Liquid crystal display and organic light-emitting diode display: present status and future perspectives
Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, inc...
Saved in:
Published in | Light, science & applications Vol. 7; no. 3; p. 17168 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2018
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions.
Flat-panel displays: LCDs versus OLEDs
The two leading flat-panel display technologies—liquid crystal displays and organic light-emitting diode displays—have been compared. Liquid crystal displays (LCDs) currently have the upper hand, but organic light-emitting diode (OLED) technology is rapidly catching up. Shin-Tson Wu of the University of Central Florida and colleagues have documented recent material and design advances in these two technologies and analyzed display performance with respect to six key metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. They concluded that LCDs are superior in terms of cost, lifetime and brightness, whereas OLED displays offer better black states, flexibility, and faster response times. The technologies have similar ambient contrast ratio, image motion blur, color gamut, viewing angle and power consumption. Emerging applications include virtual and augmented reality wearable displays as well as displays with high dynamic ranges. |
---|---|
AbstractList | Recently, 'Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?' has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions. Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions. Flat-panel displays: LCDs versus OLEDs The two leading flat-panel display technologies—liquid crystal displays and organic light-emitting diode displays—have been compared. Liquid crystal displays (LCDs) currently have the upper hand, but organic light-emitting diode (OLED) technology is rapidly catching up. Shin-Tson Wu of the University of Central Florida and colleagues have documented recent material and design advances in these two technologies and analyzed display performance with respect to six key metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. They concluded that LCDs are superior in terms of cost, lifetime and brightness, whereas OLED displays offer better black states, flexibility, and faster response times. The technologies have similar ambient contrast ratio, image motion blur, color gamut, viewing angle and power consumption. Emerging applications include virtual and augmented reality wearable displays as well as displays with high dynamic ranges. Recently, 'Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?' has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions.Recently, 'Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?' has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions. |
Author | Chen, Stanley Lee, Jiun-Haw Wu, Shin-Tson Lin, Bo-Yen Chen, Hai-Wei |
Author_xml | – sequence: 1 givenname: Hai-Wei surname: Chen fullname: Chen, Hai-Wei organization: College of Optics and Photonics, University of Central Florida – sequence: 2 givenname: Jiun-Haw surname: Lee fullname: Lee, Jiun-Haw organization: Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, Taiwan University – sequence: 3 givenname: Bo-Yen surname: Lin fullname: Lin, Bo-Yen organization: Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, Taiwan University – sequence: 4 givenname: Stanley surname: Chen fullname: Chen, Stanley organization: Nichem Fine Technology Co. Ltd – sequence: 5 givenname: Shin-Tson surname: Wu fullname: Wu, Shin-Tson email: swu@creol.ucf.edu organization: College of Optics and Photonics, University of Central Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30839536$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtP3DAUhS1ExWNg13UVqRsWZPAjcZwuKiEEbaWR2LRry-PcBCOPHWwHaf59PQzTDqj1xpb9naNzfU7RofMOEPpI8JxgJq5sVHOKSTMnXBygE4qrpmxqJg73zsfoPMZHnFdbESyaI3TMsGBtzfgJGhbmaTJdocM6JmWLzsTRqnWhXFf4MChndGHN8JBKWJmUjBsy4jvYgV-KMUAEl4osT1N8EfZTmgIUI4Q4gk7mGeIZ-tArG-H8dZ-hX3e3P2--l4v7bz9urhelrglPJaO1WtZaQNdzpmkFDQfWUpWHwa2iS0qh010v8iVUFacAlNBe94QKQYVu2Qx93fqO03KV2ZwsKCvHYFYqrKVXRr59ceZBDv5ZcswxrjYGF68GwT9NEJNcmajBWuXAT1FSIkTdEt7wjH5-hz76Kbg8ntx0ghlhjcjUp_1Ef6LsOsgA3QI6-BgD9FKb_JfGbwIaKwmWm65l7vrFV-aus-jynWjn-x-83OIxY26A8DfqP_nftfe7zw |
CitedBy_id | crossref_primary_10_1063_5_0057325 crossref_primary_10_1080_00087041_2022_2055938 crossref_primary_10_1016_j_jallcom_2021_161610 crossref_primary_10_1109_JPHOT_2024_3357063 crossref_primary_10_1007_s10904_018_1047_9 crossref_primary_10_1080_1358314X_2019_1625138 crossref_primary_10_1002_sdtp_15348 crossref_primary_10_1038_s41598_022_14792_9 crossref_primary_10_1038_s41565_022_01197_y crossref_primary_10_1002_macp_202300191 crossref_primary_10_3390_molecules29245819 crossref_primary_10_1016_j_molstruc_2022_133062 crossref_primary_10_1007_s43630_024_00598_3 crossref_primary_10_1088_1361_648X_ac630b crossref_primary_10_1039_D3TC00641G crossref_primary_10_1002_sdtp_14241 crossref_primary_10_1115_1_4062383 crossref_primary_10_1002_sdtp_12189 crossref_primary_10_1002_adfm_202100151 crossref_primary_10_56767_jfpe_2023_2_1_107 crossref_primary_10_1016_j_cej_2022_135991 crossref_primary_10_1109_TED_2022_3231228 crossref_primary_10_1016_j_comptc_2023_114277 crossref_primary_10_1063_5_0193161 crossref_primary_10_3390_mi12121514 crossref_primary_10_1039_C9TC05584C crossref_primary_10_3390_polym13060935 crossref_primary_10_1021_acsaelm_4c01514 crossref_primary_10_1038_s41377_024_01547_6 crossref_primary_10_1126_sciadv_abp8738 crossref_primary_10_1016_j_displa_2024_102809 crossref_primary_10_1364_OME_478280 crossref_primary_10_4028_p_W1klkk crossref_primary_10_1016_j_matpr_2020_08_039 crossref_primary_10_1002_anie_202301225 crossref_primary_10_1109_LED_2024_3486568 crossref_primary_10_1021_acs_organomet_0c00506 crossref_primary_10_1002_slct_201901551 crossref_primary_10_1063_5_0058657 crossref_primary_10_1038_s41377_020_0341_9 crossref_primary_10_1016_j_cplett_2022_140207 crossref_primary_10_1088_2053_1591_aaf3ef crossref_primary_10_1002_sdtp_17862 crossref_primary_10_1007_s10854_024_12606_4 crossref_primary_10_1007_s11801_021_0005_x crossref_primary_10_1080_02678292_2023_2275745 crossref_primary_10_1002_qua_27454 crossref_primary_10_1016_j_saa_2024_125045 crossref_primary_10_3390_mi15030328 crossref_primary_10_1016_j_molliq_2024_126642 crossref_primary_10_1364_OE_445713 crossref_primary_10_1007_s11051_022_05590_5 crossref_primary_10_1093_nsr_nwac120 crossref_primary_10_1021_acs_chemmater_1c00862 crossref_primary_10_3390_cryst10090765 crossref_primary_10_1039_D2TA09630G crossref_primary_10_1002_adfm_201909102 crossref_primary_10_1002_aisy_202100115 crossref_primary_10_1080_02678292_2022_2144652 crossref_primary_10_1016_j_procir_2020_01_146 crossref_primary_10_1021_acsomega_3c05707 crossref_primary_10_1063_5_0207506 crossref_primary_10_1002_adom_202102264 crossref_primary_10_1021_acsaelm_3c00092 crossref_primary_10_1002_sdtp_16400 crossref_primary_10_1002_sdtp_13252 crossref_primary_10_1002_adfm_201901988 crossref_primary_10_48175_IJARSCT_17539 crossref_primary_10_1002_adfm_202106716 crossref_primary_10_1109_TED_2021_3079232 crossref_primary_10_1002_adma_202204947 crossref_primary_10_1166_jno_2024_3615 crossref_primary_10_1016_j_surfcoat_2018_11_041 crossref_primary_10_1038_s41377_022_00851_3 crossref_primary_10_1007_s12043_024_02835_x crossref_primary_10_1021_acsaom_3c00282 crossref_primary_10_1002_sdtp_16528 crossref_primary_10_1080_02678292_2018_1485976 crossref_primary_10_1002_adom_201901145 crossref_primary_10_1039_D0SM01371D crossref_primary_10_1039_D4DT00191E crossref_primary_10_3390_polym12091929 crossref_primary_10_1088_1361_6641_ac3b3b crossref_primary_10_1103_PhysRevE_105_024706 crossref_primary_10_1016_j_cej_2025_160656 crossref_primary_10_1364_OL_544097 crossref_primary_10_1002_adom_202400250 crossref_primary_10_1364_OE_473275 crossref_primary_10_1002_adfm_202410139 crossref_primary_10_1021_acsphotonics_0c01693 crossref_primary_10_1109_TED_2024_3470769 crossref_primary_10_1021_acsaelm_2c00432 crossref_primary_10_1016_j_displa_2023_102406 crossref_primary_10_3390_nano10030403 crossref_primary_10_1016_j_orgel_2018_05_016 crossref_primary_10_1002_adom_201902118 crossref_primary_10_1002_adfm_202002916 crossref_primary_10_1021_acsphotonics_2c00590 crossref_primary_10_1038_s41598_021_02293_0 crossref_primary_10_1021_acs_jced_9b00432 crossref_primary_10_1016_j_eurpolymj_2023_111855 crossref_primary_10_1021_acs_energyfuels_1c02156 crossref_primary_10_1080_02678292_2019_1633584 crossref_primary_10_1021_acsanm_3c05434 crossref_primary_10_1080_02678292_2018_1512171 crossref_primary_10_1039_C9TC00204A crossref_primary_10_1002_adom_202300112 crossref_primary_10_1088_1361_6641_ac1055 crossref_primary_10_1364_AO_384323 crossref_primary_10_3390_cryst13020241 crossref_primary_10_1002_adfm_202008332 crossref_primary_10_1080_15980316_2023_2248403 crossref_primary_10_1080_10584587_2019_1674971 crossref_primary_10_1039_D2CP03706H crossref_primary_10_1364_AO_58_002567 crossref_primary_10_1016_j_molliq_2022_119843 crossref_primary_10_1039_D2TC00028H crossref_primary_10_1002_sdtp_13077 crossref_primary_10_1016_j_molstruc_2023_135833 crossref_primary_10_1038_s41928_022_00828_5 crossref_primary_10_1016_j_molliq_2020_114827 crossref_primary_10_1021_acs_chemmater_9b01650 crossref_primary_10_1088_1361_6552_acf829 crossref_primary_10_1364_OE_382220 crossref_primary_10_1360_SSPMA_2021_0319 crossref_primary_10_1111_jace_18854 crossref_primary_10_1063_5_0047854 crossref_primary_10_1039_D2TC01106A crossref_primary_10_1007_s11664_020_08570_4 crossref_primary_10_3390_cryst13091384 crossref_primary_10_1016_j_jmsy_2024_12_016 crossref_primary_10_1126_sciadv_aay7679 crossref_primary_10_1109_TNANO_2019_2928689 crossref_primary_10_1007_s40843_023_2595_8 crossref_primary_10_2494_photopolymer_32_665 crossref_primary_10_1364_OL_493700 crossref_primary_10_1016_j_jlumin_2020_117617 crossref_primary_10_1016_j_molstruc_2024_141207 crossref_primary_10_1039_D3NR05842E crossref_primary_10_1186_s43593_021_00003_x crossref_primary_10_1002_adma_201804850 crossref_primary_10_1002_sdtp_17423 crossref_primary_10_1021_acsami_1c08641 crossref_primary_10_1080_02678292_2022_2109771 crossref_primary_10_1364_AO_58_009178 crossref_primary_10_1039_D0TC01995J crossref_primary_10_1134_S1061934824700266 crossref_primary_10_1039_D4QO01577K crossref_primary_10_1039_D1TC03130A crossref_primary_10_1021_jacs_4c05245 crossref_primary_10_1088_1361_6463_ad6ce3 crossref_primary_10_1088_1361_6463_abd9a3 crossref_primary_10_1039_D3TC00872J crossref_primary_10_1002_adts_202200633 crossref_primary_10_1016_j_dyepig_2021_109398 crossref_primary_10_1002_adom_202301347 crossref_primary_10_35848_1882_0786_ac44cc crossref_primary_10_1021_acssuschemeng_1c04909 crossref_primary_10_1002_jccs_202200061 crossref_primary_10_1080_15421406_2020_1804285 crossref_primary_10_4108_ew_4196 crossref_primary_10_3390_cryst9020059 crossref_primary_10_1007_s00170_021_08179_9 crossref_primary_10_1364_AO_533761 crossref_primary_10_1016_j_synthmet_2020_116352 crossref_primary_10_1002_smm2_1059 crossref_primary_10_1039_D0TC01644F crossref_primary_10_1115_1_4050202 crossref_primary_10_1038_s41378_023_00609_w crossref_primary_10_1088_1361_6528_ab3d4c crossref_primary_10_1016_j_jallcom_2019_07_203 crossref_primary_10_1016_j_xcrp_2023_101275 crossref_primary_10_1039_D3TC00861D crossref_primary_10_1109_JPHOT_2020_3002554 crossref_primary_10_1364_OE_27_034907 crossref_primary_10_1039_D2NA00765G crossref_primary_10_1016_j_mtphys_2021_100352 crossref_primary_10_1109_JSTQE_2024_3375929 crossref_primary_10_1002_adom_202001298 crossref_primary_10_1117_1_JOM_4_2_020901 crossref_primary_10_1021_acsami_0c00267 crossref_primary_10_1016_j_molliq_2020_113955 crossref_primary_10_3390_polym12040739 crossref_primary_10_1080_10584587_2019_1674988 crossref_primary_10_3390_polym13030376 crossref_primary_10_1021_acs_jpcc_9b06013 crossref_primary_10_1088_1757_899X_1107_1_012179 crossref_primary_10_1017_jfm_2021_772 crossref_primary_10_1021_acsaom_2c00140 crossref_primary_10_1088_2631_7990_ad2e14 crossref_primary_10_1080_02678292_2022_2114027 crossref_primary_10_1016_j_jlumin_2022_118921 crossref_primary_10_1002_admt_202300052 crossref_primary_10_1149_2_0302001JSS crossref_primary_10_1021_acs_jpcc_0c08430 crossref_primary_10_1002_adom_202301364 crossref_primary_10_29130_dubited_1091499 crossref_primary_10_1002_lpor_202400088 crossref_primary_10_1021_acsphotonics_8b00540 crossref_primary_10_1515_cti_2020_0020 crossref_primary_10_1002_sdtp_17011 crossref_primary_10_1016_j_jcis_2019_12_050 crossref_primary_10_1021_acsami_4c05958 crossref_primary_10_1016_j_ccr_2022_214441 crossref_primary_10_1080_21680396_2024_2401786 crossref_primary_10_1016_j_molliq_2019_111880 crossref_primary_10_1002_cptc_201900230 crossref_primary_10_1021_acsapm_1c01300 crossref_primary_10_1021_acsphotonics_2c00285 crossref_primary_10_1109_JPHOT_2021_3068746 crossref_primary_10_1016_j_jlumin_2021_118650 crossref_primary_10_3390_nano12081342 crossref_primary_10_3390_ma12162563 crossref_primary_10_1063_1_5058686 crossref_primary_10_1016_j_dyepig_2020_108770 crossref_primary_10_1016_j_orgel_2020_105822 crossref_primary_10_7498_aps_72_20230837 crossref_primary_10_1002_sdtp_17360 crossref_primary_10_1002_adpr_202200143 crossref_primary_10_1002_adom_201901525 crossref_primary_10_1016_j_jmsy_2020_01_008 crossref_primary_10_1002_adma_202306249 crossref_primary_10_1002_adfm_202402124 crossref_primary_10_1364_OE_26_016572 crossref_primary_10_1186_s11671_021_03642_8 crossref_primary_10_1002_aelm_201900920 crossref_primary_10_1021_acs_estlett_2c00469 crossref_primary_10_1364_OE_421346 crossref_primary_10_1016_j_dyepig_2019_107990 crossref_primary_10_1038_s41377_024_01484_4 crossref_primary_10_1021_acs_jpclett_2c01917 crossref_primary_10_1088_1361_6463_ab6d96 crossref_primary_10_1002_aisy_202300206 crossref_primary_10_1021_acsaelm_3c01586 crossref_primary_10_1103_PhysRevResearch_5_033210 crossref_primary_10_1080_02678292_2019_1627434 crossref_primary_10_1177_18479804221132983 crossref_primary_10_1002_adma_202307330 crossref_primary_10_1016_j_molstruc_2024_138254 crossref_primary_10_3389_fchem_2022_857551 crossref_primary_10_1039_D4CP00304G crossref_primary_10_1186_s11671_019_3090_z crossref_primary_10_1021_acsami_1c07647 crossref_primary_10_1088_1361_6528_ac59e8 crossref_primary_10_1002_admt_202001298 crossref_primary_10_1016_j_jlumin_2021_118670 crossref_primary_10_1002_adom_201901421 crossref_primary_10_1002_adom_202001642 crossref_primary_10_1016_j_molliq_2020_112944 crossref_primary_10_1002_adom_201901429 crossref_primary_10_1039_D3TC00417A crossref_primary_10_1080_02678292_2018_1543781 crossref_primary_10_1016_j_optcom_2019_124921 crossref_primary_10_1088_1367_2630_ac61d2 crossref_primary_10_1088_2515_7647_abf02e crossref_primary_10_35848_1882_0786_ab6ed6 crossref_primary_10_1016_j_cej_2023_145867 crossref_primary_10_1002_adma_202309779 crossref_primary_10_1080_02678292_2023_2289138 crossref_primary_10_1002_sdtp_13921 crossref_primary_10_1002_jsid_1058 crossref_primary_10_1080_02678292_2023_2259843 crossref_primary_10_1080_02678292_2019_1613693 crossref_primary_10_1364_OE_25_033643 crossref_primary_10_1364_OE_400154 crossref_primary_10_1039_D4SC00460D crossref_primary_10_1016_j_dyepig_2022_110488 crossref_primary_10_1002_adma_202309891 crossref_primary_10_1002_ange_202301225 crossref_primary_10_1039_C8QM00377G crossref_primary_10_1039_D2TC04397A crossref_primary_10_1088_1361_6641_ab285d crossref_primary_10_1002_chem_202102136 crossref_primary_10_1007_s11082_020_02417_2 crossref_primary_10_1364_AO_418547 crossref_primary_10_3390_ijms22073424 crossref_primary_10_1007_s11431_023_2505_4 crossref_primary_10_1021_acsaenm_4c00196 crossref_primary_10_1080_02678292_2019_1662503 crossref_primary_10_1039_C8RA02858C crossref_primary_10_1039_D2NJ03977J crossref_primary_10_1002_sdtp_18008 crossref_primary_10_1364_PRJ_7_000416 crossref_primary_10_1002_sdtp_18005 crossref_primary_10_1021_acs_jpclett_3c00610 crossref_primary_10_1016_j_apsusc_2021_149427 crossref_primary_10_1038_s41377_020_00455_9 crossref_primary_10_1007_s11664_021_09338_0 crossref_primary_10_1039_D0TC05099G crossref_primary_10_1021_acsami_3c13038 crossref_primary_10_3390_bios12040205 crossref_primary_10_3390_cryst10100906 crossref_primary_10_3952_physics_v60i2_4225 crossref_primary_10_1016_j_apsusc_2021_149794 crossref_primary_10_1016_j_carbpol_2022_119915 crossref_primary_10_1002_advs_202303504 crossref_primary_10_1039_D2NR01115H crossref_primary_10_1039_D4MH01561D crossref_primary_10_1557_mrs_2020_194 crossref_primary_10_3390_en14196220 crossref_primary_10_1038_s41377_023_01333_w crossref_primary_10_1088_2631_7990_ace66a crossref_primary_10_1364_OME_444114 crossref_primary_10_1021_acs_chemrev_1c00581 crossref_primary_10_1038_s41598_024_83294_7 crossref_primary_10_1039_D4SC00389F crossref_primary_10_1364_OE_25_033629 crossref_primary_10_1016_j_dyepig_2019_03_017 crossref_primary_10_3390_nano11092395 crossref_primary_10_1016_j_molstruc_2024_138338 crossref_primary_10_1016_j_ijleo_2021_168303 crossref_primary_10_1080_10447318_2023_2212218 crossref_primary_10_1063_1_5095999 crossref_primary_10_1080_02678292_2024_2361294 crossref_primary_10_1002_asia_202100391 crossref_primary_10_1111_cts_12933 crossref_primary_10_1002_pssa_201900426 crossref_primary_10_1063_5_0201680 crossref_primary_10_1080_02678292_2024_2402528 crossref_primary_10_34198_ejcs_12125_047064 crossref_primary_10_1016_j_optmat_2024_115731 crossref_primary_10_1016_j_jallcom_2020_157697 crossref_primary_10_1016_j_orgel_2020_105733 crossref_primary_10_3390_technologies13010020 crossref_primary_10_1007_s40123_023_00675_3 crossref_primary_10_1364_OSAC_391433 crossref_primary_10_1016_j_molliq_2024_125926 crossref_primary_10_1038_s41598_020_66946_2 crossref_primary_10_1039_D4TC00382A crossref_primary_10_1016_j_orgel_2019_06_026 crossref_primary_10_3390_coatings14101294 crossref_primary_10_1002_admi_202101919 crossref_primary_10_1021_acs_organomet_8b00293 crossref_primary_10_1364_OE_459752 crossref_primary_10_3390_app8091557 crossref_primary_10_3390_micro3010013 crossref_primary_10_1021_jacs_0c07198 crossref_primary_10_1364_OE_518534 crossref_primary_10_1002_pssb_201900677 crossref_primary_10_1016_j_physrep_2023_03_003 crossref_primary_10_1016_j_cma_2024_117190 crossref_primary_10_1039_D2MA00719C crossref_primary_10_3390_s21144776 crossref_primary_10_1109_ACCESS_2020_3029127 crossref_primary_10_23939_istcmtm2025_01_055 crossref_primary_10_1016_j_solmat_2019_110210 crossref_primary_10_1364_OE_487198 crossref_primary_10_1002_pat_5868 crossref_primary_10_1103_PhysRevB_106_165429 crossref_primary_10_1364_OE_27_0A1014 crossref_primary_10_3389_fchem_2021_800371 crossref_primary_10_3390_mi15111302 crossref_primary_10_1016_j_cej_2025_161073 crossref_primary_10_1002_adom_202401922 crossref_primary_10_1016_j_molstruc_2022_132891 crossref_primary_10_1021_acs_chemmater_3c02579 crossref_primary_10_1021_acsami_9b01476 crossref_primary_10_1039_D1QM01660A crossref_primary_10_1016_j_optlastec_2024_111710 crossref_primary_10_1039_D3TC02681G crossref_primary_10_1002_jsid_1011 crossref_primary_10_1021_acsapm_4c02638 crossref_primary_10_1038_s41928_023_01095_8 crossref_primary_10_1021_acs_chemmater_2c01952 crossref_primary_10_1109_JPHOT_2020_2977218 crossref_primary_10_1063_5_0208172 crossref_primary_10_1088_1361_6552_ac3f71 crossref_primary_10_1364_OE_461624 crossref_primary_10_1007_s12274_022_4338_y crossref_primary_10_1002_poc_4386 crossref_primary_10_1016_j_measurement_2018_11_055 crossref_primary_10_1038_s41377_024_01608_w crossref_primary_10_1080_02678292_2019_1581290 crossref_primary_10_1038_s41598_019_50382_y crossref_primary_10_3390_en13215602 crossref_primary_10_1364_OE_438972 crossref_primary_10_3390_s22114082 crossref_primary_10_1111_mice_12889 crossref_primary_10_3389_fchem_2020_00574 crossref_primary_10_1002_sdtp_12984 crossref_primary_10_1002_advs_202204469 crossref_primary_10_1063_5_0236513 crossref_primary_10_3390_polym12010217 crossref_primary_10_1039_D0TC02379E crossref_primary_10_1016_j_mtcomm_2024_109831 crossref_primary_10_1039_D4NJ01844C crossref_primary_10_1016_j_dyepig_2020_108259 crossref_primary_10_1002_adom_202101521 crossref_primary_10_1103_PhysRevE_105_064701 crossref_primary_10_1007_s40820_021_00745_w crossref_primary_10_1021_acs_joc_1c01626 crossref_primary_10_1002_agt2_473 crossref_primary_10_1080_15421406_2024_2353971 crossref_primary_10_1080_02678292_2020_1765262 crossref_primary_10_1126_sciadv_abe4458 crossref_primary_10_1063_5_0025032 crossref_primary_10_1039_D4TC04832F crossref_primary_10_1109_JEDS_2019_2899646 crossref_primary_10_1088_1361_6463_ac0925 crossref_primary_10_1364_OSAC_441739 crossref_primary_10_1016_j_cej_2022_136292 crossref_primary_10_1016_j_jallcom_2023_172972 crossref_primary_10_1016_j_jre_2019_10_005 crossref_primary_10_1021_acs_est_3c08961 crossref_primary_10_1016_j_trechm_2019_01_003 crossref_primary_10_1364_OE_400687 crossref_primary_10_3390_ma17194810 crossref_primary_10_1002_jsid_2013 crossref_primary_10_1016_j_jhazmat_2024_135894 crossref_primary_10_1016_j_isci_2020_101397 crossref_primary_10_1039_D4TC01338G crossref_primary_10_1088_2058_8585_ac32aa crossref_primary_10_1080_02678292_2022_2070784 crossref_primary_10_1088_2058_8585_aca166 crossref_primary_10_1186_s11671_021_03611_1 crossref_primary_10_1063_5_0219299 crossref_primary_10_1021_acs_chemrev_1c00011 crossref_primary_10_1016_j_molstruc_2024_139515 crossref_primary_10_1002_jsid_1168 crossref_primary_10_1002_adfm_202408855 crossref_primary_10_1063_5_0084137 crossref_primary_10_1364_AOP_468066 crossref_primary_10_1007_s10854_021_06111_1 crossref_primary_10_1016_j_buildenv_2025_112859 crossref_primary_10_1039_D1SC00520K crossref_primary_10_1038_s41598_023_29174_y crossref_primary_10_1002_lpor_202100392 crossref_primary_10_1002_inf2_12123 crossref_primary_10_1016_j_mattod_2020_04_032 crossref_primary_10_1016_j_mattod_2023_10_001 crossref_primary_10_1016_j_addma_2022_102861 crossref_primary_10_1088_2058_8585_acf722 crossref_primary_10_1002_sdtp_18030 crossref_primary_10_1039_D1TC05059A crossref_primary_10_1002_adma_201903665 crossref_primary_10_1007_s10633_022_09897_5 crossref_primary_10_1002_sdtp_14972 crossref_primary_10_1016_j_jphotochem_2022_114217 crossref_primary_10_1039_D0FD00032A crossref_primary_10_1063_5_0097421 crossref_primary_10_1016_j_rinp_2025_108130 crossref_primary_10_1039_D0SC06838A crossref_primary_10_1080_02678292_2021_1916112 crossref_primary_10_1016_j_isci_2021_102545 crossref_primary_10_1364_OE_27_033378 crossref_primary_10_1016_j_orgel_2019_105577 crossref_primary_10_1080_02678292_2024_2304598 crossref_primary_10_1016_j_cclet_2024_109809 crossref_primary_10_1063_5_0054923 crossref_primary_10_1364_OE_471588 crossref_primary_10_1039_D3NJ01633A crossref_primary_10_1109_JPHOT_2019_2911308 crossref_primary_10_1007_s10854_021_07271_w crossref_primary_10_1103_PhysRevResearch_4_L022011 crossref_primary_10_3390_polym12102243 crossref_primary_10_1007_s00289_021_03710_0 crossref_primary_10_1002_sdtp_13752 crossref_primary_10_1002_adfm_201808075 crossref_primary_10_1016_j_rinp_2025_108122 crossref_primary_10_1080_02678292_2020_1768602 crossref_primary_10_1080_02678292_2021_1934743 crossref_primary_10_1021_acs_chemmater_3c02425 crossref_primary_10_3390_cryst11020107 crossref_primary_10_1364_OE_27_011472 crossref_primary_10_3390_polym14030585 crossref_primary_10_1002_adfm_202213312 crossref_primary_10_1007_s11051_021_05174_9 crossref_primary_10_1016_j_nxnano_2024_100051 crossref_primary_10_35848_1347_4065_abba0f crossref_primary_10_1016_j_orgel_2020_105900 crossref_primary_10_1016_j_dyepig_2020_108697 crossref_primary_10_1080_02678292_2022_2145379 crossref_primary_10_1016_j_nanoen_2019_104029 crossref_primary_10_1016_j_scitotenv_2024_172459 crossref_primary_10_1039_D2CP00592A crossref_primary_10_1007_s10854_020_04450_z crossref_primary_10_1021_acs_nanolett_1c03817 crossref_primary_10_1109_TIM_2022_3192293 crossref_primary_10_1364_OL_505221 crossref_primary_10_1021_acsaelm_1c00078 crossref_primary_10_1021_acs_chemmater_3c01784 crossref_primary_10_1039_D1DT04286F crossref_primary_10_7567_1347_4065_ab1e70 crossref_primary_10_1080_02678292_2021_1873439 crossref_primary_10_1002_sdtp_15926 crossref_primary_10_1002_adma_202207454 crossref_primary_10_1021_acsaelm_4c01241 crossref_primary_10_1080_02678292_2023_2210551 crossref_primary_10_1103_PhysRevB_107_115201 crossref_primary_10_1021_jacs_0c03331 crossref_primary_10_1364_OE_469132 crossref_primary_10_1002_advs_202414317 crossref_primary_10_1002_aelm_202201264 crossref_primary_10_3390_app12031239 crossref_primary_10_1016_j_colsurfa_2024_135854 crossref_primary_10_1021_acs_macromol_4c02429 crossref_primary_10_1109_TIE_2022_3208593 crossref_primary_10_1021_acs_jced_1c00163 crossref_primary_10_1002_adfm_202303727 crossref_primary_10_1080_02678292_2018_1540067 crossref_primary_10_1515_nanoph_2021_0434 crossref_primary_10_34133_2020_6587102 crossref_primary_10_1038_s41598_019_48056_w crossref_primary_10_1016_j_aca_2025_343821 crossref_primary_10_1088_2058_8585_adb595 crossref_primary_10_1007_s10853_021_06602_w crossref_primary_10_1038_s41528_024_00332_0 crossref_primary_10_3390_cryst10060494 crossref_primary_10_3846_aviation_2024_22673 crossref_primary_10_1038_s41598_023_28162_6 crossref_primary_10_1007_s10854_020_03060_z crossref_primary_10_1039_D2QM00401A crossref_primary_10_1063_5_0180877 crossref_primary_10_1002_adma_202401533 crossref_primary_10_1016_j_apsusc_2020_148466 crossref_primary_10_1002_lpor_202000133 crossref_primary_10_1088_2632_959X_abe652 crossref_primary_10_1016_j_molliq_2019_111338 crossref_primary_10_1038_s41524_022_00742_6 crossref_primary_10_1080_15980316_2021_1999338 crossref_primary_10_1039_D0NR06721K crossref_primary_10_1063_1_5120848 crossref_primary_10_1016_j_molliq_2019_04_135 crossref_primary_10_1002_admt_202200632 crossref_primary_10_1016_j_tsf_2022_139209 crossref_primary_10_1364_OL_476967 crossref_primary_10_1002_smtd_202300537 crossref_primary_10_1002_adfm_202211602 crossref_primary_10_1073_pnas_2023436118 crossref_primary_10_1109_JPHOT_2018_2872035 crossref_primary_10_1007_s11082_020_02598_w crossref_primary_10_1016_j_optmat_2024_115282 crossref_primary_10_3390_photonics8100430 crossref_primary_10_1038_s41377_023_01089_3 crossref_primary_10_1002_sdtp_15628 crossref_primary_10_1021_acsaelm_0c01098 crossref_primary_10_1016_j_synthmet_2020_116335 crossref_primary_10_3390_mi15020263 crossref_primary_10_1016_j_dyepig_2021_109573 crossref_primary_10_1080_02678292_2020_1735546 crossref_primary_10_1109_ACCESS_2019_2954002 crossref_primary_10_1109_TED_2021_3067860 crossref_primary_10_1002_adfm_201807606 crossref_primary_10_1155_2022_8290106 crossref_primary_10_1016_j_orgel_2019_105494 crossref_primary_10_1002_adfm_202001224 crossref_primary_10_1016_j_comptc_2023_114426 crossref_primary_10_1080_15980316_2024_2409664 crossref_primary_10_3390_cryst10050383 crossref_primary_10_1515_revic_2024_0044 crossref_primary_10_3390_nano12061032 crossref_primary_10_1039_D0RA04652C crossref_primary_10_1002_sdtp_15611 crossref_primary_10_1126_sciadv_abl8798 crossref_primary_10_1021_acs_jpcc_2c01679 crossref_primary_10_2183_pjab_100_022 crossref_primary_10_3390_cryst12020213 crossref_primary_10_1002_sdtp_12346 crossref_primary_10_1021_acs_jpclett_1c02154 crossref_primary_10_1109_TED_2024_3478192 crossref_primary_10_1002_sdtp_17913 crossref_primary_10_1002_jsid_760 crossref_primary_10_1002_jsid_996 crossref_primary_10_3390_ijms23020876 crossref_primary_10_1063_1_5116412 crossref_primary_10_1364_OE_446185 crossref_primary_10_1002_mame_202100435 crossref_primary_10_1109_TED_2023_3338172 crossref_primary_10_1007_s11664_024_11015_x crossref_primary_10_1007_s13391_021_00290_z crossref_primary_10_1039_D2TC00198E crossref_primary_10_1080_0144929X_2023_2184181 crossref_primary_10_1002_adfm_202308828 crossref_primary_10_1002_app_48033 crossref_primary_10_1016_j_jcis_2021_04_139 crossref_primary_10_1039_C8TC05013A crossref_primary_10_1039_D0TC00085J crossref_primary_10_3390_photonics11060578 crossref_primary_10_1016_j_eurpolymj_2023_111873 crossref_primary_10_1038_s41377_020_0268_1 crossref_primary_10_1080_02678292_2024_2406881 crossref_primary_10_1126_sciadv_abc2709 crossref_primary_10_1021_acs_chemrev_2c00192 crossref_primary_10_1002_sdtp_12214 crossref_primary_10_1002_aelm_201900247 crossref_primary_10_1364_OE_382691 crossref_primary_10_1088_1681_7575_acbd9e crossref_primary_10_1021_acsami_2c00847 crossref_primary_10_1364_OSAC_2_002539 crossref_primary_10_1364_OL_439803 crossref_primary_10_1039_D4TC01192A crossref_primary_10_1038_s41428_023_00805_5 crossref_primary_10_1016_j_synthmet_2019_116108 crossref_primary_10_1002_lpor_202100427 crossref_primary_10_1007_s10965_022_03262_5 crossref_primary_10_1364_OE_418869 crossref_primary_10_1002_adom_202100489 crossref_primary_10_1016_j_scib_2024_05_042 crossref_primary_10_1016_j_dyepig_2025_112752 crossref_primary_10_1109_ACCESS_2021_3056050 crossref_primary_10_1002_sdtp_15832 crossref_primary_10_1016_j_jcis_2022_10_013 crossref_primary_10_1080_15980316_2023_2254509 crossref_primary_10_1039_C8DT04882G crossref_primary_10_3788_COL202422_053301 crossref_primary_10_1038_s44287_024_00017_w crossref_primary_10_1002_jsid_778 crossref_primary_10_1080_02678292_2019_1635719 crossref_primary_10_1109_JPHOT_2019_2947402 crossref_primary_10_1021_acs_macromol_0c02322 crossref_primary_10_1142_S0217984919502841 crossref_primary_10_1209_0295_5075_128_66001 crossref_primary_10_1016_j_cej_2020_127161 crossref_primary_10_1364_OE_414033 crossref_primary_10_1038_s41467_024_52358_7 crossref_primary_10_1002_adma_202006801 crossref_primary_10_1002_lpor_202400678 crossref_primary_10_1002_sdtp_16752 crossref_primary_10_1063_5_0136551 crossref_primary_10_1080_02678292_2021_1902581 crossref_primary_10_1002_sdtp_15785 crossref_primary_10_1021_acs_jpcc_2c01346 crossref_primary_10_1002_sdtp_14571 crossref_primary_10_1016_j_wasman_2021_06_006 crossref_primary_10_1039_D3TC02439C crossref_primary_10_1364_AO_58_008383 crossref_primary_10_1088_1361_6528_ac3e34 crossref_primary_10_1002_adma_202103262 crossref_primary_10_1038_s41598_021_90924_x crossref_primary_10_7498_aps_71_20212356 crossref_primary_10_1080_02678292_2020_1846093 crossref_primary_10_1088_1361_6439_ac4007 crossref_primary_10_1364_OL_45_000244 crossref_primary_10_1016_j_cclet_2021_07_069 crossref_primary_10_1088_1361_665X_ac3d9d crossref_primary_10_1103_PhysRevApplied_18_054082 crossref_primary_10_1002_sdtp_15429 crossref_primary_10_1109_JPHOT_2019_2957385 crossref_primary_10_1002_adom_202300631 crossref_primary_10_1117_1_OE_61_9_095102 crossref_primary_10_1016_j_molliq_2020_113225 crossref_primary_10_1021_acsami_4c12844 crossref_primary_10_1007_s13370_020_00851_9 crossref_primary_10_1039_D1TC00042J crossref_primary_10_1038_s41467_024_54109_0 crossref_primary_10_1088_1361_6641_ac48db crossref_primary_10_1364_AO_424665 crossref_primary_10_1364_OE_515800 crossref_primary_10_3390_ma16145202 crossref_primary_10_1016_j_jallcom_2018_08_119 crossref_primary_10_1016_j_ijbiomac_2023_123600 crossref_primary_10_1002_sdtp_14580 crossref_primary_10_1371_journal_pone_0205325 crossref_primary_10_1016_j_orgel_2021_106203 crossref_primary_10_1364_PRJ_539592 crossref_primary_10_1002_advs_202306344 crossref_primary_10_1002_lpor_201900141 crossref_primary_10_1039_D3CC02930A crossref_primary_10_1016_j_dyepig_2024_112274 crossref_primary_10_1016_j_optlastec_2022_108998 crossref_primary_10_1039_D2TC02379B crossref_primary_10_1002_adma_202204804 crossref_primary_10_1039_C9NJ01768B crossref_primary_10_1002_adom_201801677 crossref_primary_10_1063_5_0232745 crossref_primary_10_1016_j_molliq_2024_125101 crossref_primary_10_1016_j_mtcomm_2023_105534 crossref_primary_10_1186_s40648_023_00253_z crossref_primary_10_1002_advs_202002254 crossref_primary_10_1002_jsid_951 crossref_primary_10_1109_TED_2019_2906321 crossref_primary_10_1016_j_jmst_2024_04_079 crossref_primary_10_1103_PhysRevE_103_022702 crossref_primary_10_1039_D2SM01078J crossref_primary_10_1016_j_orgel_2019_01_034 crossref_primary_10_1088_1674_4926_42_9_090201 crossref_primary_10_1021_acs_jpclett_2c00076 crossref_primary_10_1002_adfm_202313490 crossref_primary_10_1007_s40843_022_2121_0 crossref_primary_10_1051_epjap_2022220013 crossref_primary_10_1039_D3RA08538D crossref_primary_10_1002_sdtp_16971 crossref_primary_10_1016_j_nanoen_2020_104649 crossref_primary_10_3389_fchem_2019_00373 crossref_primary_10_1016_j_dyepig_2018_07_035 crossref_primary_10_1016_j_synthmet_2025_117848 crossref_primary_10_1002_sdtp_12378 crossref_primary_10_1364_OE_557308 crossref_primary_10_1364_OME_453502 crossref_primary_10_1016_j_vlsi_2024_102237 crossref_primary_10_1039_C9SM01742A crossref_primary_10_1002_adom_202402241 crossref_primary_10_1021_acs_chemmater_9b03782 crossref_primary_10_1364_OE_531039 crossref_primary_10_1038_s41467_020_18292_0 crossref_primary_10_1021_acs_jpclett_1c02599 crossref_primary_10_3390_photonics11010078 crossref_primary_10_1021_acs_chemrev_3c00097 crossref_primary_10_1002_adom_202102742 crossref_primary_10_1021_acsmaterialslett_0c00603 crossref_primary_10_1002_app_52932 crossref_primary_10_1109_JPHOT_2025_3537466 crossref_primary_10_1039_D1QM00155H crossref_primary_10_1002_adma_202411610 crossref_primary_10_1016_j_aca_2021_338490 crossref_primary_10_1002_pssr_202200418 crossref_primary_10_1002_sdtp_14423 crossref_primary_10_1002_adma_202307703 crossref_primary_10_1021_acs_jpcc_2c04965 crossref_primary_10_1002_sdtp_13694 crossref_primary_10_1088_2053_1591_ab8d5b crossref_primary_10_1016_j_jcis_2021_10_159 crossref_primary_10_3389_fchem_2019_00141 crossref_primary_10_1002_adpr_202300340 crossref_primary_10_20517_energymater_2024_149 crossref_primary_10_1002_jsid_974 crossref_primary_10_1007_s13391_025_00559_7 crossref_primary_10_1039_D2CC06802H crossref_primary_10_3390_cryst12030313 crossref_primary_10_1021_acsaelm_9b00779 crossref_primary_10_1016_j_orgel_2020_106017 crossref_primary_10_1002_chem_202304095 crossref_primary_10_1007_s40843_022_2110_2 crossref_primary_10_1039_D3NJ01101A crossref_primary_10_1016_j_cej_2021_129202 crossref_primary_10_1109_LPT_2021_3123447 crossref_primary_10_1007_s11082_021_03152_y crossref_primary_10_1016_j_cplett_2021_139199 crossref_primary_10_1088_1361_6463_ab85e4 crossref_primary_10_1016_j_jallcom_2024_177695 |
Cites_doi | 10.1889/1.1821340 10.1002/adma.201000525 10.1002/sdtp.11713 10.1889/1.2759556 10.1002/9781118751992 10.1002/sdtp.10230 10.1002/pi.1974 10.1063/1.118664 10.1364/OE.21.026269 10.1063/1.2896650 10.1889/1.2451570 10.1143/JJAP.36.143 10.1038/nphoton.2013.242 10.1002/smll.201300068 10.1889/1.1833672 10.1002/adom.201400341 10.1109/JSTQE.2004.824072 10.1889/1.1830181 10.1080/02678292.2012.700078 10.1143/JJAP.48.03B001 10.1038/lsa.2017.43 10.1088/1468-6996/15/3/034201 10.1109/T-ED.1970.16918 10.1063/1.3527085 10.1364/OE.25.011315 10.1039/C4TC00487F 10.1364/OME.5.000655 10.1109/JDT.2015.2408993 10.1364/OE.25.010724 10.1063/1.88018 10.1889/1.2372428 10.1002/sdtp.10714 10.1088/0022-3727/39/11/009 10.1533/9780857098948 10.1364/OME.4.002262 10.1016/j.orgel.2003.08.004 10.1889/1.1825794 10.1002/sdtp.10805 10.1002/j.2168-0159.2012.tb06001.x 10.1063/1.1568146 10.1021/acsami.6b16397 10.1063/1.1355007 10.1002/jsid.533 10.1088/0022-3727/49/31/315101 10.1088/0022-3727/49/14/145103 10.1002/adma.201301603 10.1021/acsami.5b01533 10.1002/j.2168-0159.2012.tb05768.x 10.1002/adma.201506065 10.1002/jsid.313 10.1002/sdtp.10288 10.1002/adma.200501957 10.1002/j.2168-0159.2014.tb00088.x 10.1002/adma.201304253 10.1063/1.2827178 10.1002/j.2168-0159.2013.tb06271.x 10.1002/sdtp.10654 10.1063/1.115295 10.1002/jsid.534 10.1002/9780470744826 10.1002/sdtp.10592 10.1063/1.98799 10.1002/sdtp.10588 10.1002/j.2168-0159.2014.tb00107.x 10.1002/sdtp.11966 10.1364/OPEX.13.009431 10.1088/2040-8978/12/8/085502 10.1002/adma.200306670 10.1364/OE.25.001973 10.1063/1.4982761 10.1126/science.267.5202.1332 10.7567/JJAP.53.052102 10.1002/adma.201204358 10.1063/1.343409 10.1002/sdtp.11754 10.1063/1.3151689 10.1002/sdtp.10348 10.1080/02678292.2015.1014873 10.1002/adma.200901141 10.1063/1.2951960 10.1002/9780470057056 10.1889/JSID17.7.551 10.1063/1.115309 10.1109/JDT.2013.2242844 10.1016/S1369-7021(06)71447-X 10.1080/02678292.2016.1264014 10.1021/cr400704v 10.1063/1.124258 10.1038/493283a 10.1186/1740-3391-5-2 10.1002/adma.201205233 10.1063/1.2818362 10.1889/1.1832979 10.1109/JDT.2008.2001578 10.1889/JSID17.2.71 10.1063/1.2133922 10.1063/1.1413220 10.1002/sdtp.11851 10.1063/1.1653593 10.1088/0268-1242/26/3/034001 10.1016/S1566-1199(01)00009-X 10.1002/adfm.201300547 10.1063/1.1654597 10.1889/JSID20.3.133 10.1039/C4TC02495H 10.1063/1.122617 10.1063/1.1652453 10.1364/OPTICA.3.001033 10.1002/j.2168-0159.2014.tb00104.x 10.1063/1.4974006 10.1016/j.orgel.2017.06.030 10.1002/sdtp.10951 10.1002/jsid.540 10.1002/9781119187493 10.1002/sdtp.11620 10.1167/13.7.6 10.1002/sdtp.11745 10.1002/j.2168-0159.2013.tb06132.x 10.1002/sdtp.10387 10.1002/sdtp.12008 10.1002/sdtp.10718 10.1143/JJAP.46.L10 10.1109/JDT.2005.852802 10.1038/nature11687 10.1364/OE.23.028707 10.1002/9780470689059 10.1038/381212a0 10.1002/sdtp.11841 10.1143/JJAP.42.L763 10.1143/APEX.2.022401 10.1889/JSID18.1.57 10.1109/PROC.1968.6513 10.1002/j.2168-0159.2012.tb05931.x 10.1364/OME.7.000641 10.1002/sdtp.11562 10.1063/1.1594284 10.1103/PhysRevB.85.115205 10.1889/1.1832037 10.1002/sdtp.11582 10.1109/TBC.2010.2074450 10.1002/sdtp.11849 10.1143/JJAP.39.L527 10.1063/1.1531231 10.1038/nature08003 10.1002/sdtp.10782 10.1038/ncomms15566 10.1889/1.3500227 10.1889/JSID18.2.128 10.1002/j.2168-0159.2013.tb06261.x 10.1364/OE.25.010939 10.1063/1.1653743 10.1063/1.1537052 10.1109/TED.2009.2035028 10.1038/ncomms6008 10.1002/sdtp.10829 10.1364/OME.7.000195 10.1002/j.2168-0159.2014.tb00064.x 10.1889/1.1832039 10.1889/JSID17.3.221 10.1109/JDT.2008.920175 10.1002/sdtp.10182 10.1002/jsid.427 10.1038/nphoton.2011.259 10.1002/sdtp.11793 10.1002/j.2168-0159.2013.tb06236.x 10.1889/JSID19.4.316 10.1002/sdtp.10694 10.1002/adma.201504451 10.1002/pssa.201228310 10.1002/j.2168-0159.2013.tb06130.x 10.1063/1.117927 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Mar 2018 Copyright © 2018 The Author(s) 2018 The Author(s) |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Mar 2018 – notice: Copyright © 2018 The Author(s) 2018 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/lsa.2017.168 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | LCD and OLED: present and future |
EISSN | 2047-7538 |
EndPage | 17168 |
ExternalDocumentID | PMC6060049 30839536 10_1038_lsa_2017_168 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS EJD FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c516t-325ab5c8edf63c24e76e392a20409a2b22edcdf8e39e4462ee212fcf128828c93 |
IEDL.DBID | 7X7 |
ISSN | 2047-7538 2095-5545 |
IngestDate | Thu Aug 21 14:33:38 EDT 2025 Tue Aug 05 10:23:02 EDT 2025 Wed Aug 13 07:35:34 EDT 2025 Thu Jan 02 23:01:08 EST 2025 Thu Apr 24 23:11:37 EDT 2025 Tue Jul 01 03:45:12 EDT 2025 Fri Feb 21 02:38:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | motion picture response time organic light-emitting diode liquid crystal displays ambient contrast ratio |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-325ab5c8edf63c24e76e392a20409a2b22edcdf8e39e4462ee212fcf128828c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2017031378?pq-origsite=%requestingapplication% |
PMID | 30839536 |
PQID | 2017031378 |
PQPubID | 2041947 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6060049 proquest_miscellaneous_2188591676 proquest_journals_2017031378 pubmed_primary_30839536 crossref_citationtrail_10_1038_lsa_2017_168 crossref_primary_10_1038_lsa_2017_168 springer_journals_10_1038_lsa_2017_168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180300 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180300 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | ChenHWGouFWWuSTSubmillisecond-response nematic liquid crystals for augmented reality displaysOpt Mater Express2017719520110.1364/OME.7.0001952017OMExp...7..195C KumaHHosokawaCBlue fluorescent OLED materials and their application for high-performance devicesSci Technol Adv Mater20141503420110.1088/1468-6996/15/3/034201 LiGJFleethamTTurnerEHangXCLiJHighly efficient and stable narrow-band phosphorescent emitters for OLED applicationsAdv Opt Mater2015339039710.1002/adom.201400341 LeeJHParkKHKimSHChoiHCKimBKAH-IPS, superb display for mobile deviceSID Symp Dig Tech Pap201344323310.1002/j.2168-0159.2013.tb06132.x LinBYEasleyCJChenCHTsengPCLeeMZExciplex-sensitized triplet−triplet annihilation in heterojunction organic thin-filmACS Appl Mater Interfaces20179109631097010.1021/acsami.6b16397 LeeCKimJJEnhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blendsSmall201393858386310.1002/smll.201300068 LeeJHZhuXYLinYHChoiWKLinTCHigh ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting deviceOpt Express2005139431943810.1364/OPEX.13.0094312005OExpr..13.9431L KwonJUBangSKangDYooJJThe required attribute of displays for high dynamic rangeSID Symp Dig Tech Pap20164788488710.1002/sdtp.10829 SuzukiTNonakaYWatabeTNakashimaHSeoSHighly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet-triplet annihilation effects enhanced by a novel hole-transporting materialJpn J Appl Phys20145305210210.7567/JJAP.53.0521022014JaJAP..53e2102S FurnoMMeerheimRHofmannSLüssemBLeoKEfficiency and rate of spontaneous emission in organic electroluminescent devicesPhys Rev B20128511520510.1103/PhysRevB.85.1152052012PhRvB..85k5205F YuIHSongISLeeJYLeeSHIntensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal displayJ Phys D Appl Phys2006392367237210.1088/0022-3727/39/11/0092006JPhD...39.2367Y MeerheimRScholzSOlthofSSchwartzGReinekeSInfluence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devicesJ Appl Phys200810401451010.1063/1.29519602008JAP...104a4510M ITU. Parameter Values for the HDTV Standards for Production and International Programme Exchange. Geneva, Switzerland: ITU; 2002 ITU-R Recommendation BT.709-5. JangEJunSJangHLimJKimBWhite-light-emitting diodes with quantum dot color converters for display backlightsAdv Mater2010223076308010.1002/adma.201000525 ParkJSChaeHChungHKLeeSIThin film encapsulation for flexible AM-OLED: a reviewSemicond Sci Technol20112603400110.1088/0268-1242/26/3/0340012011SeScT..26c4001P BrüttingWBerlebSMücklAGDevice physics of organic light-emitting diodes based on molecular materialsOrg Electron2001213610.1016/S1566-1199(01)00009-X BaldoMALamanskySBurrowsPEThompsonMEForrestSRVery high-efficiency green organic light-emitting devices based on electrophosphorescenceAppl Phys Lett1999754610.1063/1.1242581999ApPhL..75....4B SongDDZhaoSLLuoYCAzizHCauses of efficiency roll-off in phosphorescent organic light emitting devices: triplet-triplet annihilation versus triplet-polaron quenchingAppl Phys Lett20109724330410.1063/1.35270852010ApPhL..97x3304S HongSHParkICKimHYLeeSHElectro-optic characteristic of fringe-field switching mode depending on rubbing directionJpn J Appl Phys200039L527L53010.1143/JJAP.39.L5272000JaJAP..39..527H KimHJShinMHLeeJYKimJHKimYJRealization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot filmOpt Express201725107241073410.1364/OE.25.0107242017OExpr..2510724K KimSSYouBHChoJHKimDGBerkeleyBHAn 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced Super PVA technologyJ Soc Inf Display200917717810.1889/JSID17.2.71 3M Optical Systems Division. Vikuiti™ Dual Brightness Enhancement Film (DBEF). St. Paul, USA: 3M; 2008. LinCHLoWBLiuKHLiuCYLuJKNovel transparent LCD with tunable transparencySID Symp Dig Tech Pap2012431159116210.1002/j.2168-0159.2012.tb06001.x SchadtMHelfrichWVoltage‐dependent optical activity of a twisted nematic liquid crystalAppl Phys Lett19711812712810.1063/1.16535931971ApPhL..18..127S ChenHWZhuRDKäläntärKWuSTQuantum dot-enhanced LCDs with wide color gamut and broad angular luminance distributionSID Symp Dig Tech Pap2016471413141610.1002/sdtp.10951 SinghMHaverinenHMDhagatPJabbourGEInkjet printing—process and its applicationsAdv Mater20102267368510.1002/adma.200901141 KobayashiSMikoshibaSLimSLCD Backlights2009New York, USA: John Wiley & Sons10.1002/9780470744826 PickettNLGrestyNCHinesMAHeavy metal-free quantum dots making inroads for consumer applicationsSID Symp Dig Tech Pap20164742542710.1002/sdtp.10694 ShinHLeeJHMoonCKHuhJSSimBSky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layerAdv Mater2016284920492510.1002/adma.201506065 WenSWLeeMTChenCHRecent development of blue fluorescent OLED materials and devicesJ Display Technol20051909910.1109/JDT.2005.8528022005JDisT...1...90W IgarashiYYamamotoTTanakaYSomeyaJNakakuraYSummary of moving picture response time (MPRT) and futuresSID Symp Dig Tech Pap2004351262126510.1889/1.1821340 ChenHFHaTHSungJHKimHRHanBHEvaluation of LCD local-dimming-backlight systemJ Soc Inf Display201018576510.1889/JSID18.1.57 HosokawaCHigashiHNakamuraHKusumotoTHighly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopantAppl Phys Lett1995673853385510.1063/1.1152951995ApPhL..67.3853H KidoJKimuraMNagaiKMultilayer white light-emitting organic electroluminescent deviceScience19952671332133410.1126/science.267.5202.13321995Sci...267.1332K HeilmeierGHZanoniLABartonLAFurther studies of the dynamic scattering mode in nematic liquid crystalsIEEE Trans Electron Dev197017222610.1109/T-ED.1970.169181970ITED...17...22H LeeJHLiuDNWuSTIntroduction to Flat Panel Displays2008Chichester, UK: John Wiley & Sons HosoumiSYamaguchiTInoueHNomuraSYamaokaRUltra-wide color gamut OLED display?using a deep-red phosphorescent device with high efficiency, long life, thermal stability, and absolute BT.2020 red chromaticitySID Symp Dig Tech Pap201748131610.1002/sdtp.11562 HsiaoKTangGFYuGZhangZWXuXJDevelopment and analysis of technical challenges in the world's largest (110-in.) curved LCDSID Symp Dig Tech Pap2015461059106210.1002/sdtp.10387 YamamotoTAonoYTsumuraMGuiding principles for high quality motion picture in AMLCDs applicable to TV monitorsSID Symp Dig Tech Pap20003145645910.1889/1.1832979 PengFLChenHWGouFWLeeYHWandMAnalytical equation for the motion picture response time of display devicesJ Appl Phys201712102310810.1063/1.49740062017JAP...121b3108P SMPTE. SMPTE ST 2084-2014 High dynamic range electro-optical transfer function of mastering reference displays. SMPTE 2014. JouJHKumarSAgrawalALiTHSahooSApproaches for fabricating high efficiency organic light emitting diodesJ Mater Chem C201532974300210.1039/C4TC02495H PfeifferMLeoKZhouXHuangJSHofmannMDoped organic semiconductors: physics and application in light emitting diodesOrg Electron200348910310.1016/j.orgel.2003.08.004 ChenHWGaoYTWuSTn-FFS vs. p-FFS: who wins?SID Symp Dig Tech Pap20154673573810.1002/sdtp.10182 HardingMJHorneIPYagliogluBFlexible LCDs enabled by OTFTSID Symp Dig Tech Pap20174879379610.1002/sdtp.11754 LüssemBRiedeMLeoKDoping of organic semiconductorsPhys Status Solidi (A)201321094310.1002/pssa.2012283102013PSSAR.210....9L CastlesFMorrisSMGardinerDJMalikQMColesHJUltra-fast-switching flexoelectric liquid-crystal display with high contrastJ Soc Inf Display20101812813310.1889/JSID18.2.128 YehPGuCOptics of Liquid Crystal Displays2010New York, USA: John Wiley & Sons LiangJJLiLNiuXFYuZBPeiQBElastomeric polymer light-emitting devices and displaysNat Photonics2013781782410.1038/nphoton.2013.2422013NaPho...7..817L ShinHJParkKMTakasugiSJeongYSKimJMA high-image-quality OLED display for large-size and premium TVsSID Symp Dig Tech Pap2017481134113710.1002/sdtp.11841 UoyamaHGoushiKShizuKNomuraHAdachiCHighly efficient organic light-emitting diodes from delayed fluorescenceNature201249223423810.1038/nature116872012Natur.492..234U ZhangYLeeJForrestSRTenfold increase in the lifetime of blue phosphorescent organic light-emitting diodesNat Commun20145500810.1038/ncomms60082014NatCo...5E5008Z TanGJLeeYHGouFWHuMGLanYFMacroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystalsJ Appl Phys201712117310210.1063/1.49827612017JAP...121q3102T OhmuroKKataokaSSasakiTKoikeYDevelopment of super-high-image-quality vertical-alignment-mode LCDsSID Symp Dig Tech Pap199728845850 ChenHWPengFLLuoZYXuDMWuSTHigh performance liquid crystal displays with a low dielectric constant materialOpt Mater Express201442262227310.1364/OME.4.0022622014OMExp...4.2262C HashimotoNOgitaKNowatariHTakitaYKidoHInvestigation of effect of triplet-triplet annihilation and molecular orientation on external quantum efficiency of ultrahigh-efficiency blue fluorescent deviceSID Symp Dig Tech Pap20164730130410.1002/sdtp.10654 ChopraNLeeJXueJGSoFHigh-efficiency blue emitting phosphorescent OLEDsIEEE Trans Electron Devices20105710110710.1109/TED.2009.20350282010ITED...57..101C MillsPRTomkinsSCSchlangenLJThe effect of high correlated colour temperature office lighting on employee wellbeing and work performanceJ Circadian Rhythms20075210.1186/1740-3391-5-2 YamamotoTSasakiSIgarashiYTanakaYGuiding principles for high-quality moving picture in LCD TVsJ Soc Inf Display20061493394010.1889/1.2372428 TakedaAKataokaSSasakiTChidaHTsudaHA super-high image quality multi-domain vertical alignment LCD by new rubbing-less technologySID Symp Dig Tech Pap1998291077108010.1889/1.1833672 KimJBLeeJHMoonCKKimSYKimJJHighly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodesAdv Mater2013253571357710.1002/adma.201205233 ShiJMTangCWDoped organic electroluminescent devices with improved stabilityAppl Phys Lett1997701665166710.1063/1.1186641997ApPhL.. HW Liang (BFlsa2017168_CR52) 2016; 49 GJ Li (BFlsa2017168_CR89) 2015; 3 K Käläntär (BFlsa2017168_CR148) 2012; 20 RJ Holmes (BFlsa2017168_CR122) 2003; 82 A Yamazaki (BFlsa2017168_CR146) 2013; 44 N Chopra (BFlsa2017168_CR123) 2010; 57 MA Baldo (BFlsa2017168_CR45) 1999; 75 YS Huang (BFlsa2017168_CR118) 2002; 80 JA Castellano (BFlsa2017168_CR1) 2012 T Kurita (BFlsa2017168_CR54) 2001; 32 J Kido (BFlsa2017168_CR117) 1995; 267 S Reineke (BFlsa2017168_CR129) 2009; 459 VG Chigrinov (BFlsa2017168_CR2) 1999 Y Igarashi (BFlsa2017168_CR55) 2004; 35 JJ Liang (BFlsa2017168_CR138) 2013; 7 HJ Yun (BFlsa2017168_CR38) 2012; 39 BFlsa2017168_CR75 BFlsa2017168_CR74 BFlsa2017168_CR73 C Adachi (BFlsa2017168_CR119) 2001; 78 BY Lin (BFlsa2017168_CR104) 2017; 48 ZB Wang (BFlsa2017168_CR127) 2011; 5 DK Yang (BFlsa2017168_CR5) 2014 C Féry (BFlsa2017168_CR64) 2005; 87 F Castles (BFlsa2017168_CR179) 2010; 18 S Kobayashi (BFlsa2017168_CR77) 2009 JH Jou (BFlsa2017168_CR133) 2015; 3 JH Lee (BFlsa2017168_CR16) 2008 T Ishinabe (BFlsa2017168_CR142) 2016; 47 K Kimura (BFlsa2017168_CR181) 2017; 25 A Buckley (BFlsa2017168_CR7) 2013 JS Steckel (BFlsa2017168_CR81) 2015; 23 H Riel (BFlsa2017168_CR90) 2003; 82 MZ Jiao (BFlsa2017168_CR173) 2008; 92 MF Schiekel (BFlsa2017168_CR14) 1971; 19 CJ Reinert-Weiss (BFlsa2017168_CR184) 2017; 25 T Yamamoto (BFlsa2017168_CR53) 2000; 31 M Noda (BFlsa2017168_CR137) 2011; 19 BFlsa2017168_CR167 C Murawski (BFlsa2017168_CR63) 2013; 25 HW Chen (BFlsa2017168_CR37) 2014; 4 MJ Harding (BFlsa2017168_CR143) 2017; 48 GH Heilmeier (BFlsa2017168_CR11) 1968; 13 BFlsa2017168_CR67 L Wang (BFlsa2017168_CR79) 2015; 23 BY Lin (BFlsa2017168_CR105) 2017; 9 Y Zhang (BFlsa2017168_CR101) 2014; 5 P Görrn (BFlsa2017168_CR188) 2006; 18 DY Kondakov (BFlsa2017168_CR44) 2007; 102 RJ Xie (BFlsa2017168_CR78) 2009; 2 D Tanaka (BFlsa2017168_CR121) 2007; 46 JH Lee (BFlsa2017168_CR71) 2013; 44 JS Park (BFlsa2017168_CR94) 2011; 26 ZY Luo (BFlsa2017168_CR19) 2013; 21 DD Song (BFlsa2017168_CR48) 2010; 97 JS Lewis (BFlsa2017168_CR95) 2004; 10 CH Lin (BFlsa2017168_CR186) 2012; 43 D Armitage (BFlsa2017168_CR182) 2006 B Lüssem (BFlsa2017168_CR110) 2013; 210 M Schadt (BFlsa2017168_CR3) 2009; 48 S Scholz (BFlsa2017168_CR100) 2015; 115 SH Lee (BFlsa2017168_CR29) 2009; 17 PR Mills (BFlsa2017168_CR70) 2007; 5 J Lee (BFlsa2017168_CR102) 2017; 8 JM Shi (BFlsa2017168_CR115) 1997; 70 DJ Channin (BFlsa2017168_CR171) 1975; 26 K Hsiao (BFlsa2017168_CR32) 2015; 46 YW Li (BFlsa2017168_CR183) 2014; 45 NL Pickett (BFlsa2017168_CR84) 2016; 47 JH Lee (BFlsa2017168_CR65) 2005; 13 HW Chen (BFlsa2017168_CR175) 2017; 7 RM Soneira (BFlsa2017168_CR134) 2017 FC Lin (BFlsa2017168_CR169) 2009; 17 NL Pickett (BFlsa2017168_CR83) 2015; 46 T Suzuki (BFlsa2017168_CR132) 2014; 53 HF Chen (BFlsa2017168_CR163) 2010; 18 JP Yang (BFlsa2017168_CR150) 2016; 47 M Furno (BFlsa2017168_CR109) 2012; 85 J Someya (BFlsa2017168_CR56) 2007; 15 M Oh-e (BFlsa2017168_CR33) 1995; 67 C Lee (BFlsa2017168_CR111) 2013; 9 HF Chen (BFlsa2017168_CR161) 2006 MJ Wang (BFlsa2017168_CR189) 2017; 48 S Daly (BFlsa2017168_CR166) 2013; 44 L Yao (BFlsa2017168_CR185) 2017; 48 FL Peng (BFlsa2017168_CR57) 2017; 121 M Hack (BFlsa2017168_CR99) 2017; 48 CY Xiang (BFlsa2017168_CR172) 2003; 42 H Kuma (BFlsa2017168_CR51) 2014; 15 R Meerheim (BFlsa2017168_CR120) 2008; 104 J Chen (BFlsa2017168_CR17) 2012; 43 GJ Tan (BFlsa2017168_CR113) 2016; 49 HY Lin (BFlsa2017168_CR112) 2010; 12 K Bourzac (BFlsa2017168_CR18) 2013; 493 C Hosokawa (BFlsa2017168_CR116) 1995; 67 T Sasaki (BFlsa2017168_CR93) 2017; 48 IH Yu (BFlsa2017168_CR36) 2006; 39 JB Kim (BFlsa2017168_CR108) 2013; 25 H Mori (BFlsa2017168_CR23) 1997; 36 CW Tang (BFlsa2017168_CR114) 1989; 65 WJ Li (BFlsa2017168_CR87) 2014; 2 N Greinert (BFlsa2017168_CR144) 2015; 46 SS Kim (BFlsa2017168_CR30) 2009; 17 CT Chou (BFlsa2017168_CR96) 2013; 25 M Schadt (BFlsa2017168_CR13) 1971; 18 HW Chen (BFlsa2017168_CR39) 2015; 46 H Ito (BFlsa2017168_CR62) 2013; 13 BFlsa2017168_CR106 Y Fujisaki (BFlsa2017168_CR141) 2007; 15 E Kim (BFlsa2017168_CR91) 2017; 48 M Singh (BFlsa2017168_CR155) 2010; 22 N Hashimoto (BFlsa2017168_CR103) 2016; 47 A Ghosh (BFlsa2017168_CR180) 2016; 47 HW Chen (BFlsa2017168_CR72) 2017; 6 JH Jo (BFlsa2017168_CR139) 2010; 41 Y Chen (BFlsa2017168_CR40) 2013; 9 HW Chen (BFlsa2017168_CR165) 2017; 25 JI Hirakata (BFlsa2017168_CR59) 2001; 32 O Yoo (BFlsa2017168_CR164) 2017; 48 HW Chen (BFlsa2017168_CR174) 2015; 42 H Uoyama (BFlsa2017168_CR46) 2012; 492 J Jang (BFlsa2017168_CR135) 2006; 9 ZB Ge (BFlsa2017168_CR66) 2010 E Lee (BFlsa2017168_CR85) 2016; 47 M Oh-e (BFlsa2017168_CR34) 1996; 69 YG Huang (BFlsa2017168_CR176) 2017; 7 KH Kim (BFlsa2017168_CR28) 1998; 98 M Schadt (BFlsa2017168_CR22) 1996; 381 AB Chwang (BFlsa2017168_CR97) 2003; 83 JPA Vogels (BFlsa2017168_CR140) 2004; 35 T Tsujimura (BFlsa2017168_CR8) 2017 HW Chen (BFlsa2017168_CR147) 2016; 47 HW Chen (BFlsa2017168_CR58) 2016; 3 GH Heilmeier (BFlsa2017168_CR12) 1970; 17 KH Vepakomma (BFlsa2017168_CR31) 2015; 46 YK Liu (BFlsa2017168_CR152) 2017; 9 FC Lin (BFlsa2017168_CR162) 2008; 4 CW Han (BFlsa2017168_CR153) 2012; 43 T Yamamoto (BFlsa2017168_CR61) 2006; 14 CH Chen (BFlsa2017168_CR168) 2009; 5 Y Yamada (BFlsa2017168_CR130) 2016; 47 S Hosoumi (BFlsa2017168_CR88) 2017; 48 DY Kondakov (BFlsa2017168_CR98) 2003; 93 W Youn (BFlsa2017168_CR107) 2015; 7 RD Zhu (BFlsa2017168_CR68) 2016; 24 YS Park (BFlsa2017168_CR47) 2013; 23 E Yamamoto (BFlsa2017168_CR25) 2014; 45 CW Tang (BFlsa2017168_CR41) 1987; 51 P Yeh (BFlsa2017168_CR4) 2010 R Komatsu (BFlsa2017168_CR136) 2014; 45 KH Kim (BFlsa2017168_CR126) 2016; 28 A Takeda (BFlsa2017168_CR27) 1998; 29 HW Chen (BFlsa2017168_CR170) 2015; 5 K Okuyama (BFlsa2017168_CR187) 2017; 48 M Pfeiffer (BFlsa2017168_CR43) 2003; 4 P Levermore (BFlsa2017168_CR157) 2016; 47 S Lee (BFlsa2017168_CR145) 2017; 48 YT Gao (BFlsa2017168_CR149) 2015; 11 K Masaoka (BFlsa2017168_CR76) 2010; 56 HW Chen (BFlsa2017168_CR20) 2017; 23 HJ Kim (BFlsa2017168_CR151) 2017; 25 T Furuhashi (BFlsa2017168_CR60) 2002; 33 JU Kwon (BFlsa2017168_CR159) 2016; 47 RA Soref (BFlsa2017168_CR15) 1973; 22 N Giebink (BFlsa2017168_CR49) 2009; 105 GJ Tan (BFlsa2017168_CR178) 2017; 121 B Geffroy (BFlsa2017168_CR6) 2006; 55 BW D'Andrade (BFlsa2017168_CR124) 2004; 16 GH Heilmeier (BFlsa2017168_CR10) 1968; 56 E Reinhard (BFlsa2017168_CR158) 2010 BFlsa2017168_CR82 K Ohmuro (BFlsa2017168_CR26) 1997; 28 H Shin (BFlsa2017168_CR128) 2016; 28 HW Chen (BFlsa2017168_CR69) 2017; 25 W Brütting (BFlsa2017168_CR42) 2001; 2 D Wyatt (BFlsa2017168_CR86) 2017; 48 Y Seino (BFlsa2017168_CR50) 2014; 26 RD Zhu (BFlsa2017168_CR160) 2017; 25 HW Chen (BFlsa2017168_CR177) 2017; 44 SH Lee (BFlsa2017168_CR21) 1998; 73 SW Wen (BFlsa2017168_CR131) 2005; 1 SH Hong (BFlsa2017168_CR35) 2000; 39 PY Chen (BFlsa2017168_CR156) 2014; 45 D Barnes (BFlsa2017168_CR9) 2013; 44 MT Lee (BFlsa2017168_CR92) 2017; 25 YR Sun (BFlsa2017168_CR125) 2007; 91 Y Ito (BFlsa2017168_CR24) 2013; 44 HJ Shin (BFlsa2017168_CR154) 2017; 48 E Jang (BFlsa2017168_CR80) 2010; 22 |
References_xml | – reference: SorefRATransverse field effects in nematic liquid crystalsAppl Phys Lett19732216516610.1063/1.16545971973ApPhL..22..165S – reference: GeZBWuSTTransflective Liquid Crystal Displays2010Chichester, UK: John Wiley & Sons10.1002/9780470689059 – reference: ITU. Parameter Values for the HDTV Standards for Production and International Programme Exchange. Geneva, Switzerland: ITU; 2002 ITU-R Recommendation BT.709-5. – reference: SchadtMSeiberleHSchusterAOptical patterning of multi-domain liquid-crystal displays with wide viewing anglesNature199638121221510.1038/381212a01996Natur.381..212S – reference: KuritaTMoving picture quality improvement for hold-type AM-LCDsSID Symp Dig Tech Pap20013298698910.1889/1.1832037 – reference: ChenHWZhuRDHeJDuanWHuWGoing beyond the limit of an LCD’s color gamutLight Sci Appl20176e1704310.1038/lsa.2017.43 – reference: BourzacKQuantum dots go on display: adoption by TV makers could expand the market for light-emitting nanocrystalsNature201349328310.1038/493283a2013Natur.493..283B – reference: HsiaoKTangGFYuGZhangZWXuXJDevelopment and analysis of technical challenges in the world's largest (110-in.) curved LCDSID Symp Dig Tech Pap2015461059106210.1002/sdtp.10387 – reference: SchadtMMilestone in the history of field-effect liquid crystal displays and materialsJpn J Appl Phys20094803B00110.1143/JJAP.48.03B001 – reference: ParkYSLeeSKimKHKimSYLeeJHExciplex-forming co-host for organic light-emitting diodes with ultimate efficiencyAdv Funct Mater2013234914492010.1002/adfm.201300547 – reference: MurawskiCLeoKGatherMCEfficiency roll-off in organic light-emitting diodesAdv Mater2013256801682710.1002/adma.201301603 – reference: LevermorePSchenkTTsengHRWangHJHeilHInk-jet-printed OLEDs for display applicationsSID Symp Dig Tech Pap20164748448610.1002/sdtp.10714 – reference: GörrnPSanderMMeyerJKrögerMBeckerETowards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodesAdv Mater20061873874110.1002/adma.200501957 – reference: JoJHJheJHRyuSCLeeKHShinJKA novel curved LCD with highly durable and slim profileSID Symp Dig Tech Pap2010411671167410.1889/1.3500227 – reference: ZhuRDChenHWKosaTCoutinoPTanGJHigh-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizerJ Soc Inf Display20162422923310.1002/jsid.427 – reference: KumaHHosokawaCBlue fluorescent OLED materials and their application for high-performance devicesSci Technol Adv Mater20141503420110.1088/1468-6996/15/3/034201 – reference: ZhangYLeeJForrestSRTenfold increase in the lifetime of blue phosphorescent organic light-emitting diodesNat Commun20145500810.1038/ncomms60082014NatCo...5E5008Z – reference: HeilmeierGHZanoniLABartonLADynamic scattering in nematic liquid crystalsAppl Phys Lett196813464710.1063/1.16524531968ApPhL..13...46H – reference: YuIHSongISLeeJYLeeSHIntensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal displayJ Phys D Appl Phys2006392367237210.1088/0022-3727/39/11/0092006JPhD...39.2367Y – reference: ZhuRDChenHWWuSTAchieving 12-bit perceptual quantizer curve with liquid crystal displayOpt Express201725109391094610.1364/OE.25.0109392017OExpr..2510939Z – reference: HirakataJIShingaiATanakaYOnoKFuruhashiTSuper-TFT-LCD for moving picture images with the blink backlight systemSID Symp Dig Tech Pap20013299099310.1889/1.1832039 – reference: HuangYSJouJHWengWKLiuJMHigh-efficiency white organic light-emitting devices with dual doped structureAppl Phys Lett2002802782278410.1063/1.14132202002ApPhL..80.2782H – reference: ChenHWPengFLGouFWLeeYHWandMNematic LCD with motion picture response time comparable to organic LEDsOptica201631033103410.1364/OPTICA.3.001033 – reference: Adobe Systems Inc. Adobe RGB (1998) Color Image Encoding. San Jose, USA: Adobe Systems Inc.; 2005. – reference: LeeSHKimSMWuSTEmerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomerJ Soc Inf Display20091755155910.1889/JSID17.7.551 – reference: JouJHKumarSAgrawalALiTHSahooSApproaches for fabricating high efficiency organic light emitting diodesJ Mater Chem C201532974300210.1039/C4TC02495H – reference: XiangCYGuoJXSunXWYinXJQiGJA fast response, three-electrode liquid crystal deviceJpn J Appl Phys20034276310.1143/JJAP.42.L7632003JaJAP..42..763X – reference: YamadaYInoueHMitsumoriSWatabeTIshisoneTAchievement of blue phosphorescent organic light-emitting diode with high efficiency, low driving voltage, and long lifetime by exciplex-triplet energy transfer technologySID Symp Dig Tech Pap20164771171410.1002/sdtp.10782 – reference: WenSWLeeMTChenCHRecent development of blue fluorescent OLED materials and devicesJ Display Technol20051909910.1109/JDT.2005.8528022005JDisT...1...90W – reference: VogelsJPAKlinkSIPentermanRde KoningHHuitemaEEARobust flexible LCDs with paintable technologySID Symp Dig Tech Pap20043576776910.1889/1.1825794 – reference: ArmitageDUnderwoodIWuSTIntroduction to Microdisplays2006Chichester, UK: John Wiley & Sons10.1002/9780470057056 – reference: BarnesDLCD or OLED: who wins?SID Symp Dig Tech Pap201344262710.1002/j.2168-0159.2013.tb06130.x2013mnsm.book.....B – reference: HardingMJHorneIPYagliogluBFlexible LCDs enabled by OTFTSID Symp Dig Tech Pap20174879379610.1002/sdtp.11754 – reference: HashimotoNOgitaKNowatariHTakitaYKidoHInvestigation of effect of triplet-triplet annihilation and molecular orientation on external quantum efficiency of ultrahigh-efficiency blue fluorescent deviceSID Symp Dig Tech Pap20164730130410.1002/sdtp.10654 – reference: YounWLeeJXuMFSinghRSoFCorrugated sapphire substrates for organic light-emitting diode light extractionACS Appl Mater Interfaces201578974897810.1021/acsami.5b01533 – reference: GaoYTLuoZYZhuRDHongQWuSTA high performance single-domain LCD with wide luminance distributionJ Display Technol20151131532410.1109/JDT.2015.24089932015JDisT..11..315G – reference: YehPGuCOptics of Liquid Crystal Displays2010New York, USA: John Wiley & Sons – reference: The European Parliament, The Council of the European Union Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The European Parliament, The Council of the European Union, 2003; pp19–23. – reference: IgarashiYYamamotoTTanakaYSomeyaJNakakuraYSummary of moving picture response time (MPRT) and futuresSID Symp Dig Tech Pap2004351262126510.1889/1.1821340 – reference: RielHKargSBeierleinTRuhstallerBRießWPhosphorescent top-emitting organic light-emitting devices with improved light outcouplingAppl Phys Lett20038246646810.1063/1.15370522003ApPhL..82..466R – reference: LüssemBRiedeMLeoKDoping of organic semiconductorsPhys Status Solidi (A)201321094310.1002/pssa.2012283102013PSSAR.210....9L – reference: YamazakiAWuCLChengWCBadanoASpatial resolution characteristics of organic light-emitting diode displays: a comparative analysis of MTF for handheld and workstation formatsSID Symp Dig Tech Pap20134441942210.1002/j.2168-0159.2013.tb06236.x – reference: JiaoMZGeZBWuSTChoiWKSubmillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cellAppl Phys Lett20089211110110.1063/1.28966502008ApPhL..92k1101J – reference: HongSHParkICKimHYLeeSHElectro-optic characteristic of fringe-field switching mode depending on rubbing directionJpn J Appl Phys200039L527L53010.1143/JJAP.39.L5272000JaJAP..39..527H – reference: FéryCRacineBVaufreyDDoyeuxHCinàSPhysical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodesAppl Phys Lett20058721350210.1063/1.21339222005ApPhL..87u3502F – reference: ParkJSChaeHChungHKLeeSIThin film encapsulation for flexible AM-OLED: a reviewSemicond Sci Technol20112603400110.1088/0268-1242/26/3/0340012011SeScT..26c4001P – reference: PfeifferMLeoKZhouXHuangJSHofmannMDoped organic semiconductors: physics and application in light emitting diodesOrg Electron200348910310.1016/j.orgel.2003.08.004 – reference: ChenHWTanGJLiMCLeeSLWuSTDepolarization effect in liquid crystal displaysOpt Express201725113151132810.1364/OE.25.0113152017OExpr..2511315C – reference: LiangJJLiLNiuXFYuZBPeiQBElastomeric polymer light-emitting devices and displaysNat Photonics2013781782410.1038/nphoton.2013.2422013NaPho...7..817L – reference: TangCWVanSlykeSAChenCHElectroluminescence of doped organic thin filmsJ Appl Phys1989653610361610.1063/1.3434091989JAP....65.3610T – reference: SMPTE. SMPTE ST 2084-2014 High dynamic range electro-optical transfer function of mastering reference displays. SMPTE 2014. – reference: LiYWLinCWChenKYFan-ChiangKHKuoHCFront-lit LCOS for wearable applicationsSID Symp Dig Tech Pap20144523423610.1002/j.2168-0159.2014.tb00064.x – reference: ItoYWatanabeJSaitohYTakadaKMorishimaSIInnovation of optical films using polymerized discotic materials: past, present and futureSID Symp Dig Tech Pap20134452652910.1002/j.2168-0159.2013.tb06261.x – reference: LewisJSWeaverMSThin-film permeation-barrier technology for flexible organic light-emitting devicesIEEE J Sel Top Quantum Electron200410455710.1109/JSTQE.2004.8240722004IJSTQ..10...45L – reference: D'AndradeBWHolmesRJForrestSREfficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layerAdv Mater20041662462810.1002/adma.200306670 – reference: HanCWKimKMBaeSJChoiHSLeeJM55-inch FHD OLED TV employing new tandem WOLEDsSID Symp Dig Tech Pap20124327928110.1002/j.2168-0159.2012.tb05768.x – reference: OkuyamaKNakaharaTNumataYNakamuraTMizunoMHighly transparent LCD using new scattering-type liquid crystal with field sequential color edge lightSID Symp Dig Tech Pap2017481166116910.1002/sdtp.11851 – reference: TsujimuraTOLED Display: Fundamentals and Applications2017Hoboken, NJ, USA: John Wiley & Sons10.1002/9781119187493 – reference: TakedaAKataokaSSasakiTChidaHTsudaHA super-high image quality multi-domain vertical alignment LCD by new rubbing-less technologySID Symp Dig Tech Pap1998291077108010.1889/1.1833672 – reference: LinFCHuangYPLiaoLYLiaoCYShiehHPDDynamic backlight gamma on high dynamic range LCD TVsJ Display Technol2008413914610.1109/JDT.2008.9201752008JDisT...4..139L – reference: 3M Optical Systems Division. Vikuiti™ Dual Brightness Enhancement Film (DBEF). St. Paul, USA: 3M; 2008. – reference: YangDKWuSTFundamentals of Liquid Crystal Devices2014New York, USA: John Wiley & Sons – reference: LiuYKLaiJLiXNXiangYLiJTA quantum dot array for enhanced tricolor liquid-crystal displayIEEE Photonics Technol201796900207 – reference: ChenHWLuoZYXuDMPengFLWuSTA fast-response A-film-enhanced fringe field switching liquid crystal displayLiq Cryst20154253754210.1080/02678292.2015.1014873 – reference: GiebinkND’AndradeBWWeaverMSBrownJJForrestSRDirect evidence for degradation of polaron excited states in organic light emitting diodesJ Appl Phys200910512451410.1063/1.31516892009JAP...105l4514G – reference: ChanninDJTriode optical gate: a new liquid crystal electro-optic deviceAppl Phys Lett19752660360510.1063/1.880181975ApPhL..26..603C – reference: MillsPRTomkinsSCSchlangenLJThe effect of high correlated colour temperature office lighting on employee wellbeing and work performanceJ Circadian Rhythms20075210.1186/1740-3391-5-2 – reference: ChenHWPengFLLuoZYXuDMWuSTHigh performance liquid crystal displays with a low dielectric constant materialOpt Mater Express201442262227310.1364/OME.4.0022622014OMExp...4.2262C – reference: ChwangABRothmanMAMaoSYHewittRHWeaverMSThin film encapsulated flexible organic electroluminescent displaysAppl Phys Lett20038341341510.1063/1.15942842003ApPhL..83..413C – reference: KondakovDYSandiferJRTangCWYoungRHNonradiative recombination centers and electrical aging of organic light-emitting diodes: direct connection between accumulation of trapped charge and luminance lossJ Appl Phys2003931108110910.1063/1.15312312003JAP....93.1108K – reference: JangJDisplays develop a new flexibilityMater Today20069465210.1016/S1369-7021(06)71447-X – reference: PengFLChenHWGouFWLeeYHWandMAnalytical equation for the motion picture response time of display devicesJ Appl Phys201712102310810.1063/1.49740062017JAP...121b3108P – reference: TangCWVanSlykeSAOrganic electroluminescent diodesAppl Phys Lett19875191391510.1063/1.987991987ApPhL..51..913T – reference: WyattDChenHWWuSTWide-color-gamut LCDs with vivid color LED technologySID Symp Dig Tech Pap20174899299510.1002/sdtp.11793 – reference: YaoLLangguthNSchrothDMaischRDriving forces-how mobility of tomorrow influences technologies of todaySID Symp Dig Tech Pap20174877577810.1002/sdtp.11745 – reference: HackMWeaverMSBrownJJStatus and opportunities for phosphorescent OLED lightingSID Symp Dig Tech Pap20174818719010.1002/sdtp.11620 – reference: ShiJMTangCWDoped organic electroluminescent devices with improved stabilityAppl Phys Lett1997701665166710.1063/1.1186641997ApPhL..70.1665S – reference: ChenHFHaTHSungJHKimHRHanBHEvaluation of LCD local-dimming-backlight systemJ Soc Inf Display201018576510.1889/JSID18.1.57 – reference: ITU. Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange. Geneva, Switzerland: ITU; 2015. – reference: LinBYLeeMZTsengPCLeeJHChiuTL16.1-times elongation of operation lifetime in a blue TTA-OLED by using new ETL and EML materialsSID Symp Dig Tech Pap2017481928193110.1002/sdtp.12008 – reference: ChenHWGouFWWuSTSubmillisecond-response nematic liquid crystals for augmented reality displaysOpt Mater Express2017719520110.1364/OME.7.0001952017OMExp...7..195C – reference: OhmuroKKataokaSSasakiTKoikeYDevelopment of super-high-image-quality vertical-alignment-mode LCDsSID Symp Dig Tech Pap199728845850 – reference: KidoJKimuraMNagaiKMultilayer white light-emitting organic electroluminescent deviceScience19952671332133410.1126/science.267.5202.13321995Sci...267.1332K – reference: ChenHFSungJHaTParkYHongCWBacklight Local Dimming Algorithm for High Contrast LCD-TV2006New Delhi, India: Proceedings of ASIDpp168pp171 – reference: SchadtMHelfrichWVoltage‐dependent optical activity of a twisted nematic liquid crystalAppl Phys Lett19711812712810.1063/1.16535931971ApPhL..18..127S – reference: Oh-eMKondoKElectro-optical characteristics and switching behavior of the in-plane switching modeAppl Phys Lett1995673895389710.1063/1.1153091995ApPhL..67.3895O – reference: KimEChungJLeeJChoHChoNSA systematic approach to reducing angular color shift in cavity-based organic light-emitting diodesOrg Electron20174834835610.1016/j.orgel.2017.06.030 – reference: LeeSMoonJYangSRhimJKimBDevelopment of zero-bezel display utilizing a waveguide image transformation elementSID Symp Dig Tech Pap20174861261410.1002/sdtp.11713 – reference: HosokawaCHigashiHNakamuraHKusumotoTHighly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopantAppl Phys Lett1995673853385510.1063/1.1152951995ApPhL..67.3853H – reference: SinghMHaverinenHMDhagatPJabbourGEInkjet printing—process and its applicationsAdv Mater20102267368510.1002/adma.200901141 – reference: LeeEWangCKHotzCHartloveJYurekJ‘Greener’ quantum-dot enabled LCDs with BT.2020 color gamutSID Symp Dig Tech Pap20164754955110.1002/sdtp.10718 – reference: ChigrinovVGLiquid Crystal Devices: Physics and Applications1999Boston, MA, USA: Artech House – reference: KimKHLeeKParkSBSongJKKimSNDomain Divided Vertical Alignment Mode with Optimized Fringe Field EffectProceedings of the 18th IDRC, Asia Display199898383386 – reference: WangZBHelanderMGQiuJPuzzoDPGreinerMTUnlocking the full potential of organic light-emitting diodes on flexible plasticNat Photonics2011575375710.1038/nphoton.2011.2592011NaPho...5..753W – reference: LinCHLoWBLiuKHLiuCYLuJKNovel transparent LCD with tunable transparencySID Symp Dig Tech Pap2012431159116210.1002/j.2168-0159.2012.tb06001.x – reference: Reinert-WeissCJBaurHAl NusayerSADuhmeDFrühaufNDevelopment of active matrix LCD for use in high-resolution adaptive headlightsJ Soc Inf Display201725909710.1002/jsid.534 – reference: LinFCHuangYPWeiCMShiehHPDColor-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDsJ Soc Inf Display20091722122810.1889/JSID17.3.221 – reference: SongDDZhaoSLLuoYCAzizHCauses of efficiency roll-off in phosphorescent organic light emitting devices: triplet-triplet annihilation versus triplet-polaron quenchingAppl Phys Lett20109724330410.1063/1.35270852010ApPhL..97x3304S – reference: LeeJJeongCBatagodaTCoburnCThompsonMEHot excited state management for long-lived blue phosphorescent organic light-emitting diodesNat Commun201781556610.1038/ncomms155662017NatCo...815566L – reference: NodaMKobayashiNKatsuharaMYumotoAUshikuraSAn OTFT-driven rollable OLED displayJ Soc Inf Display20111931632210.1889/JSID19.4.316 – reference: FurnoMMeerheimRHofmannSLüssemBLeoKEfficiency and rate of spontaneous emission in organic electroluminescent devicesPhys Rev B20128511520510.1103/PhysRevB.85.1152052012PhRvB..85k5205F – reference: KwonJUBangSKangDYooJJThe required attribute of displays for high dynamic rangeSID Symp Dig Tech Pap20164788488710.1002/sdtp.10829 – reference: HolmesRJForrestSRTungYJKwongRCBrownJJBlue organic electrophosphorescence using exothermic host-guest energy transferAppl Phys Lett2003822422242410.1063/1.15681462003ApPhL..82.2422H – reference: HuangYGChenHWTanGJTobataHYamamotoSIOptimized blue-phase liquid crystal for field-sequential-color displaysOpt Mater Express2017764165010.1364/OME.7.0006412017OMExp...7..641H – reference: YamamotoEYuiHKatsutaSAsaokaYMaedaTWide viewing LCDs using novel microstructure filmSID Symp Dig Tech Pap20144538538810.1002/j.2168-0159.2014.tb00104.x – reference: ChenJHardevVHartloveJHoflerJLeeEA high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement filmSID Symp Dig Tech Pap20124389589610.1002/j.2168-0159.2012.tb05931.x – reference: SeinoYSasabeHPuYJKidoJHigh-performance blue phosphorescent OLEDs using energy transfer from exciplexAdv Mater2014261612161610.1002/adma.201304253 – reference: ChenHWHuMGPengFLLiJAnZWUltra-low viscosity liquid crystal materialsOpt Mater Express2015565566010.1364/OME.5.0006552015OMExp...5..655C – reference: SasakiTYamaokaRNomuraSYamamotoRTakahashiKA 13.3-inch 8K × 4K 664-ppi 120-Hz 12-bit display with super-wide color gamut for the BT.2020 standardSID Symp Dig Tech Pap20174812312610.1002/sdtp.11582 – reference: LeeCKimJJEnhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blendsSmall201393858386310.1002/smll.201300068 – reference: BaldoMALamanskySBurrowsPEThompsonMEForrestSRVery high-efficiency green organic light-emitting devices based on electrophosphorescenceAppl Phys Lett1999754610.1063/1.1242581999ApPhL..75....4B – reference: LeeJHParkKHKimSHChoiHCKimBKAH-IPS, superb display for mobile deviceSID Symp Dig Tech Pap201344323310.1002/j.2168-0159.2013.tb06132.x – reference: WangLWangXJKohseiTYoshimuraKIIzumiMHighly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displaysOpt Express201523287072871710.1364/OE.23.0287072015OExpr..2328707W – reference: ScholzSKondakovDLüssemBLeoKDegradation mechanisms and reactions in organic light-emitting devicesChem Rev20151158449850310.1021/cr400704v – reference: LiGJFleethamTTurnerEHangXCLiJHighly efficient and stable narrow-band phosphorescent emitters for OLED applicationsAdv Opt Mater2015339039710.1002/adom.201400341 – reference: GhoshADonoghueEPKhayrullinIAliTWacykIDirectly patterened 2645 Ppi full color OLED microdisplay for head mounted wearablesSID Symp Dig Tech Pap20164783784010.1002/sdtp.10805 – reference: TanGJZhuRDTsaiYSLeeKCLuoZYHigh ambient contrast ratio OLED and QLED without a circular polarizerJ Phys D Appl Phys20164931510110.1088/0022-3727/49/31/315101 – reference: UoyamaHGoushiKShizuKNomuraHAdachiCHighly efficient organic light-emitting diodes from delayed fluorescenceNature201249223423810.1038/nature116872012Natur.492..234U – reference: KimKHLiaoJLLeeSWSimBMoonCKCrystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layerAdv Mater2016282526253210.1002/adma.201504451 – reference: SuzukiTNonakaYWatabeTNakashimaHSeoSHighly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet-triplet annihilation effects enhanced by a novel hole-transporting materialJpn J Appl Phys20145305210210.7567/JJAP.53.0521022014JaJAP..53e2102S – reference: YangJPHsiangELChenHMPWide viewing angle TN LCD enhanced by printed quantum-dots filmSID Symp Dig Tech Pap201647212410.1002/sdtp.10588 – reference: SomeyaJSugiuraHEvaluation of liquid-crystal-display motion blur with moving-picture response time and human perceptionJ Soc Inf Display200715798610.1889/1.2451570 – reference: LinBYEasleyCJChenCHTsengPCLeeMZExciplex-sensitized triplet−triplet annihilation in heterojunction organic thin-filmACS Appl Mater Interfaces20179109631097010.1021/acsami.6b16397 – reference: LuoZYChenYWuSTWide color gamut LCD with a quantum dot backlightOpt Express201321262692628410.1364/OE.21.0262692013OExpr..2126269L – reference: KomatsuRNakazatoRSasakiTSuzukiASendaNRepeatedly foldable book-type AMOLED displaySID Symp Dig Tech Pap20144532632910.1002/j.2168-0159.2014.tb00088.x – reference: FuruhashiTKawabeKHirakataJITanakaYSatoTHigh quality TFT-LCD system for moving pictureSID Symp Dig Tech Pap2002331284128710.1889/1.1830181 – reference: LeeMTWangCLChanCSFuCCShihCYAchieving a foldable and durable OLED display with BT.2020 color space using innovative color filter structureJ Soc Inf Display20172522923910.1002/jsid.533 – reference: SunYRForrestSRHigh-efficiency white organic light emitting devices with three separate phosphorescent emission layersAppl Phys Lett20079126350310.1063/1.28271782007ApPhL..91z3503S – reference: KimHJShinMHLeeJYKimJHKimYJRealization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot filmOpt Express201725107241073410.1364/OE.25.0107242017OExpr..2510724K – reference: IshinabeTObonaiYFujikakeHA foldable ultra-thin LCD using a coat-debond polyimide substrate and polymer wallsSID Symp Dig Tech Pap201647838610.1002/sdtp.10592 – reference: MasaokaKNishidaYSugawaraMNakasuEDesign of primaries for a wide-gamut television colorimetryIEEE Trans Broadcast20105645245710.1109/TBC.2010.2074450 – reference: TanakaDSasabeHLiYJSuSJTakedaTUltra high efficiency green organic light-emitting devicesJpn J Appl Phys200746L10L1210.1143/JJAP.46.L10 – reference: ChenPYChenCLChenCCTsaiLTingHC65-inch inkjet printed organic light-emitting display panel with high degree of pixel uniformitySID Symp Dig Tech Pap20144539639810.1002/j.2168-0159.2014.tb00107.x – reference: SteckelJSHoJHamiltonCXiJQBreenCQuantum dots: the ultimate down-conversion material for LCD displaysJ Soc Inf Display20152329430510.1002/jsid.313 – reference: WangMJChenYQLiuXNYuanSLiNA new technology of mirror LCDSID Symp Dig Tech Pap2017481160116210.1002/sdtp.11849 – reference: FujisakiYSatoHYamamotoTFujikakeHTokitoSFlexible color LCD panel driven by low-voltage-operation organic TFTJ Soc Inf Display20071550150610.1889/1.2759556 – reference: PickettNLHarrisJAGrestyNCHeavy metal-free quantum dots for display applicationsSID Symp Dig Tech Pap20154616816910.1002/sdtp.10288 – reference: KimuraKOnoyamaYTanakaTToyomuraNKitagawaHNew pixel driving circuit using self-discharging compensation method for high- resolution OLED micro displays on a silicon backplaneJ Soc Inf Display20172516717610.1002/jsid.540 – reference: LiWJYaoLLiuHCWangZMZhangSTHighly efficient deep-blue OLED with an extraordinarily narrow FHWM of 35 nm and a y coordinate<0.05 based on a fully twisting donor-acceptor moleculeJ Mater Chem C201424733473610.1039/C4TC00487F – reference: LeeJHZhuXYLinYHChoiWKLinTCHigh ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting deviceOpt Express2005139431943810.1364/OPEX.13.0094312005OExpr..13.9431L – reference: ItoHOgawaMSunagaSEvaluation of an organic light-emitting diode display for precise visual stimulationJ Vis201313610.1167/13.7.6 – reference: YooONamSChoiJYooSKimKJContrast enhancement based on advanced local dimming system for high dynamic range LCDsSID Symp Dig Tech Pap2017481667166910.1002/sdtp.11966 – reference: XieRJHirosakiNTakedaTWide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodesAppl Phys Express2009202240110.1143/APEX.2.0224012009APExp...2b2401X – reference: YamamotoTSasakiSIgarashiYTanakaYGuiding principles for high-quality moving picture in LCD TVsJ Soc Inf Display20061493394010.1889/1.2372428 – reference: TanGJLeeYHGouFWHuMGLanYFMacroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystalsJ Appl Phys201712117310210.1063/1.49827612017JAP...121q3102T – reference: SchiekelMFFahrenschonKDeformation of nematic liquid crystals with vertical orientation in electrical fieldsAppl Phys Lett19711939139310.1063/1.16537431971ApPhL..19..391S – reference: CastellanoJAHandbook of Display Technology2012Amsterdam, The Netherlands: Elsevier – reference: ChenCHLinFCHsuYTHuangYPShiehHPA field sequential color LCD based on color fields arrangement for color breakup and flicker reductionJ Display Technol20095343910.1109/JDT.2008.20015782009JDisT...5...34C – reference: ChenHWLanYFTsaiCYWuSTLow-voltage blue-phase liquid crystal display with diamond-shape electrodesLiq Cryst2017441124113010.1080/02678292.2016.1264014 – reference: KimSSYouBHChoJHKimDGBerkeleyBHAn 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced Super PVA technologyJ Soc Inf Display200917717810.1889/JSID17.2.71 – reference: YamamotoTAonoYTsumuraMGuiding principles for high quality motion picture in AMLCDs applicable to TV monitorsSID Symp Dig Tech Pap20003145645910.1889/1.1832979 – reference: ReinhardEHeidrichWDebevecPPattanaikSWardGHigh Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting2010San Francisco, CA, USA: Morgan Kaufmann – reference: HeilmeierGHZanoniLABartonLAFurther studies of the dynamic scattering mode in nematic liquid crystalsIEEE Trans Electron Dev197017222610.1109/T-ED.1970.169181970ITED...17...22H – reference: HosoumiSYamaguchiTInoueHNomuraSYamaokaRUltra-wide color gamut OLED display?using a deep-red phosphorescent device with high efficiency, long life, thermal stability, and absolute BT.2020 red chromaticitySID Symp Dig Tech Pap201748131610.1002/sdtp.11562 – reference: BrüttingWBerlebSMücklAGDevice physics of organic light-emitting diodes based on molecular materialsOrg Electron2001213610.1016/S1566-1199(01)00009-X – reference: VepakommaKHIshikawaTGreeneRGStress induced substrate Mura in curved LCDSID Symp Dig Tech Pap20154663463610.1002/sdtp.10230 – reference: ChouCTYuPWTsengMHHsuCCShyueJJTransparent conductive gas-permeation barriers on plastics by atomic layer depositionAdv Mater2013251750175410.1002/adma.201204358 – reference: MeerheimRScholzSOlthofSSchwartzGReinekeSInfluence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devicesJ Appl Phys200810401451010.1063/1.29519602008JAP...104a4510M – reference: KäläntärKA directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering filmJ Soc Inf Display20122013314210.1889/JSID20.3.133 – reference: BuckleyAOrganic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications2013Amsterdam, The Netherlands: Elsevier10.1533/9780857098948 – reference: SoneiraRMGalaxy Note8 OLED Display Technology Shoot-Out2017Amherst, USA: DisplayMate – reference: LinHYChenKYHoYHFangJHHsuSCLuminance and image quality analysis of an organic electroluminescent panel with a patterned microlens array attachmentJ Optics20101208550210.1088/2040-8978/12/8/0855022010JOpt...12h5502L – reference: Oh-eMKondoKResponse mechanism of nematic liquid crystals using the in-plane switching modeAppl Phys Lett19966962362510.1063/1.1179271996ApPhL..69..623O – reference: ChenHWHeJWuSTRecent advances on quantum-dot-enhanced liquid-crystal displaysIEEE J Sel Top Quantum Electron2017231900611 – reference: LiangHWLuoZYZhuRDDongYJLeeJHHigh efficiency quantum dot and organic LEDs with a back-cavity and a high index substrateJ Phys D Appl Phys20164914510310.1088/0022-3727/49/14/1451032016JPhD...49n5103L – reference: ChenHWGaoYTWuSTn-FFS vs. p-FFS: who wins?SID Symp Dig Tech Pap20154673573810.1002/sdtp.10182 – reference: KimJBLeeJHMoonCKKimSYKimJJHighly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodesAdv Mater2013253571357710.1002/adma.201205233 – reference: GeffroyBLe RoyPPratCOrganic light‐emitting diode (OLED) technology: materials, devices and display technologiesPolym Int20065557258210.1002/pi.1974 – reference: MoriHItohYNishiuraYNakamuraTShinagawaYPerformance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displaysJpn J Appl Phys19973614314710.1143/JJAP.36.1431997JaJAP..36..143M – reference: JangEJunSJangHLimJKimBWhite-light-emitting diodes with quantum dot color converters for display backlightsAdv Mater2010223076308010.1002/adma.201000525 – reference: PickettNLGrestyNCHinesMAHeavy metal-free quantum dots making inroads for consumer applicationsSID Symp Dig Tech Pap20164742542710.1002/sdtp.10694 – reference: ChopraNLeeJXueJGSoFHigh-efficiency blue emitting phosphorescent OLEDsIEEE Trans Electron Devices20105710110710.1109/TED.2009.20350282010ITED...57..101C – reference: ChenHWZhuRDLiMCLeeSLWuSTPixel-by-pixel local dimming for high-dynamic-range liquid crystal displaysOpt Express2017251973198410.1364/OE.25.0019732017OExpr..25.1973C – reference: KondakovDYCharacterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivativesJ Appl Phys200710211450410.1063/1.28183622007JAP...102k4504K – reference: ShinHLeeJHMoonCKHuhJSSimBSky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layerAdv Mater2016284920492510.1002/adma.201506065 – reference: ReinekeSLindnerFSchwartzGSeidlerNWalzerKWhite organic light-emitting diodes with fluorescent tube efficiencyNature200945923423810.1038/nature080032009Natur.459..234R – reference: ChenHWZhuRDKäläntärKWuSTQuantum dot-enhanced LCDs with wide color gamut and broad angular luminance distributionSID Symp Dig Tech Pap2016471413141610.1002/sdtp.10951 – reference: CastlesFMorrisSMGardinerDJMalikQMColesHJUltra-fast-switching flexoelectric liquid-crystal display with high contrastJ Soc Inf Display20101812813310.1889/JSID18.2.128 – reference: DalySKunkelTSunXFarrellSCrumPViewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displaysSID Symp Dig Tech Pap20134456356610.1002/j.2168-0159.2013.tb06271.x – reference: HeilmeierGHZanoniLABartonLADynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystalsProc IEEE1968561162117110.1109/PROC.1968.6513 – reference: AdachiCBaldoMForrestSRLamanskySThompsonMEHigh-efficiency red electrophosphorescence devicesAppl Phys Lett2001781622162410.1063/1.13550072001ApPhL..78.1622A – reference: KobayashiSMikoshibaSLimSLCD Backlights2009New York, USA: John Wiley & Sons10.1002/9780470744826 – reference: Walker G . GD-Itronix Dynavue Technology. The ultimate outdoor-readable touch-screen display. Rugged PC Rev 2007. Available at: http://www.ruggedpcreview.com/3_technology_itronix_dynavue.html. – reference: ChenYLuoZYPengFLWuSTFringe-field switching with a negative dielectric anisotropy liquid crystalJ Display Technol20139747710.1109/JDT.2013.22428442013JDisT...9...74C – reference: ShinHJParkKMTakasugiSJeongYSKimJMA high-image-quality OLED display for large-size and premium TVsSID Symp Dig Tech Pap2017481134113710.1002/sdtp.11841 – reference: LeeJHLiuDNWuSTIntroduction to Flat Panel Displays2008Chichester, UK: John Wiley & Sons – reference: YunHJJoMHJangIWLeeSHAhnSHAchieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropyLiq Cryst2012391141114810.1080/02678292.2012.700078 – reference: LeeSHLeeSLKimHYElectro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switchingAppl Phys Lett1998732881288310.1063/1.1226171998ApPhL..73.2881L – reference: GreinertNSchoenefeldCSuessPKlasen-MemmerMBremerMOpening the door to new LCD applications via polymer wallsSID Symp Dig Tech Pap20154638238510.1002/sdtp.10348 – volume: 35 start-page: 1262 year: 2004 ident: BFlsa2017168_CR55 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1821340 – volume: 22 start-page: 3076 year: 2010 ident: BFlsa2017168_CR80 publication-title: Adv Mater doi: 10.1002/adma.201000525 – volume: 48 start-page: 612 year: 2017 ident: BFlsa2017168_CR145 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11713 – volume: 15 start-page: 501 year: 2007 ident: BFlsa2017168_CR141 publication-title: J Soc Inf Display doi: 10.1889/1.2759556 – volume-title: Fundamentals of Liquid Crystal Devices year: 2014 ident: BFlsa2017168_CR5 doi: 10.1002/9781118751992 – volume: 46 start-page: 634 year: 2015 ident: BFlsa2017168_CR31 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10230 – volume: 55 start-page: 572 year: 2006 ident: BFlsa2017168_CR6 publication-title: Polym Int doi: 10.1002/pi.1974 – volume: 70 start-page: 1665 year: 1997 ident: BFlsa2017168_CR115 publication-title: Appl Phys Lett doi: 10.1063/1.118664 – volume: 21 start-page: 26269 year: 2013 ident: BFlsa2017168_CR19 publication-title: Opt Express doi: 10.1364/OE.21.026269 – volume: 92 start-page: 111101 year: 2008 ident: BFlsa2017168_CR173 publication-title: Appl Phys Lett doi: 10.1063/1.2896650 – volume-title: Galaxy Note8 OLED Display Technology Shoot-Out year: 2017 ident: BFlsa2017168_CR134 – volume: 15 start-page: 79 year: 2007 ident: BFlsa2017168_CR56 publication-title: J Soc Inf Display doi: 10.1889/1.2451570 – volume: 36 start-page: 143 year: 1997 ident: BFlsa2017168_CR23 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.36.143 – volume: 7 start-page: 817 year: 2013 ident: BFlsa2017168_CR138 publication-title: Nat Photonics doi: 10.1038/nphoton.2013.242 – ident: BFlsa2017168_CR75 – volume: 9 start-page: 3858 year: 2013 ident: BFlsa2017168_CR111 publication-title: Small doi: 10.1002/smll.201300068 – volume: 29 start-page: 1077 year: 1998 ident: BFlsa2017168_CR27 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1833672 – volume: 3 start-page: 390 year: 2015 ident: BFlsa2017168_CR89 publication-title: Adv Opt Mater doi: 10.1002/adom.201400341 – volume: 10 start-page: 45 year: 2004 ident: BFlsa2017168_CR95 publication-title: IEEE J Sel Top Quantum Electron doi: 10.1109/JSTQE.2004.824072 – volume: 33 start-page: 1284 year: 2002 ident: BFlsa2017168_CR60 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1830181 – volume: 39 start-page: 1141 year: 2012 ident: BFlsa2017168_CR38 publication-title: Liq Cryst doi: 10.1080/02678292.2012.700078 – volume: 48 start-page: 03B001 year: 2009 ident: BFlsa2017168_CR3 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.48.03B001 – volume: 6 start-page: e17043 year: 2017 ident: BFlsa2017168_CR72 publication-title: Light Sci Appl doi: 10.1038/lsa.2017.43 – volume-title: Introduction to Flat Panel Displays year: 2008 ident: BFlsa2017168_CR16 – volume: 15 start-page: 034201 year: 2014 ident: BFlsa2017168_CR51 publication-title: Sci Technol Adv Mater doi: 10.1088/1468-6996/15/3/034201 – volume: 17 start-page: 22 year: 1970 ident: BFlsa2017168_CR12 publication-title: IEEE Trans Electron Dev doi: 10.1109/T-ED.1970.16918 – volume: 97 start-page: 243304 year: 2010 ident: BFlsa2017168_CR48 publication-title: Appl Phys Lett doi: 10.1063/1.3527085 – volume: 25 start-page: 11315 year: 2017 ident: BFlsa2017168_CR69 publication-title: Opt Express doi: 10.1364/OE.25.011315 – volume: 2 start-page: 4733 year: 2014 ident: BFlsa2017168_CR87 publication-title: J Mater Chem C doi: 10.1039/C4TC00487F – volume: 5 start-page: 655 year: 2015 ident: BFlsa2017168_CR170 publication-title: Opt Mater Express doi: 10.1364/OME.5.000655 – volume: 11 start-page: 315 year: 2015 ident: BFlsa2017168_CR149 publication-title: J Display Technol doi: 10.1109/JDT.2015.2408993 – volume: 25 start-page: 10724 year: 2017 ident: BFlsa2017168_CR151 publication-title: Opt Express doi: 10.1364/OE.25.010724 – volume: 26 start-page: 603 year: 1975 ident: BFlsa2017168_CR171 publication-title: Appl Phys Lett doi: 10.1063/1.88018 – volume: 14 start-page: 933 year: 2006 ident: BFlsa2017168_CR61 publication-title: J Soc Inf Display doi: 10.1889/1.2372428 – volume: 47 start-page: 484 year: 2016 ident: BFlsa2017168_CR157 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10714 – volume: 39 start-page: 2367 year: 2006 ident: BFlsa2017168_CR36 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/39/11/009 – volume-title: Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications year: 2013 ident: BFlsa2017168_CR7 doi: 10.1533/9780857098948 – volume: 4 start-page: 2262 year: 2014 ident: BFlsa2017168_CR37 publication-title: Opt Mater Express doi: 10.1364/OME.4.002262 – volume: 4 start-page: 89 year: 2003 ident: BFlsa2017168_CR43 publication-title: Org Electron doi: 10.1016/j.orgel.2003.08.004 – volume: 35 start-page: 767 year: 2004 ident: BFlsa2017168_CR140 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1825794 – volume: 47 start-page: 837 year: 2016 ident: BFlsa2017168_CR180 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10805 – volume: 43 start-page: 1159 year: 2012 ident: BFlsa2017168_CR186 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2012.tb06001.x – volume: 82 start-page: 2422 year: 2003 ident: BFlsa2017168_CR122 publication-title: Appl Phys Lett doi: 10.1063/1.1568146 – volume: 9 start-page: 10963 year: 2017 ident: BFlsa2017168_CR105 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b16397 – ident: BFlsa2017168_CR106 – volume: 78 start-page: 1622 year: 2001 ident: BFlsa2017168_CR119 publication-title: Appl Phys Lett doi: 10.1063/1.1355007 – volume: 25 start-page: 229 year: 2017 ident: BFlsa2017168_CR92 publication-title: J Soc Inf Display doi: 10.1002/jsid.533 – volume: 49 start-page: 315101 year: 2016 ident: BFlsa2017168_CR113 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/49/31/315101 – volume: 49 start-page: 145103 year: 2016 ident: BFlsa2017168_CR52 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/49/14/145103 – volume: 25 start-page: 6801 year: 2013 ident: BFlsa2017168_CR63 publication-title: Adv Mater doi: 10.1002/adma.201301603 – volume: 7 start-page: 8974 year: 2015 ident: BFlsa2017168_CR107 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b01533 – volume: 43 start-page: 279 year: 2012 ident: BFlsa2017168_CR153 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2012.tb05768.x – volume: 28 start-page: 4920 year: 2016 ident: BFlsa2017168_CR128 publication-title: Adv Mater doi: 10.1002/adma.201506065 – ident: BFlsa2017168_CR167 – volume: 23 start-page: 294 year: 2015 ident: BFlsa2017168_CR81 publication-title: J Soc Inf Display doi: 10.1002/jsid.313 – volume: 46 start-page: 168 year: 2015 ident: BFlsa2017168_CR83 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10288 – volume: 18 start-page: 738 year: 2006 ident: BFlsa2017168_CR188 publication-title: Adv Mater doi: 10.1002/adma.200501957 – volume: 45 start-page: 326 year: 2014 ident: BFlsa2017168_CR136 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2014.tb00088.x – volume: 26 start-page: 1612 year: 2014 ident: BFlsa2017168_CR50 publication-title: Adv Mater doi: 10.1002/adma.201304253 – ident: BFlsa2017168_CR73 – volume: 91 start-page: 263503 year: 2007 ident: BFlsa2017168_CR125 publication-title: Appl Phys Lett doi: 10.1063/1.2827178 – volume: 44 start-page: 563 year: 2013 ident: BFlsa2017168_CR166 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2013.tb06271.x – volume: 47 start-page: 301 year: 2016 ident: BFlsa2017168_CR103 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10654 – volume: 67 start-page: 3853 year: 1995 ident: BFlsa2017168_CR116 publication-title: Appl Phys Lett doi: 10.1063/1.115295 – volume: 25 start-page: 90 year: 2017 ident: BFlsa2017168_CR184 publication-title: J Soc Inf Display doi: 10.1002/jsid.534 – volume-title: LCD Backlights year: 2009 ident: BFlsa2017168_CR77 doi: 10.1002/9780470744826 – volume: 47 start-page: 83 year: 2016 ident: BFlsa2017168_CR142 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10592 – volume: 51 start-page: 913 year: 1987 ident: BFlsa2017168_CR41 publication-title: Appl Phys Lett doi: 10.1063/1.98799 – volume: 47 start-page: 21 year: 2016 ident: BFlsa2017168_CR150 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10588 – volume: 45 start-page: 396 year: 2014 ident: BFlsa2017168_CR156 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2014.tb00107.x – volume: 48 start-page: 1667 year: 2017 ident: BFlsa2017168_CR164 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11966 – volume-title: Handbook of Display Technology year: 2012 ident: BFlsa2017168_CR1 – volume: 13 start-page: 9431 year: 2005 ident: BFlsa2017168_CR65 publication-title: Opt Express doi: 10.1364/OPEX.13.009431 – volume: 12 start-page: 085502 year: 2010 ident: BFlsa2017168_CR112 publication-title: J Optics doi: 10.1088/2040-8978/12/8/085502 – volume: 16 start-page: 624 year: 2004 ident: BFlsa2017168_CR124 publication-title: Adv Mater doi: 10.1002/adma.200306670 – volume: 25 start-page: 1973 year: 2017 ident: BFlsa2017168_CR165 publication-title: Opt Express doi: 10.1364/OE.25.001973 – volume: 121 start-page: 173102 year: 2017 ident: BFlsa2017168_CR178 publication-title: J Appl Phys doi: 10.1063/1.4982761 – volume: 267 start-page: 1332 year: 1995 ident: BFlsa2017168_CR117 publication-title: Science doi: 10.1126/science.267.5202.1332 – ident: BFlsa2017168_CR67 – volume: 53 start-page: 052102 year: 2014 ident: BFlsa2017168_CR132 publication-title: Jpn J Appl Phys doi: 10.7567/JJAP.53.052102 – volume: 25 start-page: 1750 year: 2013 ident: BFlsa2017168_CR96 publication-title: Adv Mater doi: 10.1002/adma.201204358 – volume: 65 start-page: 3610 year: 1989 ident: BFlsa2017168_CR114 publication-title: J Appl Phys doi: 10.1063/1.343409 – volume: 48 start-page: 793 year: 2017 ident: BFlsa2017168_CR143 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11754 – volume: 105 start-page: 124514 year: 2009 ident: BFlsa2017168_CR49 publication-title: J Appl Phys doi: 10.1063/1.3151689 – volume: 46 start-page: 382 year: 2015 ident: BFlsa2017168_CR144 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10348 – volume: 42 start-page: 537 year: 2015 ident: BFlsa2017168_CR174 publication-title: Liq Cryst doi: 10.1080/02678292.2015.1014873 – volume: 22 start-page: 673 year: 2010 ident: BFlsa2017168_CR155 publication-title: Adv Mater doi: 10.1002/adma.200901141 – volume: 104 start-page: 014510 year: 2008 ident: BFlsa2017168_CR120 publication-title: J Appl Phys doi: 10.1063/1.2951960 – volume-title: Introduction to Microdisplays year: 2006 ident: BFlsa2017168_CR182 doi: 10.1002/9780470057056 – volume: 17 start-page: 551 year: 2009 ident: BFlsa2017168_CR29 publication-title: J Soc Inf Display doi: 10.1889/JSID17.7.551 – volume: 67 start-page: 3895 year: 1995 ident: BFlsa2017168_CR33 publication-title: Appl Phys Lett doi: 10.1063/1.115309 – volume: 9 start-page: 74 year: 2013 ident: BFlsa2017168_CR40 publication-title: J Display Technol doi: 10.1109/JDT.2013.2242844 – volume: 9 start-page: 46 year: 2006 ident: BFlsa2017168_CR135 publication-title: Mater Today doi: 10.1016/S1369-7021(06)71447-X – volume: 44 start-page: 1124 year: 2017 ident: BFlsa2017168_CR177 publication-title: Liq Cryst doi: 10.1080/02678292.2016.1264014 – volume: 115 start-page: 8449 year: 2015 ident: BFlsa2017168_CR100 publication-title: Chem Rev doi: 10.1021/cr400704v – volume: 75 start-page: 4 year: 1999 ident: BFlsa2017168_CR45 publication-title: Appl Phys Lett doi: 10.1063/1.124258 – volume: 493 start-page: 283 year: 2013 ident: BFlsa2017168_CR18 publication-title: Nature doi: 10.1038/493283a – volume: 5 start-page: 2 year: 2007 ident: BFlsa2017168_CR70 publication-title: J Circadian Rhythms doi: 10.1186/1740-3391-5-2 – start-page: pp168 volume-title: Backlight Local Dimming Algorithm for High Contrast LCD-TV year: 2006 ident: BFlsa2017168_CR161 – volume: 25 start-page: 3571 year: 2013 ident: BFlsa2017168_CR108 publication-title: Adv Mater doi: 10.1002/adma.201205233 – volume: 102 start-page: 114504 year: 2007 ident: BFlsa2017168_CR44 publication-title: J Appl Phys doi: 10.1063/1.2818362 – volume: 31 start-page: 456 year: 2000 ident: BFlsa2017168_CR53 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1832979 – volume: 5 start-page: 34 year: 2009 ident: BFlsa2017168_CR168 publication-title: J Display Technol doi: 10.1109/JDT.2008.2001578 – volume: 17 start-page: 71 year: 2009 ident: BFlsa2017168_CR30 publication-title: J Soc Inf Display doi: 10.1889/JSID17.2.71 – volume: 87 start-page: 213502 year: 2005 ident: BFlsa2017168_CR64 publication-title: Appl Phys Lett doi: 10.1063/1.2133922 – volume: 80 start-page: 2782 year: 2002 ident: BFlsa2017168_CR118 publication-title: Appl Phys Lett doi: 10.1063/1.1413220 – volume: 48 start-page: 1166 year: 2017 ident: BFlsa2017168_CR187 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11851 – volume: 18 start-page: 127 year: 1971 ident: BFlsa2017168_CR13 publication-title: Appl Phys Lett doi: 10.1063/1.1653593 – volume: 26 start-page: 034001 year: 2011 ident: BFlsa2017168_CR94 publication-title: Semicond Sci Technol doi: 10.1088/0268-1242/26/3/034001 – volume: 2 start-page: 1 year: 2001 ident: BFlsa2017168_CR42 publication-title: Org Electron doi: 10.1016/S1566-1199(01)00009-X – volume: 23 start-page: 4914 year: 2013 ident: BFlsa2017168_CR47 publication-title: Adv Funct Mater doi: 10.1002/adfm.201300547 – volume: 22 start-page: 165 year: 1973 ident: BFlsa2017168_CR15 publication-title: Appl Phys Lett doi: 10.1063/1.1654597 – volume-title: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting year: 2010 ident: BFlsa2017168_CR158 – volume: 20 start-page: 133 year: 2012 ident: BFlsa2017168_CR148 publication-title: J Soc Inf Display doi: 10.1889/JSID20.3.133 – volume: 3 start-page: 2974 year: 2015 ident: BFlsa2017168_CR133 publication-title: J Mater Chem C doi: 10.1039/C4TC02495H – volume: 73 start-page: 2881 year: 1998 ident: BFlsa2017168_CR21 publication-title: Appl Phys Lett doi: 10.1063/1.122617 – volume: 9 start-page: 6900207 year: 2017 ident: BFlsa2017168_CR152 publication-title: IEEE Photonics Technol – volume: 13 start-page: 46 year: 1968 ident: BFlsa2017168_CR11 publication-title: Appl Phys Lett doi: 10.1063/1.1652453 – volume: 3 start-page: 1033 year: 2016 ident: BFlsa2017168_CR58 publication-title: Optica doi: 10.1364/OPTICA.3.001033 – volume: 45 start-page: 385 year: 2014 ident: BFlsa2017168_CR25 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2014.tb00104.x – volume: 121 start-page: 023108 year: 2017 ident: BFlsa2017168_CR57 publication-title: J Appl Phys doi: 10.1063/1.4974006 – volume: 48 start-page: 348 year: 2017 ident: BFlsa2017168_CR91 publication-title: Org Electron doi: 10.1016/j.orgel.2017.06.030 – volume: 47 start-page: 1413 year: 2016 ident: BFlsa2017168_CR147 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10951 – volume: 25 start-page: 167 year: 2017 ident: BFlsa2017168_CR181 publication-title: J Soc Inf Display doi: 10.1002/jsid.540 – volume-title: OLED Display: Fundamentals and Applications year: 2017 ident: BFlsa2017168_CR8 doi: 10.1002/9781119187493 – volume: 48 start-page: 187 year: 2017 ident: BFlsa2017168_CR99 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11620 – volume: 13 start-page: 6 year: 2013 ident: BFlsa2017168_CR62 publication-title: J Vis doi: 10.1167/13.7.6 – volume: 48 start-page: 775 year: 2017 ident: BFlsa2017168_CR185 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11745 – volume: 44 start-page: 32 year: 2013 ident: BFlsa2017168_CR71 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2013.tb06132.x – volume: 46 start-page: 1059 year: 2015 ident: BFlsa2017168_CR32 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10387 – volume: 48 start-page: 1928 year: 2017 ident: BFlsa2017168_CR104 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.12008 – volume: 47 start-page: 549 year: 2016 ident: BFlsa2017168_CR85 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10718 – volume: 46 start-page: L10 year: 2007 ident: BFlsa2017168_CR121 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.46.L10 – volume: 1 start-page: 90 year: 2005 ident: BFlsa2017168_CR131 publication-title: J Display Technol doi: 10.1109/JDT.2005.852802 – volume: 492 start-page: 234 year: 2012 ident: BFlsa2017168_CR46 publication-title: Nature doi: 10.1038/nature11687 – volume: 23 start-page: 28707 year: 2015 ident: BFlsa2017168_CR79 publication-title: Opt Express doi: 10.1364/OE.23.028707 – volume-title: Transflective Liquid Crystal Displays year: 2010 ident: BFlsa2017168_CR66 doi: 10.1002/9780470689059 – volume: 381 start-page: 212 year: 1996 ident: BFlsa2017168_CR22 publication-title: Nature doi: 10.1038/381212a0 – volume: 48 start-page: 1134 year: 2017 ident: BFlsa2017168_CR154 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11841 – volume: 23 start-page: 1900611 year: 2017 ident: BFlsa2017168_CR20 publication-title: IEEE J Sel Top Quantum Electron – ident: BFlsa2017168_CR82 – volume: 42 start-page: 763 year: 2003 ident: BFlsa2017168_CR172 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.42.L763 – volume: 2 start-page: 022401 year: 2009 ident: BFlsa2017168_CR78 publication-title: Appl Phys Express doi: 10.1143/APEX.2.022401 – volume: 18 start-page: 57 year: 2010 ident: BFlsa2017168_CR163 publication-title: J Soc Inf Display doi: 10.1889/JSID18.1.57 – volume: 56 start-page: 1162 year: 1968 ident: BFlsa2017168_CR10 publication-title: Proc IEEE doi: 10.1109/PROC.1968.6513 – volume: 43 start-page: 895 year: 2012 ident: BFlsa2017168_CR17 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2012.tb05931.x – volume: 7 start-page: 641 year: 2017 ident: BFlsa2017168_CR176 publication-title: Opt Mater Express doi: 10.1364/OME.7.000641 – volume: 48 start-page: 13 year: 2017 ident: BFlsa2017168_CR88 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11562 – volume: 83 start-page: 413 year: 2003 ident: BFlsa2017168_CR97 publication-title: Appl Phys Lett doi: 10.1063/1.1594284 – volume: 85 start-page: 115205 year: 2012 ident: BFlsa2017168_CR109 publication-title: Phys Rev B doi: 10.1103/PhysRevB.85.115205 – volume: 32 start-page: 986 year: 2001 ident: BFlsa2017168_CR54 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1832037 – volume: 98 start-page: 383 year: 1998 ident: BFlsa2017168_CR28 publication-title: Proceedings of the 18th IDRC, Asia Display – volume: 48 start-page: 123 year: 2017 ident: BFlsa2017168_CR93 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11582 – volume: 56 start-page: 452 year: 2010 ident: BFlsa2017168_CR76 publication-title: IEEE Trans Broadcast doi: 10.1109/TBC.2010.2074450 – volume: 48 start-page: 1160 year: 2017 ident: BFlsa2017168_CR189 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11849 – volume: 39 start-page: L527 year: 2000 ident: BFlsa2017168_CR35 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.39.L527 – volume: 93 start-page: 1108 year: 2003 ident: BFlsa2017168_CR98 publication-title: J Appl Phys doi: 10.1063/1.1531231 – volume: 459 start-page: 234 year: 2009 ident: BFlsa2017168_CR129 publication-title: Nature doi: 10.1038/nature08003 – volume: 47 start-page: 711 year: 2016 ident: BFlsa2017168_CR130 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10782 – volume: 8 start-page: 15566 year: 2017 ident: BFlsa2017168_CR102 publication-title: Nat Commun doi: 10.1038/ncomms15566 – volume: 41 start-page: 1671 year: 2010 ident: BFlsa2017168_CR139 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.3500227 – volume: 18 start-page: 128 year: 2010 ident: BFlsa2017168_CR179 publication-title: J Soc Inf Display doi: 10.1889/JSID18.2.128 – volume: 44 start-page: 526 year: 2013 ident: BFlsa2017168_CR24 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2013.tb06261.x – volume: 25 start-page: 10939 year: 2017 ident: BFlsa2017168_CR160 publication-title: Opt Express doi: 10.1364/OE.25.010939 – volume-title: Liquid Crystal Devices: Physics and Applications year: 1999 ident: BFlsa2017168_CR2 – volume: 19 start-page: 391 year: 1971 ident: BFlsa2017168_CR14 publication-title: Appl Phys Lett doi: 10.1063/1.1653743 – volume: 82 start-page: 466 year: 2003 ident: BFlsa2017168_CR90 publication-title: Appl Phys Lett doi: 10.1063/1.1537052 – volume: 57 start-page: 101 year: 2010 ident: BFlsa2017168_CR123 publication-title: IEEE Trans Electron Devices doi: 10.1109/TED.2009.2035028 – volume: 5 start-page: 5008 year: 2014 ident: BFlsa2017168_CR101 publication-title: Nat Commun doi: 10.1038/ncomms6008 – volume: 47 start-page: 884 year: 2016 ident: BFlsa2017168_CR159 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10829 – volume: 7 start-page: 195 year: 2017 ident: BFlsa2017168_CR175 publication-title: Opt Mater Express doi: 10.1364/OME.7.000195 – volume: 45 start-page: 234 year: 2014 ident: BFlsa2017168_CR183 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2014.tb00064.x – volume: 32 start-page: 990 year: 2001 ident: BFlsa2017168_CR59 publication-title: SID Symp Dig Tech Pap doi: 10.1889/1.1832039 – volume: 17 start-page: 221 year: 2009 ident: BFlsa2017168_CR169 publication-title: J Soc Inf Display doi: 10.1889/JSID17.3.221 – volume: 4 start-page: 139 year: 2008 ident: BFlsa2017168_CR162 publication-title: J Display Technol doi: 10.1109/JDT.2008.920175 – volume: 46 start-page: 735 year: 2015 ident: BFlsa2017168_CR39 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10182 – volume: 28 start-page: 845 year: 1997 ident: BFlsa2017168_CR26 publication-title: SID Symp Dig Tech Pap – volume: 24 start-page: 229 year: 2016 ident: BFlsa2017168_CR68 publication-title: J Soc Inf Display doi: 10.1002/jsid.427 – volume: 5 start-page: 753 year: 2011 ident: BFlsa2017168_CR127 publication-title: Nat Photonics doi: 10.1038/nphoton.2011.259 – volume: 48 start-page: 992 year: 2017 ident: BFlsa2017168_CR86 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.11793 – volume: 44 start-page: 419 year: 2013 ident: BFlsa2017168_CR146 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2013.tb06236.x – volume: 19 start-page: 316 year: 2011 ident: BFlsa2017168_CR137 publication-title: J Soc Inf Display doi: 10.1889/JSID19.4.316 – volume: 47 start-page: 425 year: 2016 ident: BFlsa2017168_CR84 publication-title: SID Symp Dig Tech Pap doi: 10.1002/sdtp.10694 – volume: 28 start-page: 2526 year: 2016 ident: BFlsa2017168_CR126 publication-title: Adv Mater doi: 10.1002/adma.201504451 – volume-title: Optics of Liquid Crystal Displays year: 2010 ident: BFlsa2017168_CR4 – volume: 210 start-page: 9 year: 2013 ident: BFlsa2017168_CR110 publication-title: Phys Status Solidi (A) doi: 10.1002/pssa.201228310 – ident: BFlsa2017168_CR74 – volume: 44 start-page: 26 year: 2013 ident: BFlsa2017168_CR9 publication-title: SID Symp Dig Tech Pap doi: 10.1002/j.2168-0159.2013.tb06130.x – volume: 69 start-page: 623 year: 1996 ident: BFlsa2017168_CR34 publication-title: Appl Phys Lett doi: 10.1063/1.117927 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.6431947 |
SecondaryResourceType | review_article |
Snippet | Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated debate. In this review, we... Recently, 'Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?' has become a topic of heated debate. In this review, we... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17168 |
SubjectTerms | 639/624/1020/1091 639/624/1075/146 Applied and Technical Physics Atomic Classical and Continuum Physics Computer applications Lasers LCDs Light emitting diodes Liquid crystal displays Molecular Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Review review-article |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IHgR39YXEdSLFrdpm6beZHFZRD0peCttOtVC7a529-C_d5I-ZH2At9KZ0DSTSWYyM18Ajh3UIGuIdppIYdOCJ2yZkF4FaY-j76kkyLSjeHcvho_ezZP_NAfnbS2MSdo3kJZmmW6zwy6KSoMEOfo0RM7DogZt1_O5L_rdiQo5Kk5PBk12e8-VM41m950fxuTPnMhvgVGz3wxWYaUxFNlV3bU1mMNyHZZMwqaqNuD5Nn-b5ilT7x9k3xUszatxEX-wuExZfVOTYoUBCcHX3OQ2E8soxZbxko3rwiOmS4qmlWlYA4yw8VcBZrUJj4Prh_7Qbi5NsJXviIntcj9OfCUxzYSruIeBQLKBYk7aGsY84Zz-Mc0kvUQaQ45Im1emMtqnyPlSobsFC-WoxB1g5DpnZA8ECZkInpeoEFWYZUJK5KFyY8eCs3ZII9UgiuuLLYrIRLZdGZEAIi2AiARgwUnHPa6RNP7g22-lEzX6VBmiRpkMiHzUkUkTdHgjLnE0JR5HajA-EQgLtmthdh9yydLUgWoLghkxdwwaZXuWUuYvBm2bPDztRllw2k6Ir2791v_d_zLuwTI9yjqhbR8WJu9TPCALZ5Icmon9CS0l_MA priority: 102 providerName: Springer Nature |
Title | Liquid crystal display and organic light-emitting diode display: present status and future perspectives |
URI | https://link.springer.com/article/10.1038/lsa.2017.168 https://www.ncbi.nlm.nih.gov/pubmed/30839536 https://www.proquest.com/docview/2017031378 https://www.proquest.com/docview/2188591676 https://pubmed.ncbi.nlm.nih.gov/PMC6060049 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQuiPIMtCsjARcUsXES2-GCllWragUVAirtLUrsSYkUsmmze-i_Z-w8VktbTlHsieJkPPa8_A3A2wAtyBqib3IlfFrwhK9ykitpphzjSOeysIbitzNxeh4tlvGyd7i1fVrlsCa6hdqstPWRk5EeWKj1UKrPzaVvq0bZ6GpfQuM-7FvoMpvSJZdy9LGQ6RJMlezz3aeh-li1FmsosE4VtbsT3VAvb2ZJ_hMqdTvQyWN41KuObNbx-gDuYf0EHrgUTt0-hYuv5eWmNExfXZPGVzFTtk2VXbOsNqyr3aRZ5WBD8E_psp2JZGVwIPzEmu4oErOHjDate7CDHGHN9khm-wzOT45_zU_9voyCr-NArP2Qx1kea4WmEKHmEUqBpBVlnOQ3yXjOOX2jKRQ1IhmHHJG2s0IXtHOROaaT8Dns1asaXwIjY7ogDUHmpDREUa4T1ElRCKWQJzrMAg8-DL801T3GuC11UaUu1h2qlBiQWgakxAAP3o3UTYetcQfd4cCdtJewNt3OBw_ejN0kGzbgkdW42hBNoCw8n5DCgxcdM8cXhaR72tC1B3KHzSOBxd3e7anL3w5_m2w-a1h58H6YENth3Tb-V_8f_2t4SDeqS2w7hL311QaPSNNZ5xM3nSewP5stfi7o-uX47PsPap2L-cR5D_4CT_MFvQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KFdEXsX41WnUF64sEL5uvPUGKHy1Xez1EWuhbmuxOaiDm0uYOuX_Kv9GZfB1n1be-ZidkyczOzm9n9jcArxxkkjVE2yQqsMnhBbZKaF2FZijR93QSpgwUj6fB-NT7cuafbcCv7i4Ml1V2PrF21Gam-YycQLrDVOtuqPbKS5u7RnF2tWuh0ZjFES5_EmSr3h9-Jv3uSnmwf_JpbLddBWztO8HcdqUfJ75WaNLA1dLDMEAKEmJJ5jyKZSIlGm1SRQ-RsJJEJO-e6pQcOaETzeRL5PI3PZegzAA2P-5Pv37rT3UILDlDFbYV9kNXvc0rZjdy-BhHre991wLa63WZfyRn6z3v4B7cbYNV8aGxri3YwOI-3KqLRnX1AC4m2eUiM0JfLSnGzIXJqjKPlyIujGi6RWmR10Ql-COr66tJZGawE3wnyubyk-BrTYuqfrEhORHl6hJo9RBOb-QXP4JBMStwGwTB95RikjChMMXzEj1CPUrTQCmUI-3GjgVvul8a6ZbVnJtr5FGdXXdVRAqIWAERKcCC3V66bNg8_iG302knatd0Fa0s0IKX_TCtRk6xxAXOFiTjKCYEDMLAgseNMvsPuRTtcrLcgnBNzb0AM32vjxTZ95rxm1AmQzkLXncGsZrW3-b_5P_zfwG3xyfHk2hyOD16CndoQDVldTswmF8t8BnFWfPkeWvcAs5vej39Bpg3Py4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KRfFF_G60rStYXyT0svnYPaFIsR6trcUHC_cWk92JBmIube6Q-9f865zJ13FWfetrMiFL5iPz25n9DcArD5lkDdG1qY5cCniRq1PyK2VHEsPApCpjoPjpPDq-CD5Ow-kG_OrPwnBbZR8Tm0BtZ4b3yAmke0y17iu9n3VtEZ-PJu-qS5cnSHGltR-n0ZrIKS5_EnyrD06OSNd7Uk4-fHl_7HYTBlwTetHc9WWYpKHRaLPINzJAFSElDIkk0x4nMpUSrbGZpotIuEkiUqTPTEZBnZCKYSImCv-3lB967GNqqob9HYJN3kirrtd-5Ov9omaeI483dPT6X_Baanu9Q_OPMm3z95vch3td2ioOWzt7ABtYPoTbTfuoqR_Bt7P8cpFbYa6WlG0WwuZ1VSRLkZRWtHOjjCgayhL8kTed1iQys9gLvhVVewxK8AGnRd082NKdiGp1HLR-DBc38oGfwGY5K3ELBAH5jLITlVLCEgSpGaMZZ1mkNcqx8RPPgTf9J41Nx2_OYzaKuKmz-zomBcSsgJgU4MDeIF21vB7_kNvutRN33l3HK1t04OVwm_ySiy1JibMFyXiaqQEjFTnwtFXm8CKf8l4umzug1tQ8CDDn9_qdMv_ecH8T3mRQ58Dr3iBWy_rb-p_9f_0v4A55UXx2cn76HO7Sdd32123D5vxqgTuUcM3T3cayBXy9aVf6DbqtQf4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+crystal+display+and+organic+light-emitting+diode+display%3A+present+status+and+future+perspectives&rft.jtitle=Light%2C+science+%26+applications&rft.au=Chen%2C+Hai-Wei&rft.au=Lee%2C+Jiun-Haw&rft.au=Lin%2C+Bo-Yen&rft.au=Chen%2C+Stanley&rft.date=2018-03-01&rft.issn=2047-7538&rft.eissn=2047-7538&rft.volume=7&rft.issue=3&rft.spage=17168&rft.epage=17168&rft_id=info:doi/10.1038%2Flsa.2017.168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_lsa_2017_168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |