Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene
► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material (zerovalent iron) is developed. ► The kinetics of the sorption/dechlorination of TCE in short- and long-term experiments is studied. ► Mass b...
Saved in:
Published in | Journal of hazardous materials Vol. 192; no. 2; pp. 500 - 506 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
30.08.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material (zerovalent iron) is developed. ► The kinetics of the sorption/dechlorination of TCE in short- and long-term experiments is studied. ► Mass balance during treatment is performed. ► Characterization before and after reaction using BET, XRD, SEM/EDS, and TEM is conducted.
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC–ZVI) composites was studied. The GAC–ZVI composites were prepared from aqueous Fe
2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105
°C or 700
°C under a stream of N
2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC–ZVI composites. However, the usage of GAC–ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC–ZVI700P composite (synthesized using PEG under 700
°C). A modified Langmuir–Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC–ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately. |
---|---|
AbstractList | The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC–ZVI) composites was studied. The GAC–ZVI composites were prepared from aqueous Fe²⁺ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N₂. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC–ZVI composites. However, the usage of GAC–ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC–ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir–Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC–ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately. The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately. The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 degree C or 700 degree C under a stream of N2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700 degree C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately. ► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material (zerovalent iron) is developed. ► The kinetics of the sorption/dechlorination of TCE in short- and long-term experiments is studied. ► Mass balance during treatment is performed. ► Characterization before and after reaction using BET, XRD, SEM/EDS, and TEM is conducted. The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC–ZVI) composites was studied. The GAC–ZVI composites were prepared from aqueous Fe 2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 °C or 700 °C under a stream of N 2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC–ZVI composites. However, the usage of GAC–ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC–ZVI700P composite (synthesized using PEG under 700 °C). A modified Langmuir–Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC–ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately. The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately. |
Author | Su, Jhih-Gang Liang, Chenju Tseng, Hui-Hsin |
Author_xml | – sequence: 1 givenname: Hui-Hsin surname: Tseng fullname: Tseng, Hui-Hsin organization: School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan – sequence: 2 givenname: Jhih-Gang surname: Su fullname: Su, Jhih-Gang organization: Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City 402, Taiwan – sequence: 3 givenname: Chenju surname: Liang fullname: Liang, Chenju email: cliang@dragon.nchu.edu.tw organization: Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City 402, Taiwan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24354690$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21676545$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhS1URNPCTwBmg2AzqR2_ZsQCoYqXVIlF6dry2NeNo5lxsD2R0iW_HOdRIbEgrCzb37n36p5zgc7GMAJCLwmeE0zE1Wq-WuqHQef5AhMyx3yOmXyCZqSRtKaUijM0wxSzmjYtO0cXKa0wxkRy9gydL4iQgjM-Q79ut2NeQvKpCq66j3qceh0rbbLf6Ay2Mjp2Ybx6gBiqje5hzJWPYaxMGNYh-QypciFWyQ9Tn_UIYUqVtinEdfZFZ8Es-xD9qHfXXY8c_f4pQF5uSz14jp463Sd4cTwv0d3nTz-uv9Y33798u_54UxtORK6Ja60gtrGa4ZZ0zvEGugU2FOjC2a5tOQjaOY1ZQxlrQVjmylcntZStsZJeoreHuusYfk6Qshp8MtD3h6lV01BMacv4aVI2ZbVNsyPf_ZMkotTDnJHFf6CSUCbbPfrqiE7dAFatox903KpH2wrw5gjoZHTvim3Gpz8co5yJFhfu_YEzMaQUwSnj896JHLXvFcFqFya1UscwqV2YFOaqhKmo-V_qxwandK8POqeD0vexTHZ3WwBe8lfWIUQhPhwIKH5vPESVjIfRgPURTFY2-BM9fgMrf_LC |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1016_j_cej_2016_03_113 crossref_primary_10_1016_j_cej_2023_147049 crossref_primary_10_15541_jim20200347 crossref_primary_10_1016_j_cej_2018_02_034 crossref_primary_10_1002_adma_201401376 crossref_primary_10_1016_j_chemosphere_2021_132709 crossref_primary_10_1016_j_seppur_2018_07_030 crossref_primary_10_1016_j_scitotenv_2020_137256 crossref_primary_10_1039_C6RA10817B crossref_primary_10_1021_acs_iecr_4c03080 crossref_primary_10_1016_j_cej_2020_127391 crossref_primary_10_1016_j_nxsust_2024_100087 crossref_primary_10_1080_23312009_2017_1351653 crossref_primary_10_1039_C8DT00677F crossref_primary_10_1039_C8TA11661J crossref_primary_10_1016_j_jhazmat_2012_06_048 crossref_primary_10_1007_s11814_017_0144_8 crossref_primary_10_1016_j_jenvman_2013_08_003 crossref_primary_10_1016_j_chemosphere_2018_10_059 crossref_primary_10_1371_journal_pone_0172337 crossref_primary_10_1016_j_colsurfa_2019_124089 crossref_primary_10_1016_j_jes_2017_11_003 crossref_primary_10_1016_j_scitotenv_2023_163011 crossref_primary_10_1016_j_jhazmat_2013_12_062 crossref_primary_10_1080_09593330_2017_1329350 crossref_primary_10_1007_s13738_020_01900_7 crossref_primary_10_1016_j_jhazmat_2014_05_010 crossref_primary_10_1007_s11783_019_1142_3 crossref_primary_10_1007_s41742_020_00243_8 crossref_primary_10_1039_C5RA17165B crossref_primary_10_1016_j_chemosphere_2019_125339 crossref_primary_10_1007_s41742_018_0132_9 crossref_primary_10_1016_j_cej_2021_133187 crossref_primary_10_1039_C6TA10007D crossref_primary_10_3389_fchem_2020_00274 crossref_primary_10_1080_19443994_2015_1108238 crossref_primary_10_1021_es405622d crossref_primary_10_1021_ie4009524 crossref_primary_10_1051_matecconf_201710102009 crossref_primary_10_1016_j_chemosphere_2020_126917 crossref_primary_10_1080_03067319_2020_1832483 crossref_primary_10_1021_acssuschemeng_6b02105 crossref_primary_10_1155_2013_148129 crossref_primary_10_1016_j_jenvman_2022_116577 crossref_primary_10_1016_j_powtec_2014_05_017 crossref_primary_10_1016_j_jes_2017_05_034 crossref_primary_10_1007_s11356_015_5387_5 crossref_primary_10_1016_j_scitotenv_2019_134479 crossref_primary_10_1016_j_jtice_2018_07_035 crossref_primary_10_1016_j_cej_2018_01_102 crossref_primary_10_1039_C8CC03066A crossref_primary_10_1016_j_chemosphere_2016_04_048 crossref_primary_10_1007_s10967_018_6037_4 crossref_primary_10_1080_19443994_2012_749328 crossref_primary_10_3390_pr7100660 crossref_primary_10_1021_acs_inorgchem_2c03773 crossref_primary_10_1007_s10967_023_09091_0 crossref_primary_10_1016_j_jhazmat_2014_08_029 crossref_primary_10_1016_j_matchemphys_2017_04_071 crossref_primary_10_1016_j_jhazmat_2017_12_008 crossref_primary_10_1007_s10570_015_0759_z crossref_primary_10_1142_S1793292019500619 crossref_primary_10_1016_j_cej_2014_05_030 crossref_primary_10_1016_j_jece_2018_01_017 crossref_primary_10_1016_j_cej_2020_127992 crossref_primary_10_1016_j_jwpe_2024_105971 crossref_primary_10_1080_01932691_2019_1614036 crossref_primary_10_1007_s10311_014_0473_3 crossref_primary_10_1039_C7EM00035A crossref_primary_10_1016_j_memsci_2015_03_089 crossref_primary_10_1016_j_ecoleng_2017_08_029 crossref_primary_10_1016_j_seppur_2018_03_064 crossref_primary_10_1016_j_jes_2015_12_032 crossref_primary_10_1021_acssuschemeng_8b04921 crossref_primary_10_1007_s11356_020_10321_1 crossref_primary_10_1016_j_jtice_2012_12_007 crossref_primary_10_1016_j_jece_2021_106268 crossref_primary_10_1080_19443994_2015_1005686 crossref_primary_10_4491_KSEE_2019_41_9_473 crossref_primary_10_1021_acsestwater_2c00574 crossref_primary_10_1039_C5RA17074E crossref_primary_10_1016_j_jtice_2020_08_025 crossref_primary_10_1016_j_biortech_2016_06_061 crossref_primary_10_1016_j_jece_2020_104808 crossref_primary_10_1016_j_jhazmat_2012_06_037 crossref_primary_10_1088_1757_899X_509_1_012042 crossref_primary_10_1021_es4056565 crossref_primary_10_1039_C4RA06760F crossref_primary_10_1016_j_scitotenv_2021_148649 crossref_primary_10_1016_j_cej_2016_02_010 crossref_primary_10_1016_j_envpol_2023_121880 crossref_primary_10_1061__ASCE_EE_1943_7870_0000981 crossref_primary_10_1016_j_cej_2024_157832 crossref_primary_10_1016_j_ibiod_2022_105524 crossref_primary_10_1007_s11356_021_15427_8 crossref_primary_10_1007_s13762_021_03452_6 crossref_primary_10_1016_j_jhazmat_2015_07_038 crossref_primary_10_1016_j_chemosphere_2020_129271 crossref_primary_10_1016_j_jenvman_2017_02_014 crossref_primary_10_1016_j_reactfunctpolym_2022_105210 crossref_primary_10_1016_j_biortech_2014_07_062 crossref_primary_10_1021_acssuschemeng_6b02375 crossref_primary_10_1016_S1001_0742_11_61054_1 crossref_primary_10_1039_D1CS00857A crossref_primary_10_1111_wej_12838 crossref_primary_10_1007_s40090_016_0089_5 crossref_primary_10_3390_w14020260 crossref_primary_10_1016_j_jhazmat_2020_122782 crossref_primary_10_1016_j_chemosphere_2020_126712 crossref_primary_10_1016_j_catcom_2015_09_017 crossref_primary_10_1016_j_jconhyd_2020_103677 crossref_primary_10_1016_j_colsurfa_2022_128614 crossref_primary_10_1016_j_cej_2021_133370 crossref_primary_10_1016_j_scitotenv_2019_01_070 crossref_primary_10_1039_C5RA16005G crossref_primary_10_1016_j_seppur_2015_10_043 crossref_primary_10_1016_j_watres_2015_02_034 crossref_primary_10_1039_C4TA02920H crossref_primary_10_3390_molecules21070953 crossref_primary_10_2139_ssrn_4125382 crossref_primary_10_4491_KSEE_2016_38_9_521 crossref_primary_10_1016_j_reactfunctpolym_2020_104614 |
Cites_doi | 10.1021/es061349a 10.1016/j.desal.2007.03.015 10.1081/ESE-100105729 10.1016/j.watres.2009.04.037 10.1021/es800227r 10.1002/etc.5620160404 10.1016/j.chemosphere.2006.03.075 10.1021/es702589u 10.1021/es990884q 10.1016/0016-2361(86)90120-1 10.1016/j.chemosphere.2006.03.009 10.1016/j.chemosphere.2006.05.026 10.1021/es800387p 10.1016/j.jmmm.2007.05.012 10.1021/es025533h 10.1021/ed075p43 10.1016/j.jmmm.2006.08.045 10.1021/es049195r 10.1023/A:1025520116015 10.1002/rem.20078 10.1016/j.envpol.2008.12.024 10.1002/ep.3300160221 10.1016/S1003-6326(06)60207-0 10.1021/es9509644 10.1021/es051737x 10.1021/es0616534 10.1016/j.chemosphere.2006.09.075 10.1021/es990334s 10.1021/cm8003613 10.1021/es060685o 10.1021/es048991u 10.1021/jp0461448 10.1021/es0525758 10.1021/es00061a012 10.1021/es8015815 10.1016/S1748-0132(06)70048-2 10.1021/es702214x 10.1089/ees.2007.0174 10.1016/S0008-6223(97)00173-5 10.1021/es803535b 10.1021/es950053u |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7S9 L.6 7X8 7ST 7TV 7U7 C1K SOI |
DOI | 10.1016/j.jhazmat.2011.05.047 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Environment Abstracts Pollution Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic Pollution Abstracts Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic Pollution Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Applied Sciences |
EISSN | 1873-3336 |
EndPage | 506 |
ExternalDocumentID | 21676545 24354690 10_1016_j_jhazmat_2011_05_047 US201500194566 S0304389411006868 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HMC HVGLF HZ~ IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SEN SES SEW SPC SPCBC SSG SSJ SSZ T5K T9H TAE UAO VH1 WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEGFY AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION IQODW CGR CUY CVF ECM EFKBS EIF NPM 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7S9 L.6 7X8 7ST 7TV 7U7 C1K SOI |
ID | FETCH-LOGICAL-c516t-1f9d61d8da4091bff58eb20c3e32fdb995e63bfa0483449e6d4fe32b7a779cd73 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Mon Jul 21 09:32:50 EDT 2025 Fri Jul 11 05:40:14 EDT 2025 Fri Jul 11 06:47:02 EDT 2025 Tue Aug 05 09:57:37 EDT 2025 Mon Jul 21 05:52:16 EDT 2025 Wed Apr 02 07:28:24 EDT 2025 Tue Jul 01 05:28:40 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Thu Apr 03 09:44:05 EDT 2025 Fri Feb 23 02:33:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Groundwater remediation Reactive activated carbon Reduction Waste water treatment Chlorinated solvent Dehalogenation Dispersant Zerovalent metal Composite material Chemical reduction Dechlorination Activated carbon Chlorine Organic compounds Rate constant Organic compounds Ground water Ethylene(trichloro) Desorption Impregnation Organic solvent Adsorption First order Water pollution Kinetics Waste water purification |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-1f9d61d8da4091bff58eb20c3e32fdb995e63bfa0483449e6d4fe32b7a779cd73 |
Notes | http://dx.doi.org/10.1016/j.jhazmat.2011.05.047 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21676545 |
PQID | 1671347912 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_883033945 proquest_miscellaneous_878030885 proquest_miscellaneous_1694505412 proquest_miscellaneous_1671347912 pubmed_primary_21676545 pascalfrancis_primary_24354690 crossref_citationtrail_10_1016_j_jhazmat_2011_05_047 crossref_primary_10_1016_j_jhazmat_2011_05_047 fao_agris_US201500194566 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2011_05_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-30 |
PublicationDateYYYYMMDD | 2011-08-30 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liu, Majetich, Tilton, Sholl, Lowry (bib0180) 2005; 39 Campbell, Burris, Roberts, Wells (bib0165) 1997; 16 Matheson, Tratnyek (bib0020) 1994; 28 Liang, Lai (bib0175) 2008; 2008 Sohn, Kang, Ahn, Woo, Yang (bib0205) 2006; 40 Liu, Lowry (bib0170) 2006; 40 Ghauch, Tuqan, Assi (bib0105) 2009; 157 Phenrat, Saleh, Sirk, Tilton, Lowry (bib0035) 2007; 41 Zhang (bib0005) 2003; 5 Giasuddin, Kanel, Choi (bib0130) 2007; 41 Arnold, Roberts (bib0155) 2000; 34 Kohn, Arnold, Roberts (bib0185) 2006; 40 Xu, Bhattacharyya (bib0055) 2008; 112 Parshetti, Doong (bib0060) 2009; 43 Liang, Wang, Bruell (bib0120) 2007; 66 Xiong, Ye, Gu, Chen (bib0135) 2008; 320 Choi, Al-Abed, Agarwal (bib0070) 2009; 43 Fan, Chen, Lee, Chiu (bib0110) 2007; 67 Jüntgen (bib0075) 1986; 65 Zhang, Elliott (bib0095) 2006; 16 Zhu, Lim, Feng (bib0210) 2008; 42 Sun, Takaoka, Takeda, Matsumoto, Oshita (bib0115) 2006; 65 Kim, Hong, Lee, Shin, Yang (bib0140) 2008; 223 Gotpagar, Grulke, Tsang, Bhattacharyya (bib0145) 1997; 16 Zhang, Ji, Han, Qin (bib0045) 2006; 16 Orth, Gillham (bib0160) 1996; 30 Zheng, Zhan, He, Day, Lu, McPherson, Piringer, John (bib0050) 2008; 42 Uludag-Demirer, Bowers (bib0025) 2001; 36 Kanel, Manning, Charlet, Choi (bib0190) 2005; 39 Hoch, Mack, Hydutsky, Hershman, Skluzacek, Mallouk (bib0030) 2008; 42 Li, Jones, Bowman, Helferich (bib0040) 1999; 33 Rodriguez-Reinoso (bib0125) 1998; 36 Treptow, Jean (bib0215) 1998; 75 Tratnyek, Johnson (bib0010) 2006; 1 Zhan, Zheng, Piringer, Day, McPherson, Lu, Papadopoulos, John (bib0015) 2008; 42 Furukawa, Kim, Watkins, Wilkin (bib0195) 2002; 36 Wen, Wang, Ding, Wang, Yang (bib0090) 2005; 109 Roberts, Totten, Arnold, Burris, Campbell (bib0150) 1996; 30 Choi, Agarwal, Al-Abed (bib0065) 2009; 43 Choi, Al-Abed, Agarwal, Dionysiou (bib0085) 2008; 20 Wang, Jin, Li, Zhang, Gao (bib0100) 2006; 65 Chowdhury, Arya, Raha (bib0200) 2008; 38 Bonder, Zhang, Kiick, Papaefthymiou, Hadjipanayis (bib0080) 2007; 311 Li (10.1016/j.jhazmat.2011.05.047_bib0040) 1999; 33 Zhang (10.1016/j.jhazmat.2011.05.047_bib0045) 2006; 16 Zheng (10.1016/j.jhazmat.2011.05.047_bib0050) 2008; 42 Kim (10.1016/j.jhazmat.2011.05.047_bib0140) 2008; 223 Campbell (10.1016/j.jhazmat.2011.05.047_bib0165) 1997; 16 Giasuddin (10.1016/j.jhazmat.2011.05.047_bib0130) 2007; 41 Xu (10.1016/j.jhazmat.2011.05.047_bib0055) 2008; 112 Ghauch (10.1016/j.jhazmat.2011.05.047_bib0105) 2009; 157 Arnold (10.1016/j.jhazmat.2011.05.047_bib0155) 2000; 34 Choi (10.1016/j.jhazmat.2011.05.047_bib0065) 2009; 43 Kanel (10.1016/j.jhazmat.2011.05.047_bib0190) 2005; 39 Phenrat (10.1016/j.jhazmat.2011.05.047_bib0035) 2007; 41 Liang (10.1016/j.jhazmat.2011.05.047_bib0120) 2007; 66 Orth (10.1016/j.jhazmat.2011.05.047_bib0160) 1996; 30 Wang (10.1016/j.jhazmat.2011.05.047_bib0100) 2006; 65 Gotpagar (10.1016/j.jhazmat.2011.05.047_bib0145) 1997; 16 Liu (10.1016/j.jhazmat.2011.05.047_bib0180) 2005; 39 Zhan (10.1016/j.jhazmat.2011.05.047_bib0015) 2008; 42 Treptow (10.1016/j.jhazmat.2011.05.047_bib0215) 1998; 75 Zhang (10.1016/j.jhazmat.2011.05.047_bib0095) 2006; 16 Bonder (10.1016/j.jhazmat.2011.05.047_bib0080) 2007; 311 Kohn (10.1016/j.jhazmat.2011.05.047_bib0185) 2006; 40 Rodriguez-Reinoso (10.1016/j.jhazmat.2011.05.047_bib0125) 1998; 36 Roberts (10.1016/j.jhazmat.2011.05.047_bib0150) 1996; 30 Zhang (10.1016/j.jhazmat.2011.05.047_bib0005) 2003; 5 Liu (10.1016/j.jhazmat.2011.05.047_bib0170) 2006; 40 Sohn (10.1016/j.jhazmat.2011.05.047_bib0205) 2006; 40 Choi (10.1016/j.jhazmat.2011.05.047_bib0085) 2008; 20 Wen (10.1016/j.jhazmat.2011.05.047_bib0090) 2005; 109 Sun (10.1016/j.jhazmat.2011.05.047_bib0115) 2006; 65 Uludag-Demirer (10.1016/j.jhazmat.2011.05.047_bib0025) 2001; 36 Tratnyek (10.1016/j.jhazmat.2011.05.047_bib0010) 2006; 1 Chowdhury (10.1016/j.jhazmat.2011.05.047_bib0200) 2008; 38 Zhu (10.1016/j.jhazmat.2011.05.047_bib0210) 2008; 42 Parshetti (10.1016/j.jhazmat.2011.05.047_bib0060) 2009; 43 Liang (10.1016/j.jhazmat.2011.05.047_bib0175) 2008; 2008 Furukawa (10.1016/j.jhazmat.2011.05.047_bib0195) 2002; 36 Choi (10.1016/j.jhazmat.2011.05.047_bib0070) 2009; 43 Matheson (10.1016/j.jhazmat.2011.05.047_bib0020) 1994; 28 Jüntgen (10.1016/j.jhazmat.2011.05.047_bib0075) 1986; 65 Hoch (10.1016/j.jhazmat.2011.05.047_bib0030) 2008; 42 Fan (10.1016/j.jhazmat.2011.05.047_bib0110) 2007; 67 Xiong (10.1016/j.jhazmat.2011.05.047_bib0135) 2008; 320 |
References_xml | – volume: 41 start-page: 284 year: 2007 end-page: 290 ident: bib0035 article-title: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions publication-title: Environ. Sci. Technol. – volume: 39 start-page: 1338 year: 2005 end-page: 1345 ident: bib0180 article-title: TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties publication-title: Environ. Sci. Technol. – volume: 42 start-page: 2600 year: 2008 end-page: 2605 ident: bib0030 article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium publication-title: Environ. Sci. Technol. – volume: 65 start-page: 183 year: 2006 end-page: 189 ident: bib0115 article-title: Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron publication-title: Chemosphere – volume: 2008 start-page: 1071 year: 2008 end-page: 1078 ident: bib0175 article-title: Trichloroethylene degradation by zero valent iron activated persulfate oxidation publication-title: Environ. Eng. Sci. – volume: 36 start-page: 159 year: 1998 end-page: 175 ident: bib0125 article-title: The role of carbon materials in heterogeneous catalysis publication-title: Carbon – volume: 33 start-page: 4326 year: 1999 end-page: 4330 ident: bib0040 article-title: Enhanced reduction of chromate and PCE pelletized surfactant-modified zeolite/zerovalent iron publication-title: Environ. Sci. Technol. – volume: 223 start-page: 212 year: 2008 end-page: 220 ident: bib0140 article-title: Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane publication-title: Desalination – volume: 43 start-page: 3086 year: 2009 end-page: 3094 ident: bib0060 article-title: Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes publication-title: Water Res. – volume: 112 start-page: 9133 year: 2008 end-page: 9144 ident: bib0055 article-title: Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature publication-title: J. Phys. Chem. – volume: 1 start-page: 44 year: 2006 end-page: 48 ident: bib0010 article-title: Nanotechnologies for environmental cleanup publication-title: Nano Today – volume: 41 start-page: 2022 year: 2007 end-page: 2027 ident: bib0130 article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal publication-title: Environ. Sci. Technol. – volume: 30 start-page: 2654 year: 1996 end-page: 2659 ident: bib0150 article-title: Reductive elimination of chlorinated ethylenes by zero-valent metals publication-title: Environ. Sci. Technol. – volume: 39 start-page: 1291 year: 2005 end-page: 1298 ident: bib0190 article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron publication-title: Environ. Sci. Technol. – volume: 43 start-page: 488 year: 2009 end-page: 493 ident: bib0065 article-title: Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept publication-title: Environ. Sci. Technol. – volume: 66 start-page: 238 year: 2007 end-page: 259 ident: bib0120 article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures publication-title: Chemosphere – volume: 40 start-page: 4253 year: 2006 end-page: 4260 ident: bib0185 article-title: Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin: a correlation analysis publication-title: Environ. Sci. Technol. – volume: 36 start-page: 1535 year: 2001 end-page: 1547 ident: bib0025 article-title: Gas phase reduction of chlorinated VOCs by zero valent iron publication-title: J. Environ. Sci. Health Part A – volume: 42 start-page: 4513 year: 2008 end-page: 4519 ident: bib0210 article-title: Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions publication-title: Environ. Sci. Technol. – volume: 28 start-page: 2045 year: 1994 end-page: 2053 ident: bib0020 article-title: Reductive dehalogenation of chlorinated methane by iron metal publication-title: Environ. Sci. Technol. – volume: 65 start-page: 1396 year: 2006 end-page: 1404 ident: bib0100 article-title: Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal publication-title: Chemosphere – volume: 109 start-page: 215 year: 2005 end-page: 220 ident: bib0090 article-title: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe publication-title: J. Phys. Chem. B – volume: 5 start-page: 323 year: 2003 end-page: 332 ident: bib0005 article-title: Nanoscale iron particles for environmental remediation: an overview publication-title: J. Nanoparticle Res. – volume: 38 start-page: 212 year: 2008 end-page: 216 ident: bib0200 article-title: Synthesis and characterization of α-Fe publication-title: Syn. React. Inorg. Met. – volume: 157 start-page: 1626 year: 2009 end-page: 1635 ident: bib0105 article-title: Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles publication-title: Environ. Pollut. – volume: 320 start-page: 107 year: 2008 end-page: 112 ident: bib0135 article-title: Synthesis and magnetic properties of iron oxide nanoparticles/C and α-Fe/iron oxide nanoparticles/C composites publication-title: J. Magn. Magn. Mater. – volume: 40 start-page: 5514 year: 2006 end-page: 5519 ident: bib0205 article-title: Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation publication-title: Environ. Sci. Technol. – volume: 30 start-page: 66 year: 1996 end-page: 71 ident: bib0160 article-title: Dechlorination of trichloroethene in aqueous solution using Fe publication-title: Environ. Sci. Technol. – volume: 16 year: 2006 ident: bib0045 article-title: Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate publication-title: Trans. Nonferrous Met. Soc. China – volume: 311 start-page: 658 year: 2007 end-page: 664 ident: bib0080 article-title: Controlling synthesis of Fe nanoparticles with polyethylene glycol publication-title: J. Magn. Magn. Mater. – volume: 42 start-page: 8871 year: 2008 end-page: 8876 ident: bib0015 article-title: Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene publication-title: Environ. Sci. Technol. – volume: 75 start-page: 43 year: 1998 end-page: 47 ident: bib0215 article-title: The iron blast furnace: a study in chemical thermodynamics publication-title: J. Chem. Educ. – volume: 16 start-page: 7 year: 2006 end-page: 21 ident: bib0095 article-title: Applications of iron nanoparticles for groundwater remediation publication-title: Rem. J. – volume: 20 start-page: 3649 year: 2008 end-page: 3655 ident: bib0085 article-title: Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs publication-title: Chem. Mater. – volume: 36 start-page: 5469 year: 2002 end-page: 5475 ident: bib0195 article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron publication-title: Environ. Sci. Technol. – volume: 67 start-page: 1647 year: 2007 end-page: 1652 ident: bib0110 article-title: Using FeGAC/H publication-title: Chemosphere – volume: 65 start-page: 1436 year: 1986 end-page: 1446 ident: bib0075 article-title: Activated carbon as catalyst support: a review of new research results publication-title: Fuel – volume: 34 start-page: 1794 year: 2000 end-page: 1805 ident: bib0155 article-title: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles publication-title: Environ. Sci. Technol. – volume: 43 start-page: 4137 year: 2009 end-page: 4142 ident: bib0070 article-title: Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl publication-title: Environ. Sci. Technol. – volume: 16 start-page: 625 year: 1997 end-page: 630 ident: bib0165 article-title: Trichloroethylene and tetrachloroethylene reduction in a metallic iron–water–vapor batch system publication-title: Environ. Toxicol. Chem. – volume: 42 start-page: 4494 year: 2008 end-page: 4499 ident: bib0050 article-title: Reactivity characteristics of nanoscale zerovalent iron/silica composites for trichloroethylene remediation publication-title: Environ. Sci. Technol. – volume: 40 start-page: 6085 year: 2006 end-page: 6090 ident: bib0170 article-title: Effect of particle age (Fe publication-title: Environ. Sci. Technol. – volume: 16 start-page: 137 year: 1997 end-page: 143 ident: bib0145 article-title: Reductive dehalogenation of trichloroethylene using zero-valent iron publication-title: Env. Prog. – volume: 41 start-page: 284 year: 2007 ident: 10.1016/j.jhazmat.2011.05.047_bib0035 article-title: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions publication-title: Environ. Sci. Technol. doi: 10.1021/es061349a – volume: 223 start-page: 212 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0140 article-title: Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane publication-title: Desalination doi: 10.1016/j.desal.2007.03.015 – volume: 36 start-page: 1535 year: 2001 ident: 10.1016/j.jhazmat.2011.05.047_bib0025 article-title: Gas phase reduction of chlorinated VOCs by zero valent iron publication-title: J. Environ. Sci. Health Part A doi: 10.1081/ESE-100105729 – volume: 43 start-page: 3086 year: 2009 ident: 10.1016/j.jhazmat.2011.05.047_bib0060 article-title: Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes publication-title: Water Res. doi: 10.1016/j.watres.2009.04.037 – volume: 42 start-page: 4513 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0210 article-title: Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions publication-title: Environ. Sci. Technol. doi: 10.1021/es800227r – volume: 16 start-page: 625 year: 1997 ident: 10.1016/j.jhazmat.2011.05.047_bib0165 article-title: Trichloroethylene and tetrachloroethylene reduction in a metallic iron–water–vapor batch system publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620160404 – volume: 65 start-page: 1396 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0100 article-title: Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.075 – volume: 42 start-page: 2600 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0030 article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium publication-title: Environ. Sci. Technol. doi: 10.1021/es702589u – volume: 34 start-page: 1794 year: 2000 ident: 10.1016/j.jhazmat.2011.05.047_bib0155 article-title: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles publication-title: Environ. Sci. Technol. doi: 10.1021/es990884q – volume: 65 start-page: 1436 year: 1986 ident: 10.1016/j.jhazmat.2011.05.047_bib0075 article-title: Activated carbon as catalyst support: a review of new research results publication-title: Fuel doi: 10.1016/0016-2361(86)90120-1 – volume: 65 start-page: 183 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0115 article-title: Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.009 – volume: 66 start-page: 238 year: 2007 ident: 10.1016/j.jhazmat.2011.05.047_bib0120 article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.05.026 – volume: 42 start-page: 8871 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0015 article-title: Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene publication-title: Environ. Sci. Technol. doi: 10.1021/es800387p – volume: 320 start-page: 107 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0135 article-title: Synthesis and magnetic properties of iron oxide nanoparticles/C and α-Fe/iron oxide nanoparticles/C composites publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2007.05.012 – volume: 36 start-page: 5469 year: 2002 ident: 10.1016/j.jhazmat.2011.05.047_bib0195 article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es025533h – volume: 75 start-page: 43 year: 1998 ident: 10.1016/j.jhazmat.2011.05.047_bib0215 article-title: The iron blast furnace: a study in chemical thermodynamics publication-title: J. Chem. Educ. doi: 10.1021/ed075p43 – volume: 311 start-page: 658 year: 2007 ident: 10.1016/j.jhazmat.2011.05.047_bib0080 article-title: Controlling synthesis of Fe nanoparticles with polyethylene glycol publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.08.045 – volume: 39 start-page: 1338 year: 2005 ident: 10.1016/j.jhazmat.2011.05.047_bib0180 article-title: TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties publication-title: Environ. Sci. Technol. doi: 10.1021/es049195r – volume: 5 start-page: 323 year: 2003 ident: 10.1016/j.jhazmat.2011.05.047_bib0005 article-title: Nanoscale iron particles for environmental remediation: an overview publication-title: J. Nanoparticle Res. doi: 10.1023/A:1025520116015 – volume: 16 start-page: 7 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0095 article-title: Applications of iron nanoparticles for groundwater remediation publication-title: Rem. J. doi: 10.1002/rem.20078 – volume: 157 start-page: 1626 year: 2009 ident: 10.1016/j.jhazmat.2011.05.047_bib0105 article-title: Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.12.024 – volume: 16 start-page: 137 year: 1997 ident: 10.1016/j.jhazmat.2011.05.047_bib0145 article-title: Reductive dehalogenation of trichloroethylene using zero-valent iron publication-title: Env. Prog. doi: 10.1002/ep.3300160221 – volume: 16 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0045 article-title: Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(06)60207-0 – volume: 30 start-page: 2654 year: 1996 ident: 10.1016/j.jhazmat.2011.05.047_bib0150 article-title: Reductive elimination of chlorinated ethylenes by zero-valent metals publication-title: Environ. Sci. Technol. doi: 10.1021/es9509644 – volume: 40 start-page: 4253 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0185 article-title: Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin: a correlation analysis publication-title: Environ. Sci. Technol. doi: 10.1021/es051737x – volume: 41 start-page: 2022 year: 2007 ident: 10.1016/j.jhazmat.2011.05.047_bib0130 article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal publication-title: Environ. Sci. Technol. doi: 10.1021/es0616534 – volume: 67 start-page: 1647 year: 2007 ident: 10.1016/j.jhazmat.2011.05.047_bib0110 article-title: Using FeGAC/H2O2 process for landfill leachate treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.09.075 – volume: 33 start-page: 4326 year: 1999 ident: 10.1016/j.jhazmat.2011.05.047_bib0040 article-title: Enhanced reduction of chromate and PCE pelletized surfactant-modified zeolite/zerovalent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es990334s – volume: 20 start-page: 3649 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0085 article-title: Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs publication-title: Chem. Mater. doi: 10.1021/cm8003613 – volume: 40 start-page: 6085 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0170 article-title: Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination publication-title: Environ. Sci. Technol. doi: 10.1021/es060685o – volume: 39 start-page: 1291 year: 2005 ident: 10.1016/j.jhazmat.2011.05.047_bib0190 article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es048991u – volume: 109 start-page: 215 year: 2005 ident: 10.1016/j.jhazmat.2011.05.047_bib0090 article-title: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires publication-title: J. Phys. Chem. B doi: 10.1021/jp0461448 – volume: 40 start-page: 5514 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0205 article-title: Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation publication-title: Environ. Sci. Technol. doi: 10.1021/es0525758 – volume: 28 start-page: 2045 year: 1994 ident: 10.1016/j.jhazmat.2011.05.047_bib0020 article-title: Reductive dehalogenation of chlorinated methane by iron metal publication-title: Environ. Sci. Technol. doi: 10.1021/es00061a012 – volume: 112 start-page: 9133 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0055 article-title: Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature publication-title: J. Phys. Chem. – volume: 43 start-page: 488 year: 2009 ident: 10.1016/j.jhazmat.2011.05.047_bib0065 article-title: Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept publication-title: Environ. Sci. Technol. doi: 10.1021/es8015815 – volume: 38 start-page: 212 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0200 article-title: Synthesis and characterization of α-Fe2O3 nanoparticles of different shapes publication-title: Syn. React. Inorg. Met. – volume: 1 start-page: 44 year: 2006 ident: 10.1016/j.jhazmat.2011.05.047_bib0010 article-title: Nanotechnologies for environmental cleanup publication-title: Nano Today doi: 10.1016/S1748-0132(06)70048-2 – volume: 42 start-page: 4494 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0050 article-title: Reactivity characteristics of nanoscale zerovalent iron/silica composites for trichloroethylene remediation publication-title: Environ. Sci. Technol. doi: 10.1021/es702214x – volume: 2008 start-page: 1071 year: 2008 ident: 10.1016/j.jhazmat.2011.05.047_bib0175 article-title: Trichloroethylene degradation by zero valent iron activated persulfate oxidation publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2007.0174 – volume: 36 start-page: 159 year: 1998 ident: 10.1016/j.jhazmat.2011.05.047_bib0125 article-title: The role of carbon materials in heterogeneous catalysis publication-title: Carbon doi: 10.1016/S0008-6223(97)00173-5 – volume: 43 start-page: 4137 year: 2009 ident: 10.1016/j.jhazmat.2011.05.047_bib0070 article-title: Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl publication-title: Environ. Sci. Technol. doi: 10.1021/es803535b – volume: 30 start-page: 66 year: 1996 ident: 10.1016/j.jhazmat.2011.05.047_bib0160 article-title: Dechlorination of trichloroethene in aqueous solution using Fe0 publication-title: Environ. Sci. Technol. doi: 10.1021/es950053u |
SSID | ssj0001754 |
Score | 2.4151583 |
Snippet | ► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material... The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 500 |
SubjectTerms | Activated carbon Adsorption Applied sciences Biological and physicochemical phenomena Carbon - chemistry Chemical engineering Chlorinated solvent Chlorine - chemistry Dechlorination Degradation desorption Exact sciences and technology Groundwater remediation Groundwaters Iron Iron - chemistry Kinetics Natural water pollution nitrogen Pollution Rate constants Reactive activated carbon Reactors Reduction Streams Trichloroethylene Trichloroethylene - chemistry Waste water treatment Water treatment and pollution |
Title | Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene |
URI | https://dx.doi.org/10.1016/j.jhazmat.2011.05.047 https://www.ncbi.nlm.nih.gov/pubmed/21676545 https://www.proquest.com/docview/1671347912 https://www.proquest.com/docview/1694505412 https://www.proquest.com/docview/878030885 https://www.proquest.com/docview/883033945 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoEDgvJoeKyMxDWbje04zrGqqJZXL8tKvVl2bLe7qpJqswXRAwd-OTN57FKJthJXa_yQZzzz2Z4HIe9F8FjBuoxLZkUsmHWxCTyNgwIsYnKhmMN3yK8ncjoXn06z0x1yNMTCoFtlr_s7nd5q674l6XczuVwskhl-6oG5FZj0TCqJAb9C5Cjl419bNw8wj10KKfwBAOptFE-yHC_PzTUAwz6TZzaeYJWVf9un3WBqdJw0Dexd6Ipe3I5KW-t0_IQ87mElPexW_pTs-GqfPPor2eA-2f1ifjwjv2c_K8B8zaKhdaBnMAP6oVIMb_gOsNPR0qxsXSXXflVTkEKwSRQj4Sj6nqODl28o4FzaLNAV0VS-vmqocU29anVP4nx53jr1tRzHObAEADbVHmQCxvPPyfz4w7ejadzXYYjLLJXrOA2Fk6lTzsBlMLUhZAru45OSe86Cs0WRecltMJidXojCSwcSwJnNTZ4Xpcv5C7JX1ZU_IBSuYyVXzBS5VcKaoghC8AB8MY57QHMREcPu67JPUo61Mi704I221D3TNDJNTzINTIvIeNPtssvScV8HNbBW3xA3DZbkvq4HIAranIES1vMZwycjwMkARGVERjfkY7MWBqAU3yEi8m4QGA3HGP9mOkbpVHZBvSm7iwZmAYiNNPQWGpUrzECksjtIFMAWDkNF5GUns9t1wjIkYOpX_789r8nDzbP75A3ZW6-u_FvAbWs7ag_miDw4_Ph5evIHJhxEHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51ywE4ICiPhkcxEtdsNomTOEdUUS2w7WW7Um-WHdvtrqqk2mxB7aEHfjkzeexSibYSV2v8kGc889meB8Bn7ixVsC78ItLc55E2vnJx6DuBWERlXESG3iEPj9LxjH8_SU62YL-PhSG3yk73tzq90dZdS9DtZnAxnwdT-tRDc8sp6VkqUjGARxyPL5UxGN5s_DzQPrY5pOgLAMk3YTzBYrg4U9eIDLtUnslwRGVW_m2gBk5V5Dmpatw811a9uBuWNubp4Dk863Al-9Iu_QVs2XIHnv6VbXAHBhP16yX8nl6VCPrqec0qx05xBnJEZRTf8BNxp2GFWuqqDK7tsmIohmiUGIXCMXI-Jw8vWzMEuqyeky-iKm11WTNl6mrZKJ_A2OKs8eprWE5zUA0AaqosCgWOZ1_B7ODr8f7Y7wox-EUSpis_dLlJQyOMwttgqJ1LBF7IR0Vs48gZneeJTWPtFKWn5zy3qUERiCOdqSzLC5PFr2G7rEq7CwzvYwXySOWZFlyrPHecxw75okxsEc55wPvdl0WXpZyKZZzL3h1tITumSWKaHCUSmebBcN3tok3T8VAH0bNW3pI3iabkoa67KApSnaIWlrNpRG9GCJQRiaYe7N2Sj_VaIkSl9BDhwadeYCSeY_qcaRklw7SN6g2j-2hwFsTYRMPuoBGZoBREIrmHRCBuiXEoD960MrtZJy4jRVD99v-35yM8Hh8fTuTk29GPd_Bk_QY_eg_bq-Wl_YAgbqX3mkP6ByfARaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+granular+activated+carbon%2Fzero+valent+iron+composites+for+simultaneous+adsorption%2Fdechlorination+of+trichloroethylene&rft.jtitle=Journal+of+hazardous+materials&rft.au=TSENG%2C+Hui-Hsin&rft.au=SU%2C+Jhih-Gang&rft.au=CHENJU+LIANG&rft.date=2011-08-30&rft.pub=Elsevier&rft.issn=0304-3894&rft.volume=192&rft.issue=2&rft.spage=500&rft.epage=506&rft_id=info:doi/10.1016%2Fj.jhazmat.2011.05.047&rft.externalDBID=n%2Fa&rft.externalDocID=24354690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |