Deep learning in generating radiology reports: A survey

•Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and paragraph.•We review the publicly available datasets of radiology images and linked reports.•We compare results of the generated reports thr...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 106; p. 101878
Main Authors Monshi, Maram Mahmoud A., Poon, Josiah, Chung, Vera
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and paragraph.•We review the publicly available datasets of radiology images and linked reports.•We compare results of the generated reports through quantitative evaluation matrices.•Researchers integrate convolutional neural network and recurrent neural network. Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.
AbstractList • Deep Learning algorithms showed promising results in generating radiology reports. • We categorize state of the art models into three levels: word, sentence and paragraph. • We review the publicly available datasets of radiology images and linked reports. • We compare results of the generated reports through quantitative evaluation matrices. • Researchers integrate convolutional neural network and recurrent neural network. Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.
Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.
•Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and paragraph.•We review the publicly available datasets of radiology images and linked reports.•We compare results of the generated reports through quantitative evaluation matrices.•Researchers integrate convolutional neural network and recurrent neural network. Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.
Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.
ArticleNumber 101878
Author Monshi, Maram Mahmoud A.
Chung, Vera
Poon, Josiah
Author_xml – sequence: 1
  givenname: Maram Mahmoud A.
  surname: Monshi
  fullname: Monshi, Maram Mahmoud A.
  email: mmon4544@uni.sydney.edu.au
  organization: School of Computer Science, University of Sydney, Sydney, Australia
– sequence: 2
  givenname: Josiah
  surname: Poon
  fullname: Poon, Josiah
  organization: School of Computer Science, University of Sydney, Sydney, Australia
– sequence: 3
  givenname: Vera
  surname: Chung
  fullname: Chung, Vera
  organization: School of Computer Science, University of Sydney, Sydney, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32425358$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1PAjEQbQxGAf0HxuzRy2Lb7W4LMSYEPxMTL3puut1ZLJYW24WEf-8iaNQLp8lM33szfa-HOs47QOiM4AHBpLicDVRo5lANKKZfI8HFAeq2JUupKHAHdfEwy9KsyPkx6sU4wxhzRoojdJxRRvMsF13EbwAWiQUVnHHTxLhkCg6CajZdUJXx1k_XSYCFD00cJeMkLsMK1ifosFY2wumu9tHr3e3L5CF9er5_nIyfUp2TokkzIsqS15jXDGipclLlWtGaCM2GjAIXOQBgrQFXNediSLUiUFS6VgxKJqqsj663uotl2X5Wg2uCsnIRzFyFtfTKyL8vzrzJqV9JTikvCG4FLnYCwX8sITZybqIGa5UDv4ySMswKRllrVR-d_971s-TbrRbAtgAdfIwB6h8IwXITipzJbShyE4rchtLSRv9o2jStw35zsbH7yDsDoHV5ZSDIqA04DZUJoBtZebNP4OqfgLbGGa3sO6z30z8Bbpi_rA
CitedBy_id crossref_primary_10_5858_arpa_2024_0215_RA
crossref_primary_10_1093_jamia_ocab046
crossref_primary_10_1016_j_eprac_2025_03_008
crossref_primary_10_1109_ACCESS_2020_3033762
crossref_primary_10_1108_IJHRH_06_2021_0132
crossref_primary_10_1109_JTEHM_2025_3535676
crossref_primary_10_1111_exsy_13499
crossref_primary_10_1016_j_artmed_2023_102714
crossref_primary_10_1016_j_critrevonc_2023_104235
crossref_primary_10_1080_23311916_2022_2104333
crossref_primary_10_1109_TBME_2023_3280987
crossref_primary_10_1016_j_media_2024_103264
crossref_primary_10_2174_1871526523666230124162103
crossref_primary_10_5808_gi_23088
crossref_primary_10_1007_s11042_021_10929_6
crossref_primary_10_1080_19424396_2023_2199910
crossref_primary_10_1186_s40537_023_00775_8
crossref_primary_10_1007_s43069_024_00400_1
crossref_primary_10_3390_jcm13237092
crossref_primary_10_1038_s41598_024_64310_2
crossref_primary_10_3390_bioengineering11040351
crossref_primary_10_1007_s12539_021_00431_w
crossref_primary_10_1016_j_acra_2024_02_048
crossref_primary_10_3390_jcm11164918
crossref_primary_10_1016_j_clinsp_2023_100210
crossref_primary_10_13104_imri_2022_1102
crossref_primary_10_3390_ijerph18094946
crossref_primary_10_1007_s00256_021_03876_8
crossref_primary_10_1016_j_compmedimag_2023_102320
crossref_primary_10_2174_1573405617666210806123720
crossref_primary_10_1016_j_cmpb_2023_107358
crossref_primary_10_1186_s12889_021_12032_9
crossref_primary_10_1016_j_eswa_2021_115695
crossref_primary_10_1007_s11517_024_03265_y
crossref_primary_10_3390_app13127198
crossref_primary_10_1186_s12938_023_01113_y
crossref_primary_10_1007_s00259_025_07101_9
crossref_primary_10_1038_s41598_023_31223_5
crossref_primary_10_1145_3522747
crossref_primary_10_1016_j_artmed_2020_101983
crossref_primary_10_1007_s10462_022_10270_w
crossref_primary_10_1016_j_clon_2023_09_013
crossref_primary_10_1038_s41597_022_01608_8
crossref_primary_10_1038_s43856_023_00327_4
crossref_primary_10_1007_s12350_022_02996_5
crossref_primary_10_3389_frai_2024_1430984
crossref_primary_10_1007_s11548_022_02791_0
crossref_primary_10_1016_j_asoc_2022_109625
crossref_primary_10_3390_biomedinformatics3030045
crossref_primary_10_1007_s00330_023_10384_x
crossref_primary_10_1007_s10278_022_00692_x
crossref_primary_10_1038_s43856_022_00199_0
crossref_primary_10_1108_K_05_2022_0758
crossref_primary_10_3390_su132413579
crossref_primary_10_1016_j_artmed_2024_102814
crossref_primary_10_3390_jpm12030417
crossref_primary_10_2174_1573405617666210713113439
crossref_primary_10_1016_j_ijcce_2022_01_004
crossref_primary_10_4018_IJRQEH_326765
crossref_primary_10_1016_j_diii_2023_02_003
crossref_primary_10_1016_j_artmed_2021_102009
crossref_primary_10_1109_ACCESS_2024_3449929
crossref_primary_10_1007_s10115_022_01684_7
crossref_primary_10_1016_j_eswa_2023_122102
crossref_primary_10_1016_j_procs_2024_04_234
crossref_primary_10_1155_2022_2209070
crossref_primary_10_1016_j_media_2023_103000
crossref_primary_10_1016_j_rcl_2021_07_004
crossref_primary_10_1155_2022_5485606
crossref_primary_10_3390_bdcc7010011
crossref_primary_10_1016_j_jrras_2024_100823
crossref_primary_10_1016_j_compmedimag_2024_102486
crossref_primary_10_1109_RBME_2024_3408456
crossref_primary_10_3390_cancers12123532
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1016_j_artmed_2024_102846
crossref_primary_10_1155_2021_6663884
crossref_primary_10_1016_j_heliyon_2024_e27516
crossref_primary_10_1145_3701031
crossref_primary_10_1016_j_patter_2023_100802
crossref_primary_10_3390_bioengineering11090890
crossref_primary_10_17816_DD101099
crossref_primary_10_20396_rbi_v22i00_8668109
crossref_primary_10_3390_su151813484
crossref_primary_10_1002_leap_1610
crossref_primary_10_1016_j_jrras_2024_101281
crossref_primary_10_1177_03008916241231035
crossref_primary_10_1109_ACCESS_2021_3109602
crossref_primary_10_1016_j_imu_2023_101273
crossref_primary_10_11834_jig_211021
crossref_primary_10_1155_2021_6872291
Cites_doi 10.1038/srep27327
10.1016/j.media.2017.07.005
10.1167/iovs.17-22721
10.1016/j.neucom.2017.05.025
10.1016/j.fcij.2017.12.001
10.1109/TMI.2018.2791721
10.1109/ACCESS.2017.2788044
10.1148/radiol.11091710
10.1093/jamia/ocv080
10.1038/srep24454
10.1109/JBHI.2019.2894713
10.1109/5.726791
10.1007/s10278-015-9823-3
10.1016/j.artmed.2018.06.006
10.1109/JBHI.2017.2767063
10.1002/mrm.27178
10.1016/j.jacr.2017.09.044
10.1097/RTI.0000000000000387
10.3115/v1/W14-3348
10.1109/JBHI.2016.2636665
10.1109/TMI.2016.2548501
10.1016/j.jacr.2017.12.027
10.1016/j.acra.2018.02.018
10.1038/s41591-018-0316-z
10.2214/AJR.16.17224
10.1162/neco.1997.9.8.1735
10.1162/neco.1989.1.2.270
10.2741/4725
10.1016/j.cmpb.2018.01.025
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.artmed.2020.101878
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 101878
ExternalDocumentID PMC7227610
32425358
10_1016_j_artmed_2020_101878
S0933365719302635
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c516t-318bb7f07f4e2ba51d5ca2f18c4942e785eee0cce0df77892ca1e6dcfa4eb48d3
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Thu Aug 21 17:54:04 EDT 2025
Tue Aug 05 10:28:42 EDT 2025
Thu Apr 03 07:00:14 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 00:24:37 EDT 2025
Fri Feb 23 02:50:20 EST 2024
Tue Aug 26 17:11:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Radiology
Natural language processing
Recurrent neural network
Convolutional neural network
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-318bb7f07f4e2ba51d5ca2f18c4942e785eee0cce0df77892ca1e6dcfa4eb48d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7227610
PMID 32425358
PQID 2404642493
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7227610
proquest_miscellaneous_2404642493
pubmed_primary_32425358
crossref_primary_10_1016_j_artmed_2020_101878
crossref_citationtrail_10_1016_j_artmed_2020_101878
elsevier_sciencedirect_doi_10_1016_j_artmed_2020_101878
elsevier_clinicalkey_doi_10_1016_j_artmed_2020_101878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Xie, Xing, McGough, Yang (bib0445) 2017
Guo, Yuan, Zheng, Xu, Xiao, Liu (bib0485) 2018; 90
Ravı (bib0055) 2017; 21
Wang, Peng, Lu, Lu, Bagheri, Summers (bib0170) 2017
Lam, Yu, Huang, Rubin (bib0225) 2018; 59
Wang (bib0295) 2016
Glorot, Bengio (bib0355) 2010
Anderson, Fernando, Johnson, Gould (bib0510) 2016
Huang, Liu, Van Der Maaten, Weinberger (bib0370) 2017
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0465) 2017
Peng, Wang, Lu, Bagheri, Summers, Lu (bib0475) 2018; 2017
Cheng (bib0025) 2016; 6
Karpathy, Fei-Fei (bib0005) 2015
van Ginneken, Schaefer-Prokop, Prokop (bib0010) 2011; 261
Glorot, Bordes, Bengio (bib0275) 2011
Chaudhari (bib0240) 2018; 80
Szegedy (bib0320) 2015
Lakhani (bib0085) 2018; 15
Shin, Lu, Kim, Seff, Yao, Summers (bib0255) 2015
Szegedy, Ioffe, Vanhoucke, Alemi (bib0360) 2017; 4
Ker, Wang, Rao, Lim (bib0060) 2018; 6
Krizhevsky, Sutskever, Hinton (bib0305) 2012
Xie, Girshick, Dollár, Tu, He (bib0330) 2017
Demner-Fushman (bib0105) 2015; 23
Cho (bib0390) 2014
Alom (bib0040) 2018
Zeiler, Fergus (bib0310) 2014
Lin, Och (bib0515) 2004
Radiology (bib0160) 2020
Monshi, Poon, Chung (bib0180) 2019
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0455) 2016
Hassanpour, Langlotz (bib0435) 2016; 29
Schuyler, Hole, Tuttle, Sherertz (bib0110) 1993; 81
Sahu, Verma (bib0205) 2011; 6
Stock, Cisse (bib0350) 2018
Dong, Pan, Zhang, Xu (bib0265) 2017
Li, Liang, Hu, Xing (bib0100) 2018
Rajpurkar (bib0400) 2017
McBee (bib0030) 2018
I. ILSVRC2016.
Pouyanfar (bib0035) 2018; 51
Hicks (bib0525) 2018
Kisilev, Sason, Barkan, Hashoul (bib0200) 2016
Deng, Liu (bib0415) 2018
Deng, Liu (bib0425) 2018
Mikolov, Karafiát, Burget, Černocký, Khudanpur (bib0380) 2010
Shickel, Tighe, Bihorac, Rashidi (bib0050) 2018; 22
Shin, Lu, Kim, Seff, Yao, Summers (bib0095) 2016; 17
Irvin (bib0145) 2019
Goodfellow, Bengio, Courville, Bengio (bib0260) 2016
Kohli, Prevedello, Filice, Geis (bib0015) 2017; 208
Howard, Ruder (bib0470) 2018
Nwankpa, Ijomah, Gachagan, Marshall (bib0285) 2018
Abadi (bib0405) 2016
Lee (bib0215) 2019; 34
Jia (bib0395) 2014
Papineni, Roukos, Ward, Zhu (bib0490) 2002
accessed.
Blei, Ng, Jordan (bib0450) 2003; 3
Thanki, Kothari (bib0140) 2019
Wang, Peng, Lu, Lu, Summers (bib0135) 2018
Xu (bib0480) 2015
Jing, Xie, Xing (bib0125) 2017
Heath, Bowyer, Kopans, Moore, Kegelmeyer (bib0195) 2000
Litjens (bib0065) 2017; 42
Biswas (bib0250) 2019; 24
Erickson, Korfiatis, Kline, Akkus, Philbrick, Weston (bib0080) 2018; 15
Lin (bib0495) 2004
Johnson (bib0165) 2019
Langlotz (bib0115) 2006
Vedantam, Lawrence Zitnick, Parikh (bib0505) 2015
Simonyan, Zisserman (bib0315) 2014
Rubin, Sanghavi, Zhao, Lee, Qadir, Xu-Wilson (bib0175) 2018
(bib0090) 2018
Bustos, Pertusa, Salinas, de la (bib0185) 2019
Clevert, Unterthiner, Hochreiter (bib0280) 2015
Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib0420) 2011; 12
Paszke (bib0410) 2017
Kilickaya, Erdem, Ikizler-Cinbis, Erdem (bib0520) 2016
Akay, Hess (bib0075) 2019
Moeskops, Viergever, Mendrik, de Vries, Benders, Išgum (bib0300) 2016; 35
(bib0150) 2020
Wang (bib0230) 2018; 37
Lin, Chen, Yan (bib0365) 2013
Shin, Roberts, Lu, Demner-Fushman, Yao, Summers (bib0120) 2016
LeCun, Bottou, Bengio, Haffner (bib0290) 1998; 86
Six (bib0210) 2019
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0345) 2009
Qayyum, Anwar, Awais, Majid (bib0235) 2017; 266
Wang, Xia (bib0460) 2018
Hochreiter, Schmidhuber (bib0385) 1997; 9
Mohsen, El-Dahshan, El-Horbaty, Salem (bib0220) 2018; 3
Denkowski, Lavie (bib0500) 2014
Xue (bib0130) 2018
Williams, Zipser (bib0375) 1989; 1
Hu, Shen, Sun (bib0340) 2017; 7
Gibson (bib0245) 2018; 158
Wong (bib0155) 2020
Li (bib0270) 2017
He, Deng (bib0430) 2018
He, Zhang, Ren, Sun (bib0325) 2016
Shin, Lu, Summers (bib0440) 2017
Esteva (bib0045) 2019; 25
Bertrand, Hashir, Cohen (bib0190) 2019
Wang, Casalino, Khullar (bib0070) 2018
Wang, Yang, Cai, Tan, Jin, Li (bib0020) 2016; 6
Zhou (10.1016/j.artmed.2020.101878_bib0455) 2016
Schuyler (10.1016/j.artmed.2020.101878_bib0110) 1993; 81
Zeiler (10.1016/j.artmed.2020.101878_bib0310) 2014
Litjens (10.1016/j.artmed.2020.101878_bib0065) 2017; 42
Six (10.1016/j.artmed.2020.101878_bib0210) 2019
Xie (10.1016/j.artmed.2020.101878_bib0330) 2017
Vedantam (10.1016/j.artmed.2020.101878_bib0505) 2015
Blei (10.1016/j.artmed.2020.101878_bib0450) 2003; 3
Ravı (10.1016/j.artmed.2020.101878_bib0055) 2017; 21
Kohli (10.1016/j.artmed.2020.101878_bib0015) 2017; 208
Lin (10.1016/j.artmed.2020.101878_bib0495) 2004
LeCun (10.1016/j.artmed.2020.101878_bib0290) 1998; 86
Stock (10.1016/j.artmed.2020.101878_bib0350) 2018
Wang (10.1016/j.artmed.2020.101878_bib0460) 2018
Shin (10.1016/j.artmed.2020.101878_bib0255) 2015
Qayyum (10.1016/j.artmed.2020.101878_bib0235) 2017; 266
Li (10.1016/j.artmed.2020.101878_bib0270) 2017
Lam (10.1016/j.artmed.2020.101878_bib0225) 2018; 59
Wang (10.1016/j.artmed.2020.101878_bib0170) 2017
Esteva (10.1016/j.artmed.2020.101878_bib0045) 2019; 25
10.1016/j.artmed.2020.101878_bib0335
Kisilev (10.1016/j.artmed.2020.101878_bib0200) 2016
Shin (10.1016/j.artmed.2020.101878_bib0095) 2016; 17
Heath (10.1016/j.artmed.2020.101878_bib0195) 2000
Thanki (10.1016/j.artmed.2020.101878_bib0140) 2019
Johnson (10.1016/j.artmed.2020.101878_bib0165) 2019
Chaudhari (10.1016/j.artmed.2020.101878_bib0240) 2018; 80
Nwankpa (10.1016/j.artmed.2020.101878_bib0285) 2018
Cho (10.1016/j.artmed.2020.101878_bib0390) 2014
Guo (10.1016/j.artmed.2020.101878_bib0485) 2018; 90
Erickson (10.1016/j.artmed.2020.101878_bib0080) 2018; 15
Lee (10.1016/j.artmed.2020.101878_bib0215) 2019; 34
Hochreiter (10.1016/j.artmed.2020.101878_bib0385) 1997; 9
Lin (10.1016/j.artmed.2020.101878_bib0515) 2004
Ker (10.1016/j.artmed.2020.101878_bib0060) 2018; 6
Dong (10.1016/j.artmed.2020.101878_bib0265) 2017
He (10.1016/j.artmed.2020.101878_bib0430) 2018
McBee (10.1016/j.artmed.2020.101878_bib0030) 2018
Sahu (10.1016/j.artmed.2020.101878_bib0205) 2011; 6
Xu (10.1016/j.artmed.2020.101878_bib0480) 2015
Peng (10.1016/j.artmed.2020.101878_bib0475) 2018; 2017
Alom (10.1016/j.artmed.2020.101878_bib0040) 2018
Lakhani (10.1016/j.artmed.2020.101878_bib0085) 2018; 15
Bustos (10.1016/j.artmed.2020.101878_bib0185) 2019
Karpathy (10.1016/j.artmed.2020.101878_bib0005) 2015
Biswas (10.1016/j.artmed.2020.101878_bib0250) 2019; 24
Wang (10.1016/j.artmed.2020.101878_bib0070) 2018
Clevert (10.1016/j.artmed.2020.101878_bib0280) 2015
Demner-Fushman (10.1016/j.artmed.2020.101878_bib0105) 2015; 23
Irvin (10.1016/j.artmed.2020.101878_bib0145) 2019
Wang (10.1016/j.artmed.2020.101878_bib0135) 2018
Gibson (10.1016/j.artmed.2020.101878_bib0245) 2018; 158
Hicks (10.1016/j.artmed.2020.101878_bib0525) 2018
Szegedy (10.1016/j.artmed.2020.101878_bib0320) 2015
Langlotz (10.1016/j.artmed.2020.101878_bib0115) 2006
van Ginneken (10.1016/j.artmed.2020.101878_bib0010) 2011; 261
Cheng (10.1016/j.artmed.2020.101878_bib0025) 2016; 6
Paszke (10.1016/j.artmed.2020.101878_bib0410) 2017
Pouyanfar (10.1016/j.artmed.2020.101878_bib0035) 2018; 51
Hu (10.1016/j.artmed.2020.101878_bib0340) 2017; 7
Wang (10.1016/j.artmed.2020.101878_bib0230) 2018; 37
Selvaraju (10.1016/j.artmed.2020.101878_bib0465) 2017
Shin (10.1016/j.artmed.2020.101878_bib0120) 2016
Mohsen (10.1016/j.artmed.2020.101878_bib0220) 2018; 3
Deng (10.1016/j.artmed.2020.101878_bib0425) 2018
Denkowski (10.1016/j.artmed.2020.101878_bib0500) 2014
Rajpurkar (10.1016/j.artmed.2020.101878_bib0400) 2017
Deng (10.1016/j.artmed.2020.101878_bib0415) 2018
Shin (10.1016/j.artmed.2020.101878_bib0440) 2017
Papineni (10.1016/j.artmed.2020.101878_bib0490) 2002
Shickel (10.1016/j.artmed.2020.101878_bib0050) 2018; 22
Radiology (10.1016/j.artmed.2020.101878_bib0160) 2020
Xue (10.1016/j.artmed.2020.101878_bib0130) 2018
Williams (10.1016/j.artmed.2020.101878_bib0375) 1989; 1
(10.1016/j.artmed.2020.101878_bib0090) 2018
Wong (10.1016/j.artmed.2020.101878_bib0155) 2020
Collobert (10.1016/j.artmed.2020.101878_bib0420) 2011; 12
Bertrand (10.1016/j.artmed.2020.101878_bib0190) 2019
Howard (10.1016/j.artmed.2020.101878_bib0470) 2018
Kilickaya (10.1016/j.artmed.2020.101878_bib0520) 2016
Glorot (10.1016/j.artmed.2020.101878_bib0355) 2010
Wang (10.1016/j.artmed.2020.101878_bib0020) 2016; 6
Lin (10.1016/j.artmed.2020.101878_bib0365) 2013
Moeskops (10.1016/j.artmed.2020.101878_bib0300) 2016; 35
Anderson (10.1016/j.artmed.2020.101878_bib0510) 2016
Wang (10.1016/j.artmed.2020.101878_bib0295) 2016
Zhang (10.1016/j.artmed.2020.101878_bib0445) 2017
(10.1016/j.artmed.2020.101878_bib0150) 2020
Li (10.1016/j.artmed.2020.101878_bib0100) 2018
Akay (10.1016/j.artmed.2020.101878_bib0075) 2019
Szegedy (10.1016/j.artmed.2020.101878_bib0360) 2017; 4
Jia (10.1016/j.artmed.2020.101878_bib0395) 2014
Hassanpour (10.1016/j.artmed.2020.101878_bib0435) 2016; 29
Simonyan (10.1016/j.artmed.2020.101878_bib0315) 2014
He (10.1016/j.artmed.2020.101878_bib0325) 2016
Mikolov (10.1016/j.artmed.2020.101878_bib0380) 2010
Huang (10.1016/j.artmed.2020.101878_bib0370) 2017
Abadi (10.1016/j.artmed.2020.101878_bib0405) 2016
Jing (10.1016/j.artmed.2020.101878_bib0125) 2017
Monshi (10.1016/j.artmed.2020.101878_bib0180) 2019
Krizhevsky (10.1016/j.artmed.2020.101878_bib0305) 2012
Rubin (10.1016/j.artmed.2020.101878_bib0175) 2018
Goodfellow (10.1016/j.artmed.2020.101878_bib0260) 2016
Glorot (10.1016/j.artmed.2020.101878_bib0275) 2011
Deng (10.1016/j.artmed.2020.101878_bib0345) 2009
References_xml – volume: 6
  start-page: 9375
  year: 2018
  end-page: 9389
  ident: bib0060
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib0455
  article-title: Learning deep features for discriminative localization
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2497
  year: 2016
  end-page: 2506
  ident: bib0120
  article-title: Learning to read chest x-rays: recurrent neural cascade model for automated image annotation
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 201160
  year: 2020
  ident: bib0155
  article-title: Frequency and distribution of chest radiographic findings in COVID-19 positive patients
  publication-title: Radiology
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib0465
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: in Proceedings of the IEEE International Conference on Computer Vision
– year: 2018
  ident: bib0030
  article-title: Deep learning in radiology
  publication-title: Acad Radiol
– volume: 34
  start-page: 75
  year: 2019
  end-page: 85
  ident: bib0215
  article-title: Deep learning applications in Chest Radiography and computed tomography: current state of the art
  publication-title: J Thorac Imaging
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0065
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0370
  article-title: Densely connected convolutional networks
  publication-title: in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 35
  start-page: 1252
  year: 2016
  end-page: 1261
  ident: bib0300
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Trans Med Imaging
– year: 2019
  ident: bib0185
  article-title: Iglesia-vayá, "PadChest
  publication-title: A Large Chest X-Ray Image Dataset With Multi-Label Annotated Reports
– volume: 15
  start-page: 350
  year: 2018
  end-page: 359
  ident: bib0085
  article-title: Machine learning in radiology: applications beyond image interpretation
  publication-title: J Am Coll Radiol
– year: 2017
  ident: bib0125
  article-title: On the Automatic Generation of Medical Imaging Reports
– year: 2017
  ident: bib0270
  article-title: Deep Reinforcement Learning: An Overview
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0305
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: in Advances in Neural Information Processing Systems
– volume: 21
  start-page: 4
  year: 2017
  end-page: 21
  ident: bib0055
  article-title: Deep learning for health informatics
  publication-title: IEEE J Biomed Health Inform
– start-page: 3462
  year: 2017
  end-page: 3471
  ident: bib0170
  article-title: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on
– start-page: 121
  year: 2016
  end-page: 129
  ident: bib0200
  article-title: Medical image description using multi-task-loss CNN
  publication-title: in Deep Learning and Data Labeling for Medical Applications
– year: 2016
  ident: bib0260
  article-title: Deep Learning
– start-page: 1
  year: 2019
  end-page: 15
  ident: bib0140
  article-title: Data compression and its application in medical imaging
  publication-title: in Hybrid and Advanced Compression Techniques for Medical Images
– year: 2019
  ident: bib0210
  article-title: The ultimate guide to AI in radiology
  publication-title: Artificial Intelligence in Healthcare Solutions
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0290
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc Ieee
– volume: 29
  start-page: 59
  year: 2016
  end-page: 62
  ident: bib0435
  article-title: Unsupervised topic modeling in a large free text radiology report repository
  publication-title: J Digit Imaging
– volume: 90
  start-page: 25
  year: 2018
  end-page: 33
  ident: bib0485
  article-title: Diagnosis labeling with disease-specific characteristics mining
  publication-title: Artif Intell Med
– year: 2018
  ident: bib0285
  article-title: Activation functions: Comparison of Trends in Practice and Research for Deep Learning
– year: 2018
  ident: bib0460
  article-title: Chestnet: A Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography
– volume: 81
  start-page: 217
  year: 1993
  ident: bib0110
  article-title: The UMLS Metathesaurus: representing different views of biomedical concepts
  publication-title: Bull Med Libr Assoc
– start-page: 212
  year: 2000
  end-page: 218
  ident: bib0195
  article-title: The digital database for screening mammography
  publication-title: in Proceedings of the 5th International Workshop on Digital Mammography
– start-page: 1
  year: 2018
  end-page: 22
  ident: bib0415
  article-title: A joint introduction to natural language processing and to deep learning
  publication-title: in Deep Learning in Natural Language Processing
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: bib0450
  article-title: Latent dirichlet allocation
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 24454
  year: 2016
  ident: bib0025
  article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci Rep
– year: 2006
  ident: bib0115
  article-title: RadLex: A New Method for Indexing Online Educational Materials
– start-page: 9049
  year: 2018
  end-page: 9058
  ident: bib0135
  article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 24
  year: 2019
  ident: bib0045
  article-title: A guide to deep learning in healthcare
  publication-title: Nat Med
– year: 2015
  ident: bib0280
  article-title: Fast and accurate Deep Network Learning by Exponential Linear Units (elus)
– volume: 59
  start-page: 590
  year: 2018
  end-page: 596
  ident: bib0225
  article-title: Retinal lesion detection with deep learning using image patches
  publication-title: Invest Ophthalmol Vis Sci
– volume: 4
  start-page: 12
  year: 2017
  ident: bib0360
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: AAAI
– volume: 23
  start-page: 304
  year: 2015
  end-page: 310
  ident: bib0105
  article-title: Preparing a collection of radiology examinations for distribution and retrieval
  publication-title: J Am Med Inform Assoc
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib0310
  article-title: Visualizing and understanding convolutional networks
  publication-title: in European Conference on Computer Vision
– year: 2019
  ident: bib0190
  article-title: Do Lateral Views Help Automated Chest X-ray Predictions?
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib0355
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– start-page: 315
  year: 2011
  end-page: 323
  ident: bib0275
  article-title: Deep sparse rectifier neural networks
  publication-title: in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– year: 2018
  ident: bib0040
  article-title: The history began from AlexNet
  publication-title: A Comprehensive Survey on Deep Learning Approaches
– year: 2020
  ident: bib0150
  article-title: Statistics, "Statistics » Diagnostic Imaging Dataset
– year: 2016
  ident: bib0520
  article-title: Re-evaluating automatic metrics for image captioning
– start-page: 311
  year: 2002
  end-page: 318
  ident: bib0490
  article-title: BLEU: a method for automatic evaluation of machine translation
  publication-title: in Proceedings of the
– start-page: 405
  year: 2017
  end-page: 421
  ident: bib0440
  article-title: Natural language processing for large-scale medical image analysis using deep learning
  publication-title: in Deep Learning for Medical Image Analysis
– year: 2018
  ident: bib0470
  article-title: Universal Language Model Fine-Tuning for Text Classification
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0395
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: in Proceedings of the 22nd ACM International Conference on Multimedia
– year: 2017
  ident: bib0400
  article-title: Chexnet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
– year: 2014
  ident: bib0315
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 24
  start-page: 392
  year: 2019
  end-page: 426
  ident: bib0250
  article-title: State-of-the-art review on deep learning in medical imaging
  publication-title: Front Biosci (Landmark Ed)
– year: 2017
  ident: bib0410
  article-title: Automatic Differentiation in Pytorch
– volume: 7
  year: 2017
  ident: bib0340
  publication-title: Squeeze-and-excitation networks
– start-page: 498
  year: 2018
  end-page: 512
  ident: bib0350
  article-title: ConvNets and ImageNet beyond accuracy: understanding mistakes and uncovering biases
  publication-title: in Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 6
  start-page: 256
  year: 2011
  end-page: 260
  ident: bib0205
  article-title: DICOM search in medical image archive solution e-sushrut chhavi
  publication-title: 2011 3rd International Conference on Electronics Computer Technology
– volume: 3
  start-page: 68
  year: 2018
  end-page: 71
  ident: bib0220
  article-title: Classification using deep learning neural networks for brain tumors
  publication-title: Future Comput Inform J
– start-page: 51
  year: 2017
  end-page: 57
  ident: bib0265
  article-title: Learning to read chest X-ray images from 16000+ examples using CNN
  publication-title: in Proceedings of the Second IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies
– year: 2018
  ident: bib0090
  article-title: Imaging and radiology: MedlinePlus Medical Encyclopedia
– volume: 80
  start-page: 2139
  year: 2018
  end-page: 2154
  ident: bib0240
  article-title: Super‐resolution musculoskeletal MRI using deep learning
  publication-title: Magn Reson Med
– volume: 37
  start-page: 1562
  year: 2018
  end-page: 1573
  ident: bib0230
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans Med Imaging
– year: 2014
  ident: bib0390
  article-title: Learning Phrase Representations Using rnn Encoder-Decoder for Statistical Machine Translation
– volume: 2017
  start-page: 188
  year: 2018
  ident: bib0475
  article-title: NegBio: a high-performance tool for negation and uncertainty detection in radiology reports
  publication-title: AMIA Summits on Translational Science Proceedings
– year: 2019
  ident: bib0165
  article-title: MIMIC-CXR: A Large Publicly Available Database of Labeled Chest Radiographs
– start-page: 6428
  year: 2017
  end-page: 6436
  ident: bib0445
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: bib0480
  article-title: Show, attend and tell: neural image caption generation with visual attention
  publication-title: in International Conference on Machine Learning
– volume: 208
  start-page: 754
  year: 2017
  end-page: 760
  ident: bib0015
  article-title: Implementing machine learning in radiology practice and research
  publication-title: Am J Roentgenol
– start-page: 457
  year: 2018
  end-page: 466
  ident: bib0130
  article-title: Multimodal recurrent model with attention for automated radiology report generation
  publication-title: in International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 490
  year: 2018
  end-page: 493
  ident: bib0525
  article-title: Comprehensible reasoning and automated reporting of medical examinations based on deep learning analysis
  publication-title: in Proceedings of the 9th ACM Multimedia Systems Conference
– year: 2020
  ident: bib0160
  article-title: ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection
  publication-title: ACR website.
– start-page: 5987
  year: 2017
  end-page: 5995
  ident: bib0330
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on
– year: 2018
  ident: bib0070
  article-title: Deep learning in medicine—promise, progress, and challenges
  publication-title: JAMA Intern Med
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0325
  article-title: Deep residual learning for image recognition
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 382
  year: 2016
  end-page: 398
  ident: bib0510
  article-title: Spice: semantic propositional image caption evaluation
  publication-title: in European Conference on Computer Vision
– year: 2004
  ident: bib0495
  article-title: Rouge: a package for automatic evaluation of summaries
  publication-title: Text Summarization Branches Out
– year: 2010
  ident: bib0380
  article-title: Recurrent neural network based language model
  publication-title: in Eleventh Annual Conference of the International Speech Communication Association
– year: 2018
  ident: bib0425
  article-title: Deep Learning in Natural Language Processing
– volume: 17
  start-page: 1
  year: 2016
  end-page: 31
  ident: bib0095
  article-title: Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 2493
  year: 2011
  end-page: 2537
  ident: bib0420
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– year: 2018
  ident: bib0100
  article-title: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation
– volume: 15
  start-page: 521
  year: 2018
  end-page: 526
  ident: bib0080
  article-title: Deep learning in radiology: does one size fit all?
  publication-title: J Am Coll Radiol
– start-page: 289
  year: 2018
  end-page: 307
  ident: bib0430
  article-title: Deep learning in natural language generation from images
  publication-title: in Deep Learning in Natural Language Processing
– year: 2019
  ident: bib0145
  article-title: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
– year: 2016
  ident: bib0295
  article-title: Unsupervised Category Discovery Via Looped Deep Pseudo-Task Optimization Using a Large Scale Radiology Image Database
– start-page: 376
  year: 2014
  end-page: 380
  ident: bib0500
  article-title: Meteor universal: language specific translation evaluation for any target language
  publication-title: in Proceedings of the Ninth Workshop on Statistical Machine Translation
– volume: 261
  start-page: 719
  year: 2011
  end-page: 732
  ident: bib0010
  article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic
  publication-title: Radiology
– reference: I. ILSVRC2016.
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib0405
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16)
– start-page: 605
  year: 2004
  ident: bib0515
  article-title: Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics
  publication-title: in Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics
– start-page: 1090
  year: 2015
  end-page: 1099
  ident: bib0255
  article-title: Interleaved text/image deep mining on a very large-scale radiology database
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 1589
  year: 2018
  end-page: 1604
  ident: bib0050
  article-title: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis
  publication-title: IEEE J Biomed Health Inform
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: bib0375
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib0180
  article-title: Convolutional neural network to detect thorax diseases from multi-view chest X-rays
  publication-title: in Neural Information Processing. iconip-2019
– volume: 266
  start-page: 8
  year: 2017
  end-page: 20
  ident: bib0235
  article-title: Medical image retrieval using deep convolutional neural network
  publication-title: Neurocomputing
– volume: 51
  start-page: 92
  year: 2018
  ident: bib0035
  article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications
  publication-title: ACM Computing Surveys (CSUR)
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0385
  article-title: Long short-term memory
  publication-title: Neural Comput
– reference: (accessed.
– volume: 6
  start-page: 27327
  year: 2016
  ident: bib0020
  article-title: Discrimination of breast cancer with microcalcifications on mammography by deep learning
  publication-title: Sci Rep
– year: 2013
  ident: bib0365
  article-title: Network in network
– year: 2018
  ident: bib0175
  article-title: Large Scale Automated Reading of Frontal and Lateral Chest X-Rays Using Dual Convolutional Neural Networks
– start-page: 4566
  year: 2015
  end-page: 4575
  ident: bib0505
  article-title: Cider: consensus-based image description evaluation
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3128
  year: 2015
  end-page: 3137
  ident: bib0005
  article-title: Deep visual-semantic alignments for generating image descriptions
  publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 158
  start-page: 113
  year: 2018
  end-page: 122
  ident: bib0245
  article-title: NiftyNet: a deep-learning platform for medical imaging
  publication-title: Comput Methods Programs Biomed
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0320
  article-title: Going deeper with convolutions
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0075
  article-title: Deep learning: current and emerging applications in medicine and technology
  publication-title: IEEE J Biomed Health Inform
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0345
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0285
– year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0190
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0040
  article-title: The history began from AlexNet
– year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0295
– volume: 2017
  start-page: 188
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0475
  article-title: NegBio: a high-performance tool for negation and uncertainty detection in radiology reports
  publication-title: AMIA Summits on Translational Science Proceedings
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0070
  article-title: Deep learning in medicine—promise, progress, and challenges
  publication-title: JAMA Intern Med
– volume: 6
  start-page: 27327
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0020
  article-title: Discrimination of breast cancer with microcalcifications on mammography by deep learning
  publication-title: Sci Rep
  doi: 10.1038/srep27327
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0090
– start-page: 3128
  year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0005
  article-title: Deep visual-semantic alignments for generating image descriptions
  publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0065
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0100
– volume: 59
  start-page: 590
  issue: 1
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0225
  article-title: Retinal lesion detection with deep learning using image patches
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-22721
– start-page: 2261
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0370
  article-title: Densely connected convolutional networks
– volume: 266
  start-page: 8
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0235
  article-title: Medical image retrieval using deep convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.025
– volume: 6
  start-page: 256
  year: 2011
  ident: 10.1016/j.artmed.2020.101878_bib0205
  article-title: DICOM search in medical image archive solution e-sushrut chhavi
– volume: 3
  start-page: 68
  issue: 1
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0220
  article-title: Classification using deep learning neural networks for brain tumors
  publication-title: Future Comput Inform J
  doi: 10.1016/j.fcij.2017.12.001
– start-page: 201160
  year: 2020
  ident: 10.1016/j.artmed.2020.101878_bib0155
  article-title: Frequency and distribution of chest radiographic findings in COVID-19 positive patients
  publication-title: Radiology
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0140
  article-title: Data compression and its application in medical imaging
– start-page: 121
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0200
  article-title: Medical image description using multi-task-loss CNN
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0230
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791721
– start-page: 675
  year: 2014
  ident: 10.1016/j.artmed.2020.101878_bib0395
  article-title: Caffe: convolutional architecture for fast feature embedding
– start-page: 212
  year: 2000
  ident: 10.1016/j.artmed.2020.101878_bib0195
  article-title: The digital database for screening mammography
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0470
– start-page: 9049
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0135
  article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2921
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0455
  article-title: Learning deep features for discriminative localization
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0460
– volume: 6
  start-page: 9375
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0060
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– start-page: 498
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0350
  article-title: ConvNets and ImageNet beyond accuracy: understanding mistakes and uncovering biases
  publication-title: in Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 81
  start-page: 217
  issue: 2
  year: 1993
  ident: 10.1016/j.artmed.2020.101878_bib0110
  article-title: The UMLS Metathesaurus: representing different views of biomedical concepts
  publication-title: Bull Med Libr Assoc
– volume: 261
  start-page: 719
  issue: 3
  year: 2011
  ident: 10.1016/j.artmed.2020.101878_bib0010
  article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic
  publication-title: Radiology
  doi: 10.1148/radiol.11091710
– ident: 10.1016/j.artmed.2020.101878_bib0335
– year: 2013
  ident: 10.1016/j.artmed.2020.101878_bib0365
– volume: 23
  start-page: 304
  issue: 2
  year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0105
  article-title: Preparing a collection of radiology examinations for distribution and retrieval
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv080
– volume: 12
  start-page: 2493
  issue: August
  year: 2011
  ident: 10.1016/j.artmed.2020.101878_bib0420
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– start-page: 618
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0465
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: in Proceedings of the IEEE International Conference on Computer Vision
– start-page: 1097
  year: 2012
  ident: 10.1016/j.artmed.2020.101878_bib0305
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: in Advances in Neural Information Processing Systems
– start-page: 2497
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0120
  article-title: Learning to read chest x-rays: recurrent neural cascade model for automated image annotation
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0400
– start-page: 382
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0510
  article-title: Spice: semantic propositional image caption evaluation
– volume: 6
  start-page: 24454
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0025
  article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci Rep
  doi: 10.1038/srep24454
– year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0075
  article-title: Deep learning: current and emerging applications in medicine and technology
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2894713
– year: 2020
  ident: 10.1016/j.artmed.2020.101878_bib0150
– start-page: 770
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0325
  article-title: Deep residual learning for image recognition
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 289
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0430
  article-title: Deep learning in natural language generation from images
– start-page: 1090
  year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0255
  article-title: Interleaved text/image deep mining on a very large-scale radiology database
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0320
  article-title: Going deeper with convolutions
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0260
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.artmed.2020.101878_bib0290
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc Ieee
  doi: 10.1109/5.726791
– year: 2004
  ident: 10.1016/j.artmed.2020.101878_bib0495
  article-title: Rouge: a package for automatic evaluation of summaries
– start-page: 818
  year: 2014
  ident: 10.1016/j.artmed.2020.101878_bib0310
  article-title: Visualizing and understanding convolutional networks
– volume: 29
  start-page: 59
  issue: 1
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0435
  article-title: Unsupervised topic modeling in a large free text radiology report repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-015-9823-3
– start-page: 1
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0415
  article-title: A joint introduction to natural language processing and to deep learning
– volume: 90
  start-page: 25
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0485
  article-title: Diagnosis labeling with disease-specific characteristics mining
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.06.006
– volume: 22
  start-page: 1589
  issue: 5
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0050
  article-title: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2767063
– volume: 80
  start-page: 2139
  issue: 5
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0240
  article-title: Super‐resolution musculoskeletal MRI using deep learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27178
– volume: 3
  start-page: 993
  issue: January
  year: 2003
  ident: 10.1016/j.artmed.2020.101878_bib0450
  article-title: Latent dirichlet allocation
  publication-title: J Mach Learn Res
– year: 2020
  ident: 10.1016/j.artmed.2020.101878_bib0160
  article-title: ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection
  publication-title: ACR website.
– start-page: 490
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0525
  article-title: Comprehensible reasoning and automated reporting of medical examinations based on deep learning analysis
– volume: 51
  start-page: 92
  issue: 5
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0035
  article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications
  publication-title: ACM Computing Surveys (CSUR)
– volume: 15
  start-page: 350
  issue: 2
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0085
  article-title: Machine learning in radiology: applications beyond image interpretation
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.09.044
– volume: 34
  start-page: 75
  issue: 2
  year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0215
  article-title: Deep learning applications in Chest Radiography and computed tomography: current state of the art
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000387
– start-page: 376
  year: 2014
  ident: 10.1016/j.artmed.2020.101878_bib0500
  article-title: Meteor universal: language specific translation evaluation for any target language
  publication-title: in Proceedings of the Ninth Workshop on Statistical Machine Translation
  doi: 10.3115/v1/W14-3348
– volume: 21
  start-page: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0055
  article-title: Deep learning for health informatics
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2636665
– start-page: 311
  year: 2002
  ident: 10.1016/j.artmed.2020.101878_bib0490
  article-title: BLEU: a method for automatic evaluation of machine translation
– volume: 35
  start-page: 1252
  issue: 5
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0300
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2548501
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0095
  article-title: Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation
  publication-title: J Mach Learn Res
– year: 2014
  ident: 10.1016/j.artmed.2020.101878_bib0315
– start-page: 5987
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0330
  article-title: Aggregated residual transformations for deep neural networks
– start-page: 2048
  year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0480
  article-title: Show, attend and tell: neural image caption generation with visual attention
  publication-title: in International Conference on Machine Learning
– start-page: 51
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0265
  article-title: Learning to read chest X-ray images from 16000+ examples using CNN
– start-page: 4566
  year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0505
  article-title: Cider: consensus-based image description evaluation
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 315
  year: 2011
  ident: 10.1016/j.artmed.2020.101878_bib0275
  article-title: Deep sparse rectifier neural networks
  publication-title: in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0185
  article-title: Iglesia-vayá, "PadChest
– year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0270
– year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0125
– volume: 4
  start-page: 12
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0360
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: AAAI
– volume: 15
  start-page: 521
  issue: 3
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0080
  article-title: Deep learning in radiology: does one size fit all?
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.12.027
– year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0210
  article-title: The ultimate guide to AI in radiology
  publication-title: Artificial Intelligence in Healthcare Solutions
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0030
  article-title: Deep learning in radiology
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.02.018
– year: 2010
  ident: 10.1016/j.artmed.2020.101878_bib0380
  article-title: Recurrent neural network based language model
  publication-title: in Eleventh Annual Conference of the International Speech Communication Association
– year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0520
– year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0145
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0175
– year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0165
– volume: 25
  start-page: 24
  issue: 1
  year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0045
  article-title: A guide to deep learning in healthcare
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– year: 2015
  ident: 10.1016/j.artmed.2020.101878_bib0280
– year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0410
– volume: 208
  start-page: 754
  issue: 4
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0015
  article-title: Implementing machine learning in radiology practice and research
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.16.17224
– start-page: 249
  year: 2010
  ident: 10.1016/j.artmed.2020.101878_bib0355
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– year: 2014
  ident: 10.1016/j.artmed.2020.101878_bib0390
– start-page: 248
  year: 2009
  ident: 10.1016/j.artmed.2020.101878_bib0345
  article-title: Imagenet: a large-scale hierarchical image database
– start-page: 265
  year: 2016
  ident: 10.1016/j.artmed.2020.101878_bib0405
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16)
– year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0425
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.artmed.2020.101878_bib0385
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 405
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0440
  article-title: Natural language processing for large-scale medical image analysis using deep learning
– start-page: 605
  year: 2004
  ident: 10.1016/j.artmed.2020.101878_bib0515
  article-title: Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics
– volume: 7
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0340
– volume: 1
  start-page: 270
  issue: 2
  year: 1989
  ident: 10.1016/j.artmed.2020.101878_bib0375
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.270
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0180
  article-title: Convolutional neural network to detect thorax diseases from multi-view chest X-rays
– year: 2006
  ident: 10.1016/j.artmed.2020.101878_bib0115
– start-page: 457
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0130
  article-title: Multimodal recurrent model with attention for automated radiology report generation
– volume: 24
  start-page: 392
  year: 2019
  ident: 10.1016/j.artmed.2020.101878_bib0250
  article-title: State-of-the-art review on deep learning in medical imaging
  publication-title: Front Biosci (Landmark Ed)
  doi: 10.2741/4725
– start-page: 3462
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0170
  article-title: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– start-page: 6428
  year: 2017
  ident: 10.1016/j.artmed.2020.101878_bib0445
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
  publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 158
  start-page: 113
  year: 2018
  ident: 10.1016/j.artmed.2020.101878_bib0245
  article-title: NiftyNet: a deep-learning platform for medical imaging
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.01.025
SSID ssj0007416
Score 2.5896122
SecondaryResourceType review_article
Snippet •Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and...
Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of...
• Deep Learning algorithms showed promising results in generating radiology reports. • We categorize state of the art models into three levels: word, sentence...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101878
SubjectTerms Convolutional neural network
Deep learning
Natural language processing
Radiology
Recurrent neural network
Title Deep learning in generating radiology reports: A survey
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365719302635
https://dx.doi.org/10.1016/j.artmed.2020.101878
https://www.ncbi.nlm.nih.gov/pubmed/32425358
https://www.proquest.com/docview/2404642493
https://pubmed.ncbi.nlm.nih.gov/PMC7227610
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlape-qAPlrbIlXpNN_Ejzva2okULFVxaJG6W7YzpIhRWy24lLv3tnUmcpdsigbhEcuJJnPF4_I08D8Y-Blm4ogwezZLaZaqqReZKL_GiIqA5Vudt9Yaj43Jyog5P9ekG2-tjYcitMun-Tqe32jrdGSZuDmfT6fA72eKy1AYhSE4pVSiCXRmS8k-_b9w8CHG0-fakzKh3Hz7X-njh-3DPQStRtLcqKrZ2-_b0P_z814vyr21p_zl7mvAkH3dDfsE2oNliz_paDTwt3S32-Cgdor9k5gvAjKdyEWd82vCzNvc0OUDzuau7ABaeThM-8zG_Ws5_wfUrdrL_9cfeJEv1E7Kgi3JBgdHem5ibqEB4p4taBydiUQU1UgJMpQEgDwHyOhpTjURwBZR1iE6Bx2mTr9lmc9nANuPK69ppULHwI6WD8lEEqFxEeFA5bAyY7NlmQ0ouTjUuLmzvRXZuO2ZbYrbtmD1g2Ypq1iXXuKO_7mfE9oGjqOosav876MyKbk247kH5oZ94i-uODlNcA5fLK4tISKHtpkZywN50grD6BwKpWmr67pqIrDpQTu_1J830Z5vb2whhENHuPHjEb9kTanXebO_Y5mK-hPeImxZ-t10Yu-zR-ODb5PgP4r0ZXg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xIm17GYx9FcbmSXuNmvgjTvdWsaHy0b4AEm-W7ZxZEQpVaSftv5-dOBEdk5h4iZTYlzhn--538n0AfLUs01lujTdLSp3woqSJzg3zF-7Qm2NlWldvmEzz8QU_vhSXG3DQxsIEt8oo-xuZXkvr-GQQuTmYz2aDs2CLs1xID0HSkFLlGWyG7FSiB5ujo5PxtBPIAXTUKfcYSwJBG0FXu3n5V3q14w1FWj8qQr21f2uohwj0b0fKe5rpcBteRUhJRs2oX8MGVjuw1ZZrIHH37sDzSTxHfwPyO-KcxIoRV2RWkas6_XTwgSYLXTYxLCQeKHwjI3K3WvzC32_h4vDH-cE4iSUUEiuyfBlio42RLpWOIzVaZKWwmrqssHzIKcpCIGJqLaalk7IYUqszzEvrNEfjZ469g151W-EHINyIUgvkLjNDLiw3jlostPMIodD-pg-sZZuyMb94KHNxo1pHsmvVMFsFZquG2X1IOqp5k1_jkf6inRHVxo56aae8AniETnZ0a-vrPyi_tBOv_NYL5ym6wtvVnfJgiHvzjQ9ZH943C6H7h4BTBRPhu2tLpOsQ0nqvt1Szn3V6b0mp9KB298kj_gwvxueTU3V6ND3Zg5ehpXFu-wi95WKF-x5GLc2nuE3-AHIcHA8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+generating+radiology+reports%3A+A+survey&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Monshi%2C+Maram+Mahmoud+A.&rft.au=Poon%2C+Josiah&rft.au=Chung%2C+Vera&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=106&rft.spage=101878&rft.epage=101878&rft_id=info:doi/10.1016%2Fj.artmed.2020.101878&rft_id=info%3Apmid%2F32425358&rft.externalDocID=PMC7227610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon