Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury
•Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation. Electroen...
Saved in:
Published in | Clinical neurophysiology Vol. 130; no. 10; pp. 1908 - 1916 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation.
Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury.
We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1–2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review.
Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant).
Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest.
A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest. |
---|---|
AbstractList | Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury.OBJECTIVEElectroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury.We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review.METHODSWe retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review.Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant).RESULTSFifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant).Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest.CONCLUSIONSMachine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest.A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.SIGNIFICANCEA quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest. Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury. We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review. Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant). Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest. A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest. •Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level predictions of neurological recovery.•A quantitative approach to prognostication may improve objectivity of EEG reactivity interpretation. Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury. We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1–2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review. Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant). Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest. A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest. |
Author | van der Stoel, Michelle Cash, Sydney S. Westover, M. Brandon Amorim, Edilberto Nagaraj, Sunil B. Ghassemi, Mohammad M. Lee, Jong Woo O'Reilly, Una-May Jing, Jin Scirica, Benjamin M. |
AuthorAffiliation | 7. Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA 2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 3. University of Twente, Enschede, Netherlands 5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 1. Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA 6. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA 4. University of Groningen, Groningen, Netherlands |
AuthorAffiliation_xml | – name: 2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA – name: 3. University of Twente, Enschede, Netherlands – name: 4. University of Groningen, Groningen, Netherlands – name: 1. Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA – name: 5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA – name: 7. Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA – name: 6. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA |
Author_xml | – sequence: 1 givenname: Edilberto surname: Amorim fullname: Amorim, Edilberto email: edilbertoamorim@gmail.com organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA – sequence: 2 givenname: Michelle surname: van der Stoel fullname: van der Stoel, Michelle organization: University of Twente, Enschede, Netherlands – sequence: 3 givenname: Sunil B. surname: Nagaraj fullname: Nagaraj, Sunil B. organization: University of Groningen, Groningen, Netherlands – sequence: 4 givenname: Mohammad M. surname: Ghassemi fullname: Ghassemi, Mohammad M. organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 5 givenname: Jin surname: Jing fullname: Jing, Jin organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA – sequence: 6 givenname: Una-May surname: O'Reilly fullname: O'Reilly, Una-May organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 7 givenname: Benjamin M. surname: Scirica fullname: Scirica, Benjamin M. organization: Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA – sequence: 8 givenname: Jong Woo surname: Lee fullname: Lee, Jong Woo organization: Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA – sequence: 9 givenname: Sydney S. surname: Cash fullname: Cash, Sydney S. organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA – sequence: 10 givenname: M. Brandon surname: Westover fullname: Westover, M. Brandon organization: Department of Neurology, Massachusetts General Hospital, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31419742$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV-L1DAUxYOsuH_0G4j00ZfWJE2bVkSQZVyFBRH0OaTp7fSObTIm7WC_vakzK7ov85SEe87vknOuyYV1Fgh5yWjGKCvf7DIzoN33GaeszqjMKBNPyBWrJE-ruuAX8Z5XVcpFIS_JdQg7Sqmkgj8jlzkTrJaCXxH4Oms74aQnPECy2dwlHrSJD5yWRNs2GbXp0UIygPYW7TbpnE_23m2tCxOa6HM2QZv0y979QpNiMD2MaJLGa1wnu9kvz8nTTg8BXpzOG_L94-bb7af0_svd59sP96kpWDmleSvKLq-Z0Bq4AKFp3XWaN6Wgja5yrWnLO8qbusyh4RUrm4qbKq8YFEXdsia_Ie-P3P3cjNAasJPXg9p7HLVflNOo_p9Y7NXWHVQpC0Y5jYDXJ4B3P2cIkxrjh2AYtAU3B8W5LLjkUsgoffXvrr9LHrKNgrdHgfEuBA-dMn9ydutqHBSjai1S7dSxSLUWqahUschoFo_MD_wztlMAEFM-IHgVDII10KIHM6nW4TnAu0eAVRR7Hn7Act7-G7Od0RA |
CitedBy_id | crossref_primary_10_1016_j_resuscitation_2021_10_034 crossref_primary_10_1097_WNP_0000000000001078 crossref_primary_10_1016_j_resuscitation_2024_110398 crossref_primary_10_1007_s12028_022_01449_8 crossref_primary_10_1212_WNL_0000000000210043 crossref_primary_10_1109_TBME_2021_3062502 crossref_primary_10_3390_jcm12062254 crossref_primary_10_1016_j_resuscitation_2024_110319 crossref_primary_10_3390_brainsci12060752 crossref_primary_10_1109_TBME_2021_3139007 crossref_primary_10_1097_CCM_0000000000005790 crossref_primary_10_2139_ssrn_3765947 crossref_primary_10_1055_s_0044_1785504 crossref_primary_10_1007_s10049_021_00892_y crossref_primary_10_1016_j_resplu_2021_100189 crossref_primary_10_3389_fneur_2024_1493336 crossref_primary_10_1007_s00134_021_06368_4 crossref_primary_10_1097_WNP_0000000000000958 crossref_primary_10_3389_fneur_2022_897734 crossref_primary_10_1016_j_resuscitation_2023_110049 crossref_primary_10_1016_S1474_4422_20_30117_4 crossref_primary_10_1007_s12028_020_01085_0 crossref_primary_10_1097_CCM_0000000000006074 crossref_primary_10_1097_WNP_0000000000001042 crossref_primary_10_1161_JAHA_121_021575 crossref_primary_10_3390_signals4030034 crossref_primary_10_1016_j_clinph_2020_06_001 crossref_primary_10_1186_s13613_022_01083_9 crossref_primary_10_1016_j_knosys_2020_106579 crossref_primary_10_1097_MCC_0000000000001138 crossref_primary_10_1186_s13613_024_01339_6 crossref_primary_10_1177_15500594231211105 crossref_primary_10_15441_ceem_21_025 crossref_primary_10_1007_s12028_021_01362_6 crossref_primary_10_2174_1574887115666200621183459 crossref_primary_10_1016_j_resuscitation_2021_02_012 crossref_primary_10_1016_j_clinph_2022_07_507 crossref_primary_10_1080_02699052_2022_2034184 crossref_primary_10_1007_s00415_022_11337_y crossref_primary_10_1016_j_resplu_2024_100829 crossref_primary_10_1155_2021_6284035 crossref_primary_10_1097_CCE_0000000000000781 crossref_primary_10_3389_fmed_2022_922355 crossref_primary_10_23736_S0375_9393_21_14793_5 crossref_primary_10_1097_WNP_0000000000000894 crossref_primary_10_3389_fneur_2023_1159788 crossref_primary_10_1088_2632_2153_ad38fe crossref_primary_10_1016_j_clinph_2021_07_004 crossref_primary_10_1016_j_ncl_2021_01_002 crossref_primary_10_3389_frai_2023_1154663 crossref_primary_10_1038_s41598_022_17561_w crossref_primary_10_1016_j_ibneur_2023_09_002 crossref_primary_10_1097_WCO_0000000000001246 crossref_primary_10_1097_WCO_0000000000000875 crossref_primary_10_1016_j_pediatrneurol_2020_03_014 |
Cites_doi | 10.1177/1550059417726475 10.1016/j.clinph.2012.06.017 10.1001/jamaneurol.2016.0006 10.1016/S1388-2457(99)00141-8 10.1016/j.resuscitation.2016.08.012 10.1016/j.resuscitation.2015.09.380 10.1109/PROC.1982.12433 10.1016/j.resuscitation.2015.03.005 10.1016/j.clinph.2018.01.054 10.1016/j.clinph.2016.09.002 10.1016/j.neulet.2016.04.055 10.1097/WNP.0000000000000517 10.1016/j.clinph.2015.06.024 10.1007/s12028-014-0095-4 10.1097/CCM.0b013e3182372f93 10.2307/1403690 10.1056/NEJMoa1310519 10.1016/0013-4694(78)90005-6 10.1097/CCM.0000000000002337 10.1097/WNP.0b013e3182784729 10.1212/WNL.0000000000002462 10.1016/j.jneumeth.2010.06.020 10.1002/ana.21984 10.1111/j.2517-6161.1996.tb02080.x 10.1177/1550059413509616 10.1212/WNL.58.3.349 |
ContentType | Journal Article |
Copyright | 2019 International Federation of Clinical Neurophysiology Copyright © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 International Federation of Clinical Neurophysiology – notice: Copyright © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.clinph.2019.07.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8952 |
EndPage | 1916 |
ExternalDocumentID | PMC6751020 31419742 10_1016_j_clinph_2019_07_014 S1388245719311605 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K23 NS090900 – fundername: NINDS NIH HHS grantid: R01 NS107291 – fundername: NINDS NIH HHS grantid: R01 NS102190 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AFMIJ AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR RIG VQA ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c516t-3d46f3914aae24e4a09ffa2b640ba83aa0d2f02b963eb2816b82c8381e559d1b3 |
IEDL.DBID | .~1 |
ISSN | 1388-2457 1872-8952 |
IngestDate | Thu Aug 21 14:10:33 EDT 2025 Fri Jul 11 09:01:00 EDT 2025 Mon Jul 21 06:04:35 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 02:54:49 EDT 2025 Fri Feb 23 02:27:22 EST 2024 Tue Aug 26 16:32:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | EEG reactivity Quantitative EEG Hypoxic-ischemic encephalopathy Cardiac arrest Machine learning |
Language | English |
License | Copyright © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-3d46f3914aae24e4a09ffa2b640ba83aa0d2f02b963eb2816b82c8381e559d1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 E.A., S.N., J.W.L., S.S.C., M.B.W. contributed to conception and design of the study. E.A., MvdS., S.N., M.M.G., and M.B.W. contributed to analysis of data. E.A., M.B.W. contributed to preparing the figures. E.A., MvdS., S.N., J.J., M.M.G., J.W.L., M.B.W. contributed to data acquisition. E.A., MvdS., S.N., M.M.G., J.J., J.W.L., U.O., S.S.C., M.B.W. contributed to drafting the text. Author Contributions |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1388245719311605 |
PMID | 31419742 |
PQID | 2275272747 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751020 proquest_miscellaneous_2275272747 pubmed_primary_31419742 crossref_citationtrail_10_1016_j_clinph_2019_07_014 crossref_primary_10_1016_j_clinph_2019_07_014 elsevier_sciencedirect_doi_10_1016_j_clinph_2019_07_014 elsevier_clinicalkey_doi_10_1016_j_clinph_2019_07_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Clinical neurophysiology |
PublicationTitleAlternate | Clin Neurophysiol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bricolo, Turazzi, Faccioli, Odorizzi, Sciaretta, Erculiani (b0040) 1978; 45 Pfurtscheller, Lopes da Silva (b0105) 1999; 110 Johnsen, Nohr, Duez, Ebbesen (b0070) 2017; 48 Alvarez, Oddo, Rossetti (b0005) 2013; 124 Nielsen, Wetterslev, Cronberg, Erlinge, Gasche, Hassager (b0085) 2013; 369 Thomson (b0125) 1982; 70 Perman, Kirkpatrick, Reitsma, Gaieski, Lau, Smith (b0100) 2012; 40 Fantaneanu, Tolchin, Alvarez, Friolet, Avery, Scirica (b0050) 2016; 127 Osborne (b0095) 1991; 59 Amorim, Ghassemi, Lee, Westover (b0010) 2016; 25 Duez, Ebbesen, Benedek, Fabricius, Atkins, Beniczky (b0045) 2018; 129 Hirsch, LaRoche, Gaspard, Gerard, Svoronos, Herman (b0065) 2013; 30 Bokil, Andrews, Kulkarni, Mehta, Mitra (b0030) 2010; 192 Liu, Su, Jiang, Chen, Zhang, Zhang (b0080) 2016; 626 Westhall, Rossetti, van Rootselaar, Wesenberg Kjaer, Horn, Ullen (b0140) 2016; 86 Hermans, Westover, van Putten, Hirsch, Gaspard (b0060) 2016; 127 Rossetti, Oddo, Logroscino, Kaplan (b0110) 2010; 67 Tibshirani (b0130) 1996; 58 Juan, Novy, Suys, Oddo, Rossetti (b0075) 2015; 22 Tsetsou, Novy, Oddo, Rossetti (b0135) 2015; 97 Amorim, Rittenberger, Baldwin, Callaway, Popescu, Post Cardiac Arrest (b0020) 2015; 90 Amorim, Gilmore, Abend, Hahn, Gaspard, Herman (b0015) 2018; 35 Giacino, Ashwal, Childs, Cranford, Jennett, Katz (b0055) 2002; 58 Braksick, Burkholder, Tsetsou, Martineau, Mandrekar, Rossetti (b0035) 2016; 73 Noirhomme, Lehembre, Lugo Zdel, Lesenfants, Luxen, Laureys (b0090) 2014; 45 Safar (b0120) 1981 Rossetti, Tovar Quiroga, Juan, Novy, White, Ben-Hamouda (b0115) 2017; 45 Amorim, Rittenberger, Zheng, Westover, Baldwin, Callaway (b0025) 2016; 109 Tibshirani (10.1016/j.clinph.2019.07.014_b0130) 1996; 58 Amorim (10.1016/j.clinph.2019.07.014_b0025) 2016; 109 Noirhomme (10.1016/j.clinph.2019.07.014_b0090) 2014; 45 Braksick (10.1016/j.clinph.2019.07.014_b0035) 2016; 73 Duez (10.1016/j.clinph.2019.07.014_b0045) 2018; 129 Osborne (10.1016/j.clinph.2019.07.014_b0095) 1991; 59 Rossetti (10.1016/j.clinph.2019.07.014_b0115) 2017; 45 Johnsen (10.1016/j.clinph.2019.07.014_b0070) 2017; 48 Safar (10.1016/j.clinph.2019.07.014_b0120) 1981 Tsetsou (10.1016/j.clinph.2019.07.014_b0135) 2015; 97 Hirsch (10.1016/j.clinph.2019.07.014_b0065) 2013; 30 Perman (10.1016/j.clinph.2019.07.014_b0100) 2012; 40 Westhall (10.1016/j.clinph.2019.07.014_b0140) 2016; 86 Juan (10.1016/j.clinph.2019.07.014_b0075) 2015; 22 Amorim (10.1016/j.clinph.2019.07.014_b0020) 2015; 90 Amorim (10.1016/j.clinph.2019.07.014_b0015) 2018; 35 Rossetti (10.1016/j.clinph.2019.07.014_b0110) 2010; 67 Alvarez (10.1016/j.clinph.2019.07.014_b0005) 2013; 124 Liu (10.1016/j.clinph.2019.07.014_b0080) 2016; 626 Pfurtscheller (10.1016/j.clinph.2019.07.014_b0105) 1999; 110 Bricolo (10.1016/j.clinph.2019.07.014_b0040) 1978; 45 Thomson (10.1016/j.clinph.2019.07.014_b0125) 1982; 70 Fantaneanu (10.1016/j.clinph.2019.07.014_b0050) 2016; 127 Hermans (10.1016/j.clinph.2019.07.014_b0060) 2016; 127 Amorim (10.1016/j.clinph.2019.07.014_b0010) 2016; 25 Bokil (10.1016/j.clinph.2019.07.014_b0030) 2010; 192 Nielsen (10.1016/j.clinph.2019.07.014_b0085) 2013; 369 Giacino (10.1016/j.clinph.2019.07.014_b0055) 2002; 58 |
References_xml | – volume: 90 start-page: 127 year: 2015 end-page: 132 ident: b0020 article-title: Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge publication-title: Resuscitation – volume: 129 start-page: 724 year: 2018 end-page: 730 ident: b0045 article-title: Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method publication-title: Clin Neurophysiol – volume: 48 start-page: 428 year: 2017 end-page: 437 ident: b0070 article-title: The nature of EEG reactivity to light, sound, and pain stimulation in neurosurgical comatose patients evaluated by a quantitative method publication-title: Clin EEG Neurosci – volume: 109 start-page: 121 year: 2016 end-page: 126 ident: b0025 article-title: Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury publication-title: Resuscitation – year: 1981 ident: b0120 article-title: Resuscitation after brain ischemia publication-title: Brain Failure and Resuscitation – volume: 192 start-page: 146 year: 2010 end-page: 151 ident: b0030 article-title: Chronux: a platform for analyzing neural signals publication-title: J Neurosci Methods – volume: 127 start-page: 3412 year: 2016 end-page: 3417 ident: b0050 article-title: Effect of stimulus type and temperature on EEG reactivity in cardiac arrest publication-title: Clin Neurophysiol – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: b0105 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol – volume: 73 start-page: 585 year: 2016 end-page: 590 ident: b0035 article-title: Associated factors and prognostic implications of stimulus-induced rhythmic, periodic, or ictal discharges publication-title: JAMA Neurol – volume: 22 start-page: 403 year: 2015 end-page: 408 ident: b0075 article-title: Clinical evolution after a non-reactive hypothermic EEG following cardiac arrest publication-title: Neurocrit Care – volume: 86 start-page: 1482 year: 2016 end-page: 1490 ident: b0140 article-title: Standardized EEG interpretation accurately predicts prognosis after cardiac arrest publication-title: Neurology – volume: 45 start-page: 211 year: 1978 end-page: 225 ident: b0040 article-title: Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients publication-title: Electroencephalogr Clin Neurophysiol – volume: 45 start-page: e674 year: 2017 end-page: e682 ident: b0115 article-title: Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study publication-title: Crit Care Med – volume: 58 start-page: 349 year: 2002 end-page: 353 ident: b0055 article-title: The minimally conscious state: definition and diagnostic criteria publication-title: Neurology – volume: 30 start-page: 1 year: 2013 end-page: 27 ident: b0065 article-title: American clinical neurophysiology society's standardized critical care EEG terminology: 2012 version publication-title: J Clin Neurophysiol – volume: 59 start-page: 309 year: 1991 end-page: 336 ident: b0095 article-title: Statistical calibration: a review publication-title: Int Stat Rev – volume: 67 start-page: 301 year: 2010 end-page: 307 ident: b0110 article-title: Prognostication after cardiac arrest and hypothermia: a prospective study publication-title: Ann Neurol – volume: 40 start-page: 719 year: 2012 end-page: 724 ident: b0100 article-title: Timing of neuroprognostication in postcardiac arrest therapeutic hypothermia publication-title: Crit Care Med – volume: 45 start-page: 6 year: 2014 end-page: 13 ident: b0090 article-title: Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest publication-title: Clin EEG Neurosci – volume: 35 start-page: 510 year: 2018 end-page: 514 ident: b0015 article-title: EEG reactivity evaluation practices for adult and pediatric hypoxic-ischemic coma prognostication in North America publication-title: J Clin Neurophys – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0130 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc – volume: 97 start-page: 34 year: 2015 end-page: 37 ident: b0135 article-title: EEG reactivity to pain in comatose patients: importance of the stimulus type publication-title: Resuscitation – volume: 25 start-page: S158 year: 2016 ident: b0010 article-title: Dynamic quantitative EEG signatures predict outcome in cardiac arrest publication-title: Neurocrit Care – volume: 127 start-page: 571 year: 2016 end-page: 580 ident: b0060 article-title: Quantification of EEG reactivity in comatose patients publication-title: Clin Neurophysiol – volume: 369 start-page: 2197 year: 2013 end-page: 2206 ident: b0085 article-title: Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest publication-title: N Engl J Med – volume: 124 start-page: 204 year: 2013 end-page: 208 ident: b0005 article-title: Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value publication-title: Clin Neurophysiol – volume: 626 start-page: 74 year: 2016 end-page: 78 ident: b0080 article-title: Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: a comparison of quantitative analysis and visual analysis publication-title: Neurosci Lett – volume: 70 start-page: 1055 year: 1982 end-page: 1096 ident: b0125 article-title: Spectrum estimation and harmonic analysis publication-title: Proc IEEE – volume: 48 start-page: 428 issue: 6 year: 2017 ident: 10.1016/j.clinph.2019.07.014_b0070 article-title: The nature of EEG reactivity to light, sound, and pain stimulation in neurosurgical comatose patients evaluated by a quantitative method publication-title: Clin EEG Neurosci doi: 10.1177/1550059417726475 – volume: 124 start-page: 204 issue: 1 year: 2013 ident: 10.1016/j.clinph.2019.07.014_b0005 article-title: Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.06.017 – volume: 73 start-page: 585 issue: 5 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0035 article-title: Associated factors and prognostic implications of stimulus-induced rhythmic, periodic, or ictal discharges publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2016.0006 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: 10.1016/j.clinph.2019.07.014_b0105 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – volume: 109 start-page: 121 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0025 article-title: Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury publication-title: Resuscitation doi: 10.1016/j.resuscitation.2016.08.012 – volume: 97 start-page: 34 year: 2015 ident: 10.1016/j.clinph.2019.07.014_b0135 article-title: EEG reactivity to pain in comatose patients: importance of the stimulus type publication-title: Resuscitation doi: 10.1016/j.resuscitation.2015.09.380 – year: 1981 ident: 10.1016/j.clinph.2019.07.014_b0120 article-title: Resuscitation after brain ischemia – volume: 70 start-page: 1055 issue: 9 year: 1982 ident: 10.1016/j.clinph.2019.07.014_b0125 article-title: Spectrum estimation and harmonic analysis publication-title: Proc IEEE doi: 10.1109/PROC.1982.12433 – volume: 90 start-page: 127 year: 2015 ident: 10.1016/j.clinph.2019.07.014_b0020 article-title: Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge publication-title: Resuscitation doi: 10.1016/j.resuscitation.2015.03.005 – volume: 129 start-page: 724 issue: 4 year: 2018 ident: 10.1016/j.clinph.2019.07.014_b0045 article-title: Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2018.01.054 – volume: 127 start-page: 3412 issue: 11 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0050 article-title: Effect of stimulus type and temperature on EEG reactivity in cardiac arrest publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2016.09.002 – volume: 626 start-page: 74 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0080 article-title: Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: a comparison of quantitative analysis and visual analysis publication-title: Neurosci Lett doi: 10.1016/j.neulet.2016.04.055 – volume: 35 start-page: 510 issue: 6 year: 2018 ident: 10.1016/j.clinph.2019.07.014_b0015 article-title: EEG reactivity evaluation practices for adult and pediatric hypoxic-ischemic coma prognostication in North America publication-title: J Clin Neurophys doi: 10.1097/WNP.0000000000000517 – volume: 127 start-page: 571 issue: 1 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0060 article-title: Quantification of EEG reactivity in comatose patients publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.06.024 – volume: 22 start-page: 403 issue: 3 year: 2015 ident: 10.1016/j.clinph.2019.07.014_b0075 article-title: Clinical evolution after a non-reactive hypothermic EEG following cardiac arrest publication-title: Neurocrit Care doi: 10.1007/s12028-014-0095-4 – volume: 40 start-page: 719 issue: 3 year: 2012 ident: 10.1016/j.clinph.2019.07.014_b0100 article-title: Timing of neuroprognostication in postcardiac arrest therapeutic hypothermia publication-title: Crit Care Med doi: 10.1097/CCM.0b013e3182372f93 – volume: 59 start-page: 309 issue: 3 year: 1991 ident: 10.1016/j.clinph.2019.07.014_b0095 article-title: Statistical calibration: a review publication-title: Int Stat Rev doi: 10.2307/1403690 – volume: 369 start-page: 2197 issue: 23 year: 2013 ident: 10.1016/j.clinph.2019.07.014_b0085 article-title: Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest publication-title: N Engl J Med doi: 10.1056/NEJMoa1310519 – volume: 45 start-page: 211 issue: 2 year: 1978 ident: 10.1016/j.clinph.2019.07.014_b0040 article-title: Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(78)90005-6 – volume: 45 start-page: e674 issue: 7 year: 2017 ident: 10.1016/j.clinph.2019.07.014_b0115 article-title: Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study publication-title: Crit Care Med doi: 10.1097/CCM.0000000000002337 – volume: 30 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.clinph.2019.07.014_b0065 article-title: American clinical neurophysiology society's standardized critical care EEG terminology: 2012 version publication-title: J Clin Neurophysiol doi: 10.1097/WNP.0b013e3182784729 – volume: 25 start-page: S158 issue: Supplement 1 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0010 article-title: Dynamic quantitative EEG signatures predict outcome in cardiac arrest publication-title: Neurocrit Care – volume: 86 start-page: 1482 issue: 16 year: 2016 ident: 10.1016/j.clinph.2019.07.014_b0140 article-title: Standardized EEG interpretation accurately predicts prognosis after cardiac arrest publication-title: Neurology doi: 10.1212/WNL.0000000000002462 – volume: 192 start-page: 146 issue: 1 year: 2010 ident: 10.1016/j.clinph.2019.07.014_b0030 article-title: Chronux: a platform for analyzing neural signals publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.06.020 – volume: 67 start-page: 301 issue: 3 year: 2010 ident: 10.1016/j.clinph.2019.07.014_b0110 article-title: Prognostication after cardiac arrest and hypothermia: a prospective study publication-title: Ann Neurol doi: 10.1002/ana.21984 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.clinph.2019.07.014_b0130 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 45 start-page: 6 issue: 1 year: 2014 ident: 10.1016/j.clinph.2019.07.014_b0090 article-title: Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest publication-title: Clin EEG Neurosci doi: 10.1177/1550059413509616 – volume: 58 start-page: 349 issue: 3 year: 2002 ident: 10.1016/j.clinph.2019.07.014_b0055 article-title: The minimally conscious state: definition and diagnostic criteria publication-title: Neurology doi: 10.1212/WNL.58.3.349 |
SSID | ssj0007042 |
Score | 2.5142899 |
Snippet | •Machine-learning methods using QEEG reactivity data can predict outcomes after cardiac arrest.•A QEEG reactivity detector can provide individual-level... Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1908 |
SubjectTerms | Adult Aged Cardiac arrest EEG reactivity Electroencephalography - methods Female Humans Hypoxia-Ischemia, Brain - diagnosis Hypoxia-Ischemia, Brain - physiopathology Hypoxic-ischemic encephalopathy Machine Learning Male Middle Aged Prognosis Quantitative EEG Retrospective Studies |
Title | Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245719311605 https://dx.doi.org/10.1016/j.clinph.2019.07.014 https://www.ncbi.nlm.nih.gov/pubmed/31419742 https://www.proquest.com/docview/2275272747 https://pubmed.ncbi.nlm.nih.gov/PMC6751020 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg7GX0a37SL_QoK9aLFm2nMdS0mYdLYyu0DchWdLqsClhS2B76d_eO9lOl43R0UdbEpZ1p9Pv0O_uCDn0pamC95ZhHCaTo9oxQAmchSB4ULXjJiWrPr8oJ1fy7Lq43iDHfSwM0io729_a9GStuzfDbjWH86YZXvIc0KEsFEAQzsuUx1RKhVr-_vae5qGyVEAHOzPs3YfPJY4XRh_O8UqCj1IKTy7_dTz9DT__ZFH-diydbJHnHZ6kR-2UX5ANH1-Sp-fdjfk28Z-WJqZAMjBrdDw-pYAS67ZkBDXR0W-JTelpVz7iCwUUS5G1FWeYwjkJjjaR3vyaz342NWvAHUZCPbVYXAJapiCVV-TqZPz5eMK60gqsLni5YLmTZchHXBrjhfTSZKMQjLClzKypcmMyJ0ImLGxPcL0rXtpK1BWc7h48EMdt_ppsxln0bwk14AKBRXVeVLUUQVnjlPQO_C6Fl4rZgOT9iuq6yzuO5S--6p5gNtWtHDTKQWdKgxwGhK1Gzdu8Gw_0L3ph6T6mFKyghoPhgXFqNW5N7_5j5LteJzRsSbxnMdHPlj-0EKoQCt39AXnT6sjqH3IuObhwAr67pj2rDpjue70lNjcp7Te4doAGs51Hz3iXPMOnloq4RzYX35d-HyDVwh6kPXNAnhx9-Di5uAMdhCPS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclhW0vY9_LPjXYq4gly5bzWEq6dG0CYy30TciWtLpsSmgT2P773cmyWTZGx14tHbZ10ul33N3vCHnvSlN552qGdZhMThvLACVw5r3gXjWWm0hWvViW83P58aK42COHfS0MplUm29_Z9Git05NJWs3Jum0nn3kO6FAWCiAI5yXymO4jO1UxIvsHxyfz5WCQVRZ76OB8hgJ9BV1M88ICxDVGJfg0snhy-bcb6k8E-nsi5S8309EDcj9BSnrQffVDsufCI3JnkYLmj4n7tDUh1pKBZaOz2QcKQLHpukZQEyz9FhMqHU0dJL5QALIUE7fCClmco-5oG-jlj_Xqe9uwFjxizKmnNfaXgJErUMwTcn40Ozucs9RdgTUFLzcst7L0-ZRLY5yQTpps6r0RdSmz2lS5MZkVPhM1nFDwvite1pVoKrjgHTghltf5UzIKq-CeE2rACwKjap2oGim8qo1V0llwvRTGFbMxyfsV1U2iHscOGF91n2N2pTs9aNSDzpQGPYwJG6TWHfXGLfOLXlm6LysFQ6jhbrhFTg1yO1vvHyTf9XtCw6nEUIsJbrW90UKoQij0-MfkWbdHhn_IueTgxQl4787uGSYg4_fuSGgvI_M3eHcACLMX__3Fb8nd-dniVJ8eL09ekns40mUmviKjzfXWvQaEtanfpBP0EwEHJoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+EEG+reactivity+and+machine+learning+for+prognostication+in+hypoxic-ischemic+brain+injury&rft.jtitle=Clinical+neurophysiology&rft.au=Amorim%2C+Edilberto&rft.au=van+der+Stoel%2C+Michelle&rft.au=Nagaraj%2C+Sunil+B.&rft.au=Ghassemi%2C+Mohammad+M.&rft.date=2019-10-01&rft.issn=1388-2457&rft.volume=130&rft.issue=10&rft.spage=1908&rft.epage=1916&rft_id=info:doi/10.1016%2Fj.clinph.2019.07.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clinph_2019_07_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon |