Spatial analysis made easy with linear regression and kernels

•Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in accuracy.•This speedup lets us efficiently work with large spatial problems.•They can be added into many common spatial methods with only a few lines...

Full description

Saved in:
Bibliographic Details
Published inEpidemics Vol. 29; p. 100362
Main Authors Milton, Philip, Coupland, Helen, Giorgi, Emanuele, Bhatt, Samir
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in accuracy.•This speedup lets us efficiently work with large spatial problems.•They can be added into many common spatial methods with only a few lines of code. Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided.
AbstractList •Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in accuracy.•This speedup lets us efficiently work with large spatial problems.•They can be added into many common spatial methods with only a few lines of code. Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided.
Highlights•Many kernel methods are only suitable for small/medium sized spatial problems. •Random Fourier features speeds up kernel method with a minimal drop in accuracy. •This speedup lets us efficiently work with large spatial problems. •They can be added into many common spatial methods with only a few lines of code.
Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided.
Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided.Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression) and progress to a review of random Fourier features (RFF), a method that enables the scaling of kernel methods to big datasets. We show how the RFF method is capable of approximating the full kernel matrix, providing a significant computational speed-up for a negligible cost to accuracy and can be incorporated into many existing spatial methods using only a few lines of code. We give an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them. At each stage, the associated R code is provided.
ArticleNumber 100362
Author Bhatt, Samir
Coupland, Helen
Giorgi, Emanuele
Milton, Philip
Author_xml – sequence: 1
  givenname: Philip
  surname: Milton
  fullname: Milton, Philip
  email: PM5215@ic.ac.uk
  organization: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
– sequence: 2
  givenname: Helen
  surname: Coupland
  fullname: Coupland, Helen
  email: hlc17@ic.ac.uk
  organization: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
– sequence: 3
  givenname: Emanuele
  surname: Giorgi
  fullname: Giorgi, Emanuele
  email: e.giorgi@lancaster.ac.uk
  organization: CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
– sequence: 4
  givenname: Samir
  surname: Bhatt
  fullname: Bhatt, Samir
  email: s.bhatt@ic.ac.uk
  organization: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31561884$$D View this record in MEDLINE/PubMed
BookMark eNqVkd1rFTEQxYNU7If-ByL76MteM5uPzYoWpLQqFHyoPoc0mdXc7mavmb3K_e_Nsu2LIMWnDMM5J8zvnLKjNCVk7CXwDXDQb7Yb3MWA46bh0JUVF7p5wk7AtKbmXLdHZW6VqqXQ6pidEm3LVgKIZ-xYgNJgjDxh7292bo5uqFxyw4EiVaMLWKGjQ_U7zj-qISZ0ucr4PSNRnFJRhuoOc8KBnrOnvRsIX9y_Z-zb1eXXi0_19ZePny8-XNdegZ5roXsPQjWtDH3jhHTKtLLvHRrPpQDslNTOmA5Q9eWODlUInW7ErevBBAPijL1ec3d5-rlHmu0YyeMwuITTnmzTdB1IMLwt0lf30v3tiMHuchxdPtiHk4vg7SrweSLK2Fsf58JgSnN2cbDA7cLXbu3K1y587cq3mOVf5of8R2znq60ww18RsyUfMXkMMaOfbZji_wb4Ukz0brjDA9J22ufSH1mw1Fhub5bml-KhEyVALFje_Tvg8f__ANR-vak
CitedBy_id crossref_primary_10_1016_j_scienta_2019_109050
crossref_primary_10_1021_acsestwater_4c01003
crossref_primary_10_1051_0004_6361_202039461
crossref_primary_10_1007_s10708_024_11111_9
crossref_primary_10_1214_19_AOAS1284
crossref_primary_10_1016_j_commatsci_2025_113669
crossref_primary_10_1016_j_epidem_2020_100395
crossref_primary_10_1002_env_2780
crossref_primary_10_1016_j_ecolind_2022_109711
crossref_primary_10_1016_j_spasta_2022_100598
crossref_primary_10_1186_s12936_023_04535_0
crossref_primary_10_1016_j_bspc_2021_102949
Cites_doi 10.1016/S0140-6736(10)61301-3
10.2307/2006360
10.1017/S0950268817001856
10.7554/eLife.16777
10.1090/S0002-9904-1978-14532-7
10.1098/rstb.2012.0250
10.1073/pnas.0803205106
10.1056/NEJMoa1606701
10.1038/s41598-017-09464-y
10.1093/biomet/41.3-4.434
10.1080/00031305.1981.10479362
10.1038/nature25760
10.1137/0907058
10.1137/1.9781611974782.115
10.1111/j.1467-9868.2011.00777.x
10.2307/1937887
10.1080/00031305.1978.10479237
10.1111/1467-9876.00113
10.1179/000349802125000637
10.1002/env.785
10.1038/nature25761
10.1016/j.spasta.2018.02.002
10.1162/neco.1992.4.1.1
10.1145/355588.365104
ContentType Journal Article
Copyright 2019 The Authors
The Authors
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.epidem.2019.100362
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1878-0067
EndPage 100362
ExternalDocumentID 31561884
10_1016_j_epidem_2019_100362
S1755436519300337
1_s2_0_S1755436519300337
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/R015600/1
– fundername: Medical Research Council
  grantid: MR/M015297/1
GroupedDBID ---
--K
.1-
.FO
.~1
0R~
1B1
1P~
1~.
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDW
AAIKJ
AALRI
AAQFI
AARKO
AAXUO
AAYWO
ABBQC
ABGSF
ABMAC
ABWVN
ABXDB
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
ADVLN
AEKER
AENEX
AEQOU
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGEKW
AGHFR
AGYEJ
AIGII
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IPNFZ
IXB
J1W
KQ8
LUGTX
M41
M48
MO0
N9A
O-L
O9-
OD-
OK1
OO.
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SSZ
Z5R
0SF
AACTN
AFCTW
AJOXV
NCXOZ
6I.
AAFTH
CBWCG
DOVZS
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c516t-36fc135274df2a34a5874ffae8c0431e9546a8891e5f0039e5dd9623baf18d813
IEDL.DBID M48
ISSN 1755-4365
1878-0067
IngestDate Fri Jul 11 00:03:53 EDT 2025
Mon Jul 21 05:42:46 EDT 2025
Tue Jul 01 00:50:06 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Fri Feb 23 02:50:39 EST 2024
Sun Feb 23 10:19:24 EST 2025
Tue Aug 26 17:32:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Regression
Random Fourier features
Kernel methods
Kernel approximation
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-36fc135274df2a34a5874ffae8c0431e9546a8891e5f0039e5dd9623baf18d813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.epidem.2019.100362
PMID 31561884
PQID 2299141807
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2299141807
pubmed_primary_31561884
crossref_citationtrail_10_1016_j_epidem_2019_100362
crossref_primary_10_1016_j_epidem_2019_100362
elsevier_sciencedirect_doi_10_1016_j_epidem_2019_100362
elsevier_clinicalkeyesjournals_1_s2_0_S1755436519300337
elsevier_clinicalkey_doi_10_1016_j_epidem_2019_100362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Epidemics
PublicationTitleAlternate Epidemics
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rahimi, Recht (bib0235) 2007
Asmussen, Glynn (bib0010) 2007
Lindgren, Rue, Lindström (bib0185) 2011; 73
Geman, Bienenstock, Doursat (bib0115) 1992
Straeter (bib0285) 1971
Niederreiter (bib0215) 1978; 84
McCullagh, Nelder (bib0195) 1989
Kanagawa, Hennig, Sejdinovic, Sriperumbudur (bib0175) 2018
Whittle (bib0315) 1954
Rasmussen, Williams (bib0240) 2005
Williams, Seeger (bib0325) 2001; vol. 13
Carlin, Louis (bib0055) 2008
Felix, Suresh, Choromanski, Holtmann-Rice, Kumar (bib0110) 2016
Rudi, Camoriano, Rosasco (bib0250) 2015
Gething (bib0125) 2016; 375
Rudi, Rosasco (bib0245) 2017
Bell, Tikhonov, Arsenin (bib0030) 1978
Drineas, Magdon-Ismail, Mahoney, Woodruff (bib0095) 2012; 13
Andres (bib0005) 2018
Bracewell, Bracewell (bib0045) 1986
Shawe-Taylor, Cristianini (bib0275) 2004
Avron (bib0015) 2018
Gleason (bib0135) 2017; 145
Ton, Flaxman, Sejdinovic, Bhatt (bib0300) 2018; 28
Diggle, Ribeiro (bib0075) 2007
Hoerl, Kennard (bib0160) 1970
Velleman, Welsch (bib0310) 1981; 35
Tikhonov (bib0295) 1963
Stein (bib0280) 2012
Bach, Jordan (bib0020) 2005
Gentle (bib0120) 2012
Vatcheva, Lee, McCormick, Rahbar (bib0305) 2016; 6
Whittle (bib0320) 1963; 40
Graetz (bib0140) 2018; 555
Diggle, Tawn, Moyeed (bib0080) 1998; 47
Saad, Schultz (bib0270) 1986; 7
Yaglom (bib0330) 1987
Boyd, Vandenberghe (bib0040) 2004
Gittens, Mahoney (bib0130) 2016; 17
Osgood-Zimmerman (bib0225) 2018; 555
Mena (bib0200) 2016; 5
Davidson, MacKinnon (bib0070) 2004
Farrar, Glauber (bib0105) 1967
Rudi, Calandriello, Carratino, Rosasco (bib0255) 2018
Cuadros (bib0065) 2017; 7
Rue, Held (bib0265) 2005
Ding, Kondor, Eskreis-Winkler (bib0085) 2017
Cohen, Musco, Musco (bib0060) 2017
Yang, Li, Mahdavi, Jin, Zhou (bib0335) 2012; vol. 25
Domingos (bib0090) 2000
El Alaoui, Mahoney (bib0100) 2014; vol. 1411
Musco, Musco (bib0205) 2017
Nelder, Wedderburn (bib0210) 1972; 135
Noma (bib0220) 2002; 96
Rudin (bib0260) 1990
Bach (bib0025) 2012
Hoaglin, Welsch (bib0155) 1978; 32
Li, Ton, Oglic, Sejdinovic (bib0180) 2018
Cameron, Trivedi (bib0050) 2013
Halton (bib0145) 1964; 7
Mahoney, Drineas (bib0190) 2009
Hay (bib0150) 2013; 368
Bochner, Chandrasekharan (bib0035) 1949
Ionescu, Popa, Sminchisescu (bib0165) 2017; vol. 54
Josepha, Gething, Bhatt, Ayling (bib0170) 2019
Paciorek, Schervish (bib0230) 2006; 17
Tatem (bib0290) 2010; 376
Gittens (10.1016/j.epidem.2019.100362_bib0130) 2016; 17
Geman (10.1016/j.epidem.2019.100362_bib0115) 1992
Avron (10.1016/j.epidem.2019.100362_bib0015) 2018
Saad (10.1016/j.epidem.2019.100362_bib0270) 1986; 7
Boyd (10.1016/j.epidem.2019.100362_bib0040) 2004
Rahimi (10.1016/j.epidem.2019.100362_bib0235) 2007
Cuadros (10.1016/j.epidem.2019.100362_bib0065) 2017; 7
Whittle (10.1016/j.epidem.2019.100362_bib0320) 1963; 40
Ionescu (10.1016/j.epidem.2019.100362_bib0165) 2017; vol. 54
Paciorek (10.1016/j.epidem.2019.100362_bib0230) 2006; 17
Rudi (10.1016/j.epidem.2019.100362_bib0245) 2017
Rudi (10.1016/j.epidem.2019.100362_bib0255) 2018
Velleman (10.1016/j.epidem.2019.100362_bib0310) 1981; 35
Tatem (10.1016/j.epidem.2019.100362_bib0290) 2010; 376
Li (10.1016/j.epidem.2019.100362_bib0180) 2018
Carlin (10.1016/j.epidem.2019.100362_bib0055) 2008
Bochner (10.1016/j.epidem.2019.100362_bib0035) 1949
Domingos (10.1016/j.epidem.2019.100362_bib0090) 2000
Bracewell (10.1016/j.epidem.2019.100362_bib0045) 1986
Osgood-Zimmerman (10.1016/j.epidem.2019.100362_bib0225) 2018; 555
Gething (10.1016/j.epidem.2019.100362_bib0125) 2016; 375
Rudin (10.1016/j.epidem.2019.100362_bib0260) 1990
Rue (10.1016/j.epidem.2019.100362_bib0265) 2005
Bell (10.1016/j.epidem.2019.100362_bib0030) 1978
Rasmussen (10.1016/j.epidem.2019.100362_bib0240) 2005
Cameron (10.1016/j.epidem.2019.100362_bib0050) 2013
Lindgren (10.1016/j.epidem.2019.100362_bib0185) 2011; 73
Williams (10.1016/j.epidem.2019.100362_bib0325) 2001; vol. 13
Davidson (10.1016/j.epidem.2019.100362_bib0070) 2004
Rudi (10.1016/j.epidem.2019.100362_bib0250) 2015
Cohen (10.1016/j.epidem.2019.100362_bib0060) 2017
Graetz (10.1016/j.epidem.2019.100362_bib0140) 2018; 555
Gleason (10.1016/j.epidem.2019.100362_bib0135) 2017; 145
Yang (10.1016/j.epidem.2019.100362_bib0335) 2012; vol. 25
Farrar (10.1016/j.epidem.2019.100362_bib0105) 1967
Ton (10.1016/j.epidem.2019.100362_bib0300) 2018; 28
Bach (10.1016/j.epidem.2019.100362_bib0025) 2012
Hay (10.1016/j.epidem.2019.100362_bib0150) 2013; 368
Diggle (10.1016/j.epidem.2019.100362_bib0080) 1998; 47
Gentle (10.1016/j.epidem.2019.100362_bib0120) 2012
Kanagawa (10.1016/j.epidem.2019.100362_bib0175) 2018
Hoaglin (10.1016/j.epidem.2019.100362_bib0155) 1978; 32
Ding (10.1016/j.epidem.2019.100362_bib0085) 2017
Straeter (10.1016/j.epidem.2019.100362_bib0285) 1971
Felix (10.1016/j.epidem.2019.100362_bib0110) 2016
McCullagh (10.1016/j.epidem.2019.100362_bib0195) 1989
Mena (10.1016/j.epidem.2019.100362_bib0200) 2016; 5
Niederreiter (10.1016/j.epidem.2019.100362_bib0215) 1978; 84
Asmussen (10.1016/j.epidem.2019.100362_bib0010) 2007
Josepha (10.1016/j.epidem.2019.100362_bib0170) 2019
Shawe-Taylor (10.1016/j.epidem.2019.100362_bib0275) 2004
Diggle (10.1016/j.epidem.2019.100362_bib0075) 2007
Stein (10.1016/j.epidem.2019.100362_bib0280) 2012
Vatcheva (10.1016/j.epidem.2019.100362_bib0305) 2016; 6
Hoerl (10.1016/j.epidem.2019.100362_bib0160) 1970
Noma (10.1016/j.epidem.2019.100362_bib0220) 2002; 96
Mahoney (10.1016/j.epidem.2019.100362_bib0190) 2009
Andres (10.1016/j.epidem.2019.100362_bib0005) 2018
Bach (10.1016/j.epidem.2019.100362_bib0020) 2005
Yaglom (10.1016/j.epidem.2019.100362_bib0330) 1987
Musco (10.1016/j.epidem.2019.100362_bib0205) 2017
Whittle (10.1016/j.epidem.2019.100362_bib0315) 1954
Tikhonov (10.1016/j.epidem.2019.100362_bib0295) 1963
Drineas (10.1016/j.epidem.2019.100362_bib0095) 2012; 13
Nelder (10.1016/j.epidem.2019.100362_bib0210) 1972; 135
El Alaoui (10.1016/j.epidem.2019.100362_bib0100) 2014; vol. 1411
Halton (10.1016/j.epidem.2019.100362_bib0145) 1964; 7
References_xml – volume: 32
  start-page: 17
  year: 1978
  end-page: 22
  ident: bib0155
  article-title: The hat matrix in regression and ANOVA
  publication-title: Am. Stat.
– year: 1978
  ident: bib0030
  article-title: Solutions of ill-posed problems
  publication-title: Math. Comput.
– year: 2018
  ident: bib0175
  article-title: Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
– year: 2005
  ident: bib0265
  article-title: Gaussian Markov Random Fields: Theory and Applications
– year: 2004
  ident: bib0040
  article-title: Convex Optimization
– year: 1970
  ident: bib0160
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
– start-page: 5673
  year: 2018
  end-page: 5683
  ident: bib0255
  article-title: On Fast Leverage Score Sampling and Optimal Learning in Advances in Neural Information Processing Systems
– year: 2018
  ident: bib0005
  article-title: Geo-Spatial Modeling of Access to Water and Sanitation in Nigeria
– year: 2005
  ident: bib0020
  article-title: Predictive low-rank decomposition for kernel methods
  publication-title: Proceedings of the 22nd international conference on Machine learning – ICML’05
– year: 1949
  ident: bib0035
  article-title: Fourier Transforms
– year: 2013
  ident: bib0050
  article-title: Regression Analysis of Count Data
– year: 2007
  ident: bib0235
  article-title: Random features for large scale kernel machines
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3215
  year: 2017
  end-page: 3225
  ident: bib0245
  article-title: Generalization Properties of Learning With Random Features in Advances in Neural Information Processing Systems
– volume: 40
  start-page: 974
  year: 1963
  end-page: 994
  ident: bib0320
  article-title: Stochastic-processes in several dimensions
  publication-title: Bull. Int. Stat. Inst.
– volume: 13
  start-page: 3475
  year: 2012
  end-page: 3506
  ident: bib0095
  article-title: Fast approximation of matrix coherence and statistical leverage
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 701
  year: 1964
  end-page: 702
  ident: bib0145
  article-title: Algorithm 247: radical-inverse quasi-random point sequence
  publication-title: Commun. ACM
– year: 2004
  ident: bib0275
  article-title: Kernel Methods for Pattern Analysis
– year: 1971
  ident: bib0285
  article-title: On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space With Applications to Optimal Control Problems
– year: 2008
  ident: bib0055
  article-title: Bayesian Methods for Data Analysis
– year: 2009
  ident: bib0190
  article-title: CUR matrix decompositions for improved data analysis
  publication-title: Proc. Natl. Acad. Sci.
– year: 2012
  ident: bib0025
  article-title: Sharp Analysis of Low-Rank Kernel Matrix Approximations
– start-page: 3740
  year: 2017
  end-page: 3748
  ident: bib0085
  article-title: Multiresolution Kernel Approximation for Gaussian Process Regression in Advances in Neural Information Processing Systems
– year: 2019
  ident: bib0170
  article-title: Understanding the Geographical Distribution of Stunting in Tanzania: A Geospatial Analysis of the 2015–16
– volume: 28
  start-page: 59
  year: 2018
  end-page: 78
  ident: bib0300
  article-title: Spatial mapping with Gaussian processes and nonstationary Fourier features
  publication-title: Spat. Stat.
– volume: vol. 13
  start-page: 682
  year: 2001
  end-page: 688
  ident: bib0325
  publication-title: Advances in Neural Information Processing Systems
– volume: 135
  start-page: 370
  year: 1972
  end-page: 384
  ident: bib0210
  article-title: Generalized linear models
  publication-title: J. R. Stat. Soc.: Ser. A (Gen.)
– volume: 6
  year: 2016
  ident: bib0305
  article-title: Multicollinearity in regression analyses conducted in epidemiologic studies
  publication-title: Epidemiology (Sunnyvale, Calif.)
– volume: 368
  start-page: 20120250
  year: 2013
  ident: bib0150
  article-title: Global mapping of infectious disease
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
– year: 1990
  ident: bib0260
  article-title: Fourier Analysis On Groups
– start-page: 1975
  year: 2016
  end-page: 1983
  ident: bib0110
  article-title: Orthogonal Random Features in Advances in Neural Information Processing Systems
– year: 2007
  ident: bib0075
  article-title: Model-Based Geostatistics. English
– year: 1992
  ident: bib0115
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
– start-page: 3833
  year: 2017
  end-page: 3845
  ident: bib0205
  article-title: Recursive Sampling for the Nystrom Method in Advances in Neural Information Processing Systems
– volume: 96
  start-page: S29
  year: 2002
  end-page: S39
  ident: bib0220
  article-title: Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control (APOC)
  publication-title: Ann. Trop. Med. Parasitol.
– volume: vol. 54
  start-page: 19
  year: 2017
  end-page: 27
  ident: bib0165
  article-title: Large-scale data-dependent kernel approximation
  publication-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
– year: 2007
  ident: bib0010
  article-title: Stochastic Simulation: Algorithms and Analysis
– volume: 47
  start-page: 299
  year: 1998
  end-page: 350
  ident: bib0080
  article-title: Model-based geostatistics
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
– volume: 145
  start-page: 2921
  year: 2017
  end-page: 2929
  ident: bib0135
  article-title: Geospatial analysis of household spread of Ebola virus in a quarantined village-Sierra Leone, 2014
  publication-title: Epidemiol. Infect.
– year: 2018
  ident: bib0180
  article-title: A Unified Analysis of Random Fourier Features
– volume: vol. 1411
  year: 2014
  ident: bib0100
  publication-title: Fast Randomized Kernel Methods With Statistical Guarantees
– volume: vol. 25
  start-page: 476
  year: 2012
  end-page: 484
  ident: bib0335
  publication-title: Advances in Neural Information Processing Systems
– volume: 555
  start-page: 41
  year: 2018
  ident: bib0225
  article-title: Mapping child growth failure in Africa between 2000 and 2015
  publication-title: Nature
– year: 2000
  ident: bib0090
  article-title: A Unified Bias-Variance Decomposition and its Applications
– start-page: 1657
  year: 2015
  end-page: 1665
  ident: bib0250
  article-title: Less is More: Nyström Computational Regularization in Advances in Neural Information Processing Systems
– start-page: 1758
  year: 2017
  end-page: 1777
  ident: bib0060
  article-title: Input sparsity time low-rank approximation via ridge leverage score sampling
  publication-title: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
– year: 1986
  ident: bib0045
  article-title: The Fourier Transform and Its Applications
– volume: 17
  start-page: 483
  year: 2006
  end-page: 506
  ident: bib0230
  article-title: Spatial modelling using a new class of nonstationary covariance functions
  publication-title: Environmetrics
– volume: 7
  start-page: 9093
  year: 2017
  ident: bib0065
  article-title: Mapping the spatial variability of HIV infection in Sub-Saharan Africa: effective information for localized HIV prevention and control
  publication-title: Sci. Rep.
– volume: 73
  start-page: 423
  year: 2011
  end-page: 498
  ident: bib0185
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  ident: bib0270
  article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 2012
  ident: bib0280
  article-title: Interpolation of Spatial Data: Some Theory for Kriging
– year: 2005
  ident: bib0240
  article-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
– volume: 376
  start-page: 1579
  year: 2010
  end-page: 1591
  ident: bib0290
  article-title: Ranking of elimination feasibility between malaria-endemic countries
  publication-title: Lancet
– year: 2018
  ident: bib0015
  article-title: Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
– volume: 84
  start-page: 957
  year: 1978
  end-page: 1041
  ident: bib0215
  article-title: Quasi-Monte Carlo methods and pseudo-random numbers
  publication-title: Bull. Am. Math. Soc.
– year: 2004
  ident: bib0070
  article-title: Econometric Theory and Methods
– start-page: 92
  year: 1967
  end-page: 107
  ident: bib0105
  article-title: Multicollinearity in regression analysis: the problem revisited
  publication-title: Rev. Econ. Stat.
– year: 1989
  ident: bib0195
  article-title: Generalized Linear Models
– volume: 555
  start-page: 48
  year: 2018
  ident: bib0140
  article-title: Mapping local variation in educational attainment across Africa
  publication-title: Nature
– year: 1987
  ident: bib0330
  article-title: Correlation Theory of Stationary and Related Random Functions
– start-page: 434
  year: 1954
  end-page: 449
  ident: bib0315
  article-title: On stationary processes in the plane
  publication-title: Biometrika
– volume: 35
  start-page: 234
  year: 1981
  end-page: 242
  ident: bib0310
  article-title: Efficient computing of regression diagnostics
  publication-title: Am. Stat.
– volume: 375
  start-page: 2435
  year: 2016
  end-page: 2445
  ident: bib0125
  article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015
  publication-title: New Engl. J. Med.
– year: 2012
  ident: bib0120
  article-title: Numerical Linear Algebra for Applications in Statistics
– year: 1963
  ident: bib0295
  article-title: Solution of incorrectly formulated problems and the regularization method
  publication-title: Soviet Math.
– volume: 17
  start-page: 3977
  year: 2016
  end-page: 4041
  ident: bib0130
  article-title: Revisiting the Nyström method for improved large-scale machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: e16777
  year: 2016
  ident: bib0200
  article-title: Origins of the 2009 H1N1 influenza pandemic in swine in Mexico
  publication-title: Elife
– year: 1971
  ident: 10.1016/j.epidem.2019.100362_bib0285
– volume: 376
  start-page: 1579
  year: 2010
  ident: 10.1016/j.epidem.2019.100362_bib0290
  article-title: Ranking of elimination feasibility between malaria-endemic countries
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)61301-3
– year: 2005
  ident: 10.1016/j.epidem.2019.100362_bib0240
– start-page: 3215
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0245
– volume: vol. 13
  start-page: 682
  year: 2001
  ident: 10.1016/j.epidem.2019.100362_bib0325
– year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0005
– year: 1978
  ident: 10.1016/j.epidem.2019.100362_bib0030
  article-title: Solutions of ill-posed problems
  publication-title: Math. Comput.
  doi: 10.2307/2006360
– volume: 145
  start-page: 2921
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0135
  article-title: Geospatial analysis of household spread of Ebola virus in a quarantined village-Sierra Leone, 2014
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268817001856
– volume: 5
  start-page: e16777
  year: 2016
  ident: 10.1016/j.epidem.2019.100362_bib0200
  article-title: Origins of the 2009 H1N1 influenza pandemic in swine in Mexico
  publication-title: Elife
  doi: 10.7554/eLife.16777
– year: 2004
  ident: 10.1016/j.epidem.2019.100362_bib0275
– volume: 17
  start-page: 3977
  year: 2016
  ident: 10.1016/j.epidem.2019.100362_bib0130
  article-title: Revisiting the Nyström method for improved large-scale machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 84
  start-page: 957
  year: 1978
  ident: 10.1016/j.epidem.2019.100362_bib0215
  article-title: Quasi-Monte Carlo methods and pseudo-random numbers
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1978-14532-7
– start-page: 5673
  year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0255
– year: 2007
  ident: 10.1016/j.epidem.2019.100362_bib0010
– volume: 368
  start-page: 20120250
  year: 2013
  ident: 10.1016/j.epidem.2019.100362_bib0150
  article-title: Global mapping of infectious disease
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
  doi: 10.1098/rstb.2012.0250
– year: 2009
  ident: 10.1016/j.epidem.2019.100362_bib0190
  article-title: CUR matrix decompositions for improved data analysis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0803205106
– volume: 375
  start-page: 2435
  year: 2016
  ident: 10.1016/j.epidem.2019.100362_bib0125
  article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1606701
– start-page: 1975
  year: 2016
  ident: 10.1016/j.epidem.2019.100362_bib0110
– volume: 7
  start-page: 9093
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0065
  article-title: Mapping the spatial variability of HIV infection in Sub-Saharan Africa: effective information for localized HIV prevention and control
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09464-y
– volume: vol. 1411
  year: 2014
  ident: 10.1016/j.epidem.2019.100362_bib0100
– start-page: 434
  year: 1954
  ident: 10.1016/j.epidem.2019.100362_bib0315
  article-title: On stationary processes in the plane
  publication-title: Biometrika
  doi: 10.1093/biomet/41.3-4.434
– volume: 35
  start-page: 234
  year: 1981
  ident: 10.1016/j.epidem.2019.100362_bib0310
  article-title: Efficient computing of regression diagnostics
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1981.10479362
– year: 2004
  ident: 10.1016/j.epidem.2019.100362_bib0070
– year: 1963
  ident: 10.1016/j.epidem.2019.100362_bib0295
  article-title: Solution of incorrectly formulated problems and the regularization method
  publication-title: Soviet Math.
– year: 1987
  ident: 10.1016/j.epidem.2019.100362_bib0330
– start-page: 3833
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0205
– volume: 135
  start-page: 370
  year: 1972
  ident: 10.1016/j.epidem.2019.100362_bib0210
  article-title: Generalized linear models
  publication-title: J. R. Stat. Soc.: Ser. A (Gen.)
– volume: 555
  start-page: 41
  year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0225
  article-title: Mapping child growth failure in Africa between 2000 and 2015
  publication-title: Nature
  doi: 10.1038/nature25760
– volume: 7
  start-page: 856
  year: 1986
  ident: 10.1016/j.epidem.2019.100362_bib0270
  article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– year: 2008
  ident: 10.1016/j.epidem.2019.100362_bib0055
– volume: 6
  year: 2016
  ident: 10.1016/j.epidem.2019.100362_bib0305
  article-title: Multicollinearity in regression analyses conducted in epidemiologic studies
  publication-title: Epidemiology (Sunnyvale, Calif.)
– start-page: 1758
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0060
  article-title: Input sparsity time low-rank approximation via ridge leverage score sampling
  publication-title: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
  doi: 10.1137/1.9781611974782.115
– volume: 73
  start-page: 423
  year: 2011
  ident: 10.1016/j.epidem.2019.100362_bib0185
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2011.00777.x
– start-page: 92
  year: 1967
  ident: 10.1016/j.epidem.2019.100362_bib0105
  article-title: Multicollinearity in regression analysis: the problem revisited
  publication-title: Rev. Econ. Stat.
  doi: 10.2307/1937887
– volume: 13
  start-page: 3475
  year: 2012
  ident: 10.1016/j.epidem.2019.100362_bib0095
  article-title: Fast approximation of matrix coherence and statistical leverage
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 17
  year: 1978
  ident: 10.1016/j.epidem.2019.100362_bib0155
  article-title: The hat matrix in regression and ANOVA
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1978.10479237
– year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0180
– volume: vol. 25
  start-page: 476
  year: 2012
  ident: 10.1016/j.epidem.2019.100362_bib0335
– year: 1989
  ident: 10.1016/j.epidem.2019.100362_bib0195
– volume: 47
  start-page: 299
  year: 1998
  ident: 10.1016/j.epidem.2019.100362_bib0080
  article-title: Model-based geostatistics
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
  doi: 10.1111/1467-9876.00113
– volume: 96
  start-page: S29
  year: 2002
  ident: 10.1016/j.epidem.2019.100362_bib0220
  article-title: Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control (APOC)
  publication-title: Ann. Trop. Med. Parasitol.
  doi: 10.1179/000349802125000637
– year: 2000
  ident: 10.1016/j.epidem.2019.100362_bib0090
– year: 2019
  ident: 10.1016/j.epidem.2019.100362_bib0170
– year: 1970
  ident: 10.1016/j.epidem.2019.100362_bib0160
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
– year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0015
– year: 2005
  ident: 10.1016/j.epidem.2019.100362_bib0265
– year: 2004
  ident: 10.1016/j.epidem.2019.100362_bib0040
– start-page: 3740
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0085
– year: 1949
  ident: 10.1016/j.epidem.2019.100362_bib0035
– year: 2012
  ident: 10.1016/j.epidem.2019.100362_bib0120
– volume: vol. 54
  start-page: 19
  year: 2017
  ident: 10.1016/j.epidem.2019.100362_bib0165
  article-title: Large-scale data-dependent kernel approximation
– year: 2012
  ident: 10.1016/j.epidem.2019.100362_bib0025
– year: 2013
  ident: 10.1016/j.epidem.2019.100362_bib0050
– year: 2007
  ident: 10.1016/j.epidem.2019.100362_bib0235
  article-title: Random features for large scale kernel machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 974
  year: 1963
  ident: 10.1016/j.epidem.2019.100362_bib0320
  article-title: Stochastic-processes in several dimensions
  publication-title: Bull. Int. Stat. Inst.
– year: 2005
  ident: 10.1016/j.epidem.2019.100362_bib0020
  article-title: Predictive low-rank decomposition for kernel methods
– year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0175
– year: 2007
  ident: 10.1016/j.epidem.2019.100362_bib0075
– volume: 17
  start-page: 483
  year: 2006
  ident: 10.1016/j.epidem.2019.100362_bib0230
  article-title: Spatial modelling using a new class of nonstationary covariance functions
  publication-title: Environmetrics
  doi: 10.1002/env.785
– year: 1986
  ident: 10.1016/j.epidem.2019.100362_bib0045
– volume: 555
  start-page: 48
  year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0140
  article-title: Mapping local variation in educational attainment across Africa
  publication-title: Nature
  doi: 10.1038/nature25761
– volume: 28
  start-page: 59
  year: 2018
  ident: 10.1016/j.epidem.2019.100362_bib0300
  article-title: Spatial mapping with Gaussian processes and nonstationary Fourier features
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2018.02.002
– start-page: 1657
  year: 2015
  ident: 10.1016/j.epidem.2019.100362_bib0250
– year: 1992
  ident: 10.1016/j.epidem.2019.100362_bib0115
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.1.1
– year: 1990
  ident: 10.1016/j.epidem.2019.100362_bib0260
– year: 2012
  ident: 10.1016/j.epidem.2019.100362_bib0280
– volume: 7
  start-page: 701
  year: 1964
  ident: 10.1016/j.epidem.2019.100362_bib0145
  article-title: Algorithm 247: radical-inverse quasi-random point sequence
  publication-title: Commun. ACM
  doi: 10.1145/355588.365104
SSID ssj0064113
Score 2.3056417
Snippet •Many kernel methods are only suitable for small/medium sized spatial problems.•Random Fourier features speeds up kernel method with a minimal drop in...
Highlights•Many kernel methods are only suitable for small/medium sized spatial problems. •Random Fourier features speeds up kernel method with a minimal drop...
Kernel methods are a popular technique for extending linear models to handle non-linear spatial problems via a mapping to an implicit, high-dimensional feature...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100362
SubjectTerms Algorithms
Fourier Analysis
Humans
Infectious Disease
Internal Medicine
Kernel approximation
Kernel methods
Linear Models
Random Fourier features
Regression
Spatial Analysis
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA_iaUHEXb_XXSJ4De-l-Wh6VFFkQS8qvFtIm6n4VR-vz4P_vTNNK4oriseWmaadTmYmyfxmGNtDLwSFKUFkJYyFNrkSRZCVqJB8bMGWZSCg8OmZPbnU_yZmssAOBywMpVX2tj_Z9M5a93dGvTRH0-vr0Tk6PqOVpRCEOpIRolxp14H4JgeDNbZadi2SiVgQ9QCf63K8oOvCSgleBaULKJt95J4-Cj87N3S8wpb7-JHvp1f8yRag-cWW0uYbT5iiVdY1GkbF4qEvOcLvQwQOoX3itPHKKbYMMz6Dq5QG2yBl5Lcwa_Bd1tjl8dHF4Yno-ySIykg7F8rWlcRAKtexzoLSwbhc13UAV1HpHPwX2gbnCgmmJiwumBgLDHvKUEsXnVTrbLF5aGCTcVw_lUFXlcryqIOMoTA1HdUqHYOEzG4xNYjHV30RceplceeHbLEbn4TqSag-CXWLiReuaSqi8Qm9GSTvB4AomjSPVv4Tvvx_fND287L10reZH_t3uvOa8436fWHM3UE1PM5MOm4JDTw8tj5DTy-1dGN8-kbSmZevV7hsls7p7W-P-5v9oKuUWbPDFuezR_iD8dG8_NtNgGcCNQuJ
  priority: 102
  providerName: Elsevier
Title Spatial analysis made easy with linear regression and kernels
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1755436519300337
https://www.clinicalkey.es/playcontent/1-s2.0-S1755436519300337
https://dx.doi.org/10.1016/j.epidem.2019.100362
https://www.ncbi.nlm.nih.gov/pubmed/31561884
https://www.proquest.com/docview/2299141807
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpeimU0KaPPNpFhV4VVtbD8iGEpjSkgfTSLuxNyNa40CZOYm8gueS3Z8aytz1kSXsxGDSyPZrxfNK8GPuIVggKU4LISpgKbXIliiArUeHwqQVbloEShU-_2eOZPpmb-Robe7YODOwe3NpRP6lZe7Z3c3V7gAq__ydWC_puqhSoVZDbv_8pP0XblJOqnuqlX8Fq2TdMRptphFbWjMl0K2ZZZaxWgdHeKB29YBsDmuSf0vK_ZGvQbLLn6SiOpwyjV6xvO4xixsNQgISfhwgcQnfL6RiWE9IMLW_hZwqKbXBk5L-hbfBdXrPZ0Zcfn4_F0DVBVEbahVC2riTCqlzHOgtKB-NyXdcBXEWFdHBltA3OFRJMTZm5YGIsEASVoZYuOqnesPXmooEtxnE3VQZdVSrLow4yhsLU5LhVOgYJmd1mamSPr4aS4tTZ4syPsWO_fGKqJ6b6xNRtJpZUl6mkxiPjzch5P6aL4g_Oowg8Qpc_RAfdKGRe-i7zU_-dxIGkAcEs9bbL_6YcgEgCGP_wzA-jaHjUU3K-hAYurjufod2XWropzv42yczy6xVuoqVzeuc_ObPLntFdiq55x9YX7TW8R4y0KCfsyd6dnPQnDHj9Oj-c9IpwD4AwDw0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoqEKqAt0AJ1pV6tXcePOEdAoKUFLgVpb5YTTypoCWizHPrvOxMnqBUgUK_JTJxMxjOf7Xkw9gW9EBSmBJGVMBba5EoUQVaiQvKxBVuWgRKFT8_s5EJ_nZrpAjsYcmEorLK3_cmmd9a6vzLqpTm6vbwcfUfHZ7SyBEGoI1m-yF4hGsipf8PxdH8wx1bLrkcyUQsiH_LnuiAv6NqwUoRXQfECymZP-aen8Gfnh45W2ZseQPK99I5rbAGadbaSdt94Sip6y7pOw6hZPPQ1R_h1iMAhtL857bxyApdhxmfwI8XBNkgZ-U-YNfgu79jF0eH5wUT0jRJEZaSdC2XrSiKSynWss6B0MC7XdR3AVVQ7B3-GtsG5QoKpKRkXTIwF4p4y1NJFJ9V7ttTcNLDJOC6gyqCrSmV51EHGUJiazmqVjkFCZreYGsTjq76KODWz-OWHcLErn4TqSag-CXWLiXuu21RF4xl6M0jeDxmiaNM8mvln-PLH-KDtJ2brpW8zP_YPlOdvzn_07wVjfh5Uw-PUpPOW0MDNXeszdPVSSzfGp28knbn_eoXrZumc_vDf435iryfnpyf-5Pjs20e2THdSmM02W5rP7mAHwdK83O0mwx91Fw6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+analysis+made+easy+with+linear+regression+and+kernels&rft.jtitle=Epidemics&rft.au=Milton%2C+Philip&rft.au=Coupland%2C+Helen&rft.au=Giorgi%2C+Emanuele&rft.au=Bhatt%2C+Samir&rft.date=2019-12-01&rft.issn=1755-4365&rft.volume=29&rft.spage=100362&rft_id=info:doi/10.1016%2Fj.epidem.2019.100362&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epidem_2019_100362
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F17554365%2FS1755436519X00055%2Fcov150h.gif