Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level
Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the...
Saved in:
Published in | Molecular plant Vol. 5; no. 2; pp. 418 - 429 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.03.2012
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. |
---|---|
AbstractList | Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress.Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. [PUBLICATION ABSTRACT] Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. |
Author | Jairus B. Bowne Tim A. Erwin Juan Juttner Thorsten Schnurbusch Peter Langridge Antony Bacic Ute Roessner |
AuthorAffiliation | Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, The University of Melbourne, 3010 Victoria, Australia ARC Centre for Excellence for Plant Cell Walls, School of Botany, The University of Melbourne, 3010 Victoria, Australia Metabolomics Australia, School of Botany, The University of Melbourne, 3010 Victoria, Australia |
Author_xml | – sequence: 1 givenname: Jairus B. surname: Bowne fullname: Bowne, Jairus B. organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia – sequence: 2 givenname: Tim A. surname: Erwin fullname: Erwin, Tim A. organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia – sequence: 3 givenname: Juan surname: Juttner fullname: Juttner, Juan organization: Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia – sequence: 4 givenname: Thorsten surname: Schnurbusch fullname: Schnurbusch, Thorsten organization: Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia – sequence: 5 givenname: Peter surname: Langridge fullname: Langridge, Peter organization: Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia – sequence: 6 givenname: Antony surname: Bacic fullname: Bacic, Antony organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia – sequence: 7 givenname: Ute surname: Roessner fullname: Roessner, Ute email: u.roessner@unimelb.edu.au organization: Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, 3010 Victoria, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22207720$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtvEzEUhS1URB90wR9Ag1hULIb47XiJUl5SEBIKYmk5nuvEaGY8tT2R-PcYknZRdWVb-s7xvedcorMxjoDQK4LfE6zZYpgWOSdC-DN0QZSgrV5KdVbvUvGWYkHP0XXOYYspZURowl-gc0opVoriCzTcpjjv9qX5AXmKY4bcRN-swfpmE3Ke69unODS_9mBLs5r7Eg42_Ydug_eQwrhr7j02sYdkRwdNZcsemm9Q7Db2oUC1PED_Ej33ts9wfTqv0M9PHzerL-36--evqw_r1gkiS8slAeFlR5Tj2mEqgBKwRDLvsQTPhOQWqNRcdcxJCs6DoqKTQjBBATp2hW6OvlOKd3WHYoaQHfS9HSHO2Wi-XGqpNa7k20fk7zinsQ5nCKZESc6XvFKvT9S8HaAzUwqDTX_MfY4VeHcEXIq1DfAPCMHmX01mmMyxpsouHrEuFFtCHEuyoX9SwY4KqJkdAiSTXYCacxcSuGK6GJ5UvTn9s4_j7q4W9TAUJ0JwhSX7Cxd-stM |
CitedBy_id | crossref_primary_10_1098_rsta_2015_0370 crossref_primary_10_3390_molecules27092966 crossref_primary_10_1186_s12870_018_1404_4 crossref_primary_10_1590_s0100_204x2018000700001 crossref_primary_10_1007_s11356_021_14777_7 crossref_primary_10_1071_FP17051 crossref_primary_10_1155_2017_3065251 crossref_primary_10_1371_journal_pone_0145646 crossref_primary_10_1016_j_ijbiomac_2022_06_002 crossref_primary_10_1080_07352689_2020_1778924 crossref_primary_10_2139_ssrn_3307427 crossref_primary_10_1007_s11103_017_0585_9 crossref_primary_10_3390_agronomy11081534 crossref_primary_10_1016_j_cj_2018_05_006 crossref_primary_10_1007_s10681_018_2245_9 crossref_primary_10_1007_s11306_017_1267_y crossref_primary_10_3389_fmicb_2018_00284 crossref_primary_10_1111_ppl_13034 crossref_primary_10_1007_s41204_021_00117_0 crossref_primary_10_1016_j_plaphy_2012_10_012 crossref_primary_10_1111_ppl_13036 crossref_primary_10_1111_1462_2920_14530 crossref_primary_10_1186_s40529_016_0134_x crossref_primary_10_1002_jssc_201400097 crossref_primary_10_1093_jxb_erz224 crossref_primary_10_1093_jxb_ert244 crossref_primary_10_3390_antiox11050820 crossref_primary_10_3390_agronomy14040704 crossref_primary_10_1007_s00425_023_04115_1 crossref_primary_10_3390_d15040481 crossref_primary_10_3390_plants12020240 crossref_primary_10_1007_s00425_019_03228_w crossref_primary_10_3390_agronomy12030725 crossref_primary_10_1093_hr_uhae286 crossref_primary_10_2135_cropsci2013_09_0606 crossref_primary_10_1007_s00018_012_1091_5 crossref_primary_10_3389_fpls_2022_945441 crossref_primary_10_3389_fpls_2019_00266 crossref_primary_10_1016_j_jcs_2013_10_002 crossref_primary_10_1039_C4NP00072B crossref_primary_10_1080_10408398_2018_1552245 crossref_primary_10_1017_S0007485322000463 crossref_primary_10_1093_aob_mcae085 crossref_primary_10_3389_fpls_2020_00715 crossref_primary_10_1002_jsfa_9986 crossref_primary_10_1016_j_foodchem_2016_07_005 crossref_primary_10_5936_csbj_201301003 crossref_primary_10_3389_fsufs_2022_827758 crossref_primary_10_1021_acs_jafc_8b04098 crossref_primary_10_3390_agronomy11091792 crossref_primary_10_3390_ijms23031704 crossref_primary_10_1111_pce_14407 crossref_primary_10_1186_s13059_022_02719_6 crossref_primary_10_3390_plants11101331 crossref_primary_10_1016_j_jprot_2023_104923 crossref_primary_10_3390_plants12020249 crossref_primary_10_1016_j_sajb_2023_07_051 crossref_primary_10_1007_s10725_020_00627_y crossref_primary_10_1016_j_plantsci_2018_05_008 crossref_primary_10_1111_ppl_12649 crossref_primary_10_1186_s12864_015_1535_z crossref_primary_10_1016_j_plaphy_2021_10_015 crossref_primary_10_1002_tpg2_20444 crossref_primary_10_1007_s10343_022_00795_z crossref_primary_10_1002_jsfa_7561 crossref_primary_10_3390_metabo15040217 crossref_primary_10_1111_ppl_12883 crossref_primary_10_1016_j_jplph_2013_07_006 crossref_primary_10_1093_pcp_pct163 crossref_primary_10_4014_jmb_2003_03034 crossref_primary_10_1007_s10343_024_01097_2 crossref_primary_10_1016_j_chemosphere_2017_11_087 crossref_primary_10_1093_jxb_erw059 crossref_primary_10_1016_j_foodchem_2019_125621 crossref_primary_10_1371_journal_pone_0198093 crossref_primary_10_1093_jxb_erw298 crossref_primary_10_1016_j_envexpbot_2021_104393 crossref_primary_10_1371_journal_pone_0077869 crossref_primary_10_3390_plants9050591 crossref_primary_10_1016_j_scitotenv_2021_148856 crossref_primary_10_1071_FP20332 crossref_primary_10_1371_journal_pone_0048661 crossref_primary_10_1371_journal_pone_0196102 crossref_primary_10_3389_fpls_2021_756741 crossref_primary_10_3389_fpls_2022_919166 crossref_primary_10_1007_s12042_021_09302_6 crossref_primary_10_1007_s42976_024_00588_2 crossref_primary_10_3390_plants12061209 crossref_primary_10_1007_s12298_024_01540_8 crossref_primary_10_1007_s11240_015_0744_0 crossref_primary_10_3390_metabo14050272 crossref_primary_10_3390_molecules26040795 crossref_primary_10_1007_s11738_019_2860_7 crossref_primary_10_1016_j_cj_2020_02_006 crossref_primary_10_1016_j_plantsci_2020_110789 crossref_primary_10_1080_26895293_2021_1917456 crossref_primary_10_2135_cropsci2013_01_0045 crossref_primary_10_1038_s41598_024_77871_z crossref_primary_10_3389_fpls_2022_896408 crossref_primary_10_1186_s12870_017_1033_3 crossref_primary_10_1094_PHYTO_11_16_0410_R crossref_primary_10_3390_ijms20092330 crossref_primary_10_1007_s00344_024_11515_4 crossref_primary_10_1111_ppl_13597 crossref_primary_10_3390_ijms22137182 crossref_primary_10_1186_s12870_024_05719_9 crossref_primary_10_1186_1939_8433_6_23 crossref_primary_10_3389_fpls_2021_656074 crossref_primary_10_1016_j_jprot_2017_05_011 crossref_primary_10_1111_ppl_13917 crossref_primary_10_1021_pr400799a crossref_primary_10_3390_plants11040510 crossref_primary_10_3390_genes15070870 crossref_primary_10_1002_agj2_20846 crossref_primary_10_1016_j_envpol_2019_113496 crossref_primary_10_3389_fpls_2016_00584 crossref_primary_10_1016_j_plaphy_2024_109415 crossref_primary_10_1155_2018_9415409 crossref_primary_10_1371_journal_pone_0274915 crossref_primary_10_3390_agriculture13102014 crossref_primary_10_1038_s41598_017_06773_0 crossref_primary_10_3389_fpls_2016_00206 crossref_primary_10_3389_fpls_2022_962622 crossref_primary_10_1016_j_plantsci_2014_04_007 crossref_primary_10_4236_ajps_2017_812205 crossref_primary_10_1139_er_2013_0011 crossref_primary_10_1016_j_rhisph_2021_100367 crossref_primary_10_1093_mp_sss019 crossref_primary_10_3390_plants12203650 crossref_primary_10_1021_acs_jafc_9b00747 crossref_primary_10_1007_s11104_024_06795_4 crossref_primary_10_1016_j_envpol_2022_119008 crossref_primary_10_3389_fpls_2017_02048 crossref_primary_10_3389_fpls_2023_1147390 crossref_primary_10_3390_agronomy13020578 crossref_primary_10_1007_s11033_024_09345_4 crossref_primary_10_1016_j_jes_2020_03_009 crossref_primary_10_3389_fpls_2019_00995 crossref_primary_10_1016_j_indcrop_2022_114844 crossref_primary_10_1016_j_indcrop_2022_115011 crossref_primary_10_1111_jac_12527 crossref_primary_10_1016_j_plaphy_2024_108464 crossref_primary_10_1038_srep03782 crossref_primary_10_3390_agronomy8110247 crossref_primary_10_1007_s12517_021_06846_5 crossref_primary_10_3390_agronomy11020241 crossref_primary_10_1186_s12284_017_0189_7 crossref_primary_10_3389_fpls_2021_563953 crossref_primary_10_3390_ijms222413287 crossref_primary_10_3390_metabo11070427 crossref_primary_10_2139_ssrn_4517869 crossref_primary_10_1007_s00344_012_9303_7 crossref_primary_10_3389_fpls_2022_1035038 crossref_primary_10_14720_abs_66_1_14710 crossref_primary_10_1016_j_micres_2021_126771 crossref_primary_10_1111_pce_12682 crossref_primary_10_3389_fpls_2024_1428631 crossref_primary_10_1038_s41477_019_0361_8 crossref_primary_10_1080_00103624_2020_1744626 crossref_primary_10_3389_fpls_2022_881032 crossref_primary_10_3390_ijms20133137 crossref_primary_10_3389_fgene_2022_1010272 crossref_primary_10_1007_s11738_017_2449_y crossref_primary_10_1007_s11738_018_2651_6 crossref_primary_10_1038_s41438_021_00521_2 crossref_primary_10_1093_jxb_erw102 crossref_primary_10_12688_f1000research_131413_1 crossref_primary_10_3389_fgene_2017_00141 crossref_primary_10_1016_j_envexpbot_2017_08_008 crossref_primary_10_1080_17429145_2018_1562110 crossref_primary_10_1007_s13562_014_0295_1 crossref_primary_10_1093_mp_ssr102 crossref_primary_10_1111_plb_12305 crossref_primary_10_1021_pr401165b crossref_primary_10_1017_S1479262118000151 crossref_primary_10_3389_fgene_2022_846449 crossref_primary_10_3390_ijms23169194 crossref_primary_10_1016_j_indcrop_2024_118509 crossref_primary_10_1016_j_foodchem_2013_12_051 crossref_primary_10_3390_ijms24098429 crossref_primary_10_1371_journal_pone_0264847 crossref_primary_10_1080_17429145_2022_2085335 crossref_primary_10_1016_j_envexpbot_2022_105169 crossref_primary_10_3390_ijms22105314 crossref_primary_10_1016_j_plaphy_2018_04_020 crossref_primary_10_1016_j_scienta_2021_110490 crossref_primary_10_3389_fpls_2016_01108 crossref_primary_10_3390_cells11111765 crossref_primary_10_1007_s41101_024_00272_w crossref_primary_10_1021_acs_jafc_8b07097 crossref_primary_10_3390_cells9041025 crossref_primary_10_2139_ssrn_4170499 crossref_primary_10_32615_ps_2019_156 crossref_primary_10_1007_s42976_023_00418_x crossref_primary_10_1111_pce_13628 crossref_primary_10_1071_FP21168 crossref_primary_10_1038_srep37434 crossref_primary_10_1007_s42729_023_01164_z crossref_primary_10_1007_s11356_022_18846_3 crossref_primary_10_1186_s12870_023_04467_6 crossref_primary_10_3389_fpls_2017_01224 crossref_primary_10_3390_ijerph16173222 crossref_primary_10_1111_pce_13195 crossref_primary_10_1111_pbr_13096 crossref_primary_10_1016_j_foodres_2022_112388 crossref_primary_10_1016_j_plantsci_2019_110278 crossref_primary_10_3390_agriculture13091823 crossref_primary_10_3390_plants11243574 crossref_primary_10_1007_s00425_019_03211_5 crossref_primary_10_1038_s41598_020_74303_6 crossref_primary_10_1093_plphys_kiac560 crossref_primary_10_1186_s12870_019_1880_1 crossref_primary_10_1016_j_genrep_2021_101040 crossref_primary_10_1016_j_ab_2017_02_006 crossref_primary_10_1002_pca_2702 crossref_primary_10_3390_ijms22073294 crossref_primary_10_1111_pce_12501 crossref_primary_10_3390_metabo11070457 crossref_primary_10_1016_j_plaphy_2023_107849 crossref_primary_10_1371_journal_pone_0125302 crossref_primary_10_1007_s11103_020_01087_8 crossref_primary_10_1080_11263504_2020_1869118 crossref_primary_10_1016_j_phytochem_2021_113044 crossref_primary_10_1186_s12870_022_03943_9 crossref_primary_10_3389_fpls_2017_00580 crossref_primary_10_1007_s00122_022_04174_0 crossref_primary_10_1111_nph_13245 crossref_primary_10_1007_s11306_024_02143_w crossref_primary_10_1111_1365_2435_12858 crossref_primary_10_3390_agronomy11061190 crossref_primary_10_1016_j_indcrop_2021_114402 crossref_primary_10_1111_ppl_14544 crossref_primary_10_3390_plants12030447 crossref_primary_10_1134_S1021443716040178 crossref_primary_10_1016_j_foodcont_2023_109930 crossref_primary_10_1016_j_plaphy_2019_10_017 crossref_primary_10_1016_j_envexpbot_2020_104094 crossref_primary_10_1016_j_foodres_2021_110128 crossref_primary_10_1093_jxb_eraa049 crossref_primary_10_1007_s11103_019_00831_z crossref_primary_10_1007_s42729_021_00529_6 crossref_primary_10_3390_plants12112180 crossref_primary_10_3390_plants9091147 crossref_primary_10_1016_j_jbiosc_2016_09_013 crossref_primary_10_3389_fpls_2020_00891 crossref_primary_10_1007_s11306_013_0545_6 crossref_primary_10_1038_s41598_018_24012_y crossref_primary_10_1111_ppl_14319 crossref_primary_10_1111_ppl_14551 crossref_primary_10_3390_life14111502 crossref_primary_10_3390_agronomy11030486 crossref_primary_10_1007_s11306_015_0834_3 crossref_primary_10_1146_annurev_arplant_043015_112213 crossref_primary_10_3390_agriculture13030660 crossref_primary_10_3390_agronomy12010189 crossref_primary_10_1021_jf403015a crossref_primary_10_1093_jxb_erab044 crossref_primary_10_1371_journal_pone_0108020 crossref_primary_10_1038_s41598_020_60265_2 crossref_primary_10_3390_agronomy11050824 crossref_primary_10_1016_j_pbi_2013_04_001 crossref_primary_10_3390_plants10112236 crossref_primary_10_3389_fpls_2025_1565635 crossref_primary_10_1038_s41598_022_21035_4 crossref_primary_10_1186_s12864_023_09246_z crossref_primary_10_1371_journal_pone_0212411 crossref_primary_10_1111_pce_13028 crossref_primary_10_1093_treephys_tpt080 crossref_primary_10_3389_fpls_2020_01053 crossref_primary_10_3390_metabo12060487 crossref_primary_10_1186_s12870_016_0922_1 crossref_primary_10_1111_jipb_12245 crossref_primary_10_3389_fenvs_2014_00039 crossref_primary_10_3390_agronomy15010211 crossref_primary_10_1016_j_jfca_2024_107140 crossref_primary_10_1016_j_sajb_2024_07_039 crossref_primary_10_1186_s12870_024_05620_5 crossref_primary_10_1021_acs_jafc_5b01114 crossref_primary_10_1021_es5012548 crossref_primary_10_1016_j_jplph_2015_10_004 crossref_primary_10_3390_plants10081636 crossref_primary_10_15407_frg2022_03_187 crossref_primary_10_4236_ajps_2020_1112152 crossref_primary_10_1007_s11738_013_1315_9 crossref_primary_10_1186_s13068_015_0342_8 crossref_primary_10_3390_ijms23105716 crossref_primary_10_1016_j_jclepro_2022_131135 crossref_primary_10_1002_jsfa_7152 crossref_primary_10_3389_fpls_2016_01276 crossref_primary_10_1186_s12870_018_1239_z crossref_primary_10_3389_fpls_2022_937392 crossref_primary_10_1002_jsfa_8458 crossref_primary_10_1017_S0021859617000946 crossref_primary_10_1371_journal_pcbi_1002859 crossref_primary_10_3390_ijms25147561 crossref_primary_10_1016_j_indcrop_2024_119490 crossref_primary_10_3146_0095_3679_43_1_24 crossref_primary_10_1007_s11306_019_1515_4 crossref_primary_10_1039_D1MO00223F crossref_primary_10_1038_s41598_021_92449_9 crossref_primary_10_1038_srep16346 crossref_primary_10_1093_treephys_tpz047 crossref_primary_10_1371_journal_pone_0094704 crossref_primary_10_1093_treephys_tpz049 crossref_primary_10_1371_journal_pone_0283347 crossref_primary_10_1007_s11033_020_05398_3 crossref_primary_10_1093_mp_sss098 crossref_primary_10_1093_pcp_pcz181 crossref_primary_10_1111_pce_12032 crossref_primary_10_1016_j_isci_2022_104144 crossref_primary_10_3389_fpls_2015_01012 crossref_primary_10_1093_aobpla_ply016 crossref_primary_10_3390_agronomy10101588 crossref_primary_10_3390_su11092584 crossref_primary_10_7717_peerj_14312 crossref_primary_10_3389_fpls_2016_00953 crossref_primary_10_1021_acs_jproteome_7b00929 crossref_primary_10_1016_j_foodchem_2023_136035 crossref_primary_10_1039_C9EN00973F crossref_primary_10_1080_01904167_2016_1262417 crossref_primary_10_1007_s00468_019_01937_z crossref_primary_10_1016_j_plaphy_2020_02_036 crossref_primary_10_1155_2014_703874 crossref_primary_10_1007_s11356_021_15570_2 crossref_primary_10_3389_fpls_2024_1515944 crossref_primary_10_1371_journal_pone_0307393 crossref_primary_10_1016_j_foodchem_2018_07_061 crossref_primary_10_3390_agriculture13030587 crossref_primary_10_1016_j_foodchem_2020_127351 crossref_primary_10_1016_j_envexpbot_2020_104329 crossref_primary_10_1016_j_ecoenv_2024_116181 crossref_primary_10_3390_plants9040520 crossref_primary_10_1016_j_stress_2024_100509 |
Cites_doi | 10.1016/j.abb.2005.10.018 10.1007/s11306-007-0056-4 10.1139/b94-222 10.1105/tpc.012609 10.1007/s00425-003-1105-5 10.1186/1471-2105-7-109 10.1016/S1360-1385(01)02052-0 10.1007/s10681-007-9605-1 10.1111/j.1365-313X.2006.02864.x 10.1016/j.plaphy.2006.10.028 10.1093/jxb/erm179 10.1093/mp/ssr102 10.1016/S1011-1344(96)07470-2 10.1093/jxb/ern199 10.1105/tpc.13.1.11 10.1093/jxb/erl163 10.1093/mp/ssq016 10.1111/j.1439-037X.2007.00289.x 10.1016/j.jplph.2004.01.013 10.1104/pp.103.033431 10.1111/j.1365-313X.2008.03748.x 10.1007/s11103-007-9150-2 10.1046/j.1365-313X.1999.00438.x 10.1111/j.1365-3040.2009.02092.x 10.1093/mp/ssr013 10.1023/A:1001009812864 10.1023/A:1014875215580 10.1111/j.1365-3040.2006.01588.x 10.1111/j.1469-8137.2010.03440.x 10.1016/j.bbabio.2004.03.003 10.1007/s11306-008-0128-0 10.1093/mp/ssq044 10.1093/mp/ssq028 10.1126/science.218.4571.443 10.1093/jxb/erl152 10.1021/pr800561r 10.1093/jxb/erj073 10.1016/j.tplants.2009.11.009 10.1093/emboj/20.20.5587 10.1093/jexbot/51.350.1531 10.1104/pp.106.084053 10.1016/S0166-4328(01)00297-2 10.1023/A:1002704327076 10.1016/j.indcrop.2009.09.007 10.1111/j.1365-3040.2009.02041.x 10.1093/mp/ssr030 10.1104/pp.103.035675 10.1016/j.plantsci.2005.12.008 10.1007/s11306-006-0037-z 10.1111/j.1365-3040.2007.01770.x 10.1104/pp.108.115733 10.1146/annurev.pp.44.060193.001311 10.1007/s00122-008-0846-8 10.1242/jeb.01730 10.1007/BF01955150 10.1007/s00122-006-0339-6 10.1104/pp.006858 10.3389/fpls.2011.00044 10.1111/j.1365-313X.2007.03052.x |
ContentType | Journal Article |
Copyright | 2012 The Authors. All rights reserved. The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS. |
Copyright_xml | – notice: 2012 The Authors. All rights reserved. – notice: The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS. |
DBID | 2RA 92L CQIGP W94 WU4 ~WA 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1093/mp/ssr114 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level |
EISSN | 1752-9867 |
EndPage | 429 |
ExternalDocumentID | 2694269301 22207720 10_1093_mp_ssr114 S1674205214601295 41554706 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --M .2P .I3 0R~ 123 1RT 2RA 2WC 4.4 457 53G 6I. 7-5 70D 8P~ 92L AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAIYJ AAKOC AALRI AAOAW AATLK AAVLN AAXUO ABFNM ABGRD ABJNI ABMAC ABNKS ABVKL ABXDB ABYKQ ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEKER AENEX AEXQZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AJBFU AJOXV AKHUL ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CKLRP CQIGP CS3 CW9 CZ4 DU5 E3Z EBS EDH EE~ EFJIC EFLBG EJD ESX F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A NCXOZ NU- O0~ O9- OAUVE OK1 OVD P2P PQQKQ Q1. RCE RD5 ROL RW1 RXO SPCBC SSA SSZ T5K TEORI TR2 W8F W94 WU4 X7H ~91 ~G- ~WA AAHBH AAMRU AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION H13 SSH TGP CGR CUY CVF ECM EIF NPM EFKBS K9. 7X8 |
ID | FETCH-LOGICAL-c516t-461e5f6d17c49c025e21ea163ff06ef3564ae26947d3c62ecfe725d655352eed3 |
IEDL.DBID | IXB |
ISSN | 1674-2052 1752-9867 |
IngestDate | Mon Jul 21 09:36:25 EDT 2025 Wed Aug 13 11:00:17 EDT 2025 Thu Apr 03 07:01:45 EDT 2025 Tue Jul 01 01:40:43 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Fri Feb 23 02:34:42 EST 2024 Wed Feb 14 10:47:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | wheat abiotic/environmental stress metabolomics drought |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-461e5f6d17c49c025e21ea163ff06ef3564ae26947d3c62ecfe725d655352eed3 |
Notes | 31-2013/Q abiotic/environmental stress; metabolomics; drought; wheat. Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased to provide osmoprotective functions, prevent the dissociation of enzymes, and to decrease the number of reactive oxygen species present in the cell. We have used a targeted GC-MS approach to identify compounds that differ in three different cultivars of bread wheat characterized by different levels of tolerance to drought under drought stress (Kukri, intolerant; Excalibur and RAC875, tolerant). Levels of amino acids, most notably proline, tryptophan, and the branched chain amino acids leucine, isoleucine, and valine were increased under drought stress in all cultivars. In the two tolerant cultivars, a small decrease in a large number of organic acids was also evident. Excalibur, a cultivar genotypically related to Kukri, showed a pattern of response that was more similar to Kukri under well-watered conditions. Under drought stress, Excalibur and RAC875 had a similar response; however, Excalibur did not have the same magnitude of response as RAC875. Here, the results are discussed in the context of previous work in physiological and proteomic analyses of these cultivars under drought stress. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1674205214601295 |
PMID | 22207720 |
PQID | 1021764484 |
PQPubID | 135333 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_948896990 proquest_journals_1021764484 pubmed_primary_22207720 crossref_primary_10_1093_mp_ssr114 crossref_citationtrail_10_1093_mp_ssr114 elsevier_sciencedirect_doi_10_1093_mp_ssr114 chongqing_primary_41554706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Molecular Plant |
PublicationYear | 2012 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Alia, Saradhi, Mohanty (bib1) 1997; 38 Roessner, Patterson, Forbes, Fincher, Langridge, Bacic (bib47) 2006; 142 Alvarez, Marsh, Schroeder, Schachtman (bib3) 2008; 31 Less, Galili (bib30) 2008; 147 Street (bib55) 2006; 48 Nanjo (bib37) 1999; 18 Izanloo, Condon, Langridge, Tester, Schnurbusch (bib22) 2008; 59 Norouzi, Toorchi, Hosseini Salekdeh, Mohammadi, Neyshabouri, Aharizad (bib39) 2008; 6 Díaz, Betti, Sánchez, Udvardi, Monza, Márquez (bib11) 2010; 188 Rizhsky, Liang, Mittler (bib44) 2002; 130 Xue, Way, Richardson, Drenth, Joyce, McIntyre (bib63) 2011; 4 Sairam, Shukla, Saxena (bib49) 1997; 40 Mahajan, Tuteja (bib32) 2005; 444 Silva (bib53) 2003; 15 Malatrasi, Corradi, Svensson, Close, Gulli, Marmiroli (bib33) 2006; 113 Kilian (bib28) 2007; 50 Rampino, Pataleo, Gerardi, Mita, Perrotta (bib41) 2006; 29 Kato, Hirotsu, Nemoto, Yamagishi (bib25) 2008; 160 Boyer (bib7) 1982; 218 Galinski (bib14) 1993; 49 Liu, Wu, Huang, Sun, Xie (bib31) 2011; 4 Steudle (bib54) 2000; 51 Kieffer (bib27) 2009; 8 Dubouzet, Ishihara, Matsuda, Miyagawa, Iwata, Wakasa (bib12) 2007; 58 Bartels, Phillips (bib4) 2010 Jacobs, Lunde, Bacic, Tester, Roessner (bib23) 2007; 3 Reddy, Chaitanya, Vivekanandan (bib42) 2004; 161 Gorantla, Babu, Lachagari, Feltus, Paterson, Reddy (bib17) 2005; 89 Vogelmann (bib60) 1993; 44 Bogdan, Zagdanska (bib6) 2006; 44 Talamè, Ozturk, Bohnert, Tuberosa (bib57) 2007; 58 Witt (bib62) 2012; 5 González, Martín, Ayerbe (bib15) 2008; 194 Nishiyama, Yamamoto, Allakhverdiev, Inaba, Yokota, Murata (bib38) 2001; 20 Yang, Vanderbeld, Wan, Huang (bib65) 2010; 3 Savé, Biel, de Herralde (bib51) 2000; 43 Ford, Cassin, Bacic (bib13) 2011; 2 Hannah, Zuther, Buchel, Heyer (bib20) 2006; 57 Deyholos (bib10) 2010; 33 Korkina (bib29) 2007; 53 Charlton (bib9) 2008; 4 Mathews (bib34) 2008; 117 Grammatikopoulos, Manetas (bib18) 1994; 72 Junker, Klukas, Schreiber (bib24) 2006; 7 Wang, Vinocur, Altman (bib61) 2003; 218 Ruan, Jin, Yang, Li, Boyer (bib48) 2010; 3 Hajlaoui, Ayeb, Garrec, Denden (bib19) 2010; 31 Yancey (bib64) 2005; 208 Sanchez, Schwabe, Erban, Udvardi, Kopka (bib50) 2011 Broadhurst, Kell (bib8) 2006; 2 Hoekstra, Golovina, Buitink (bib21) 2001; 6 Roessner (bib46) 2001; 13 Monneveux, Rekika, Acevedo, Merah (bib36) 2006; 170 Ozturk (bib40) 2002; 48 Rizhsky, Liang, Shuman, Shulaev, Davletova, Mittler (bib45) 2004; 134 Taylor, Heazlewood, Day, Millar (bib58) 2004; 134 Urano (bib59) 2009; 57 Allakhverdiev, Murata (bib2) 2004; 1657 Keppler, Showalter (bib26) 2010; 3 Richards, Rawson, Johnson (bib43) 1986; 13 Sharma, Dietz (bib52) 2006; 57 Miller, Suzuki, Ciftci-Yilmaz, Mittler (bib35) 2010; 33 Goodwin, Jenks (bib16) 2005 Zhang, Broeckling, Sumner, Wang (bib66) 2007; 64 Benjamini, Drai, Elmer, Kafkafi, Golani (bib5) 2001; 125 Szabados, Savouré (bib56) 2010; 15 Mathews (10.1093/mp/ssr114_bib34) 2008; 117 Keppler (10.1093/mp/ssr114_bib26) 2010; 3 Yang (10.1093/mp/ssr114_bib65) 2010; 3 Kilian (10.1093/mp/ssr114_bib28) 2007; 50 Deyholos (10.1093/mp/ssr114_bib10) 2010; 33 Alvarez (10.1093/mp/ssr114_bib3) 2008; 31 Charlton (10.1093/mp/ssr114_bib9) 2008; 4 Grammatikopoulos (10.1093/mp/ssr114_bib18) 1994; 72 Alia (10.1093/mp/ssr114_bib1) 1997; 38 Sanchez (10.1093/mp/ssr114_bib50) 2011 Nanjo (10.1093/mp/ssr114_bib37) 1999; 18 Roessner (10.1093/mp/ssr114_bib46) 2001; 13 Ruan (10.1093/mp/ssr114_bib48) 2010; 3 Ozturk (10.1093/mp/ssr114_bib40) 2002; 48 Urano (10.1093/mp/ssr114_bib59) 2009; 57 Silva (10.1093/mp/ssr114_bib53) 2003; 15 Kieffer (10.1093/mp/ssr114_bib27) 2009; 8 Savé (10.1093/mp/ssr114_bib51) 2000; 43 Liu (10.1093/mp/ssr114_bib31) 2011; 4 Vogelmann (10.1093/mp/ssr114_bib60) 1993; 44 Ford (10.1093/mp/ssr114_bib13) 2011; 2 Street (10.1093/mp/ssr114_bib55) 2006; 48 Rampino (10.1093/mp/ssr114_bib41) 2006; 29 Wang (10.1093/mp/ssr114_bib61) 2003; 218 Xue (10.1093/mp/ssr114_bib63) 2011; 4 Monneveux (10.1093/mp/ssr114_bib36) 2006; 170 Talamè (10.1093/mp/ssr114_bib57) 2007; 58 Galinski (10.1093/mp/ssr114_bib14) 1993; 49 Roessner (10.1093/mp/ssr114_bib47) 2006; 142 Jacobs (10.1093/mp/ssr114_bib23) 2007; 3 Bartels (10.1093/mp/ssr114_bib4) 2010 Yancey (10.1093/mp/ssr114_bib64) 2005; 208 Sharma (10.1093/mp/ssr114_bib52) 2006; 57 Hannah (10.1093/mp/ssr114_bib20) 2006; 57 Less (10.1093/mp/ssr114_bib30) 2008; 147 Nishiyama (10.1093/mp/ssr114_bib38) 2001; 20 Miller (10.1093/mp/ssr114_bib35) 2010; 33 Dubouzet (10.1093/mp/ssr114_bib12) 2007; 58 Rizhsky (10.1093/mp/ssr114_bib45) 2004; 134 Malatrasi (10.1093/mp/ssr114_bib33) 2006; 113 Rizhsky (10.1093/mp/ssr114_bib44) 2002; 130 Reddy (10.1093/mp/ssr114_bib42) 2004; 161 Benjamini (10.1093/mp/ssr114_bib5) 2001; 125 Mahajan (10.1093/mp/ssr114_bib32) 2005; 444 Zhang (10.1093/mp/ssr114_bib66) 2007; 64 Goodwin (10.1093/mp/ssr114_bib16) 2005 Boyer (10.1093/mp/ssr114_bib7) 1982; 218 Norouzi (10.1093/mp/ssr114_bib39) 2008; 6 Sairam (10.1093/mp/ssr114_bib49) 1997; 40 Steudle (10.1093/mp/ssr114_bib54) 2000; 51 Richards (10.1093/mp/ssr114_bib43) 1986; 13 Hajlaoui (10.1093/mp/ssr114_bib19) 2010; 31 Gorantla (10.1093/mp/ssr114_bib17) 2005; 89 Taylor (10.1093/mp/ssr114_bib58) 2004; 134 Korkina (10.1093/mp/ssr114_bib29) 2007; 53 Bogdan (10.1093/mp/ssr114_bib6) 2006; 44 González (10.1093/mp/ssr114_bib15) 2008; 194 Junker (10.1093/mp/ssr114_bib24) 2006; 7 Izanloo (10.1093/mp/ssr114_bib22) 2008; 59 Witt (10.1093/mp/ssr114_bib62) 2012; 5 Kato (10.1093/mp/ssr114_bib25) 2008; 160 Broadhurst (10.1093/mp/ssr114_bib8) 2006; 2 Díaz (10.1093/mp/ssr114_bib11) 2010; 188 Allakhverdiev (10.1093/mp/ssr114_bib2) 2004; 1657 Szabados (10.1093/mp/ssr114_bib56) 2010; 15 Hoekstra (10.1093/mp/ssr114_bib21) 2001; 6 |
References_xml | – volume: 51 start-page: 1531 year: 2000 end-page: 1542 ident: bib54 article-title: Water uptake by roots: effects of water deficit publication-title: J. Exper. Bot. – volume: 13 start-page: 465 year: 1986 end-page: 473 ident: bib43 article-title: Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures publication-title: Australian J. Plant Physiol – volume: 6 start-page: 312 year: 2008 end-page: 318 ident: bib39 article-title: Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed publication-title: J. Food Agriculture Environ – volume: 50 start-page: 347 year: 2007 end-page: 363 ident: bib28 article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses publication-title: Plant J – volume: 38 start-page: 253 year: 1997 end-page: 257 ident: bib1 article-title: Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage publication-title: J. Photochem. Photobiol. B: Biol – volume: 4 start-page: 312 year: 2008 end-page: 327 ident: bib9 article-title: Responses of the pea ( publication-title: Metabolomics – volume: 31 start-page: 122 year: 2010 end-page: 130 ident: bib19 article-title: Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize ( publication-title: Industrial Crops Products – start-page: 14 year: 2005 end-page: 36 ident: bib16 article-title: Plant cuticle function as a barrier to water loss publication-title: Plant Abiotic Stress – volume: 44 start-page: 787 year: 2006 end-page: 794 ident: bib6 article-title: Changes in the pool of soluble sugars induced by dehydration at the heterotrophic phase of growth of wheat seedlings publication-title: Plant Physiol. Biochem – volume: 2 start-page: 44 year: 2011 ident: bib13 article-title: Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance publication-title: Frontiers Plant Sci – volume: 72 start-page: 1805 year: 1994 end-page: 1811 ident: bib18 article-title: Direct absorption of water by hairy leaves of publication-title: Canadian J. Bot. – volume: 31 start-page: 325 year: 2008 end-page: 340 ident: bib3 article-title: Metabolomic and proteomic changes in the xylem sap of maize under drought publication-title: Plant Cell Environ – volume: 117 start-page: 1077 year: 2008 end-page: 1091 ident: bib34 article-title: Multi-environment QTL mixed models for drought stress adaptation in wheat publication-title: Theoretical Applied Genet – volume: 142 start-page: 1087 year: 2006 end-page: 1101 ident: bib47 article-title: An investigation of boron toxicity in barley using metabolomics publication-title: Plant Physiol – volume: 188 start-page: 1001 year: 2010 end-page: 1013 ident: bib11 article-title: Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in publication-title: New Phytol – volume: 147 start-page: 316 year: 2008 end-page: 330 ident: bib30 article-title: Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses publication-title: Plant Physiol – volume: 3 start-page: 942 year: 2010 end-page: 955 ident: bib48 article-title: Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat publication-title: Mol. Plant – volume: 59 start-page: 3327 year: 2008 end-page: 3346 ident: bib22 article-title: Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars publication-title: J. Exper. Bot. – volume: 43 start-page: 239 year: 2000 end-page: 244 ident: bib51 article-title: Leaf pubescence, water relations and chlorophyll fluorescence in two subspecies of publication-title: Biologia Plantarum – volume: 218 start-page: 443 year: 1982 end-page: 448 ident: bib7 article-title: Plant productivity and environment publication-title: Science – volume: 58 start-page: 229 year: 2007 end-page: 240 ident: bib57 article-title: Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis publication-title: J. Exper. Bot. – volume: 18 start-page: 185 year: 1999 end-page: 193 ident: bib37 article-title: Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic publication-title: Plant J – volume: 57 start-page: 711 year: 2006 end-page: 726 ident: bib52 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress publication-title: J. Exper. Bot. – volume: 48 start-page: 551 year: 2002 end-page: 573 ident: bib40 article-title: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley publication-title: Plant Mol. Biol. – volume: 64 start-page: 265 year: 2007 end-page: 278 ident: bib66 article-title: Heterologous expression of two publication-title: Plant Mol. Biol. – volume: 44 start-page: 231 year: 1993 end-page: 251 ident: bib60 article-title: Plant tissue optics publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol – volume: 58 start-page: 3309 year: 2007 end-page: 3321 ident: bib12 article-title: Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit publication-title: J. Exper. Bot. – volume: 2 start-page: 171 year: 2006 end-page: 196 ident: bib8 article-title: Statistical strategies for avoiding false discoveries in metabolomics and related experiments publication-title: Metabolomics – volume: 15 start-page: 2152 year: 2003 end-page: 2164 ident: bib53 article-title: FtsH is involved in the early stages of repair of Photosystem II in publication-title: Plant Cell – volume: 170 start-page: 867 year: 2006 end-page: 872 ident: bib36 article-title: Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes publication-title: Plant Sci – volume: 33 start-page: 648 year: 2010 end-page: 654 ident: bib10 article-title: Making the most of drought and salinity transcriptomics publication-title: Plant Cell Environ – volume: 161 start-page: 1189 year: 2004 end-page: 1202 ident: bib42 article-title: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants publication-title: J. Plant Physiol – volume: 53 start-page: 15 year: 2007 end-page: 25 ident: bib29 article-title: Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health publication-title: Cell. Mol. Biol. – volume: 1657 start-page: 23 year: 2004 end-page: 32 ident: bib2 article-title: Environmental stress inhibits the synthesis publication-title: Biochim. Biophys. Acta—Bioenergetics – volume: 57 start-page: 1065 year: 2009 end-page: 1078 ident: bib59 article-title: Characterization of the ABA-regulated global responses to dehydration in publication-title: Plant J – volume: 48 start-page: 321 year: 2006 end-page: 341 ident: bib55 article-title: The genetics and genomics of the drought response in publication-title: Plant J – volume: 3 start-page: 834 year: 2010 end-page: 841 ident: bib26 article-title: IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in publication-title: Mol. Plant. – volume: 89 start-page: 496 year: 2005 end-page: 514 ident: bib17 article-title: Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an publication-title: Curr. Sci. – volume: 13 start-page: 11 year: 2001 end-page: 29 ident: bib46 article-title: Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems publication-title: Plant Cell – volume: 40 start-page: 357 year: 1997 end-page: 364 ident: bib49 article-title: Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes publication-title: Biologia Plantarum – volume: 8 start-page: 400 year: 2009 end-page: 417 ident: bib27 article-title: Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves publication-title: J. Proteome Res – volume: 3 start-page: 469 year: 2010 end-page: 490 ident: bib65 article-title: Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops publication-title: Mol. Plant – volume: 49 start-page: 487 year: 1993 end-page: 496 ident: bib14 article-title: Compatible solutes of halophilic eubacteria: molecular principles, water–solute interaction, stress protection publication-title: Cell. Mol. Life Sci – year: 2011 ident: bib50 article-title: Comparative metabolomics of drought acclimation in model and forage legumes publication-title: Plant Cell Environ – volume: 130 start-page: 1143 year: 2002 end-page: 1151 ident: bib44 article-title: The combined effect of drought stress and heat shock on gene expression in tobacco publication-title: Plant Physiol – volume: 125 start-page: 279 year: 2001 end-page: 284 ident: bib5 article-title: Controlling the false discovery rate in behavior genetics research publication-title: Behavioural Brain Res – volume: 57 start-page: 3801 year: 2006 end-page: 3811 ident: bib20 article-title: Transport and metabolism of raffinose family oligosaccharides in transgenic potato publication-title: J. Exper. Bot. – volume: 29 start-page: 2143 year: 2006 end-page: 2152 ident: bib41 article-title: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes publication-title: Plant Cell Environ – volume: 5 start-page: 401 year: 2012 end-page: 417 ident: bib62 article-title: Metabolic and phenotypic responses of greenhouse grown maize hybrids to experimentally controlled drought stress publication-title: Mol. Plant – volume: 7 start-page: 109 year: 2006 ident: bib24 article-title: VANTED: a system for advanced data analysis and visualization in the context of biological networks publication-title: BMC Bioinformatics – volume: 208 start-page: 2819 year: 2005 end-page: 2830 ident: bib64 article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses publication-title: J. Exper. Biol. – volume: 134 start-page: 1683 year: 2004 end-page: 1696 ident: bib45 article-title: When defense pathways collide: the response of publication-title: Plant Physiol – volume: 134 start-page: 838 year: 2004 end-page: 848 ident: bib58 article-title: Lipoic acid-dependent oxidative catabolism of α-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in publication-title: Plant Physiol – volume: 218 start-page: 1 year: 2003 end-page: 14 ident: bib61 article-title: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance publication-title: Planta – volume: 6 start-page: 431 year: 2001 end-page: 438 ident: bib21 article-title: Mechanisms of plant desiccation tolerance publication-title: Trends Plant Sci – volume: 160 start-page: 423 year: 2008 end-page: 430 ident: bib25 article-title: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture publication-title: Euphytica – volume: 4 start-page: 697 year: 2011 end-page: 712 ident: bib63 article-title: Overexpression of publication-title: Mol. Plant – volume: 20 start-page: 5587 year: 2001 end-page: 5594 ident: bib38 article-title: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery publication-title: EMBO J – volume: 444 start-page: 139 year: 2005 end-page: 158 ident: bib32 article-title: Cold, salinity and drought stresses: an overview publication-title: Archives Biochem. Biophys – volume: 113 start-page: 967 year: 2006 end-page: 976 ident: bib33 article-title: A branched-chain amino acid aminotransferase gene isolated from publication-title: Theoretical Applied Genet – start-page: 139 year: 2010 end-page: 157 ident: bib4 article-title: Drought stress tolerance publication-title: Genetic Modification of Plants – volume: 3 start-page: 307 year: 2007 end-page: 317 ident: bib23 article-title: The impact of constitutive expression of a moss Na publication-title: Metabolomics – volume: 194 start-page: 81 year: 2008 end-page: 91 ident: bib15 article-title: Yield and osmotic adjustment capacity of barley under terminal water-stress conditions publication-title: J. Agronomy Crop Sci – volume: 33 start-page: 453 year: 2010 end-page: 467 ident: bib35 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant Cell Environ – volume: 15 start-page: 89 year: 2010 end-page: 97 ident: bib56 article-title: Proline: a multifunctional amino acid publication-title: Trends Plant Sci – volume: 4 start-page: 938 year: 2011 end-page: 946 ident: bib31 article-title: AtPUB19, a U-Box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in publication-title: Mol. Plant – volume: 444 start-page: 139 year: 2005 ident: 10.1093/mp/ssr114_bib32 article-title: Cold, salinity and drought stresses: an overview publication-title: Archives Biochem. Biophys doi: 10.1016/j.abb.2005.10.018 – volume: 3 start-page: 307 year: 2007 ident: 10.1093/mp/ssr114_bib23 article-title: The impact of constitutive expression of a moss Na+ transporter on the metabolomes of rice and barley publication-title: Metabolomics doi: 10.1007/s11306-007-0056-4 – volume: 72 start-page: 1805 year: 1994 ident: 10.1093/mp/ssr114_bib18 article-title: Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance publication-title: Canadian J. Bot. doi: 10.1139/b94-222 – volume: 15 start-page: 2152 year: 2003 ident: 10.1093/mp/ssr114_bib53 article-title: FtsH is involved in the early stages of repair of Photosystem II in Synechocystis sp PCC 6803 publication-title: Plant Cell doi: 10.1105/tpc.012609 – volume: 218 start-page: 1 year: 2003 ident: 10.1093/mp/ssr114_bib61 article-title: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance publication-title: Planta doi: 10.1007/s00425-003-1105-5 – volume: 7 start-page: 109 year: 2006 ident: 10.1093/mp/ssr114_bib24 article-title: VANTED: a system for advanced data analysis and visualization in the context of biological networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-109 – volume: 6 start-page: 431 year: 2001 ident: 10.1093/mp/ssr114_bib21 article-title: Mechanisms of plant desiccation tolerance publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(01)02052-0 – volume: 160 start-page: 423 year: 2008 ident: 10.1093/mp/ssr114_bib25 article-title: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture publication-title: Euphytica doi: 10.1007/s10681-007-9605-1 – volume: 48 start-page: 321 year: 2006 ident: 10.1093/mp/ssr114_bib55 article-title: The genetics and genomics of the drought response in Populus publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02864.x – volume: 44 start-page: 787 year: 2006 ident: 10.1093/mp/ssr114_bib6 article-title: Changes in the pool of soluble sugars induced by dehydration at the heterotrophic phase of growth of wheat seedlings publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2006.10.028 – volume: 58 start-page: 3309 year: 2007 ident: 10.1093/mp/ssr114_bib12 article-title: Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit publication-title: J. Exper. Bot. doi: 10.1093/jxb/erm179 – volume: 5 start-page: 401 year: 2012 ident: 10.1093/mp/ssr114_bib62 article-title: Metabolic and phenotypic responses of greenhouse grown maize hybrids to experimentally controlled drought stress publication-title: Mol. Plant doi: 10.1093/mp/ssr102 – volume: 38 start-page: 253 year: 1997 ident: 10.1093/mp/ssr114_bib1 article-title: Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage publication-title: J. Photochem. Photobiol. B: Biol doi: 10.1016/S1011-1344(96)07470-2 – volume: 59 start-page: 3327 year: 2008 ident: 10.1093/mp/ssr114_bib22 article-title: Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars publication-title: J. Exper. Bot. doi: 10.1093/jxb/ern199 – volume: 13 start-page: 11 year: 2001 ident: 10.1093/mp/ssr114_bib46 article-title: Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems publication-title: Plant Cell doi: 10.1105/tpc.13.1.11 – volume: 58 start-page: 229 year: 2007 ident: 10.1093/mp/ssr114_bib57 article-title: Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis publication-title: J. Exper. Bot. doi: 10.1093/jxb/erl163 – volume: 3 start-page: 469 year: 2010 ident: 10.1093/mp/ssr114_bib65 article-title: Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops publication-title: Mol. Plant doi: 10.1093/mp/ssq016 – volume: 194 start-page: 81 year: 2008 ident: 10.1093/mp/ssr114_bib15 article-title: Yield and osmotic adjustment capacity of barley under terminal water-stress conditions publication-title: J. Agronomy Crop Sci doi: 10.1111/j.1439-037X.2007.00289.x – volume: 161 start-page: 1189 year: 2004 ident: 10.1093/mp/ssr114_bib42 article-title: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2004.01.013 – volume: 134 start-page: 1683 year: 2004 ident: 10.1093/mp/ssr114_bib45 article-title: When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress publication-title: Plant Physiol doi: 10.1104/pp.103.033431 – start-page: 139 year: 2010 ident: 10.1093/mp/ssr114_bib4 article-title: Drought stress tolerance – volume: 57 start-page: 1065 year: 2009 ident: 10.1093/mp/ssr114_bib59 article-title: Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03748.x – volume: 64 start-page: 265 year: 2007 ident: 10.1093/mp/ssr114_bib66 article-title: Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance publication-title: Plant Mol. Biol. doi: 10.1007/s11103-007-9150-2 – volume: 53 start-page: 15 year: 2007 ident: 10.1093/mp/ssr114_bib29 article-title: Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health publication-title: Cell. Mol. Biol. – volume: 18 start-page: 185 year: 1999 ident: 10.1093/mp/ssr114_bib37 article-title: Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00438.x – volume: 33 start-page: 648 year: 2010 ident: 10.1093/mp/ssr114_bib10 article-title: Making the most of drought and salinity transcriptomics publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.02092.x – volume: 4 start-page: 697 year: 2011 ident: 10.1093/mp/ssr114_bib63 article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat publication-title: Mol. Plant doi: 10.1093/mp/ssr013 – volume: 40 start-page: 357 year: 1997 ident: 10.1093/mp/ssr114_bib49 article-title: Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes publication-title: Biologia Plantarum doi: 10.1023/A:1001009812864 – volume: 48 start-page: 551 year: 2002 ident: 10.1093/mp/ssr114_bib40 article-title: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley publication-title: Plant Mol. Biol. doi: 10.1023/A:1014875215580 – start-page: 14 year: 2005 ident: 10.1093/mp/ssr114_bib16 article-title: Plant cuticle function as a barrier to water loss – volume: 29 start-page: 2143 year: 2006 ident: 10.1093/mp/ssr114_bib41 article-title: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2006.01588.x – volume: 188 start-page: 1001 year: 2010 ident: 10.1093/mp/ssr114_bib11 article-title: Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03440.x – volume: 1657 start-page: 23 year: 2004 ident: 10.1093/mp/ssr114_bib2 article-title: Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage–repair cycle of Photosystem II in Synechocystis sp. PCC 6803 publication-title: Biochim. Biophys. Acta—Bioenergetics doi: 10.1016/j.bbabio.2004.03.003 – volume: 4 start-page: 312 year: 2008 ident: 10.1093/mp/ssr114_bib9 article-title: Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy publication-title: Metabolomics doi: 10.1007/s11306-008-0128-0 – volume: 89 start-page: 496 year: 2005 ident: 10.1093/mp/ssr114_bib17 article-title: Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22) publication-title: Curr. Sci. – volume: 3 start-page: 942 year: 2010 ident: 10.1093/mp/ssr114_bib48 article-title: Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat publication-title: Mol. Plant doi: 10.1093/mp/ssq044 – volume: 3 start-page: 834 year: 2010 ident: 10.1093/mp/ssr114_bib26 article-title: IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis publication-title: Mol. Plant. doi: 10.1093/mp/ssq028 – volume: 218 start-page: 443 year: 1982 ident: 10.1093/mp/ssr114_bib7 article-title: Plant productivity and environment publication-title: Science doi: 10.1126/science.218.4571.443 – volume: 57 start-page: 3801 year: 2006 ident: 10.1093/mp/ssr114_bib20 article-title: Transport and metabolism of raffinose family oligosaccharides in transgenic potato publication-title: J. Exper. Bot. doi: 10.1093/jxb/erl152 – volume: 8 start-page: 400 year: 2009 ident: 10.1093/mp/ssr114_bib27 article-title: Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves publication-title: J. Proteome Res doi: 10.1021/pr800561r – volume: 57 start-page: 711 year: 2006 ident: 10.1093/mp/ssr114_bib52 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress publication-title: J. Exper. Bot. doi: 10.1093/jxb/erj073 – volume: 15 start-page: 89 year: 2010 ident: 10.1093/mp/ssr114_bib56 article-title: Proline: a multifunctional amino acid publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2009.11.009 – year: 2011 ident: 10.1093/mp/ssr114_bib50 article-title: Comparative metabolomics of drought acclimation in model and forage legumes publication-title: Plant Cell Environ – volume: 6 start-page: 312 year: 2008 ident: 10.1093/mp/ssr114_bib39 article-title: Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed publication-title: J. Food Agriculture Environ – volume: 20 start-page: 5587 year: 2001 ident: 10.1093/mp/ssr114_bib38 article-title: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery publication-title: EMBO J doi: 10.1093/emboj/20.20.5587 – volume: 51 start-page: 1531 year: 2000 ident: 10.1093/mp/ssr114_bib54 article-title: Water uptake by roots: effects of water deficit publication-title: J. Exper. Bot. doi: 10.1093/jexbot/51.350.1531 – volume: 142 start-page: 1087 year: 2006 ident: 10.1093/mp/ssr114_bib47 article-title: An investigation of boron toxicity in barley using metabolomics publication-title: Plant Physiol doi: 10.1104/pp.106.084053 – volume: 125 start-page: 279 year: 2001 ident: 10.1093/mp/ssr114_bib5 article-title: Controlling the false discovery rate in behavior genetics research publication-title: Behavioural Brain Res doi: 10.1016/S0166-4328(01)00297-2 – volume: 43 start-page: 239 year: 2000 ident: 10.1093/mp/ssr114_bib51 article-title: Leaf pubescence, water relations and chlorophyll fluorescence in two subspecies of Lotus creticus L publication-title: Biologia Plantarum doi: 10.1023/A:1002704327076 – volume: 31 start-page: 122 year: 2010 ident: 10.1093/mp/ssr114_bib19 article-title: Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties publication-title: Industrial Crops Products doi: 10.1016/j.indcrop.2009.09.007 – volume: 33 start-page: 453 year: 2010 ident: 10.1093/mp/ssr114_bib35 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.02041.x – volume: 4 start-page: 938 year: 2011 ident: 10.1093/mp/ssr114_bib31 article-title: AtPUB19, a U-Box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana publication-title: Mol. Plant doi: 10.1093/mp/ssr030 – volume: 134 start-page: 838 year: 2004 ident: 10.1093/mp/ssr114_bib58 article-title: Lipoic acid-dependent oxidative catabolism of α-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.103.035675 – volume: 170 start-page: 867 year: 2006 ident: 10.1093/mp/ssr114_bib36 article-title: Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.12.008 – volume: 2 start-page: 171 year: 2006 ident: 10.1093/mp/ssr114_bib8 article-title: Statistical strategies for avoiding false discoveries in metabolomics and related experiments publication-title: Metabolomics doi: 10.1007/s11306-006-0037-z – volume: 31 start-page: 325 year: 2008 ident: 10.1093/mp/ssr114_bib3 article-title: Metabolomic and proteomic changes in the xylem sap of maize under drought publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2007.01770.x – volume: 147 start-page: 316 year: 2008 ident: 10.1093/mp/ssr114_bib30 article-title: Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses publication-title: Plant Physiol doi: 10.1104/pp.108.115733 – volume: 44 start-page: 231 year: 1993 ident: 10.1093/mp/ssr114_bib60 article-title: Plant tissue optics publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol doi: 10.1146/annurev.pp.44.060193.001311 – volume: 117 start-page: 1077 year: 2008 ident: 10.1093/mp/ssr114_bib34 article-title: Multi-environment QTL mixed models for drought stress adaptation in wheat publication-title: Theoretical Applied Genet doi: 10.1007/s00122-008-0846-8 – volume: 13 start-page: 465 year: 1986 ident: 10.1093/mp/ssr114_bib43 article-title: Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures publication-title: Australian J. Plant Physiol – volume: 208 start-page: 2819 year: 2005 ident: 10.1093/mp/ssr114_bib64 article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses publication-title: J. Exper. Biol. doi: 10.1242/jeb.01730 – volume: 49 start-page: 487 year: 1993 ident: 10.1093/mp/ssr114_bib14 article-title: Compatible solutes of halophilic eubacteria: molecular principles, water–solute interaction, stress protection publication-title: Cell. Mol. Life Sci doi: 10.1007/BF01955150 – volume: 113 start-page: 967 year: 2006 ident: 10.1093/mp/ssr114_bib33 article-title: A branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is differentially regulated by drought stress publication-title: Theoretical Applied Genet doi: 10.1007/s00122-006-0339-6 – volume: 130 start-page: 1143 year: 2002 ident: 10.1093/mp/ssr114_bib44 article-title: The combined effect of drought stress and heat shock on gene expression in tobacco publication-title: Plant Physiol doi: 10.1104/pp.006858 – volume: 2 start-page: 44 year: 2011 ident: 10.1093/mp/ssr114_bib13 article-title: Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance publication-title: Frontiers Plant Sci doi: 10.3389/fpls.2011.00044 – volume: 50 start-page: 347 year: 2007 ident: 10.1093/mp/ssr114_bib28 article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03052.x |
SSID | ssib022315914 ssib011451059 ssj0060863 ssib008446488 ssib027716028 |
Score | 2.4938695 |
Snippet | Drought has serious effects on the physiology of cereal crops. At the cellular and specifically the metabolite level, many individual compounds are increased... |
SourceID | proquest pubmed crossref elsevier chongqing |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 418 |
SubjectTerms | abiotic/environmental stress Adaptation, Physiological Amino acids Amino Acids - metabolism Carbohydrate Metabolism Carboxylic Acids - metabolism Cereal crops Cultivars Drought Drought resistance Droughts Excalibur GC-MS分析 Metabolic Networks and Pathways Metabolites metabolomics Organic acids Physiology Plant Leaves - physiology Plant tissues Species Specificity Time Factors Triticum - metabolism Water - metabolism Wheat 代谢物 供水条件 叶片组织 小麦品种 干旱胁迫 抗旱性 |
Title | Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level |
URI | http://lib.cqvip.com/qk/90143B/201202/41554706.html https://dx.doi.org/10.1093/mp/ssr114 https://www.ncbi.nlm.nih.gov/pubmed/22207720 https://www.proquest.com/docview/1021764484 https://www.proquest.com/docview/948896990 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_EFtqX0tbanlpZxAcfGpJNdjfJo56Va6siesK9LTE3Kwd3ybUXBf_7zmySg4I-9Clhd1gm-zHz28wXwKFSaVZEpQycjIqADWdBpp0LdBajnkp0GbJF9-LSjG7Vz4mebMCwj4Vht8pO9rcy3UvrriXsZjNczmbhDfvPxxx7qgz_TeFA80RlPohvctJLY0OQ3TvZE3HA1H12oTwJF8uQ9JDkAJ43JGuq-9-kLV7STy_hT6-Hzt7Duw5AiuOWxw-wgdVHeH1SE8h72oLFqS-704jr1vcVV6J24hwLJ8Z-ileCA0qEl8GC82nOHulqy0SnvlQK8Sb6Mcb1HLnuBgqiJaAoLrChPcNRyzTkI84_we3Z9_FwFHQVFYJSS9MEykjUzkxlWqq8JLiDscSCIJlzkUGXaKMK5NjWdJqUJsbSYRrrqdGcBIa0abINm1Vd4RcQ3K4IK-ZZjqpEWeRxQS-k3JzUBOsGsLOeU7tsM2dYj17SyAzgqJ9kW3a5yLkkxty2NvHELpa2XZsBHKxJ-2GeIfrWr5T9Z_dYUgzPke_1q2m7I7uyXOM85dsqdYt1Nx02tqAUFdYPK5uTuMsNfeMAPrebYM0T4ayIbirRzv-xsgtvCYLFrVfbHmw2fx7wK8Gc5m4fXh0Pr8-v-Pnj1-hy3-_rv6nIAEc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VglQuiDcpBVYIJA5Y9tretX3gQAlVQpMeIJVyW1xnFkVK7IDdov4u_iAzazsSUnvg0Jtlj1bjmfXMN955ALyJ4yTNg0J6Vga5xwdnXqqs9VQaolpItCnyie70RI9O4y9zNd-BP30tDKdVdra_tenOWnd3_E6a_ma59L9x_nzItaex5r8pfWblMV7-prit_jAekpLfhuHR59mnkdeNFvAKJXXjxVqisnohkyLOCvL7GErMCZtYG2i0kdJxjlzkmSyiQodYWExCtdCKu6GQW4lo3Vtwm9BHwtZgPD_szb-mGMFl9RN3HrPXtzPKIn-98cnxSa4Y2iPjVv74Se7pOod4HeB1ju_oPtzrEKv42ArlAexg-RDuHFaEKi8fwXro5vw04mubbIu1qKyYYG7FzOm0FlzBIpzRF9zAc3lBsTQTDd1sFuJN9GvMqhXyoA8UREvIVEyxoU3KZdK05AWuHsPpjcj5CeyWVYnPQPD9mMBplmYYFyjzLMzpgryplYpw5AD2tzI1m7ZVh3FwKQn0AN71QjZF1_ycZ3CsTHsIH5n1xrS6GcDrLWm_zBVE73tNmX-2qyFPdBX5Qa9N09mI2vBQ9YTDY3osto_p6-Yjm7zE6rw2GdnXTNM7DuBpuwm2PBGwCyg0Cvb_j5VXsDeaTSdmMj45fg53Cf-FbUrdAew2v87xBWGs5uyl29MCvt_0R_QXUh86MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+responses+of+leaf+tissues+from+wheat+cultivars+of+differing+drought+tolerance+at+the+metabolite+level&rft.jtitle=Molecular+plant&rft.au=Bowne%2C+Jairus+B&rft.au=Erwin%2C+Tim+A&rft.au=Juttner%2C+Juan&rft.au=Schnurbusch%2C+Thorsten&rft.date=2012-03-01&rft.eissn=1752-9867&rft.volume=5&rft.issue=2&rft.spage=418&rft_id=info:doi/10.1093%2Fmp%2Fssr114&rft_id=info%3Apmid%2F22207720&rft.externalDocID=22207720 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90143B%2F90143B.jpg |