864
– volume: 48
  start-page: 551
  year: 2002
  ident: 10.1093/mp/ssr114_bib40
  article-title: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1014875215580
– start-page: 14
  year: 2005
  ident: 10.1093/mp/ssr114_bib16
  article-title: Plant cuticle function as a barrier to water loss
– volume: 29
  start-page: 2143
  year: 2006
  ident: 10.1093/mp/ssr114_bib41
  article-title: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2006.01588.x
– volume: 188
  start-page: 1001
  year: 2010
  ident: 10.1093/mp/ssr114_bib11
  article-title: Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03440.x
– volume: 1657
  start-page: 23
  year: 2004
  ident: 10.1093/mp/ssr114_bib2
  article-title: Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage–repair cycle of Photosystem II in Synechocystis sp. PCC 6803
  publication-title: Biochim. Biophys. Acta—Bioenergetics
  doi: 10.1016/j.bbabio.2004.03.003
– volume: 4
  start-page: 312
  year: 2008
  ident: 10.1093/mp/ssr114_bib9
  article-title: Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0128-0
– volume: 89
  start-page: 496
  year: 2005
  ident: 10.1093/mp/ssr114_bib17
  article-title: Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22)
  publication-title: Curr. Sci.
– volume: 3
  start-page: 942
  year: 2010
  ident: 10.1093/mp/ssr114_bib48
  article-title: Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq044
– volume: 3
  start-page: 834
  year: 2010
  ident: 10.1093/mp/ssr114_bib26
  article-title: IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis
  publication-title: Mol. Plant.
  doi: 10.1093/mp/ssq028
– volume: 218
  start-page: 443
  year: 1982
  ident: 10.1093/mp/ssr114_bib7
  article-title: Plant productivity and environment
  publication-title: Science
  doi: 10.1126/science.218.4571.443
– volume: 57
  start-page: 3801
  year: 2006
  ident: 10.1093/mp/ssr114_bib20
  article-title: Transport and metabolism of raffinose family oligosaccharides in transgenic potato
  publication-title: J. Exper. Bot.
  doi: 10.1093/jxb/erl152
– volume: 8
  start-page: 400
  year: 2009
  ident: 10.1093/mp/ssr114_bib27
  article-title: Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves
  publication-title: J. Proteome Res
  doi: 10.1021/pr800561r
– volume: 57
  start-page: 711
  year: 2006
  ident: 10.1093/mp/ssr114_bib52
  article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress
  publication-title: J. Exper. Bot.
  doi: 10.1093/jxb/erj073
– volume: 15
  start-page: 89
  year: 2010
  ident: 10.1093/mp/ssr114_bib56
  article-title: Proline: a multifunctional amino acid
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2009.11.009
– year: 2011
  ident: 10.1093/mp/ssr114_bib50
  article-title: Comparative metabolomics of drought acclimation in model and forage legumes
  publication-title: Plant Cell Environ
– volume: 6
  start-page: 312
  year: 2008
  ident: 10.1093/mp/ssr114_bib39
  article-title: Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed
  publication-title: J. Food Agriculture Environ
– volume: 20
  start-page: 5587
  year: 2001
  ident: 10.1093/mp/ssr114_bib38
  article-title: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery
  publication-title: EMBO J
  doi: 10.1093/emboj/20.20.5587
– volume: 51
  start-page: 1531
  year: 2000
  ident: 10.1093/mp/ssr114_bib54
  article-title: Water uptake by roots: effects of water deficit
  publication-title: J. Exper. Bot.
  doi: 10.1093/jexbot/51.350.1531
– volume: 142
  start-page: 1087
  year: 2006
  ident: 10.1093/mp/ssr114_bib47
  article-title: An investigation of boron toxicity in barley using metabolomics
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.084053
– volume: 125
  start-page: 279
  year: 2001
  ident: 10.1093/mp/ssr114_bib5
  article-title: Controlling the false discovery rate in behavior genetics research
  publication-title: Behavioural Brain Res
  doi: 10.1016/S0166-4328(01)00297-2
– volume: 43
  start-page: 239
  year: 2000
  ident: 10.1093/mp/ssr114_bib51
  article-title: Leaf pubescence, water relations and chlorophyll fluorescence in two subspecies of Lotus creticus L
  publication-title: Biologia Plantarum
  doi: 10.1023/A:1002704327076
– volume: 31
  start-page: 122
  year: 2010
  ident: 10.1093/mp/ssr114_bib19
  article-title: Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties
  publication-title: Industrial Crops Products
  doi: 10.1016/j.indcrop.2009.09.007
– volume: 33
  start-page: 453
  year: 2010
  ident: 10.1093/mp/ssr114_bib35
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.02041.x
– volume: 4
  start-page: 938
  year: 2011
  ident: 10.1093/mp/ssr114_bib31
  article-title: AtPUB19, a U-Box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr030
– volume: 134
  start-page: 838
  year: 2004
  ident: 10.1093/mp/ssr114_bib58
  article-title: Lipoic acid-dependent oxidative catabolism of α-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.035675
– volume: 170
  start-page: 867
  year: 2006
  ident: 10.1093/mp/ssr114_bib36
  article-title: Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.12.008
– volume: 2
  start-page: 171
  year: 2006
  ident: 10.1093/mp/ssr114_bib8
  article-title: Statistical strategies for avoiding false discoveries in metabolomics and related experiments
  publication-title: Metabolomics
  doi: 10.1007/s11306-006-0037-z
– volume: 31
  start-page: 325
  year: 2008
  ident: 10.1093/mp/ssr114_bib3
  article-title: Metabolomic and proteomic changes in the xylem sap of maize under drought
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2007.01770.x
– volume: 147
  start-page: 316
  year: 2008
  ident: 10.1093/mp/ssr114_bib30
  article-title: Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.115733
– volume: 44
  start-page: 231
  year: 1993
  ident: 10.1093/mp/ssr114_bib60
  article-title: Plant tissue optics
  publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol
  doi: 10.1146/annurev.pp.44.060193.001311
– volume: 117
  start-page: 1077
  year: 2008
  ident: 10.1093/mp/ssr114_bib34
  article-title: Multi-environment QTL mixed models for drought stress adaptation in wheat
  publication-title: Theoretical Applied Genet
  doi: 10.1007/s00122-008-0846-8
– volume: 13
  start-page: 465
  year: 1986
  ident: 10.1093/mp/ssr114_bib43
  article-title: Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures
  publication-title: Australian J. Plant Physiol
– volume: 208
  start-page: 2819
  year: 2005
  ident: 10.1093/mp/ssr114_bib64
  article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
  publication-title: J. Exper. Biol.
  doi: 10.1242/jeb.01730
– volume: 49
  start-page: 487
  year: 1993
  ident: 10.1093/mp/ssr114_bib14
  article-title: Compatible solutes of halophilic eubacteria: molecular principles, water–solute interaction, stress protection
  publication-title: Cell. Mol. Life Sci
  doi: 10.1007/BF01955150
– volume: 113
  start-page: 967
  year: 2006
  ident: 10.1093/mp/ssr114_bib33
  article-title: A branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is differentially regulated by drought stress
  publication-title: Theoretical Applied Genet
  doi: 10.1007/s00122-006-0339-6
– volume: 130
  start-page: 1143
  year: 2002
  ident: 10.1093/mp/ssr114_bib44
  article-title: The combined effect of drought stress and heat shock on gene expression in tobacco
  publication-title: Plant Physiol
  doi: 10.1104/pp.006858
– volume: 2
  start-page: 44
  year: 2011
  ident: 10.1093/mp/ssr114_bib13
  article-title: Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance
  publication-title: Frontiers Plant Sci
  doi: 10.3389/fpls.2011.00044
– volume: 50
  start-page: 347
  year: 2007
  ident: 10.1093/mp/ssr114_bib28
  article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03052.x
SSID ssib022315914
ssib011451059
ssj0060863
ssib008446488
ssib027716028
Score 2.4938695
Snippet Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased...
SourceID proquest
pubmed
crossref
elsevier
chongqing
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 418
SubjectTerms abiotic/environmental stress
Adaptation, Physiological
Amino acids
Amino Acids - metabolism
Carbohydrate Metabolism
Carboxylic Acids - metabolism
Cereal crops
Cultivars
Drought
Drought resistance
Droughts
Excalibur
GC-MS分析
Metabolic Networks and Pathways
Metabolites
metabolomics
Organic acids
Physiology
Plant Leaves - physiology
Plant tissues
Species Specificity
Time Factors
Triticum - metabolism
Water - metabolism
Wheat
代谢物
供水条件
叶片组织
小麦品种
干旱胁迫
抗旱性
Title Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level
URI http://lib.cqvip.com/qk/90143B/201202/41554706.html
https://dx.doi.org/10.1093/mp/ssr114
https://www.ncbi.nlm.nih.gov/pubmed/22207720
https://www.proquest.com/docview/1021764484
https://www.proquest.com/docview/948896990
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_EFtqX0tbanlpZxAcfGpJNdjfJo56Va6siesK9LTE3Kwd3ybUXBf_7zmySg4I-9Clhd1gm-zHz28wXwKFSaVZEpQycjIqADWdBpp0LdBajnkp0GbJF9-LSjG7Vz4mebMCwj4Vht8pO9rcy3UvrriXsZjNczmbhDfvPxxx7qgz_TeFA80RlPohvctJLY0OQ3TvZE3HA1H12oTwJF8uQ9JDkAJ43JGuq-9-kLV7STy_hT6-Hzt7Duw5AiuOWxw-wgdVHeH1SE8h72oLFqS-704jr1vcVV6J24hwLJ8Z-ileCA0qEl8GC82nOHulqy0SnvlQK8Sb6Mcb1HLnuBgqiJaAoLrChPcNRyzTkI84_we3Z9_FwFHQVFYJSS9MEykjUzkxlWqq8JLiDscSCIJlzkUGXaKMK5NjWdJqUJsbSYRrrqdGcBIa0abINm1Vd4RcQ3K4IK-ZZjqpEWeRxQS-k3JzUBOsGsLOeU7tsM2dYj17SyAzgqJ9kW3a5yLkkxty2NvHELpa2XZsBHKxJ-2GeIfrWr5T9Z_dYUgzPke_1q2m7I7uyXOM85dsqdYt1Nx02tqAUFdYPK5uTuMsNfeMAPrebYM0T4ayIbirRzv-xsgtvCYLFrVfbHmw2fx7wK8Gc5m4fXh0Pr8-v-Pnj1-hy3-_rv6nIAEc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VglQuiDcpBVYIJA5Y9tretX3gQAlVQpMeIJVyW1xnFkVK7IDdov4u_iAzazsSUnvg0Jtlj1bjmfXMN955ALyJ4yTNg0J6Vga5xwdnXqqs9VQaolpItCnyie70RI9O4y9zNd-BP30tDKdVdra_tenOWnd3_E6a_ma59L9x_nzItaex5r8pfWblMV7-prit_jAekpLfhuHR59mnkdeNFvAKJXXjxVqisnohkyLOCvL7GErMCZtYG2i0kdJxjlzkmSyiQodYWExCtdCKu6GQW4lo3Vtwm9BHwtZgPD_szb-mGMFl9RN3HrPXtzPKIn-98cnxSa4Y2iPjVv74Se7pOod4HeB1ju_oPtzrEKv42ArlAexg-RDuHFaEKi8fwXro5vw04mubbIu1qKyYYG7FzOm0FlzBIpzRF9zAc3lBsTQTDd1sFuJN9GvMqhXyoA8UREvIVEyxoU3KZdK05AWuHsPpjcj5CeyWVYnPQPD9mMBplmYYFyjzLMzpgryplYpw5AD2tzI1m7ZVh3FwKQn0AN71QjZF1_ycZ3CsTHsIH5n1xrS6GcDrLWm_zBVE73tNmX-2qyFPdBX5Qa9N09mI2vBQ9YTDY3osto_p6-Yjm7zE6rw2GdnXTNM7DuBpuwm2PBGwCyg0Cvb_j5VXsDeaTSdmMj45fg53Cf-FbUrdAew2v87xBWGs5uyl29MCvt_0R_QXUh86MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+responses+of+leaf+tissues+from+wheat+cultivars+of+differing+drought+tolerance+at+the+metabolite+level&rft.jtitle=Molecular+plant&rft.au=Bowne%2C+Jairus+B&rft.au=Erwin%2C+Tim+A&rft.au=Juttner%2C+Juan&rft.au=Schnurbusch%2C+Thorsten&rft.date=2012-03-01&rft.eissn=1752-9867&rft.volume=5&rft.issue=2&rft.spage=418&rft_id=info:doi/10.1093%2Fmp%2Fssr114&rft_id=info%3Apmid%2F22207720&rft.externalDocID=22207720
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90143B%2F90143B.jpg