Spatial analysis made easy with linear regression and kernels
•Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in accuracy.•This speedup lets us efficiently work with large spatial problems.•They can be added into many common spatial methods with only a few lines...
Saved in:
Published in | Epidemics Vol. 29; p. 100362 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in accuracy.•This speedup lets us efficiently work with large spatial problems.•They can be added into many common spatial methods with only a few lines of code.
Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided. |
---|---|
AbstractList | •Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in accuracy.•This speedup lets us efficiently work with large spatial problems.•They can be added into many common spatial methods with only a few lines of code.
Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided. Highlights•Many kernel methods are only suitable for small/medium sized spatial problems. •Random Fourier features speeds up kernel method with a minimal drop in accuracy. •This speedup lets us efficiently work with large spatial problems. •They can be added into many common spatial methods with only a few lines of code. Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided. Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided.Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided. |
ArticleNumber | 100362 |
Author | Bhatt, Samir Coupland, Helen Giorgi, Emanuele Milton, Philip |
Author_xml | – sequence: 1 givenname: Philip surname: Milton fullname: Milton, Philip email: PM5215@ic.ac.uk organization: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK – sequence: 2 givenname: Helen surname: Coupland fullname: Coupland, Helen email: hlc17@ic.ac.uk organization: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK – sequence: 3 givenname: Emanuele surname: Giorgi fullname: Giorgi, Emanuele email: e.giorgi@lancaster.ac.uk organization: CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK – sequence: 4 givenname: Samir surname: Bhatt fullname: Bhatt, Samir email: s.bhatt@ic.ac.uk organization: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31561884$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkd1rFTEQxYNU7If-ByL76MteM5uPzYoWpLQqFHyoPoc0mdXc7mavmb3K_e_Nsu2LIMWnDMM5J8zvnLKjNCVk7CXwDXDQb7Yb3MWA46bh0JUVF7p5wk7AtKbmXLdHZW6VqqXQ6pidEm3LVgKIZ-xYgNJgjDxh7292bo5uqFxyw4EiVaMLWKGjQ_U7zj-qISZ0ucr4PSNRnFJRhuoOc8KBnrOnvRsIX9y_Z-zb1eXXi0_19ZePny8-XNdegZ5roXsPQjWtDH3jhHTKtLLvHRrPpQDslNTOmA5Q9eWODlUInW7ErevBBAPijL1ec3d5-rlHmu0YyeMwuITTnmzTdB1IMLwt0lf30v3tiMHuchxdPtiHk4vg7SrweSLK2Fsf58JgSnN2cbDA7cLXbu3K1y587cq3mOVf5of8R2znq60ww18RsyUfMXkMMaOfbZji_wb4Ukz0brjDA9J22ufSH1mw1Fhub5bml-KhEyVALFje_Tvg8f__ANR-vak |
CitedBy_id | crossref_primary_10_1016_j_scienta_2019_109050 crossref_primary_10_1021_acsestwater_4c01003 crossref_primary_10_1051_0004_6361_202039461 crossref_primary_10_1007_s10708_024_11111_9 crossref_primary_10_1214_19_AOAS1284 crossref_primary_10_1016_j_commatsci_2025_113669 crossref_primary_10_1016_j_epidem_2020_100395 crossref_primary_10_1002_env_2780 crossref_primary_10_1016_j_ecolind_2022_109711 crossref_primary_10_1016_j_spasta_2022_100598 crossref_primary_10_1186_s12936_023_04535_0 crossref_primary_10_1016_j_bspc_2021_102949 |
Cites_doi | 10.1016/S0140-6736(10)61301-3 10.2307/2006360 10.1017/S0950268817001856 10.7554/eLife.16777 10.1090/S0002-9904-1978-14532-7 10.1098/rstb.2012.0250 10.1073/pnas.0803205106 10.1056/NEJMoa1606701 10.1038/s41598-017-09464-y 10.1093/biomet/41.3-4.434 10.1080/00031305.1981.10479362 10.1038/nature25760 10.1137/0907058 10.1137/1.9781611974782.115 10.1111/j.1467-9868.2011.00777.x 10.2307/1937887 10.1080/00031305.1978.10479237 10.1111/1467-9876.00113 10.1179/000349802125000637 10.1002/env.785 10.1038/nature25761 10.1016/j.spasta.2018.02.002 10.1162/neco.1992.4.1.1 10.1145/355588.365104 |
ContentType | Journal Article |
Copyright | 2019 The Authors The Authors Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.epidem.2019.100362 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1878-0067 |
EndPage | 100362 |
ExternalDocumentID | 31561884 10_1016_j_epidem_2019_100362 S1755436519300337 1_s2_0_S1755436519300337 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/R015600/1 – fundername: Medical Research Council grantid: MR/M015297/1 |
GroupedDBID | --- --K .1- .FO .~1 0R~ 1B1 1P~ 1~. 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDW AAIKJ AALRI AAQFI AARKO AAXUO AAYWO ABBQC ABGSF ABMAC ABWVN ABXDB ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADUVX ADVLN AEKER AENEX AEQOU AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGEKW AGHFR AGYEJ AIGII AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD EP2 EP3 F5P FDB FEDTE FIRID FNPLU GBLVA GROUPED_DOAJ HVGLF HZ~ IPNFZ IXB J1W KQ8 LUGTX M41 M48 MO0 N9A O-L O9- OD- OK1 OO. OZT P-8 P-9 PC. Q38 RIG ROL SDF SES SSZ Z5R 0SF AACTN AFCTW AJOXV NCXOZ 6I. AAFTH CBWCG DOVZS LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c516t-36fc135274df2a34a5874ffae8c0431e9546a8891e5f0039e5dd9623baf18d813 |
IEDL.DBID | M48 |
ISSN | 1755-4365 1878-0067 |
IngestDate | Fri Jul 11 00:03:53 EDT 2025 Mon Jul 21 05:42:46 EDT 2025 Tue Jul 01 00:50:06 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Fri Feb 23 02:50:39 EST 2024 Sun Feb 23 10:19:24 EST 2025 Tue Aug 26 17:32:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regression Random Fourier features Kernel methods Kernel approximation |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-36fc135274df2a34a5874ffae8c0431e9546a8891e5f0039e5dd9623baf18d813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.epidem.2019.100362 |
PMID | 31561884 |
PQID | 2299141807 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2299141807 pubmed_primary_31561884 crossref_citationtrail_10_1016_j_epidem_2019_100362 crossref_primary_10_1016_j_epidem_2019_100362 elsevier_sciencedirect_doi_10_1016_j_epidem_2019_100362 elsevier_clinicalkeyesjournals_1_s2_0_S1755436519300337 elsevier_clinicalkey_doi_10_1016_j_epidem_2019_100362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Epidemics |
PublicationTitleAlternate | Epidemics |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rahimi, Recht (bib0235) 2007 Asmussen, Glynn (bib0010) 2007 Lindgren, Rue, Lindström (bib0185) 2011; 73 Geman, Bienenstock, Doursat (bib0115) 1992 Straeter (bib0285) 1971 Niederreiter (bib0215) 1978; 84 McCullagh, Nelder (bib0195) 1989 Kanagawa, Hennig, Sejdinovic, Sriperumbudur (bib0175) 2018 Whittle (bib0315) 1954 Rasmussen, Williams (bib0240) 2005 Williams, Seeger (bib0325) 2001; vol. 13 Carlin, Louis (bib0055) 2008 Felix, Suresh, Choromanski, Holtmann-Rice, Kumar (bib0110) 2016 Rudi, Camoriano, Rosasco (bib0250) 2015 Gething (bib0125) 2016; 375 Rudi, Rosasco (bib0245) 2017 Bell, Tikhonov, Arsenin (bib0030) 1978 Drineas, Magdon-Ismail, Mahoney, Woodruff (bib0095) 2012; 13 Andres (bib0005) 2018 Bracewell, Bracewell (bib0045) 1986 Shawe-Taylor, Cristianini (bib0275) 2004 Avron (bib0015) 2018 Gleason (bib0135) 2017; 145 Ton, Flaxman, Sejdinovic, Bhatt (bib0300) 2018; 28 Diggle, Ribeiro (bib0075) 2007 Hoerl, Kennard (bib0160) 1970 Velleman, Welsch (bib0310) 1981; 35 Tikhonov (bib0295) 1963 Stein (bib0280) 2012 Bach, Jordan (bib0020) 2005 Gentle (bib0120) 2012 Vatcheva, Lee, McCormick, Rahbar (bib0305) 2016; 6 Whittle (bib0320) 1963; 40 Graetz (bib0140) 2018; 555 Diggle, Tawn, Moyeed (bib0080) 1998; 47 Saad, Schultz (bib0270) 1986; 7 Yaglom (bib0330) 1987 Boyd, Vandenberghe (bib0040) 2004 Gittens, Mahoney (bib0130) 2016; 17 Osgood-Zimmerman (bib0225) 2018; 555 Mena (bib0200) 2016; 5 Davidson, MacKinnon (bib0070) 2004 Farrar, Glauber (bib0105) 1967 Rudi, Calandriello, Carratino, Rosasco (bib0255) 2018 Cuadros (bib0065) 2017; 7 Rue, Held (bib0265) 2005 Ding, Kondor, Eskreis-Winkler (bib0085) 2017 Cohen, Musco, Musco (bib0060) 2017 Yang, Li, Mahdavi, Jin, Zhou (bib0335) 2012; vol. 25 Domingos (bib0090) 2000 El Alaoui, Mahoney (bib0100) 2014; vol. 1411 Musco, Musco (bib0205) 2017 Nelder, Wedderburn (bib0210) 1972; 135 Noma (bib0220) 2002; 96 Rudin (bib0260) 1990 Bach (bib0025) 2012 Hoaglin, Welsch (bib0155) 1978; 32 Li, Ton, Oglic, Sejdinovic (bib0180) 2018 Cameron, Trivedi (bib0050) 2013 Halton (bib0145) 1964; 7 Mahoney, Drineas (bib0190) 2009 Hay (bib0150) 2013; 368 Bochner, Chandrasekharan (bib0035) 1949 Ionescu, Popa, Sminchisescu (bib0165) 2017; vol. 54 Josepha, Gething, Bhatt, Ayling (bib0170) 2019 Paciorek, Schervish (bib0230) 2006; 17 Tatem (bib0290) 2010; 376 Gittens (10.1016/j.epidem.2019.100362_bib0130) 2016; 17 Geman (10.1016/j.epidem.2019.100362_bib0115) 1992 Avron (10.1016/j.epidem.2019.100362_bib0015) 2018 Saad (10.1016/j.epidem.2019.100362_bib0270) 1986; 7 Boyd (10.1016/j.epidem.2019.100362_bib0040) 2004 Rahimi (10.1016/j.epidem.2019.100362_bib0235) 2007 Cuadros (10.1016/j.epidem.2019.100362_bib0065) 2017; 7 Whittle (10.1016/j.epidem.2019.100362_bib0320) 1963; 40 Ionescu (10.1016/j.epidem.2019.100362_bib0165) 2017; vol. 54 Paciorek (10.1016/j.epidem.2019.100362_bib0230) 2006; 17 Rudi (10.1016/j.epidem.2019.100362_bib0245) 2017 Rudi (10.1016/j.epidem.2019.100362_bib0255) 2018 Velleman (10.1016/j.epidem.2019.100362_bib0310) 1981; 35 Tatem (10.1016/j.epidem.2019.100362_bib0290) 2010; 376 Li (10.1016/j.epidem.2019.100362_bib0180) 2018 Carlin (10.1016/j.epidem.2019.100362_bib0055) 2008 Bochner (10.1016/j.epidem.2019.100362_bib0035) 1949 Domingos (10.1016/j.epidem.2019.100362_bib0090) 2000 Bracewell (10.1016/j.epidem.2019.100362_bib0045) 1986 Osgood-Zimmerman (10.1016/j.epidem.2019.100362_bib0225) 2018; 555 Gething (10.1016/j.epidem.2019.100362_bib0125) 2016; 375 Rudin (10.1016/j.epidem.2019.100362_bib0260) 1990 Rue (10.1016/j.epidem.2019.100362_bib0265) 2005 Bell (10.1016/j.epidem.2019.100362_bib0030) 1978 Rasmussen (10.1016/j.epidem.2019.100362_bib0240) 2005 Cameron (10.1016/j.epidem.2019.100362_bib0050) 2013 Lindgren (10.1016/j.epidem.2019.100362_bib0185) 2011; 73 Williams (10.1016/j.epidem.2019.100362_bib0325) 2001; vol. 13 Davidson (10.1016/j.epidem.2019.100362_bib0070) 2004 Rudi (10.1016/j.epidem.2019.100362_bib0250) 2015 Cohen (10.1016/j.epidem.2019.100362_bib0060) 2017 Graetz (10.1016/j.epidem.2019.100362_bib0140) 2018; 555 Gleason (10.1016/j.epidem.2019.100362_bib0135) 2017; 145 Yang (10.1016/j.epidem.2019.100362_bib0335) 2012; vol. 25 Farrar (10.1016/j.epidem.2019.100362_bib0105) 1967 Ton (10.1016/j.epidem.2019.100362_bib0300) 2018; 28 Bach (10.1016/j.epidem.2019.100362_bib0025) 2012 Hay (10.1016/j.epidem.2019.100362_bib0150) 2013; 368 Diggle (10.1016/j.epidem.2019.100362_bib0080) 1998; 47 Gentle (10.1016/j.epidem.2019.100362_bib0120) 2012 Kanagawa (10.1016/j.epidem.2019.100362_bib0175) 2018 Hoaglin (10.1016/j.epidem.2019.100362_bib0155) 1978; 32 Ding (10.1016/j.epidem.2019.100362_bib0085) 2017 Straeter (10.1016/j.epidem.2019.100362_bib0285) 1971 Felix (10.1016/j.epidem.2019.100362_bib0110) 2016 McCullagh (10.1016/j.epidem.2019.100362_bib0195) 1989 Mena (10.1016/j.epidem.2019.100362_bib0200) 2016; 5 Niederreiter (10.1016/j.epidem.2019.100362_bib0215) 1978; 84 Asmussen (10.1016/j.epidem.2019.100362_bib0010) 2007 Josepha (10.1016/j.epidem.2019.100362_bib0170) 2019 Shawe-Taylor (10.1016/j.epidem.2019.100362_bib0275) 2004 Diggle (10.1016/j.epidem.2019.100362_bib0075) 2007 Stein (10.1016/j.epidem.2019.100362_bib0280) 2012 Vatcheva (10.1016/j.epidem.2019.100362_bib0305) 2016; 6 Hoerl (10.1016/j.epidem.2019.100362_bib0160) 1970 Noma (10.1016/j.epidem.2019.100362_bib0220) 2002; 96 Mahoney (10.1016/j.epidem.2019.100362_bib0190) 2009 Andres (10.1016/j.epidem.2019.100362_bib0005) 2018 Bach (10.1016/j.epidem.2019.100362_bib0020) 2005 Yaglom (10.1016/j.epidem.2019.100362_bib0330) 1987 Musco (10.1016/j.epidem.2019.100362_bib0205) 2017 Whittle (10.1016/j.epidem.2019.100362_bib0315) 1954 Tikhonov (10.1016/j.epidem.2019.100362_bib0295) 1963 Drineas (10.1016/j.epidem.2019.100362_bib0095) 2012; 13 Nelder (10.1016/j.epidem.2019.100362_bib0210) 1972; 135 El Alaoui (10.1016/j.epidem.2019.100362_bib0100) 2014; vol. 1411 Halton (10.1016/j.epidem.2019.100362_bib0145) 1964; 7 |
References_xml | – volume: 32 start-page: 17 year: 1978 end-page: 22 ident: bib0155 article-title: The hat matrix in regression and ANOVA publication-title: Am. Stat. – year: 1978 ident: bib0030 article-title: Solutions of ill-posed problems publication-title: Math. Comput. – year: 2018 ident: bib0175 article-title: Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences – year: 2005 ident: bib0265 article-title: Gaussian Markov Random Fields: Theory and Applications – year: 2004 ident: bib0040 article-title: Convex Optimization – year: 1970 ident: bib0160 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics – start-page: 5673 year: 2018 end-page: 5683 ident: bib0255 article-title: On Fast Leverage Score Sampling and Optimal Learning in Advances in Neural Information Processing Systems – year: 2018 ident: bib0005 article-title: Geo-Spatial Modeling of Access to Water and Sanitation in Nigeria – year: 2005 ident: bib0020 article-title: Predictive low-rank decomposition for kernel methods publication-title: Proceedings of the 22nd international conference on Machine learning – ICML’05 – year: 1949 ident: bib0035 article-title: Fourier Transforms – year: 2013 ident: bib0050 article-title: Regression Analysis of Count Data – year: 2007 ident: bib0235 article-title: Random features for large scale kernel machines publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3215 year: 2017 end-page: 3225 ident: bib0245 article-title: Generalization Properties of Learning With Random Features in Advances in Neural Information Processing Systems – volume: 40 start-page: 974 year: 1963 end-page: 994 ident: bib0320 article-title: Stochastic-processes in several dimensions publication-title: Bull. Int. Stat. Inst. – volume: 13 start-page: 3475 year: 2012 end-page: 3506 ident: bib0095 article-title: Fast approximation of matrix coherence and statistical leverage publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 701 year: 1964 end-page: 702 ident: bib0145 article-title: Algorithm 247: radical-inverse quasi-random point sequence publication-title: Commun. ACM – year: 2004 ident: bib0275 article-title: Kernel Methods for Pattern Analysis – year: 1971 ident: bib0285 article-title: On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space With Applications to Optimal Control Problems – year: 2008 ident: bib0055 article-title: Bayesian Methods for Data Analysis – year: 2009 ident: bib0190 article-title: CUR matrix decompositions for improved data analysis publication-title: Proc. Natl. Acad. Sci. – year: 2012 ident: bib0025 article-title: Sharp Analysis of Low-Rank Kernel Matrix Approximations – start-page: 3740 year: 2017 end-page: 3748 ident: bib0085 article-title: Multiresolution Kernel Approximation for Gaussian Process Regression in Advances in Neural Information Processing Systems – year: 2019 ident: bib0170 article-title: Understanding the Geographical Distribution of Stunting in Tanzania: A Geospatial Analysis of the 2015–16 – volume: 28 start-page: 59 year: 2018 end-page: 78 ident: bib0300 article-title: Spatial mapping with Gaussian processes and nonstationary Fourier features publication-title: Spat. Stat. – volume: vol. 13 start-page: 682 year: 2001 end-page: 688 ident: bib0325 publication-title: Advances in Neural Information Processing Systems – volume: 135 start-page: 370 year: 1972 end-page: 384 ident: bib0210 article-title: Generalized linear models publication-title: J. R. Stat. Soc.: Ser. A (Gen.) – volume: 6 year: 2016 ident: bib0305 article-title: Multicollinearity in regression analyses conducted in epidemiologic studies publication-title: Epidemiology (Sunnyvale, Calif.) – volume: 368 start-page: 20120250 year: 2013 ident: bib0150 article-title: Global mapping of infectious disease publication-title: Philos. Trans. R. Soc. B: Biol. Sci. – year: 1990 ident: bib0260 article-title: Fourier Analysis On Groups – start-page: 1975 year: 2016 end-page: 1983 ident: bib0110 article-title: Orthogonal Random Features in Advances in Neural Information Processing Systems – year: 2007 ident: bib0075 article-title: Model-Based Geostatistics. English – year: 1992 ident: bib0115 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. – start-page: 3833 year: 2017 end-page: 3845 ident: bib0205 article-title: Recursive Sampling for the Nystrom Method in Advances in Neural Information Processing Systems – volume: 96 start-page: S29 year: 2002 end-page: S39 ident: bib0220 article-title: Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control (APOC) publication-title: Ann. Trop. Med. Parasitol. – volume: vol. 54 start-page: 19 year: 2017 end-page: 27 ident: bib0165 article-title: Large-scale data-dependent kernel approximation publication-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics – year: 2007 ident: bib0010 article-title: Stochastic Simulation: Algorithms and Analysis – volume: 47 start-page: 299 year: 1998 end-page: 350 ident: bib0080 article-title: Model-based geostatistics publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) – volume: 145 start-page: 2921 year: 2017 end-page: 2929 ident: bib0135 article-title: Geospatial analysis of household spread of Ebola virus in a quarantined village-Sierra Leone, 2014 publication-title: Epidemiol. Infect. – year: 2018 ident: bib0180 article-title: A Unified Analysis of Random Fourier Features – volume: vol. 1411 year: 2014 ident: bib0100 publication-title: Fast Randomized Kernel Methods With Statistical Guarantees – volume: vol. 25 start-page: 476 year: 2012 end-page: 484 ident: bib0335 publication-title: Advances in Neural Information Processing Systems – volume: 555 start-page: 41 year: 2018 ident: bib0225 article-title: Mapping child growth failure in Africa between 2000 and 2015 publication-title: Nature – year: 2000 ident: bib0090 article-title: A Unified Bias-Variance Decomposition and its Applications – start-page: 1657 year: 2015 end-page: 1665 ident: bib0250 article-title: Less is More: Nyström Computational Regularization in Advances in Neural Information Processing Systems – start-page: 1758 year: 2017 end-page: 1777 ident: bib0060 article-title: Input sparsity time low-rank approximation via ridge leverage score sampling publication-title: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms – year: 1986 ident: bib0045 article-title: The Fourier Transform and Its Applications – volume: 17 start-page: 483 year: 2006 end-page: 506 ident: bib0230 article-title: Spatial modelling using a new class of nonstationary covariance functions publication-title: Environmetrics – volume: 7 start-page: 9093 year: 2017 ident: bib0065 article-title: Mapping the spatial variability of HIV infection in Sub-Saharan Africa: effective information for localized HIV prevention and control publication-title: Sci. Rep. – volume: 73 start-page: 423 year: 2011 end-page: 498 ident: bib0185 article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) – volume: 7 start-page: 856 year: 1986 end-page: 869 ident: bib0270 article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. – year: 2012 ident: bib0280 article-title: Interpolation of Spatial Data: Some Theory for Kriging – year: 2005 ident: bib0240 article-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) – volume: 376 start-page: 1579 year: 2010 end-page: 1591 ident: bib0290 article-title: Ranking of elimination feasibility between malaria-endemic countries publication-title: Lancet – year: 2018 ident: bib0015 article-title: Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees – volume: 84 start-page: 957 year: 1978 end-page: 1041 ident: bib0215 article-title: Quasi-Monte Carlo methods and pseudo-random numbers publication-title: Bull. Am. Math. Soc. – year: 2004 ident: bib0070 article-title: Econometric Theory and Methods – start-page: 92 year: 1967 end-page: 107 ident: bib0105 article-title: Multicollinearity in regression analysis: the problem revisited publication-title: Rev. Econ. Stat. – year: 1989 ident: bib0195 article-title: Generalized Linear Models – volume: 555 start-page: 48 year: 2018 ident: bib0140 article-title: Mapping local variation in educational attainment across Africa publication-title: Nature – year: 1987 ident: bib0330 article-title: Correlation Theory of Stationary and Related Random Functions – start-page: 434 year: 1954 end-page: 449 ident: bib0315 article-title: On stationary processes in the plane publication-title: Biometrika – volume: 35 start-page: 234 year: 1981 end-page: 242 ident: bib0310 article-title: Efficient computing of regression diagnostics publication-title: Am. Stat. – volume: 375 start-page: 2435 year: 2016 end-page: 2445 ident: bib0125 article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015 publication-title: New Engl. J. Med. – year: 2012 ident: bib0120 article-title: Numerical Linear Algebra for Applications in Statistics – year: 1963 ident: bib0295 article-title: Solution of incorrectly formulated problems and the regularization method publication-title: Soviet Math. – volume: 17 start-page: 3977 year: 2016 end-page: 4041 ident: bib0130 article-title: Revisiting the Nyström method for improved large-scale machine learning publication-title: J. Mach. Learn. Res. – volume: 5 start-page: e16777 year: 2016 ident: bib0200 article-title: Origins of the 2009 H1N1 influenza pandemic in swine in Mexico publication-title: Elife – year: 1971 ident: 10.1016/j.epidem.2019.100362_bib0285 – volume: 376 start-page: 1579 year: 2010 ident: 10.1016/j.epidem.2019.100362_bib0290 article-title: Ranking of elimination feasibility between malaria-endemic countries publication-title: Lancet doi: 10.1016/S0140-6736(10)61301-3 – year: 2005 ident: 10.1016/j.epidem.2019.100362_bib0240 – start-page: 3215 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0245 – volume: vol. 13 start-page: 682 year: 2001 ident: 10.1016/j.epidem.2019.100362_bib0325 – year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0005 – year: 1978 ident: 10.1016/j.epidem.2019.100362_bib0030 article-title: Solutions of ill-posed problems publication-title: Math. Comput. doi: 10.2307/2006360 – volume: 145 start-page: 2921 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0135 article-title: Geospatial analysis of household spread of Ebola virus in a quarantined village-Sierra Leone, 2014 publication-title: Epidemiol. Infect. doi: 10.1017/S0950268817001856 – volume: 5 start-page: e16777 year: 2016 ident: 10.1016/j.epidem.2019.100362_bib0200 article-title: Origins of the 2009 H1N1 influenza pandemic in swine in Mexico publication-title: Elife doi: 10.7554/eLife.16777 – year: 2004 ident: 10.1016/j.epidem.2019.100362_bib0275 – volume: 17 start-page: 3977 year: 2016 ident: 10.1016/j.epidem.2019.100362_bib0130 article-title: Revisiting the Nyström method for improved large-scale machine learning publication-title: J. Mach. Learn. Res. – volume: 84 start-page: 957 year: 1978 ident: 10.1016/j.epidem.2019.100362_bib0215 article-title: Quasi-Monte Carlo methods and pseudo-random numbers publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1978-14532-7 – start-page: 5673 year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0255 – year: 2007 ident: 10.1016/j.epidem.2019.100362_bib0010 – volume: 368 start-page: 20120250 year: 2013 ident: 10.1016/j.epidem.2019.100362_bib0150 article-title: Global mapping of infectious disease publication-title: Philos. Trans. R. Soc. B: Biol. Sci. doi: 10.1098/rstb.2012.0250 – year: 2009 ident: 10.1016/j.epidem.2019.100362_bib0190 article-title: CUR matrix decompositions for improved data analysis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0803205106 – volume: 375 start-page: 2435 year: 2016 ident: 10.1016/j.epidem.2019.100362_bib0125 article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015 publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa1606701 – start-page: 1975 year: 2016 ident: 10.1016/j.epidem.2019.100362_bib0110 – volume: 7 start-page: 9093 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0065 article-title: Mapping the spatial variability of HIV infection in Sub-Saharan Africa: effective information for localized HIV prevention and control publication-title: Sci. Rep. doi: 10.1038/s41598-017-09464-y – volume: vol. 1411 year: 2014 ident: 10.1016/j.epidem.2019.100362_bib0100 – start-page: 434 year: 1954 ident: 10.1016/j.epidem.2019.100362_bib0315 article-title: On stationary processes in the plane publication-title: Biometrika doi: 10.1093/biomet/41.3-4.434 – volume: 35 start-page: 234 year: 1981 ident: 10.1016/j.epidem.2019.100362_bib0310 article-title: Efficient computing of regression diagnostics publication-title: Am. Stat. doi: 10.1080/00031305.1981.10479362 – year: 2004 ident: 10.1016/j.epidem.2019.100362_bib0070 – year: 1963 ident: 10.1016/j.epidem.2019.100362_bib0295 article-title: Solution of incorrectly formulated problems and the regularization method publication-title: Soviet Math. – year: 1987 ident: 10.1016/j.epidem.2019.100362_bib0330 – start-page: 3833 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0205 – volume: 135 start-page: 370 year: 1972 ident: 10.1016/j.epidem.2019.100362_bib0210 article-title: Generalized linear models publication-title: J. R. Stat. Soc.: Ser. A (Gen.) – volume: 555 start-page: 41 year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0225 article-title: Mapping child growth failure in Africa between 2000 and 2015 publication-title: Nature doi: 10.1038/nature25760 – volume: 7 start-page: 856 year: 1986 ident: 10.1016/j.epidem.2019.100362_bib0270 article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – year: 2008 ident: 10.1016/j.epidem.2019.100362_bib0055 – volume: 6 year: 2016 ident: 10.1016/j.epidem.2019.100362_bib0305 article-title: Multicollinearity in regression analyses conducted in epidemiologic studies publication-title: Epidemiology (Sunnyvale, Calif.) – start-page: 1758 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0060 article-title: Input sparsity time low-rank approximation via ridge leverage score sampling publication-title: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms doi: 10.1137/1.9781611974782.115 – volume: 73 start-page: 423 year: 2011 ident: 10.1016/j.epidem.2019.100362_bib0185 article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2011.00777.x – start-page: 92 year: 1967 ident: 10.1016/j.epidem.2019.100362_bib0105 article-title: Multicollinearity in regression analysis: the problem revisited publication-title: Rev. Econ. Stat. doi: 10.2307/1937887 – volume: 13 start-page: 3475 year: 2012 ident: 10.1016/j.epidem.2019.100362_bib0095 article-title: Fast approximation of matrix coherence and statistical leverage publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 17 year: 1978 ident: 10.1016/j.epidem.2019.100362_bib0155 article-title: The hat matrix in regression and ANOVA publication-title: Am. Stat. doi: 10.1080/00031305.1978.10479237 – year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0180 – volume: vol. 25 start-page: 476 year: 2012 ident: 10.1016/j.epidem.2019.100362_bib0335 – year: 1989 ident: 10.1016/j.epidem.2019.100362_bib0195 – volume: 47 start-page: 299 year: 1998 ident: 10.1016/j.epidem.2019.100362_bib0080 article-title: Model-based geostatistics publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) doi: 10.1111/1467-9876.00113 – volume: 96 start-page: S29 year: 2002 ident: 10.1016/j.epidem.2019.100362_bib0220 article-title: Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control (APOC) publication-title: Ann. Trop. Med. Parasitol. doi: 10.1179/000349802125000637 – year: 2000 ident: 10.1016/j.epidem.2019.100362_bib0090 – year: 2019 ident: 10.1016/j.epidem.2019.100362_bib0170 – year: 1970 ident: 10.1016/j.epidem.2019.100362_bib0160 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics – year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0015 – year: 2005 ident: 10.1016/j.epidem.2019.100362_bib0265 – year: 2004 ident: 10.1016/j.epidem.2019.100362_bib0040 – start-page: 3740 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0085 – year: 1949 ident: 10.1016/j.epidem.2019.100362_bib0035 – year: 2012 ident: 10.1016/j.epidem.2019.100362_bib0120 – volume: vol. 54 start-page: 19 year: 2017 ident: 10.1016/j.epidem.2019.100362_bib0165 article-title: Large-scale data-dependent kernel approximation – year: 2012 ident: 10.1016/j.epidem.2019.100362_bib0025 – year: 2013 ident: 10.1016/j.epidem.2019.100362_bib0050 – year: 2007 ident: 10.1016/j.epidem.2019.100362_bib0235 article-title: Random features for large scale kernel machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 40 start-page: 974 year: 1963 ident: 10.1016/j.epidem.2019.100362_bib0320 article-title: Stochastic-processes in several dimensions publication-title: Bull. Int. Stat. Inst. – year: 2005 ident: 10.1016/j.epidem.2019.100362_bib0020 article-title: Predictive low-rank decomposition for kernel methods – year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0175 – year: 2007 ident: 10.1016/j.epidem.2019.100362_bib0075 – volume: 17 start-page: 483 year: 2006 ident: 10.1016/j.epidem.2019.100362_bib0230 article-title: Spatial modelling using a new class of nonstationary covariance functions publication-title: Environmetrics doi: 10.1002/env.785 – year: 1986 ident: 10.1016/j.epidem.2019.100362_bib0045 – volume: 555 start-page: 48 year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0140 article-title: Mapping local variation in educational attainment across Africa publication-title: Nature doi: 10.1038/nature25761 – volume: 28 start-page: 59 year: 2018 ident: 10.1016/j.epidem.2019.100362_bib0300 article-title: Spatial mapping with Gaussian processes and nonstationary Fourier features publication-title: Spat. Stat. doi: 10.1016/j.spasta.2018.02.002 – start-page: 1657 year: 2015 ident: 10.1016/j.epidem.2019.100362_bib0250 – year: 1992 ident: 10.1016/j.epidem.2019.100362_bib0115 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. doi: 10.1162/neco.1992.4.1.1 – year: 1990 ident: 10.1016/j.epidem.2019.100362_bib0260 – year: 2012 ident: 10.1016/j.epidem.2019.100362_bib0280 – volume: 7 start-page: 701 year: 1964 ident: 10.1016/j.epidem.2019.100362_bib0145 article-title: Algorithm 247: radical-inverse quasi-random point sequence publication-title: Commun. ACM doi: 10.1145/355588.365104 |
SSID | ssj0064113 |
Score | 2.3056417 |
Snippet | •Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in... Highlights•Many kernel methods are only suitable for small/medium sized spatial problems. •Random Fourier features speeds up kernel method with a minimal drop... Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100362 |
SubjectTerms | Algorithms Fourier Analysis Humans Infectious Disease Internal Medicine Kernel approximation Kernel methods Linear Models Random Fourier features Regression Spatial Analysis |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA_iaUHEXb_XXSJ4De-l-Wh6VFFkQS8qvFtIm6n4VR-vz4P_vTNNK4oriseWmaadTmYmyfxmGNtDLwSFKUFkJYyFNrkSRZCVqJB8bMGWZSCg8OmZPbnU_yZmssAOBywMpVX2tj_Z9M5a93dGvTRH0-vr0Tk6PqOVpRCEOpIRolxp14H4JgeDNbZadi2SiVgQ9QCf63K8oOvCSgleBaULKJt95J4-Cj87N3S8wpb7-JHvp1f8yRag-cWW0uYbT5iiVdY1GkbF4qEvOcLvQwQOoX3itPHKKbYMMz6Dq5QG2yBl5Lcwa_Bd1tjl8dHF4Yno-ySIykg7F8rWlcRAKtexzoLSwbhc13UAV1HpHPwX2gbnCgmmJiwumBgLDHvKUEsXnVTrbLF5aGCTcVw_lUFXlcryqIOMoTA1HdUqHYOEzG4xNYjHV30RceplceeHbLEbn4TqSag-CXWLiReuaSqi8Qm9GSTvB4AomjSPVv4Tvvx_fND287L10reZH_t3uvOa8436fWHM3UE1PM5MOm4JDTw8tj5DTy-1dGN8-kbSmZevV7hsls7p7W-P-5v9oKuUWbPDFuezR_iD8dG8_NtNgGcCNQuJ priority: 102 providerName: Elsevier |
Title | Spatial analysis made easy with linear regression and kernels |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1755436519300337 https://www.clinicalkey.es/playcontent/1-s2.0-S1755436519300337 https://dx.doi.org/10.1016/j.epidem.2019.100362 https://www.ncbi.nlm.nih.gov/pubmed/31561884 https://www.proquest.com/docview/2299141807 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpeimU0KaPPNpFhV4VVtbD8iGEpjSkgfTSLuxNyNa40CZOYm8gueS3Z8aytz1kSXsxGDSyPZrxfNK8GPuIVggKU4LISpgKbXIliiArUeHwqQVbloEShU-_2eOZPpmb-Robe7YODOwe3NpRP6lZe7Z3c3V7gAq__ydWC_puqhSoVZDbv_8pP0XblJOqnuqlX8Fq2TdMRptphFbWjMl0K2ZZZaxWgdHeKB29YBsDmuSf0vK_ZGvQbLLn6SiOpwyjV6xvO4xixsNQgISfhwgcQnfL6RiWE9IMLW_hZwqKbXBk5L-hbfBdXrPZ0Zcfn4_F0DVBVEbahVC2riTCqlzHOgtKB-NyXdcBXEWFdHBltA3OFRJMTZm5YGIsEASVoZYuOqnesPXmooEtxnE3VQZdVSrLow4yhsLU5LhVOgYJmd1mamSPr4aS4tTZ4syPsWO_fGKqJ6b6xNRtJpZUl6mkxiPjzch5P6aL4g_Oowg8Qpc_RAfdKGRe-i7zU_-dxIGkAcEs9bbL_6YcgEgCGP_wzA-jaHjUU3K-hAYurjufod2XWropzv42yczy6xVuoqVzeuc_ObPLntFdiq55x9YX7TW8R4y0KCfsyd6dnPQnDHj9Oj-c9IpwD4AwDw0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoqEKqAt0AJ1pV6tXcePOEdAoKUFLgVpb5YTTypoCWizHPrvOxMnqBUgUK_JTJxMxjOf7Xkw9gW9EBSmBJGVMBba5EoUQVaiQvKxBVuWgRKFT8_s5EJ_nZrpAjsYcmEorLK3_cmmd9a6vzLqpTm6vbwcfUfHZ7SyBEGoI1m-yF4hGsipf8PxdH8wx1bLrkcyUQsiH_LnuiAv6NqwUoRXQfECymZP-aen8Gfnh45W2ZseQPK99I5rbAGadbaSdt94Sip6y7pOw6hZPPQ1R_h1iMAhtL857bxyApdhxmfwI8XBNkgZ-U-YNfgu79jF0eH5wUT0jRJEZaSdC2XrSiKSynWss6B0MC7XdR3AVVQ7B3-GtsG5QoKpKRkXTIwF4p4y1NJFJ9V7ttTcNLDJOC6gyqCrSmV51EHGUJiazmqVjkFCZreYGsTjq76KODWz-OWHcLErn4TqSag-CXWLiXuu21RF4xl6M0jeDxmiaNM8mvln-PLH-KDtJ2brpW8zP_YPlOdvzn_07wVjfh5Uw-PUpPOW0MDNXeszdPVSSzfGp28knbn_eoXrZumc_vDf435iryfnpyf-5Pjs20e2THdSmM02W5rP7mAHwdK83O0mwx91Fw6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+analysis+made+easy+with+linear+regression+and+kernels&rft.jtitle=Epidemics&rft.au=Milton%2C+Philip&rft.au=Coupland%2C+Helen&rft.au=Giorgi%2C+Emanuele&rft.au=Bhatt%2C+Samir&rft.date=2019-12-01&rft.issn=1755-4365&rft.volume=29&rft.spage=100362&rft_id=info:doi/10.1016%2Fj.epidem.2019.100362&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epidem_2019_100362 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F17554365%2FS1755436519X00055%2Fcov150h.gif |