Deep learning in generating radiology reports: A survey
•Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and paragraph.•We review the publicly available datasets of radiology images and linked reports.•We compare results of the generated reports thr...
Saved in:
Published in | Artificial intelligence in medicine Vol. 106; p. 101878 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and paragraph.•We review the publicly available datasets of radiology images and linked reports.•We compare results of the generated reports through quantitative evaluation matrices.•Researchers integrate convolutional neural network and recurrent neural network.
Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting. |
---|---|
AbstractList | •
Deep Learning algorithms showed promising results in generating radiology reports.
•
We categorize state of the art models into three levels: word, sentence and paragraph.
•
We review the publicly available datasets of radiology images and linked reports.
•
We compare results of the generated reports through quantitative evaluation matrices.
•
Researchers integrate convolutional neural network and recurrent neural network.
Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting. Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting. •Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and paragraph.•We review the publicly available datasets of radiology images and linked reports.•We compare results of the generated reports through quantitative evaluation matrices.•Researchers integrate convolutional neural network and recurrent neural network. Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting. Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and radiologist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting. |
ArticleNumber | 101878 |
Author | Monshi, Maram Mahmoud A. Chung, Vera Poon, Josiah |
Author_xml | – sequence: 1 givenname: Maram Mahmoud A. surname: Monshi fullname: Monshi, Maram Mahmoud A. email: mmon4544@uni.sydney.edu.au organization: School of Computer Science, University of Sydney, Sydney, Australia – sequence: 2 givenname: Josiah surname: Poon fullname: Poon, Josiah organization: School of Computer Science, University of Sydney, Sydney, Australia – sequence: 3 givenname: Vera surname: Chung fullname: Chung, Vera organization: School of Computer Science, University of Sydney, Sydney, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32425358$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1PAjEQbQxGAf0HxuzRy2Lb7W4LMSYEPxMTL3puut1ZLJYW24WEf-8iaNQLp8lM33szfa-HOs47QOiM4AHBpLicDVRo5lANKKZfI8HFAeq2JUupKHAHdfEwy9KsyPkx6sU4wxhzRoojdJxRRvMsF13EbwAWiQUVnHHTxLhkCg6CajZdUJXx1k_XSYCFD00cJeMkLsMK1ifosFY2wumu9tHr3e3L5CF9er5_nIyfUp2TokkzIsqS15jXDGipclLlWtGaCM2GjAIXOQBgrQFXNediSLUiUFS6VgxKJqqsj663uotl2X5Wg2uCsnIRzFyFtfTKyL8vzrzJqV9JTikvCG4FLnYCwX8sITZybqIGa5UDv4ySMswKRllrVR-d_971s-TbrRbAtgAdfIwB6h8IwXITipzJbShyE4rchtLSRv9o2jStw35zsbH7yDsDoHV5ZSDIqA04DZUJoBtZebNP4OqfgLbGGa3sO6z30z8Bbpi_rA |
CitedBy_id | crossref_primary_10_5858_arpa_2024_0215_RA crossref_primary_10_1093_jamia_ocab046 crossref_primary_10_1016_j_eprac_2025_03_008 crossref_primary_10_1109_ACCESS_2020_3033762 crossref_primary_10_1108_IJHRH_06_2021_0132 crossref_primary_10_1109_JTEHM_2025_3535676 crossref_primary_10_1111_exsy_13499 crossref_primary_10_1016_j_artmed_2023_102714 crossref_primary_10_1016_j_critrevonc_2023_104235 crossref_primary_10_1080_23311916_2022_2104333 crossref_primary_10_1109_TBME_2023_3280987 crossref_primary_10_1016_j_media_2024_103264 crossref_primary_10_2174_1871526523666230124162103 crossref_primary_10_5808_gi_23088 crossref_primary_10_1007_s11042_021_10929_6 crossref_primary_10_1080_19424396_2023_2199910 crossref_primary_10_1186_s40537_023_00775_8 crossref_primary_10_1007_s43069_024_00400_1 crossref_primary_10_3390_jcm13237092 crossref_primary_10_1038_s41598_024_64310_2 crossref_primary_10_3390_bioengineering11040351 crossref_primary_10_1007_s12539_021_00431_w crossref_primary_10_1016_j_acra_2024_02_048 crossref_primary_10_3390_jcm11164918 crossref_primary_10_1016_j_clinsp_2023_100210 crossref_primary_10_13104_imri_2022_1102 crossref_primary_10_3390_ijerph18094946 crossref_primary_10_1007_s00256_021_03876_8 crossref_primary_10_1016_j_compmedimag_2023_102320 crossref_primary_10_2174_1573405617666210806123720 crossref_primary_10_1016_j_cmpb_2023_107358 crossref_primary_10_1186_s12889_021_12032_9 crossref_primary_10_1016_j_eswa_2021_115695 crossref_primary_10_1007_s11517_024_03265_y crossref_primary_10_3390_app13127198 crossref_primary_10_1186_s12938_023_01113_y crossref_primary_10_1007_s00259_025_07101_9 crossref_primary_10_1038_s41598_023_31223_5 crossref_primary_10_1145_3522747 crossref_primary_10_1016_j_artmed_2020_101983 crossref_primary_10_1007_s10462_022_10270_w crossref_primary_10_1016_j_clon_2023_09_013 crossref_primary_10_1038_s41597_022_01608_8 crossref_primary_10_1038_s43856_023_00327_4 crossref_primary_10_1007_s12350_022_02996_5 crossref_primary_10_3389_frai_2024_1430984 crossref_primary_10_1007_s11548_022_02791_0 crossref_primary_10_1016_j_asoc_2022_109625 crossref_primary_10_3390_biomedinformatics3030045 crossref_primary_10_1007_s00330_023_10384_x crossref_primary_10_1007_s10278_022_00692_x crossref_primary_10_1038_s43856_022_00199_0 crossref_primary_10_1108_K_05_2022_0758 crossref_primary_10_3390_su132413579 crossref_primary_10_1016_j_artmed_2024_102814 crossref_primary_10_3390_jpm12030417 crossref_primary_10_2174_1573405617666210713113439 crossref_primary_10_1016_j_ijcce_2022_01_004 crossref_primary_10_4018_IJRQEH_326765 crossref_primary_10_1016_j_diii_2023_02_003 crossref_primary_10_1016_j_artmed_2021_102009 crossref_primary_10_1109_ACCESS_2024_3449929 crossref_primary_10_1007_s10115_022_01684_7 crossref_primary_10_1016_j_eswa_2023_122102 crossref_primary_10_1016_j_procs_2024_04_234 crossref_primary_10_1155_2022_2209070 crossref_primary_10_1016_j_media_2023_103000 crossref_primary_10_1016_j_rcl_2021_07_004 crossref_primary_10_1155_2022_5485606 crossref_primary_10_3390_bdcc7010011 crossref_primary_10_1016_j_jrras_2024_100823 crossref_primary_10_1016_j_compmedimag_2024_102486 crossref_primary_10_1109_RBME_2024_3408456 crossref_primary_10_3390_cancers12123532 crossref_primary_10_1016_j_media_2023_102802 crossref_primary_10_1016_j_artmed_2024_102846 crossref_primary_10_1155_2021_6663884 crossref_primary_10_1016_j_heliyon_2024_e27516 crossref_primary_10_1145_3701031 crossref_primary_10_1016_j_patter_2023_100802 crossref_primary_10_3390_bioengineering11090890 crossref_primary_10_17816_DD101099 crossref_primary_10_20396_rbi_v22i00_8668109 crossref_primary_10_3390_su151813484 crossref_primary_10_1002_leap_1610 crossref_primary_10_1016_j_jrras_2024_101281 crossref_primary_10_1177_03008916241231035 crossref_primary_10_1109_ACCESS_2021_3109602 crossref_primary_10_1016_j_imu_2023_101273 crossref_primary_10_11834_jig_211021 crossref_primary_10_1155_2021_6872291 |
