Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury

•Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation. Electroen...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 130; no. 10; pp. 1908 - 1916
Main Authors Amorim, Edilberto, van der Stoel, Michelle, Nagaraj, Sunil B., Ghassemi, Mohammad M., Jing, Jin, O'Reilly, Una-May, Scirica, Benjamin M., Lee, Jong Woo, Cash, Sydney S., Westover, M. Brandon
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation. Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury. We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1–2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review. Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant). Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest. A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.
AbstractList Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury.OBJECTIVEElectroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury.We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review.METHODSWe retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review.Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant).RESULTSFifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant).Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest.CONCLUSIONSMachine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest.A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.SIGNIFICANCEA quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.
Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury. We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review. Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant). Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest. A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.
•Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation. Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury. We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1–2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review. Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant). Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest. A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.
Author van der Stoel, Michelle
Cash, Sydney S.
Westover, M. Brandon
Amorim, Edilberto
Nagaraj, Sunil B.
Ghassemi, Mohammad M.
Lee, Jong Woo
O'Reilly, Una-May
Jing, Jin
Scirica, Benjamin M.
AuthorAffiliation 7. Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3. University of Twente, Enschede, Netherlands
5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
1. Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
6. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
4. University of Groningen, Groningen, Netherlands
AuthorAffiliation_xml – name: 2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
– name: 3. University of Twente, Enschede, Netherlands
– name: 4. University of Groningen, Groningen, Netherlands
– name: 1. Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
– name: 5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
– name: 7. Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
– name: 6. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
Author_xml – sequence: 1
  givenname: Edilberto
  surname: Amorim
  fullname: Amorim, Edilberto
  email: edilbertoamorim@gmail.com
  organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
– sequence: 2
  givenname: Michelle
  surname: van der Stoel
  fullname: van der Stoel, Michelle
  organization: University of Twente, Enschede, Netherlands
– sequence: 3
  givenname: Sunil B.
  surname: Nagaraj
  fullname: Nagaraj, Sunil B.
  organization: University of Groningen, Groningen, Netherlands
– sequence: 4
  givenname: Mohammad M.
  surname: Ghassemi
  fullname: Ghassemi, Mohammad M.
  organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 5
  givenname: Jin
  surname: Jing
  fullname: Jing, Jin
  organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
– sequence: 6
  givenname: Una-May
  surname: O'Reilly
  fullname: O'Reilly, Una-May
  organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 7
  givenname: Benjamin M.
  surname: Scirica
  fullname: Scirica, Benjamin M.
  organization: Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
– sequence: 8
  givenname: Jong Woo
  surname: Lee
  fullname: Lee, Jong Woo
  organization: Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
– sequence: 9
  givenname: Sydney S.
  surname: Cash
  fullname: Cash, Sydney S.
  organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
– sequence: 10
  givenname: M. Brandon
  surname: Westover
  fullname: Westover, M. Brandon
  organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31419742$$D View this record in MEDLINE/PubMed
BookMark eNqFkV-L1DAUxYOsuH_0G4j00ZfWJE2bVkSQZVyFBRH0OaTp7fSObTIm7WC_vakzK7ov85SEe87vknOuyYV1Fgh5yWjGKCvf7DIzoN33GaeszqjMKBNPyBWrJE-ruuAX8Z5XVcpFIS_JdQg7Sqmkgj8jlzkTrJaCXxH4Oms74aQnPECy2dwlHrSJD5yWRNs2GbXp0UIygPYW7TbpnE_23m2tCxOa6HM2QZv0y979QpNiMD2MaJLGa1wnu9kvz8nTTg8BXpzOG_L94-bb7af0_svd59sP96kpWDmleSvKLq-Z0Bq4AKFp3XWaN6Wgja5yrWnLO8qbusyh4RUrm4qbKq8YFEXdsia_Ie-P3P3cjNAasJPXg9p7HLVflNOo_p9Y7NXWHVQpC0Y5jYDXJ4B3P2cIkxrjh2AYtAU3B8W5LLjkUsgoffXvrr9LHrKNgrdHgfEuBA-dMn9ydutqHBSjai1S7dSxSLUWqahUschoFo_MD_wztlMAEFM-IHgVDII10KIHM6nW4TnAu0eAVRR7Hn7Act7-G7Od0RA
CitedBy_id crossref_primary_10_1016_j_resuscitation_2021_10_034
crossref_primary_10_1097_WNP_0000000000001078
crossref_primary_10_1016_j_resuscitation_2024_110398
crossref_primary_10_1007_s12028_022_01449_8
crossref_primary_10_1212_WNL_0000000000210043
crossref_primary_10_1109_TBME_2021_3062502
crossref_primary_10_3390_jcm12062254
crossref_primary_10_1016_j_resuscitation_2024_110319
crossref_primary_10_3390_brainsci12060752
crossref_primary_10_1109_TBME_2021_3139007
crossref_primary_10_1097_CCM_0000000000005790
crossref_primary_10_2139_ssrn_3765947
crossref_primary_10_1055_s_0044_1785504
crossref_primary_10_1007_s10049_021_00892_y
crossref_primary_10_1016_j_resplu_2021_100189
crossref_primary_10_3389_fneur_2024_1493336
crossref_primary_10_1007_s00134_021_06368_4
crossref_primary_10_1097_WNP_0000000000000958
crossref_primary_10_3389_fneur_2022_897734
crossref_primary_10_1016_j_resuscitation_2023_110049
crossref_primary_10_1016_S1474_4422_20_30117_4
crossref_primary_10_1007_s12028_020_01085_0
crossref_primary_10_1097_CCM_0000000000006074
crossref_primary_10_1097_WNP_0000000000001042
crossref_primary_10_1161_JAHA_121_021575
crossref_primary_10_3390_signals4030034
crossref_primary_10_1016_j_clinph_2020_06_001
crossref_primary_10_1186_s13613_022_01083_9
crossref_primary_10_1016_j_knosys_2020_106579
crossref_primary_10_1097_MCC_0000000000001138
crossref_primary_10_1186_s13613_024_01339_6
crossref_primary_10_1177_15500594231211105
crossref_primary_10_15441_ceem_21_025
crossref_primary_10_1007_s12028_021_01362_6
crossref_primary_10_2174_1574887115666200621183459
crossref_primary_10_1016_j_resuscitation_2021_02_012
crossref_primary_10_1016_j_clinph_2022_07_507
crossref_primary_10_1080_02699052_2022_2034184
crossref_primary_10_1007_s00415_022_11337_y
crossref_primary_10_1016_j_resplu_2024_100829
crossref_primary_10_1155_2021_6284035
crossref_primary_10_1097_CCE_0000000000000781
crossref_primary_10_3389_fmed_2022_922355
crossref_primary_10_23736_S0375_9393_21_14793_5
crossref_primary_10_1097_WNP_0000000000000894
crossref_primary_10_3389_fneur_2023_1159788
crossref_primary_10_1088_2632_2153_ad38fe
crossref_primary_10_1016_j_clinph_2021_07_004
crossref_primary_10_1016_j_ncl_2021_01_002
crossref_primary_10_3389_frai_2023_1154663
crossref_primary_10_1038_s41598_022_17561_w
crossref_primary_10_1016_j_ibneur_2023_09_002
crossref_primary_10_1097_WCO_0000000000001246
crossref_primary_10_1097_WCO_0000000000000875
crossref_primary_10_1016_j_pediatrneurol_2020_03_014
Cites_doi 10.1177/1550059417726475
10.1016/j.clinph.2012.06.017
10.1001/jamaneurol.2016.0006
10.1016/S1388-2457(99)00141-8
10.1016/j.resuscitation.2016.08.012
10.1016/j.resuscitation.2015.09.380
10.1109/PROC.1982.12433
10.1016/j.resuscitation.2015.03.005
10.1016/j.clinph.2018.01.054
10.1016/j.clinph.2016.09.002
10.1016/j.neulet.2016.04.055
10.1097/WNP.0000000000000517
10.1016/j.clinph.2015.06.024
10.1007/s12028-014-0095-4
10.1097/CCM.0b013e3182372f93
10.2307/1403690
10.1056/NEJMoa1310519
10.1016/0013-4694(78)90005-6
10.1097/CCM.0000000000002337
10.1097/WNP.0b013e3182784729
10.1212/WNL.0000000000002462
10.1016/j.jneumeth.2010.06.020
10.1002/ana.21984
10.1111/j.2517-6161.1996.tb02080.x
10.1177/1550059413509616
10.1212/WNL.58.3.349
ContentType Journal Article
Copyright 2019 International Federation of Clinical Neurophysiology
Copyright © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 International Federation of Clinical Neurophysiology
– notice: Copyright © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.clinph.2019.07.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 1916
ExternalDocumentID PMC6751020
31419742
10_1016_j_clinph_2019_07_014
S1388245719311605
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23 NS090900
– fundername: NINDS NIH HHS
  grantid: R01 NS107291
– fundername: NINDS NIH HHS
  grantid: R01 NS102190
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFMIJ
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
VQA
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c516t-3d46f3914aae24e4a09ffa2b640ba83aa0d2f02b963eb2816b82c8381e559d1b3
IEDL.DBID .~1
ISSN 1388-2457
1872-8952
IngestDate Thu Aug 21 14:10:33 EDT 2025
Fri Jul 11 09:01:00 EDT 2025
Mon Jul 21 06:04:35 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 02:54:49 EDT 2025
Fri Feb 23 02:27:22 EST 2024
Tue Aug 26 16:32:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords EEG reactivity
Quantitative EEG
Hypoxic-ischemic encephalopathy
Cardiac arrest
Machine learning
Language English
License Copyright © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-3d46f3914aae24e4a09ffa2b640ba83aa0d2f02b963eb2816b82c8381e559d1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
E.A., S.N., J.W.L., S.S.C., M.B.W. contributed to conception and design of the study. E.A., MvdS., S.N., M.M.G., and M.B.W. contributed to analysis of data. E.A., M.B.W. contributed to preparing the figures. E.A., MvdS., S.N., J.J., M.M.G., J.W.L., M.B.W. contributed to data acquisition. E.A., MvdS., S.N., M.M.G., J.J., J.W.L., U.O., S.S.C., M.B.W. contributed to drafting the text.
Author Contributions
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1388245719311605
PMID 31419742
PQID 2275272747
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751020
proquest_miscellaneous_2275272747
pubmed_primary_31419742
crossref_citationtrail_10_1016_j_clinph_2019_07_014
crossref_primary_10_1016_j_clinph_2019_07_014
elsevier_sciencedirect_doi_10_1016_j_clinph_2019_07_014
elsevier_clinicalkey_doi_10_1016_j_clinph_2019_07_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bricolo, Turazzi, Faccioli, Odorizzi, Sciaretta, Erculiani (b0040) 1978; 45
Pfurtscheller, Lopes da Silva (b0105) 1999; 110
Johnsen, Nohr, Duez, Ebbesen (b0070) 2017; 48
Alvarez, Oddo, Rossetti (b0005) 2013; 124
Nielsen, Wetterslev, Cronberg, Erlinge, Gasche, Hassager (b0085) 2013; 369
Thomson (b0125) 1982; 70
Perman, Kirkpatrick, Reitsma, Gaieski, Lau, Smith (b0100) 2012; 40
Fantaneanu, Tolchin, Alvarez, Friolet, Avery, Scirica (b0050) 2016; 127
Osborne (b0095) 1991; 59
Amorim, Ghassemi, Lee, Westover (b0010) 2016; 25
Duez, Ebbesen, Benedek, Fabricius, Atkins, Beniczky (b0045) 2018; 129
Hirsch, LaRoche, Gaspard, Gerard, Svoronos, Herman (b0065) 2013; 30
Bokil, Andrews, Kulkarni, Mehta, Mitra (b0030) 2010; 192
Liu, Su, Jiang, Chen, Zhang, Zhang (b0080) 2016; 626
Westhall, Rossetti, van Rootselaar, Wesenberg Kjaer, Horn, Ullen (b0140) 2016; 86
Hermans, Westover, van Putten, Hirsch, Gaspard (b0060) 2016; 127
Rossetti, Oddo, Logroscino, Kaplan (b0110) 2010; 67
Tibshirani (b0130) 1996; 58
Juan, Novy, Suys, Oddo, Rossetti (b0075) 2015; 22
Tsetsou, Novy, Oddo, Rossetti (b0135) 2015; 97
Amorim, Rittenberger, Baldwin, Callaway, Popescu, Post Cardiac Arrest (b0020) 2015; 90
Amorim, Gilmore, Abend, Hahn, Gaspard, Herman (b0015) 2018; 35
Giacino, Ashwal, Childs, Cranford, Jennett, Katz (b0055) 2002; 58
Braksick, Burkholder, Tsetsou, Martineau, Mandrekar, Rossetti (b0035) 2016; 73
Noirhomme, Lehembre, Lugo Zdel, Lesenfants, Luxen, Laureys (b0090) 2014; 45
Safar (b0120) 1981
Rossetti, Tovar Quiroga, Juan, Novy, White, Ben-Hamouda (b0115) 2017; 45
Amorim, Rittenberger, Zheng, Westover, Baldwin, Callaway (b0025) 2016; 109
Tibshirani (10.1016/j.clinph.2019.07.014_b0130) 1996; 58
Amorim (10.1016/j.clinph.2019.07.014_b0025) 2016; 109
Noirhomme (10.1016/j.clinph.2019.07.014_b0090) 2014; 45
Braksick (10.1016/j.clinph.2019.07.014_b0035) 2016; 73
Duez (10.1016/j.clinph.2019.07.014_b0045) 2018; 129
Osborne (10.1016/j.clinph.2019.07.014_b0095) 1991; 59
Rossetti (10.1016/j.clinph.2019.07.014_b0115) 2017; 45
Johnsen (10.1016/j.clinph.2019.07.014_b0070) 2017; 48
Safar (10.1016/j.clinph.2019.07.014_b0120) 1981
Tsetsou (10.1016/j.clinph.2019.07.014_b0135) 2015; 97
Hirsch (10.1016/j.clinph.2019.07.014_b0065) 2013; 30
Perman (10.1016/j.clinph.2019.07.014_b0100) 2012; 40
Westhall (10.1016/j.clinph.2019.07.014_b0140) 2016; 86
Juan (10.1016/j.clinph.2019.07.014_b0075) 2015; 22
Amorim (10.1016/j.clinph.2019.07.014_b0020) 2015; 90
Amorim (10.1016/j.clinph.2019.07.014_b0015) 2018; 35
Rossetti (10.1016/j.clinph.2019.07.014_b0110) 2010; 67
Alvarez (10.1016/j.clinph.2019.07.014_b0005) 2013; 124
Liu (10.1016/j.clinph.2019.07.014_b0080) 2016; 626
Pfurtscheller (10.1016/j.clinph.2019.07.014_b0105) 1999; 110
Bricolo (10.1016/j.clinph.2019.07.014_b0040) 1978; 45
Thomson (10.1016/j.clinph.2019.07.014_b0125) 1982; 70
Fantaneanu (10.1016/j.clinph.2019.07.014_b0050) 2016; 127
Hermans (10.1016/j.clinph.2019.07.014_b0060) 2016; 127
Amorim (10.1016/j.clinph.2019.07.014_b0010) 2016; 25
Bokil (10.1016/j.clinph.2019.07.014_b0030) 2010; 192
Nielsen (10.1016/j.clinph.2019.07.014_b0085) 2013; 369
Giacino (10.1016/j.clinph.2019.07.014_b0055) 2002; 58
References_xml – volume: 90
  start-page: 127
  year: 2015
  end-page: 132
  ident: b0020
  article-title: Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge
  publication-title: Resuscitation
– volume: 129
  start-page: 724
  year: 2018
  end-page: 730
  ident: b0045
  article-title: Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method
  publication-title: Clin Neurophysiol
– volume: 48
  start-page: 428
  year: 2017
  end-page: 437
  ident: b0070
  article-title: The nature of EEG reactivity to light, sound, and pain stimulation in neurosurgical comatose patients evaluated by a quantitative method
  publication-title: Clin EEG Neurosci
– volume: 109
  start-page: 121
  year: 2016
  end-page: 126
  ident: b0025
  article-title: Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury
  publication-title: Resuscitation
– year: 1981
  ident: b0120
  article-title: Resuscitation after brain ischemia
  publication-title: Brain Failure and Resuscitation
– volume: 192
  start-page: 146
  year: 2010
  end-page: 151
  ident: b0030
  article-title: Chronux: a platform for analyzing neural signals
  publication-title: J Neurosci Methods
– volume: 127
  start-page: 3412
  year: 2016
  end-page: 3417
  ident: b0050
  article-title: Effect of stimulus type and temperature on EEG reactivity in cardiac arrest
  publication-title: Clin Neurophysiol
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: b0105
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
– volume: 73
  start-page: 585
  year: 2016
  end-page: 590
  ident: b0035
  article-title: Associated factors and prognostic implications of stimulus-induced rhythmic, periodic, or ictal discharges
  publication-title: JAMA Neurol
– volume: 22
  start-page: 403
  year: 2015
  end-page: 408
  ident: b0075
  article-title: Clinical evolution after a non-reactive hypothermic EEG following cardiac arrest
  publication-title: Neurocrit Care
– volume: 86
  start-page: 1482
  year: 2016
  end-page: 1490
  ident: b0140
  article-title: Standardized EEG interpretation accurately predicts prognosis after cardiac arrest
  publication-title: Neurology
– volume: 45
  start-page: 211
  year: 1978
  end-page: 225
  ident: b0040
  article-title: Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 45
  start-page: e674
  year: 2017
  end-page: e682
  ident: b0115
  article-title: Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study
  publication-title: Crit Care Med
– volume: 58
  start-page: 349
  year: 2002
  end-page: 353
  ident: b0055
  article-title: The minimally conscious state: definition and diagnostic criteria
  publication-title: Neurology
– volume: 30
  start-page: 1
  year: 2013
  end-page: 27
  ident: b0065
  article-title: American clinical neurophysiology society's standardized critical care EEG terminology: 2012 version
  publication-title: J Clin Neurophysiol
– volume: 59
  start-page: 309
  year: 1991
  end-page: 336
  ident: b0095
  article-title: Statistical calibration: a review
  publication-title: Int Stat Rev
– volume: 67
  start-page: 301
  year: 2010
  end-page: 307
  ident: b0110
  article-title: Prognostication after cardiac arrest and hypothermia: a prospective study
  publication-title: Ann Neurol
– volume: 40
  start-page: 719
  year: 2012
  end-page: 724
  ident: b0100
  article-title: Timing of neuroprognostication in postcardiac arrest therapeutic hypothermia
  publication-title: Crit Care Med
– volume: 45
  start-page: 6
  year: 2014
  end-page: 13
  ident: b0090
  article-title: Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest
  publication-title: Clin EEG Neurosci
– volume: 35
  start-page: 510
  year: 2018
  end-page: 514
  ident: b0015
  article-title: EEG reactivity evaluation practices for adult and pediatric hypoxic-ischemic coma prognostication in North America
  publication-title: J Clin Neurophys
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0130
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc
– volume: 97
  start-page: 34
  year: 2015
  end-page: 37
  ident: b0135
  article-title: EEG reactivity to pain in comatose patients: importance of the stimulus type
  publication-title: Resuscitation
– volume: 25
  start-page: S158
  year: 2016
  ident: b0010
  article-title: Dynamic quantitative EEG signatures predict outcome in cardiac arrest
  publication-title: Neurocrit Care
– volume: 127
  start-page: 571
  year: 2016
  end-page: 580
  ident: b0060
  article-title: Quantification of EEG reactivity in comatose patients
  publication-title: Clin Neurophysiol
– volume: 369
  start-page: 2197
  year: 2013
  end-page: 2206
  ident: b0085
  article-title: Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest
  publication-title: N Engl J Med
– volume: 124
  start-page: 204
  year: 2013
  end-page: 208
  ident: b0005
  article-title: Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value
  publication-title: Clin Neurophysiol
– volume: 626
  start-page: 74
  year: 2016
  end-page: 78
  ident: b0080
  article-title: Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: a comparison of quantitative analysis and visual analysis
  publication-title: Neurosci Lett
– volume: 70
  start-page: 1055
  year: 1982
  end-page: 1096
  ident: b0125
  article-title: Spectrum estimation and harmonic analysis
  publication-title: Proc IEEE
– volume: 48
  start-page: 428
  issue: 6
  year: 2017
  ident: 10.1016/j.clinph.2019.07.014_b0070
  article-title: The nature of EEG reactivity to light, sound, and pain stimulation in neurosurgical comatose patients evaluated by a quantitative method
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059417726475
– volume: 124
  start-page: 204
  issue: 1
  year: 2013
  ident: 10.1016/j.clinph.2019.07.014_b0005
  article-title: Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.06.017
– volume: 73
  start-page: 585
  issue: 5
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0035
  article-title: Associated factors and prognostic implications of stimulus-induced rhythmic, periodic, or ictal discharges
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2016.0006
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: 10.1016/j.clinph.2019.07.014_b0105
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 109
  start-page: 121
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0025
  article-title: Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2016.08.012
– volume: 97
  start-page: 34
  year: 2015
  ident: 10.1016/j.clinph.2019.07.014_b0135
  article-title: EEG reactivity to pain in comatose patients: importance of the stimulus type
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2015.09.380
– year: 1981
  ident: 10.1016/j.clinph.2019.07.014_b0120
  article-title: Resuscitation after brain ischemia
– volume: 70
  start-page: 1055
  issue: 9
  year: 1982
  ident: 10.1016/j.clinph.2019.07.014_b0125
  article-title: Spectrum estimation and harmonic analysis
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1982.12433
– volume: 90
  start-page: 127
  year: 2015
  ident: 10.1016/j.clinph.2019.07.014_b0020
  article-title: Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2015.03.005
– volume: 129
  start-page: 724
  issue: 4
  year: 2018
  ident: 10.1016/j.clinph.2019.07.014_b0045
  article-title: Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2018.01.054
– volume: 127
  start-page: 3412
  issue: 11
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0050
  article-title: Effect of stimulus type and temperature on EEG reactivity in cardiac arrest
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2016.09.002
– volume: 626
  start-page: 74
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0080
  article-title: Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: a comparison of quantitative analysis and visual analysis
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2016.04.055
– volume: 35
  start-page: 510
  issue: 6
  year: 2018
  ident: 10.1016/j.clinph.2019.07.014_b0015
  article-title: EEG reactivity evaluation practices for adult and pediatric hypoxic-ischemic coma prognostication in North America
  publication-title: J Clin Neurophys
  doi: 10.1097/WNP.0000000000000517
– volume: 127
  start-page: 571
  issue: 1
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0060
  article-title: Quantification of EEG reactivity in comatose patients
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.06.024
– volume: 22
  start-page: 403
  issue: 3
  year: 2015
  ident: 10.1016/j.clinph.2019.07.014_b0075
  article-title: Clinical evolution after a non-reactive hypothermic EEG following cardiac arrest
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-014-0095-4
– volume: 40
  start-page: 719
  issue: 3
  year: 2012
  ident: 10.1016/j.clinph.2019.07.014_b0100
  article-title: Timing of neuroprognostication in postcardiac arrest therapeutic hypothermia
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3182372f93
– volume: 59
  start-page: 309
  issue: 3
  year: 1991
  ident: 10.1016/j.clinph.2019.07.014_b0095
  article-title: Statistical calibration: a review
  publication-title: Int Stat Rev
  doi: 10.2307/1403690
– volume: 369
  start-page: 2197
  issue: 23
  year: 2013
  ident: 10.1016/j.clinph.2019.07.014_b0085
  article-title: Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1310519
– volume: 45
  start-page: 211
  issue: 2
  year: 1978
  ident: 10.1016/j.clinph.2019.07.014_b0040
  article-title: Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(78)90005-6
– volume: 45
  start-page: e674
  issue: 7
  year: 2017
  ident: 10.1016/j.clinph.2019.07.014_b0115
  article-title: Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000002337
– volume: 30
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.clinph.2019.07.014_b0065
  article-title: American clinical neurophysiology society's standardized critical care EEG terminology: 2012 version
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e3182784729
– volume: 25
  start-page: S158
  issue: Supplement 1
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0010
  article-title: Dynamic quantitative EEG signatures predict outcome in cardiac arrest
  publication-title: Neurocrit Care
– volume: 86
  start-page: 1482
  issue: 16
  year: 2016
  ident: 10.1016/j.clinph.2019.07.014_b0140
  article-title: Standardized EEG interpretation accurately predicts prognosis after cardiac arrest
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002462
– volume: 192
  start-page: 146
  issue: 1
  year: 2010
  ident: 10.1016/j.clinph.2019.07.014_b0030
  article-title: Chronux: a platform for analyzing neural signals
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.06.020
– volume: 67
  start-page: 301
  issue: 3
  year: 2010
  ident: 10.1016/j.clinph.2019.07.014_b0110
  article-title: Prognostication after cardiac arrest and hypothermia: a prospective study
  publication-title: Ann Neurol
  doi: 10.1002/ana.21984
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.clinph.2019.07.014_b0130
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 45
  start-page: 6
  issue: 1
  year: 2014
  ident: 10.1016/j.clinph.2019.07.014_b0090
  article-title: Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059413509616
– volume: 58
  start-page: 349
  issue: 3
  year: 2002
  ident: 10.1016/j.clinph.2019.07.014_b0055
  article-title: The minimally conscious state: definition and diagnostic criteria
  publication-title: Neurology
  doi: 10.1212/WNL.58.3.349
SSID ssj0007042
Score 2.5142899
Snippet •Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level...
Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1908
SubjectTerms Adult
Aged
Cardiac arrest
EEG reactivity
Electroencephalography - methods
Female
Humans
Hypoxia-Ischemia, Brain - diagnosis
Hypoxia-Ischemia, Brain - physiopathology
Hypoxic-ischemic encephalopathy
Machine Learning
Male
Middle Aged
Prognosis
Quantitative EEG
Retrospective Studies
Title Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245719311605
https://dx.doi.org/10.1016/j.clinph.2019.07.014
https://www.ncbi.nlm.nih.gov/pubmed/31419742
https://www.proquest.com/docview/2275272747
https://pubmed.ncbi.nlm.nih.gov/PMC6751020
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg7GX0a37SL_QoK9aLFm2nMdS0mYdLYyu0DchWdLqsClhS2B76d_eO9lOl43R0UdbEpZ1p9Pv0O_uCDn0pamC95ZhHCaTo9oxQAmchSB4ULXjJiWrPr8oJ1fy7Lq43iDHfSwM0io729_a9GStuzfDbjWH86YZXvIc0KEsFEAQzsuUx1RKhVr-_vae5qGyVEAHOzPs3YfPJY4XRh_O8UqCj1IKTy7_dTz9DT__ZFH-diydbJHnHZ6kR-2UX5ANH1-Sp-fdjfk28Z-WJqZAMjBrdDw-pYAS67ZkBDXR0W-JTelpVz7iCwUUS5G1FWeYwjkJjjaR3vyaz342NWvAHUZCPbVYXAJapiCVV-TqZPz5eMK60gqsLni5YLmTZchHXBrjhfTSZKMQjLClzKypcmMyJ0ImLGxPcL0rXtpK1BWc7h48EMdt_ppsxln0bwk14AKBRXVeVLUUQVnjlPQO_C6Fl4rZgOT9iuq6yzuO5S--6p5gNtWtHDTKQWdKgxwGhK1Gzdu8Gw_0L3ph6T6mFKyghoPhgXFqNW5N7_5j5LteJzRsSbxnMdHPlj-0EKoQCt39AXnT6sjqH3IuObhwAr67pj2rDpjue70lNjcp7Te4doAGs51Hz3iXPMOnloq4RzYX35d-HyDVwh6kPXNAnhx9-Di5uAMdhCPS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclhW0vY9_LPjXYq4gly5bzWEq6dG0CYy30TciWtLpsSmgT2P773cmyWTZGx14tHbZ10ul33N3vCHnvSlN552qGdZhMThvLACVw5r3gXjWWm0hWvViW83P58aK42COHfS0MplUm29_Z9Git05NJWs3Jum0nn3kO6FAWCiAI5yXymO4jO1UxIvsHxyfz5WCQVRZ76OB8hgJ9BV1M88ICxDVGJfg0snhy-bcb6k8E-nsi5S8309EDcj9BSnrQffVDsufCI3JnkYLmj4n7tDUh1pKBZaOz2QcKQLHpukZQEyz9FhMqHU0dJL5QALIUE7fCClmco-5oG-jlj_Xqe9uwFjxizKmnNfaXgJErUMwTcn40Ozucs9RdgTUFLzcst7L0-ZRLY5yQTpps6r0RdSmz2lS5MZkVPhM1nFDwvite1pVoKrjgHTghltf5UzIKq-CeE2rACwKjap2oGim8qo1V0llwvRTGFbMxyfsV1U2iHscOGF91n2N2pTs9aNSDzpQGPYwJG6TWHfXGLfOLXlm6LysFQ6jhbrhFTg1yO1vvHyTf9XtCw6nEUIsJbrW90UKoQij0-MfkWbdHhn_IueTgxQl4787uGSYg4_fuSGgvI_M3eHcACLMX__3Fb8nd-dniVJ8eL09ekns40mUmviKjzfXWvQaEtanfpBP0EwEHJoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+EEG+reactivity+and+machine+learning+for+prognostication+in+hypoxic-ischemic+brain+injury&rft.jtitle=Clinical+neurophysiology&rft.au=Amorim%2C+Edilberto&rft.au=van+der+Stoel%2C+Michelle&rft.au=Nagaraj%2C+Sunil+B.&rft.au=Ghassemi%2C+Mohammad+M.&rft.date=2019-10-01&rft.issn=1388-2457&rft.volume=130&rft.issue=10&rft.spage=1908&rft.epage=1916&rft_id=info:doi/10.1016%2Fj.clinph.2019.07.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clinph_2019_07_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon