Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury

•Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation. Electroen...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 130; no. 10; pp. 1908 - 1916
Main Authors Amorim, Edilberto, van der Stoel, Michelle, Nagaraj, Sunil B., Ghassemi, Mohammad M., Jing, Jin, O'Reilly, Una-May, Scirica, Benjamin M., Lee, Jong Woo, Cash, Sydney S., Westover, M. Brandon
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…