Cites_doi | 10.1038/srep27327 10.1016/j.media.2017.07.005 10.1167/iovs.17-22721 10.1016/j.neucom.2017.05.025 10.1016/j.fcij.2017.12.001 10.1109/TMI.2018.2791721 10.1109/ACCESS.2017.2788044 10.1148/radiol.11091710 10.1093/jamia/ocv080 10.1038/srep24454 10.1109/JBHI.2019.2894713 10.1109/5.726791 10.1007/s10278-015-9823-3 10.1016/j.artmed.2018.06.006 10.1109/JBHI.2017.2767063 10.1002/mrm.27178 10.1016/j.jacr.2017.09.044 10.1097/RTI.0000000000000387 10.3115/v1/W14-3348 10.1109/JBHI.2016.2636665 10.1109/TMI.2016.2548501 10.1016/j.jacr.2017.12.027 10.1016/j.acra.2018.02.018 10.1038/s41591-018-0316-z 10.2214/AJR.16.17224 10.1162/neco.1997.9.8.1735 10.1162/neco.1989.1.2.270 10.2741/4725 10.1016/j.cmpb.2018.01.025 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.artmed.2020.101878 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1873-2860 |
EndPage | 101878 |
ExternalDocumentID | PMC7227610 32425358 10_1016_j_artmed_2020_101878 S0933365719302635 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c516t-318bb7f07f4e2ba51d5ca2f18c4942e785eee0cce0df77892ca1e6dcfa4eb48d3 |
IEDL.DBID | .~1 |
ISSN | 0933-3657 1873-2860 |
IngestDate | Thu Aug 21 17:54:04 EDT 2025 Tue Aug 05 10:28:42 EDT 2025 Thu Apr 03 07:00:14 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 00:24:37 EDT 2025 Fri Feb 23 02:50:20 EST 2024 Tue Aug 26 17:11:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Radiology Natural language processing Recurrent neural network Convolutional neural network |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-318bb7f07f4e2ba51d5ca2f18c4942e785eee0cce0df77892ca1e6dcfa4eb48d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7227610 |
PMID | 32425358 |
PQID | 2404642493 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7227610 proquest_miscellaneous_2404642493 pubmed_primary_32425358 crossref_primary_10_1016_j_artmed_2020_101878 crossref_citationtrail_10_1016_j_artmed_2020_101878 elsevier_sciencedirect_doi_10_1016_j_artmed_2020_101878 elsevier_clinicalkey_doi_10_1016_j_artmed_2020_101878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Xie, Xing, McGough, Yang (bib0445) 2017 Guo, Yuan, Zheng, Xu, Xiao, Liu (bib0485) 2018; 90 Ravı (bib0055) 2017; 21 Wang, Peng, Lu, Lu, Bagheri, Summers (bib0170) 2017 Lam, Yu, Huang, Rubin (bib0225) 2018; 59 Wang (bib0295) 2016 Glorot, Bengio (bib0355) 2010 Anderson, Fernando, Johnson, Gould (bib0510) 2016 Huang, Liu, Van Der Maaten, Weinberger (bib0370) 2017 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0465) 2017 Peng, Wang, Lu, Bagheri, Summers, Lu (bib0475) 2018; 2017 Cheng (bib0025) 2016; 6 Karpathy, Fei-Fei (bib0005) 2015 van Ginneken, Schaefer-Prokop, Prokop (bib0010) 2011; 261 Glorot, Bordes, Bengio (bib0275) 2011 Chaudhari (bib0240) 2018; 80 Szegedy (bib0320) 2015 Lakhani (bib0085) 2018; 15 Shin, Lu, Kim, Seff, Yao, Summers (bib0255) 2015 Szegedy, Ioffe, Vanhoucke, Alemi (bib0360) 2017; 4 Ker, Wang, Rao, Lim (bib0060) 2018; 6 Krizhevsky, Sutskever, Hinton (bib0305) 2012 Xie, Girshick, Dollár, Tu, He (bib0330) 2017 Demner-Fushman (bib0105) 2015; 23 Cho (bib0390) 2014 Alom (bib0040) 2018 Zeiler, Fergus (bib0310) 2014 Lin, Och (bib0515) 2004 Radiology (bib0160) 2020 Monshi, Poon, Chung (bib0180) 2019 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0455) 2016 Hassanpour, Langlotz (bib0435) 2016; 29 Schuyler, Hole, Tuttle, Sherertz (bib0110) 1993; 81 Sahu, Verma (bib0205) 2011; 6 Stock, Cisse (bib0350) 2018 Dong, Pan, Zhang, Xu (bib0265) 2017 Li, Liang, Hu, Xing (bib0100) 2018 Rajpurkar (bib0400) 2017 McBee (bib0030) 2018 I. ILSVRC2016. Pouyanfar (bib0035) 2018; 51 Hicks (bib0525) 2018 Kisilev, Sason, Barkan, Hashoul (bib0200) 2016 Deng, Liu (bib0415) 2018 Deng, Liu (bib0425) 2018 Mikolov, Karafiát, Burget, Černocký, Khudanpur (bib0380) 2010 Shickel, Tighe, Bihorac, Rashidi (bib0050) 2018; 22 Shin, Lu, Kim, Seff, Yao, Summers (bib0095) 2016; 17 Irvin (bib0145) 2019 Goodfellow, Bengio, Courville, Bengio (bib0260) 2016 Kohli, Prevedello, Filice, Geis (bib0015) 2017; 208 Howard, Ruder (bib0470) 2018 Nwankpa, Ijomah, Gachagan, Marshall (bib0285) 2018 Abadi (bib0405) 2016 Lee (bib0215) 2019; 34 Jia (bib0395) 2014 Papineni, Roukos, Ward, Zhu (bib0490) 2002 accessed. Blei, Ng, Jordan (bib0450) 2003; 3 Thanki, Kothari (bib0140) 2019 Wang, Peng, Lu, Lu, Summers (bib0135) 2018 Xu (bib0480) 2015 Jing, Xie, Xing (bib0125) 2017 Heath, Bowyer, Kopans, Moore, Kegelmeyer (bib0195) 2000 Litjens (bib0065) 2017; 42 Biswas (bib0250) 2019; 24 Erickson, Korfiatis, Kline, Akkus, Philbrick, Weston (bib0080) 2018; 15 Lin (bib0495) 2004 Johnson (bib0165) 2019 Langlotz (bib0115) 2006 Vedantam, Lawrence Zitnick, Parikh (bib0505) 2015 Simonyan, Zisserman (bib0315) 2014 Rubin, Sanghavi, Zhao, Lee, Qadir, Xu-Wilson (bib0175) 2018 (bib0090) 2018 Bustos, Pertusa, Salinas, de la (bib0185) 2019 Clevert, Unterthiner, Hochreiter (bib0280) 2015 Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib0420) 2011; 12 Paszke (bib0410) 2017 Kilickaya, Erdem, Ikizler-Cinbis, Erdem (bib0520) 2016 Akay, Hess (bib0075) 2019 Moeskops, Viergever, Mendrik, de Vries, Benders, Išgum (bib0300) 2016; 35 (bib0150) 2020 Wang (bib0230) 2018; 37 Lin, Chen, Yan (bib0365) 2013 Shin, Roberts, Lu, Demner-Fushman, Yao, Summers (bib0120) 2016 LeCun, Bottou, Bengio, Haffner (bib0290) 1998; 86 Six (bib0210) 2019 Deng, Dong, Socher, Li, Li, Fei-Fei (bib0345) 2009 Qayyum, Anwar, Awais, Majid (bib0235) 2017; 266 Wang, Xia (bib0460) 2018 Hochreiter, Schmidhuber (bib0385) 1997; 9 Mohsen, El-Dahshan, El-Horbaty, Salem (bib0220) 2018; 3 Denkowski, Lavie (bib0500) 2014 Xue (bib0130) 2018 Williams, Zipser (bib0375) 1989; 1 Hu, Shen, Sun (bib0340) 2017; 7 Gibson (bib0245) 2018; 158 Wong (bib0155) 2020 Li (bib0270) 2017 He, Deng (bib0430) 2018 He, Zhang, Ren, Sun (bib0325) 2016 Shin, Lu, Summers (bib0440) 2017 Esteva (bib0045) 2019; 25 Bertrand, Hashir, Cohen (bib0190) 2019 Wang, Casalino, Khullar (bib0070) 2018 Wang, Yang, Cai, Tan, Jin, Li (bib0020) 2016; 6 Zhou (10.1016/j.artmed.2020.101878_bib0455) 2016 Schuyler (10.1016/j.artmed.2020.101878_bib0110) 1993; 81 Zeiler (10.1016/j.artmed.2020.101878_bib0310) 2014 Litjens (10.1016/j.artmed.2020.101878_bib0065) 2017; 42 Six (10.1016/j.artmed.2020.101878_bib0210) 2019 Xie (10.1016/j.artmed.2020.101878_bib0330) 2017 Vedantam (10.1016/j.artmed.2020.101878_bib0505) 2015 Blei (10.1016/j.artmed.2020.101878_bib0450) 2003; 3 Ravı (10.1016/j.artmed.2020.101878_bib0055) 2017; 21 Kohli (10.1016/j.artmed.2020.101878_bib0015) 2017; 208 Lin (10.1016/j.artmed.2020.101878_bib0495) 2004 LeCun (10.1016/j.artmed.2020.101878_bib0290) 1998; 86 Stock (10.1016/j.artmed.2020.101878_bib0350) 2018 Wang (10.1016/j.artmed.2020.101878_bib0460) 2018 Shin (10.1016/j.artmed.2020.101878_bib0255) 2015 Qayyum (10.1016/j.artmed.2020.101878_bib0235) 2017; 266 Li (10.1016/j.artmed.2020.101878_bib0270) 2017 Lam (10.1016/j.artmed.2020.101878_bib0225) 2018; 59 Wang (10.1016/j.artmed.2020.101878_bib0170) 2017 Esteva (10.1016/j.artmed.2020.101878_bib0045) 2019; 25 10.1016/j.artmed.2020.101878_bib0335 Kisilev (10.1016/j.artmed.2020.101878_bib0200) 2016 Shin (10.1016/j.artmed.2020.101878_bib0095) 2016; 17 Heath (10.1016/j.artmed.2020.101878_bib0195) 2000 Thanki (10.1016/j.artmed.2020.101878_bib0140) 2019 Johnson (10.1016/j.artmed.2020.101878_bib0165) 2019 Chaudhari (10.1016/j.artmed.2020.101878_bib0240) 2018; 80 Nwankpa (10.1016/j.artmed.2020.101878_bib0285) 2018 Cho (10.1016/j.artmed.2020.101878_bib0390) 2014 Guo (10.1016/j.artmed.2020.101878_bib0485) 2018; 90 Erickson (10.1016/j.artmed.2020.101878_bib0080) 2018; 15 Lee (10.1016/j.artmed.2020.101878_bib0215) 2019; 34 Hochreiter (10.1016/j.artmed.2020.101878_bib0385) 1997; 9 Lin (10.1016/j.artmed.2020.101878_bib0515) 2004 Ker (10.1016/j.artmed.2020.101878_bib0060) 2018; 6 Dong (10.1016/j.artmed.2020.101878_bib0265) 2017 He (10.1016/j.artmed.2020.101878_bib0430) 2018 McBee (10.1016/j.artmed.2020.101878_bib0030) 2018 Sahu (10.1016/j.artmed.2020.101878_bib0205) 2011; 6 Xu (10.1016/j.artmed.2020.101878_bib0480) 2015 Peng (10.1016/j.artmed.2020.101878_bib0475) 2018; 2017 Alom (10.1016/j.artmed.2020.101878_bib0040) 2018 Lakhani (10.1016/j.artmed.2020.101878_bib0085) 2018; 15 Bustos (10.1016/j.artmed.2020.101878_bib0185) 2019 Karpathy (10.1016/j.artmed.2020.101878_bib0005) 2015 Biswas (10.1016/j.artmed.2020.101878_bib0250) 2019; 24 Wang (10.1016/j.artmed.2020.101878_bib0070) 2018 Clevert (10.1016/j.artmed.2020.101878_bib0280) 2015 Demner-Fushman (10.1016/j.artmed.2020.101878_bib0105) 2015; 23 Irvin (10.1016/j.artmed.2020.101878_bib0145) 2019 Wang (10.1016/j.artmed.2020.101878_bib0135) 2018 Gibson (10.1016/j.artmed.2020.101878_bib0245) 2018; 158 Hicks (10.1016/j.artmed.2020.101878_bib0525) 2018 Szegedy (10.1016/j.artmed.2020.101878_bib0320) 2015 Langlotz (10.1016/j.artmed.2020.101878_bib0115) 2006 van Ginneken (10.1016/j.artmed.2020.101878_bib0010) 2011; 261 Cheng (10.1016/j.artmed.2020.101878_bib0025) 2016; 6 Paszke (10.1016/j.artmed.2020.101878_bib0410) 2017 Pouyanfar (10.1016/j.artmed.2020.101878_bib0035) 2018; 51 Hu (10.1016/j.artmed.2020.101878_bib0340) 2017; 7 Wang (10.1016/j.artmed.2020.101878_bib0230) 2018; 37 Selvaraju (10.1016/j.artmed.2020.101878_bib0465) 2017 Shin (10.1016/j.artmed.2020.101878_bib0120) 2016 Mohsen (10.1016/j.artmed.2020.101878_bib0220) 2018; 3 Deng (10.1016/j.artmed.2020.101878_bib0425) 2018 Denkowski (10.1016/j.artmed.2020.101878_bib0500) 2014 Rajpurkar (10.1016/j.artmed.2020.101878_bib0400) 2017 Deng (10.1016/j.artmed.2020.101878_bib0415) 2018 Shin (10.1016/j.artmed.2020.101878_bib0440) 2017 Papineni (10.1016/j.artmed.2020.101878_bib0490) 2002 Shickel (10.1016/j.artmed.2020.101878_bib0050) 2018; 22 Radiology (10.1016/j.artmed.2020.101878_bib0160) 2020 Xue (10.1016/j.artmed.2020.101878_bib0130) 2018 Williams (10.1016/j.artmed.2020.101878_bib0375) 1989; 1 (10.1016/j.artmed.2020.101878_bib0090) 2018 Wong (10.1016/j.artmed.2020.101878_bib0155) 2020 Collobert (10.1016/j.artmed.2020.101878_bib0420) 2011; 12 Bertrand (10.1016/j.artmed.2020.101878_bib0190) 2019 Howard (10.1016/j.artmed.2020.101878_bib0470) 2018 Kilickaya (10.1016/j.artmed.2020.101878_bib0520) 2016 Glorot (10.1016/j.artmed.2020.101878_bib0355) 2010 Wang (10.1016/j.artmed.2020.101878_bib0020) 2016; 6 Lin (10.1016/j.artmed.2020.101878_bib0365) 2013 Moeskops (10.1016/j.artmed.2020.101878_bib0300) 2016; 35 Anderson (10.1016/j.artmed.2020.101878_bib0510) 2016 Wang (10.1016/j.artmed.2020.101878_bib0295) 2016 Zhang (10.1016/j.artmed.2020.101878_bib0445) 2017 (10.1016/j.artmed.2020.101878_bib0150) 2020 Li (10.1016/j.artmed.2020.101878_bib0100) 2018 Akay (10.1016/j.artmed.2020.101878_bib0075) 2019 Szegedy (10.1016/j.artmed.2020.101878_bib0360) 2017; 4 Jia (10.1016/j.artmed.2020.101878_bib0395) 2014 Hassanpour (10.1016/j.artmed.2020.101878_bib0435) 2016; 29 Simonyan (10.1016/j.artmed.2020.101878_bib0315) 2014 He (10.1016/j.artmed.2020.101878_bib0325) 2016 Mikolov (10.1016/j.artmed.2020.101878_bib0380) 2010 Huang (10.1016/j.artmed.2020.101878_bib0370) 2017 Abadi (10.1016/j.artmed.2020.101878_bib0405) 2016 Jing (10.1016/j.artmed.2020.101878_bib0125) 2017 Monshi (10.1016/j.artmed.2020.101878_bib0180) 2019 Krizhevsky (10.1016/j.artmed.2020.101878_bib0305) 2012 Rubin (10.1016/j.artmed.2020.101878_bib0175) 2018 Goodfellow (10.1016/j.artmed.2020.101878_bib0260) 2016 Glorot (10.1016/j.artmed.2020.101878_bib0275) 2011 Deng (10.1016/j.artmed.2020.101878_bib0345) 2009 |
References_xml | – volume: 6 start-page: 9375 year: 2018 end-page: 9389 ident: bib0060 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access – start-page: 2921 year: 2016 end-page: 2929 ident: bib0455 article-title: Learning deep features for discriminative localization publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2497 year: 2016 end-page: 2506 ident: bib0120 article-title: Learning to read chest x-rays: recurrent neural cascade model for automated image annotation publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 201160 year: 2020 ident: bib0155 article-title: Frequency and distribution of chest radiographic findings in COVID-19 positive patients publication-title: Radiology – start-page: 618 year: 2017 end-page: 626 ident: bib0465 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: in Proceedings of the IEEE International Conference on Computer Vision – year: 2018 ident: bib0030 article-title: Deep learning in radiology publication-title: Acad Radiol – volume: 34 start-page: 75 year: 2019 end-page: 85 ident: bib0215 article-title: Deep learning applications in Chest Radiography and computed tomography: current state of the art publication-title: J Thorac Imaging – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib0065 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal – start-page: 2261 year: 2017 end-page: 2269 ident: bib0370 article-title: Densely connected convolutional networks publication-title: in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 35 start-page: 1252 year: 2016 end-page: 1261 ident: bib0300 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEEE Trans Med Imaging – year: 2019 ident: bib0185 article-title: Iglesia-vayá, "PadChest publication-title: A Large Chest X-Ray Image Dataset With Multi-Label Annotated Reports – volume: 15 start-page: 350 year: 2018 end-page: 359 ident: bib0085 article-title: Machine learning in radiology: applications beyond image interpretation publication-title: J Am Coll Radiol – year: 2017 ident: bib0125 article-title: On the Automatic Generation of Medical Imaging Reports – year: 2017 ident: bib0270 article-title: Deep Reinforcement Learning: An Overview – start-page: 1097 year: 2012 end-page: 1105 ident: bib0305 article-title: Imagenet classification with deep convolutional neural networks publication-title: in Advances in Neural Information Processing Systems – volume: 21 start-page: 4 year: 2017 end-page: 21 ident: bib0055 article-title: Deep learning for health informatics publication-title: IEEE J Biomed Health Inform – start-page: 3462 year: 2017 end-page: 3471 ident: bib0170 article-title: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on – start-page: 121 year: 2016 end-page: 129 ident: bib0200 article-title: Medical image description using multi-task-loss CNN publication-title: in Deep Learning and Data Labeling for Medical Applications – year: 2016 ident: bib0260 article-title: Deep Learning – start-page: 1 year: 2019 end-page: 15 ident: bib0140 article-title: Data compression and its application in medical imaging publication-title: in Hybrid and Advanced Compression Techniques for Medical Images – year: 2019 ident: bib0210 article-title: The ultimate guide to AI in radiology publication-title: Artificial Intelligence in Healthcare Solutions – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0290 article-title: Gradient-based learning applied to document recognition publication-title: Proc Ieee – volume: 29 start-page: 59 year: 2016 end-page: 62 ident: bib0435 article-title: Unsupervised topic modeling in a large free text radiology report repository publication-title: J Digit Imaging – volume: 90 start-page: 25 year: 2018 end-page: 33 ident: bib0485 article-title: Diagnosis labeling with disease-specific characteristics mining publication-title: Artif Intell Med – year: 2018 ident: bib0285 article-title: Activation functions: Comparison of Trends in Practice and Research for Deep Learning – year: 2018 ident: bib0460 article-title: Chestnet: A Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography – volume: 81 start-page: 217 year: 1993 ident: bib0110 article-title: The UMLS Metathesaurus: representing different views of biomedical concepts publication-title: Bull Med Libr Assoc – start-page: 212 year: 2000 end-page: 218 ident: bib0195 article-title: The digital database for screening mammography publication-title: in Proceedings of the 5th International Workshop on Digital Mammography – start-page: 1 year: 2018 end-page: 22 ident: bib0415 article-title: A joint introduction to natural language processing and to deep learning publication-title: in Deep Learning in Natural Language Processing – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: bib0450 article-title: Latent dirichlet allocation publication-title: J Mach Learn Res – volume: 6 start-page: 24454 year: 2016 ident: bib0025 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans publication-title: Sci Rep – year: 2006 ident: bib0115 article-title: RadLex: A New Method for Indexing Online Educational Materials – start-page: 9049 year: 2018 end-page: 9058 ident: bib0135 article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 25 start-page: 24 year: 2019 ident: bib0045 article-title: A guide to deep learning in healthcare publication-title: Nat Med – year: 2015 ident: bib0280 article-title: Fast and accurate Deep Network Learning by Exponential Linear Units (elus) – volume: 59 start-page: 590 year: 2018 end-page: 596 ident: bib0225 article-title: Retinal lesion detection with deep learning using image patches publication-title: Invest Ophthalmol Vis Sci – volume: 4 start-page: 12 year: 2017 ident: bib0360 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI – volume: 23 start-page: 304 year: 2015 end-page: 310 ident: bib0105 article-title: Preparing a collection of radiology examinations for distribution and retrieval publication-title: J Am Med Inform Assoc – start-page: 818 year: 2014 end-page: 833 ident: bib0310 article-title: Visualizing and understanding convolutional networks publication-title: in European Conference on Computer Vision – year: 2019 ident: bib0190 article-title: Do Lateral Views Help Automated Chest X-ray Predictions? – start-page: 249 year: 2010 end-page: 256 ident: bib0355 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – start-page: 315 year: 2011 end-page: 323 ident: bib0275 article-title: Deep sparse rectifier neural networks publication-title: in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – year: 2018 ident: bib0040 article-title: The history began from AlexNet publication-title: A Comprehensive Survey on Deep Learning Approaches – year: 2020 ident: bib0150 article-title: Statistics, "Statistics » Diagnostic Imaging Dataset – year: 2016 ident: bib0520 article-title: Re-evaluating automatic metrics for image captioning – start-page: 311 year: 2002 end-page: 318 ident: bib0490 article-title: BLEU: a method for automatic evaluation of machine translation publication-title: in Proceedings of the – start-page: 405 year: 2017 end-page: 421 ident: bib0440 article-title: Natural language processing for large-scale medical image analysis using deep learning publication-title: in Deep Learning for Medical Image Analysis – year: 2018 ident: bib0470 article-title: Universal Language Model Fine-Tuning for Text Classification – start-page: 675 year: 2014 end-page: 678 ident: bib0395 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: in Proceedings of the 22nd ACM International Conference on Multimedia – year: 2017 ident: bib0400 article-title: Chexnet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning – year: 2014 ident: bib0315 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition – volume: 24 start-page: 392 year: 2019 end-page: 426 ident: bib0250 article-title: State-of-the-art review on deep learning in medical imaging publication-title: Front Biosci (Landmark Ed) – year: 2017 ident: bib0410 article-title: Automatic Differentiation in Pytorch – volume: 7 year: 2017 ident: bib0340 publication-title: Squeeze-and-excitation networks – start-page: 498 year: 2018 end-page: 512 ident: bib0350 article-title: ConvNets and ImageNet beyond accuracy: understanding mistakes and uncovering biases publication-title: in Proceedings of the European Conference on Computer Vision (ECCV) – volume: 6 start-page: 256 year: 2011 end-page: 260 ident: bib0205 article-title: DICOM search in medical image archive solution e-sushrut chhavi publication-title: 2011 3rd International Conference on Electronics Computer Technology – volume: 3 start-page: 68 year: 2018 end-page: 71 ident: bib0220 article-title: Classification using deep learning neural networks for brain tumors publication-title: Future Comput Inform J – start-page: 51 year: 2017 end-page: 57 ident: bib0265 article-title: Learning to read chest X-ray images from 16000+ examples using CNN publication-title: in Proceedings of the Second IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies – year: 2018 ident: bib0090 article-title: Imaging and radiology: MedlinePlus Medical Encyclopedia – volume: 80 start-page: 2139 year: 2018 end-page: 2154 ident: bib0240 article-title: Super‐resolution musculoskeletal MRI using deep learning publication-title: Magn Reson Med – volume: 37 start-page: 1562 year: 2018 end-page: 1573 ident: bib0230 article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning publication-title: IEEE Trans Med Imaging – year: 2014 ident: bib0390 article-title: Learning Phrase Representations Using rnn Encoder-Decoder for Statistical Machine Translation – volume: 2017 start-page: 188 year: 2018 ident: bib0475 article-title: NegBio: a high-performance tool for negation and uncertainty detection in radiology reports publication-title: AMIA Summits on Translational Science Proceedings – year: 2019 ident: bib0165 article-title: MIMIC-CXR: A Large Publicly Available Database of Labeled Chest Radiographs – start-page: 6428 year: 2017 end-page: 6436 ident: bib0445 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2048 year: 2015 end-page: 2057 ident: bib0480 article-title: Show, attend and tell: neural image caption generation with visual attention publication-title: in International Conference on Machine Learning – volume: 208 start-page: 754 year: 2017 end-page: 760 ident: bib0015 article-title: Implementing machine learning in radiology practice and research publication-title: Am J Roentgenol – start-page: 457 year: 2018 end-page: 466 ident: bib0130 article-title: Multimodal recurrent model with attention for automated radiology report generation publication-title: in International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 490 year: 2018 end-page: 493 ident: bib0525 article-title: Comprehensible reasoning and automated reporting of medical examinations based on deep learning analysis publication-title: in Proceedings of the 9th ACM Multimedia Systems Conference – year: 2020 ident: bib0160 article-title: ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection publication-title: ACR website. – start-page: 5987 year: 2017 end-page: 5995 ident: bib0330 article-title: Aggregated residual transformations for deep neural networks publication-title: in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on – year: 2018 ident: bib0070 article-title: Deep learning in medicine—promise, progress, and challenges publication-title: JAMA Intern Med – start-page: 770 year: 2016 end-page: 778 ident: bib0325 article-title: Deep residual learning for image recognition publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 382 year: 2016 end-page: 398 ident: bib0510 article-title: Spice: semantic propositional image caption evaluation publication-title: in European Conference on Computer Vision – year: 2004 ident: bib0495 article-title: Rouge: a package for automatic evaluation of summaries publication-title: Text Summarization Branches Out – year: 2010 ident: bib0380 article-title: Recurrent neural network based language model publication-title: in Eleventh Annual Conference of the International Speech Communication Association – year: 2018 ident: bib0425 article-title: Deep Learning in Natural Language Processing – volume: 17 start-page: 1 year: 2016 end-page: 31 ident: bib0095 article-title: Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation publication-title: J Mach Learn Res – volume: 12 start-page: 2493 year: 2011 end-page: 2537 ident: bib0420 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – year: 2018 ident: bib0100 article-title: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation – volume: 15 start-page: 521 year: 2018 end-page: 526 ident: bib0080 article-title: Deep learning in radiology: does one size fit all? publication-title: J Am Coll Radiol – start-page: 289 year: 2018 end-page: 307 ident: bib0430 article-title: Deep learning in natural language generation from images publication-title: in Deep Learning in Natural Language Processing – year: 2019 ident: bib0145 article-title: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison – year: 2016 ident: bib0295 article-title: Unsupervised Category Discovery Via Looped Deep Pseudo-Task Optimization Using a Large Scale Radiology Image Database – start-page: 376 year: 2014 end-page: 380 ident: bib0500 article-title: Meteor universal: language specific translation evaluation for any target language publication-title: in Proceedings of the Ninth Workshop on Statistical Machine Translation – volume: 261 start-page: 719 year: 2011 end-page: 732 ident: bib0010 article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic publication-title: Radiology – reference: I. ILSVRC2016. – start-page: 265 year: 2016 end-page: 283 ident: bib0405 article-title: Tensorflow: a system for large-scale machine learning publication-title: in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) – start-page: 605 year: 2004 ident: bib0515 article-title: Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics publication-title: in Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics – start-page: 1090 year: 2015 end-page: 1099 ident: bib0255 article-title: Interleaved text/image deep mining on a very large-scale radiology database publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 22 start-page: 1589 year: 2018 end-page: 1604 ident: bib0050 article-title: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis publication-title: IEEE J Biomed Health Inform – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: bib0375 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput – start-page: 1 year: 2019 end-page: 11 ident: bib0180 article-title: Convolutional neural network to detect thorax diseases from multi-view chest X-rays publication-title: in Neural Information Processing. iconip-2019 – volume: 266 start-page: 8 year: 2017 end-page: 20 ident: bib0235 article-title: Medical image retrieval using deep convolutional neural network publication-title: Neurocomputing – volume: 51 start-page: 92 year: 2018 ident: bib0035 article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications publication-title: ACM Computing Surveys (CSUR) – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0385 article-title: Long short-term memory publication-title: Neural Comput – reference: (accessed. – volume: 6 start-page: 27327 year: 2016 ident: bib0020 article-title: Discrimination of breast cancer with microcalcifications on mammography by deep learning publication-title: Sci Rep – year: 2013 ident: bib0365 article-title: Network in network – year: 2018 ident: bib0175 article-title: Large Scale Automated Reading of Frontal and Lateral Chest X-Rays Using Dual Convolutional Neural Networks – start-page: 4566 year: 2015 end-page: 4575 ident: bib0505 article-title: Cider: consensus-based image description evaluation publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3128 year: 2015 end-page: 3137 ident: bib0005 article-title: Deep visual-semantic alignments for generating image descriptions publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 158 start-page: 113 year: 2018 end-page: 122 ident: bib0245 article-title: NiftyNet: a deep-learning platform for medical imaging publication-title: Comput Methods Programs Biomed – start-page: 1 year: 2015 end-page: 9 ident: bib0320 article-title: Going deeper with convolutions publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2019 ident: bib0075 article-title: Deep learning: current and emerging applications in medicine and technology publication-title: IEEE J Biomed Health Inform – start-page: 248 year: 2009 end-page: 255 ident: bib0345 article-title: Imagenet: a large-scale hierarchical image database publication-title: in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0285 – year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0190 – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0040 article-title: The history began from AlexNet – year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0295 – volume: 2017 start-page: 188 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0475 article-title: NegBio: a high-performance tool for negation and uncertainty detection in radiology reports publication-title: AMIA Summits on Translational Science Proceedings – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0070 article-title: Deep learning in medicine—promise, progress, and challenges publication-title: JAMA Intern Med – volume: 6 start-page: 27327 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0020 article-title: Discrimination of breast cancer with microcalcifications on mammography by deep learning publication-title: Sci Rep doi: 10.1038/srep27327 – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0090 – start-page: 3128 year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0005 article-title: Deep visual-semantic alignments for generating image descriptions publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0065 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0100 – volume: 59 start-page: 590 issue: 1 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0225 article-title: Retinal lesion detection with deep learning using image patches publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.17-22721 – start-page: 2261 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0370 article-title: Densely connected convolutional networks – volume: 266 start-page: 8 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0235 article-title: Medical image retrieval using deep convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.025 – volume: 6 start-page: 256 year: 2011 ident: 10.1016/j.artmed.2020.101878_bib0205 article-title: DICOM search in medical image archive solution e-sushrut chhavi – volume: 3 start-page: 68 issue: 1 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0220 article-title: Classification using deep learning neural networks for brain tumors publication-title: Future Comput Inform J doi: 10.1016/j.fcij.2017.12.001 – start-page: 201160 year: 2020 ident: 10.1016/j.artmed.2020.101878_bib0155 article-title: Frequency and distribution of chest radiographic findings in COVID-19 positive patients publication-title: Radiology – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0140 article-title: Data compression and its application in medical imaging – start-page: 121 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0200 article-title: Medical image description using multi-task-loss CNN – volume: 37 start-page: 1562 issue: 7 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0230 article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2791721 – start-page: 675 year: 2014 ident: 10.1016/j.artmed.2020.101878_bib0395 article-title: Caffe: convolutional architecture for fast feature embedding – start-page: 212 year: 2000 ident: 10.1016/j.artmed.2020.101878_bib0195 article-title: The digital database for screening mammography – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0470 – start-page: 9049 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0135 article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2921 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0455 article-title: Learning deep features for discriminative localization publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0460 – volume: 6 start-page: 9375 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0060 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2788044 – start-page: 498 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0350 article-title: ConvNets and ImageNet beyond accuracy: understanding mistakes and uncovering biases publication-title: in Proceedings of the European Conference on Computer Vision (ECCV) – volume: 81 start-page: 217 issue: 2 year: 1993 ident: 10.1016/j.artmed.2020.101878_bib0110 article-title: The UMLS Metathesaurus: representing different views of biomedical concepts publication-title: Bull Med Libr Assoc – volume: 261 start-page: 719 issue: 3 year: 2011 ident: 10.1016/j.artmed.2020.101878_bib0010 article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic publication-title: Radiology doi: 10.1148/radiol.11091710 – ident: 10.1016/j.artmed.2020.101878_bib0335 – year: 2013 ident: 10.1016/j.artmed.2020.101878_bib0365 – volume: 23 start-page: 304 issue: 2 year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0105 article-title: Preparing a collection of radiology examinations for distribution and retrieval publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocv080 – volume: 12 start-page: 2493 issue: August year: 2011 ident: 10.1016/j.artmed.2020.101878_bib0420 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – start-page: 618 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0465 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: in Proceedings of the IEEE International Conference on Computer Vision – start-page: 1097 year: 2012 ident: 10.1016/j.artmed.2020.101878_bib0305 article-title: Imagenet classification with deep convolutional neural networks publication-title: in Advances in Neural Information Processing Systems – start-page: 2497 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0120 article-title: Learning to read chest x-rays: recurrent neural cascade model for automated image annotation publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0400 – start-page: 382 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0510 article-title: Spice: semantic propositional image caption evaluation – volume: 6 start-page: 24454 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0025 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans publication-title: Sci Rep doi: 10.1038/srep24454 – year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0075 article-title: Deep learning: current and emerging applications in medicine and technology publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2894713 – year: 2020 ident: 10.1016/j.artmed.2020.101878_bib0150 – start-page: 770 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0325 article-title: Deep residual learning for image recognition publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 289 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0430 article-title: Deep learning in natural language generation from images – start-page: 1090 year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0255 article-title: Interleaved text/image deep mining on a very large-scale radiology database publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0320 article-title: Going deeper with convolutions publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0260 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.artmed.2020.101878_bib0290 article-title: Gradient-based learning applied to document recognition publication-title: Proc Ieee doi: 10.1109/5.726791 – year: 2004 ident: 10.1016/j.artmed.2020.101878_bib0495 article-title: Rouge: a package for automatic evaluation of summaries – start-page: 818 year: 2014 ident: 10.1016/j.artmed.2020.101878_bib0310 article-title: Visualizing and understanding convolutional networks – volume: 29 start-page: 59 issue: 1 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0435 article-title: Unsupervised topic modeling in a large free text radiology report repository publication-title: J Digit Imaging doi: 10.1007/s10278-015-9823-3 – start-page: 1 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0415 article-title: A joint introduction to natural language processing and to deep learning – volume: 90 start-page: 25 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0485 article-title: Diagnosis labeling with disease-specific characteristics mining publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.06.006 – volume: 22 start-page: 1589 issue: 5 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0050 article-title: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2767063 – volume: 80 start-page: 2139 issue: 5 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0240 article-title: Super‐resolution musculoskeletal MRI using deep learning publication-title: Magn Reson Med doi: 10.1002/mrm.27178 – volume: 3 start-page: 993 issue: January year: 2003 ident: 10.1016/j.artmed.2020.101878_bib0450 article-title: Latent dirichlet allocation publication-title: J Mach Learn Res – year: 2020 ident: 10.1016/j.artmed.2020.101878_bib0160 article-title: ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection publication-title: ACR website. – start-page: 490 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0525 article-title: Comprehensible reasoning and automated reporting of medical examinations based on deep learning analysis – volume: 51 start-page: 92 issue: 5 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0035 article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications publication-title: ACM Computing Surveys (CSUR) – volume: 15 start-page: 350 issue: 2 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0085 article-title: Machine learning in radiology: applications beyond image interpretation publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.09.044 – volume: 34 start-page: 75 issue: 2 year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0215 article-title: Deep learning applications in Chest Radiography and computed tomography: current state of the art publication-title: J Thorac Imaging doi: 10.1097/RTI.0000000000000387 – start-page: 376 year: 2014 ident: 10.1016/j.artmed.2020.101878_bib0500 article-title: Meteor universal: language specific translation evaluation for any target language publication-title: in Proceedings of the Ninth Workshop on Statistical Machine Translation doi: 10.3115/v1/W14-3348 – volume: 21 start-page: 4 issue: 1 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0055 article-title: Deep learning for health informatics publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2016.2636665 – start-page: 311 year: 2002 ident: 10.1016/j.artmed.2020.101878_bib0490 article-title: BLEU: a method for automatic evaluation of machine translation – volume: 35 start-page: 1252 issue: 5 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0300 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2548501 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0095 article-title: Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation publication-title: J Mach Learn Res – year: 2014 ident: 10.1016/j.artmed.2020.101878_bib0315 – start-page: 5987 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0330 article-title: Aggregated residual transformations for deep neural networks – start-page: 2048 year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0480 article-title: Show, attend and tell: neural image caption generation with visual attention publication-title: in International Conference on Machine Learning – start-page: 51 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0265 article-title: Learning to read chest X-ray images from 16000+ examples using CNN – start-page: 4566 year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0505 article-title: Cider: consensus-based image description evaluation publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 315 year: 2011 ident: 10.1016/j.artmed.2020.101878_bib0275 article-title: Deep sparse rectifier neural networks publication-title: in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0185 article-title: Iglesia-vayá, "PadChest – year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0270 – year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0125 – volume: 4 start-page: 12 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0360 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI – volume: 15 start-page: 521 issue: 3 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0080 article-title: Deep learning in radiology: does one size fit all? publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.12.027 – year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0210 article-title: The ultimate guide to AI in radiology publication-title: Artificial Intelligence in Healthcare Solutions – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0030 article-title: Deep learning in radiology publication-title: Acad Radiol doi: 10.1016/j.acra.2018.02.018 – year: 2010 ident: 10.1016/j.artmed.2020.101878_bib0380 article-title: Recurrent neural network based language model publication-title: in Eleventh Annual Conference of the International Speech Communication Association – year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0520 – year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0145 – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0175 – year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0165 – volume: 25 start-page: 24 issue: 1 year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0045 article-title: A guide to deep learning in healthcare publication-title: Nat Med doi: 10.1038/s41591-018-0316-z – year: 2015 ident: 10.1016/j.artmed.2020.101878_bib0280 – year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0410 – volume: 208 start-page: 754 issue: 4 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0015 article-title: Implementing machine learning in radiology practice and research publication-title: Am J Roentgenol doi: 10.2214/AJR.16.17224 – start-page: 249 year: 2010 ident: 10.1016/j.artmed.2020.101878_bib0355 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – year: 2014 ident: 10.1016/j.artmed.2020.101878_bib0390 – start-page: 248 year: 2009 ident: 10.1016/j.artmed.2020.101878_bib0345 article-title: Imagenet: a large-scale hierarchical image database – start-page: 265 year: 2016 ident: 10.1016/j.artmed.2020.101878_bib0405 article-title: Tensorflow: a system for large-scale machine learning publication-title: in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) – year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0425 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.artmed.2020.101878_bib0385 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – start-page: 405 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0440 article-title: Natural language processing for large-scale medical image analysis using deep learning – start-page: 605 year: 2004 ident: 10.1016/j.artmed.2020.101878_bib0515 article-title: Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics – volume: 7 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0340 – volume: 1 start-page: 270 issue: 2 year: 1989 ident: 10.1016/j.artmed.2020.101878_bib0375 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput doi: 10.1162/neco.1989.1.2.270 – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0180 article-title: Convolutional neural network to detect thorax diseases from multi-view chest X-rays – year: 2006 ident: 10.1016/j.artmed.2020.101878_bib0115 – start-page: 457 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0130 article-title: Multimodal recurrent model with attention for automated radiology report generation – volume: 24 start-page: 392 year: 2019 ident: 10.1016/j.artmed.2020.101878_bib0250 article-title: State-of-the-art review on deep learning in medical imaging publication-title: Front Biosci (Landmark Ed) doi: 10.2741/4725 – start-page: 3462 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0170 article-title: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – start-page: 6428 year: 2017 ident: 10.1016/j.artmed.2020.101878_bib0445 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network publication-title: in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 158 start-page: 113 year: 2018 ident: 10.1016/j.artmed.2020.101878_bib0245 article-title: NiftyNet: a deep-learning platform for medical imaging publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.01.025 |
SSID | ssj0007416 |
Score | 2.5896122 |
SecondaryResourceType | review_article |
Snippet | •Deep Learning algorithms showed promising results in generating radiology reports.•We categorize state of the art models into three levels: word, sentence and... Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of... • Deep Learning algorithms showed promising results in generating radiology reports. • We categorize state of the art models into three levels: word, sentence... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101878 |
SubjectTerms | Convolutional neural network Deep learning Natural language processing Radiology Recurrent neural network |
Title | Deep learning in generating radiology reports: A survey |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365719302635 https://dx.doi.org/10.1016/j.artmed.2020.101878 https://www.ncbi.nlm.nih.gov/pubmed/32425358 https://www.proquest.com/docview/2404642493 https://pubmed.ncbi.nlm.nih.gov/PMC7227610 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlape-qAPlrbIlXpNN_Ejzva2okULFVxaJG6W7YzpIhRWy24lLv3tnUmcpdsigbhEcuJJnPF4_I08D8Y-Blm4ogwezZLaZaqqReZKL_GiIqA5Vudt9Yaj43Jyog5P9ekG2-tjYcitMun-Tqe32jrdGSZuDmfT6fA72eKy1AYhSE4pVSiCXRmS8k-_b9w8CHG0-fakzKh3Hz7X-njh-3DPQStRtLcqKrZ2-_b0P_z814vyr21p_zl7mvAkH3dDfsE2oNliz_paDTwt3S32-Cgdor9k5gvAjKdyEWd82vCzNvc0OUDzuau7ABaeThM-8zG_Ws5_wfUrdrL_9cfeJEv1E7Kgi3JBgdHem5ibqEB4p4taBydiUQU1UgJMpQEgDwHyOhpTjURwBZR1iE6Bx2mTr9lmc9nANuPK69ppULHwI6WD8lEEqFxEeFA5bAyY7NlmQ0ouTjUuLmzvRXZuO2ZbYrbtmD1g2Ypq1iXXuKO_7mfE9oGjqOosav876MyKbk247kH5oZ94i-uODlNcA5fLK4tISKHtpkZywN50grD6BwKpWmr67pqIrDpQTu_1J830Z5vb2whhENHuPHjEb9kTanXebO_Y5mK-hPeImxZ-t10Yu-zR-ODb5PgP4r0ZXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xIm17GYx9FcbmSXuNmvgjTvdWsaHy0b4AEm-W7ZxZEQpVaSftv5-dOBEdk5h4iZTYlzhn--538n0AfLUs01lujTdLSp3woqSJzg3zF-7Qm2NlWldvmEzz8QU_vhSXG3DQxsIEt8oo-xuZXkvr-GQQuTmYz2aDs2CLs1xID0HSkFLlGWyG7FSiB5ujo5PxtBPIAXTUKfcYSwJBG0FXu3n5V3q14w1FWj8qQr21f2uohwj0b0fKe5rpcBteRUhJRs2oX8MGVjuw1ZZrIHH37sDzSTxHfwPyO-KcxIoRV2RWkas6_XTwgSYLXTYxLCQeKHwjI3K3WvzC32_h4vDH-cE4iSUUEiuyfBlio42RLpWOIzVaZKWwmrqssHzIKcpCIGJqLaalk7IYUqszzEvrNEfjZ469g151W-EHINyIUgvkLjNDLiw3jlostPMIodD-pg-sZZuyMb94KHNxo1pHsmvVMFsFZquG2X1IOqp5k1_jkf6inRHVxo56aae8AniETnZ0a-vrPyi_tBOv_NYL5ym6wtvVnfJgiHvzjQ9ZH943C6H7h4BTBRPhu2tLpOsQ0nqvt1Szn3V6b0mp9KB298kj_gwvxueTU3V6ND3Zg5ehpXFu-wi95WKF-x5GLc2nuE3-AHIcHA8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+generating+radiology+reports%3A+A+survey&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Monshi%2C+Maram+Mahmoud+A.&rft.au=Poon%2C+Josiah&rft.au=Chung%2C+Vera&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=106&rft.spage=101878&rft.epage=101878&rft_id=info:doi/10.1016%2Fj.artmed.2020.101878&rft_id=info%3Apmid%2F32425358&rft.externalDocID=PMC7227610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |