Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene

► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material (zerovalent iron) is developed. ► The kinetics of the sorption/dechlorination of TCE in short- and long-term experiments is studied. ► Mass b...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 192; no. 2; pp. 500 - 506
Main Authors Tseng, Hui-Hsin, Su, Jhih-Gang, Liang, Chenju
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 30.08.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material (zerovalent iron) is developed. ► The kinetics of the sorption/dechlorination of TCE in short- and long-term experiments is studied. ► Mass balance during treatment is performed. ► Characterization before and after reaction using BET, XRD, SEM/EDS, and TEM is conducted. The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC–ZVI) composites was studied. The GAC–ZVI composites were prepared from aqueous Fe 2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 °C or 700 °C under a stream of N 2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC–ZVI composites. However, the usage of GAC–ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC–ZVI700P composite (synthesized using PEG under 700 °C). A modified Langmuir–Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC–ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.
AbstractList The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC–ZVI) composites was studied. The GAC–ZVI composites were prepared from aqueous Fe²⁺ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N₂. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC–ZVI composites. However, the usage of GAC–ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC–ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir–Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC–ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 degree C or 700 degree C under a stream of N2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700 degree C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.
► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material (zerovalent iron) is developed. ► The kinetics of the sorption/dechlorination of TCE in short- and long-term experiments is studied. ► Mass balance during treatment is performed. ► Characterization before and after reaction using BET, XRD, SEM/EDS, and TEM is conducted. The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC–ZVI) composites was studied. The GAC–ZVI composites were prepared from aqueous Fe 2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 °C or 700 °C under a stream of N 2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC–ZVI composites. However, the usage of GAC–ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC–ZVI700P composite (synthesized using PEG under 700 °C). A modified Langmuir–Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC–ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.
Author Su, Jhih-Gang
Liang, Chenju
Tseng, Hui-Hsin
Author_xml – sequence: 1
  givenname: Hui-Hsin
  surname: Tseng
  fullname: Tseng, Hui-Hsin
  organization: School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
– sequence: 2
  givenname: Jhih-Gang
  surname: Su
  fullname: Su, Jhih-Gang
  organization: Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City 402, Taiwan
– sequence: 3
  givenname: Chenju
  surname: Liang
  fullname: Liang, Chenju
  email: cliang@dragon.nchu.edu.tw
  organization: Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City 402, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24354690$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21676545$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhS1URNPCTwBmg2AzqR2_ZsQCoYqXVIlF6dry2NeNo5lxsD2R0iW_HOdRIbEgrCzb37n36p5zgc7GMAJCLwmeE0zE1Wq-WuqHQef5AhMyx3yOmXyCZqSRtKaUijM0wxSzmjYtO0cXKa0wxkRy9gydL4iQgjM-Q79ut2NeQvKpCq66j3qceh0rbbLf6Ay2Mjp2Ybx6gBiqje5hzJWPYaxMGNYh-QypciFWyQ9Tn_UIYUqVtinEdfZFZ8Es-xD9qHfXXY8c_f4pQF5uSz14jp463Sd4cTwv0d3nTz-uv9Y33798u_54UxtORK6Ja60gtrGa4ZZ0zvEGugU2FOjC2a5tOQjaOY1ZQxlrQVjmylcntZStsZJeoreHuusYfk6Qshp8MtD3h6lV01BMacv4aVI2ZbVNsyPf_ZMkotTDnJHFf6CSUCbbPfrqiE7dAFatox903KpH2wrw5gjoZHTvim3Gpz8co5yJFhfu_YEzMaQUwSnj896JHLXvFcFqFya1UscwqV2YFOaqhKmo-V_qxwandK8POqeD0vexTHZ3WwBe8lfWIUQhPhwIKH5vPESVjIfRgPURTFY2-BM9fgMrf_LC
CODEN JHMAD9
CitedBy_id crossref_primary_10_1016_j_cej_2016_03_113
crossref_primary_10_1016_j_cej_2023_147049
crossref_primary_10_15541_jim20200347
crossref_primary_10_1016_j_cej_2018_02_034
crossref_primary_10_1002_adma_201401376
crossref_primary_10_1016_j_chemosphere_2021_132709
crossref_primary_10_1016_j_seppur_2018_07_030
crossref_primary_10_1016_j_scitotenv_2020_137256
crossref_primary_10_1039_C6RA10817B
crossref_primary_10_1021_acs_iecr_4c03080
crossref_primary_10_1016_j_cej_2020_127391
crossref_primary_10_1016_j_nxsust_2024_100087
crossref_primary_10_1080_23312009_2017_1351653
crossref_primary_10_1039_C8DT00677F
crossref_primary_10_1039_C8TA11661J
crossref_primary_10_1016_j_jhazmat_2012_06_048
crossref_primary_10_1007_s11814_017_0144_8
crossref_primary_10_1016_j_jenvman_2013_08_003
crossref_primary_10_1016_j_chemosphere_2018_10_059
crossref_primary_10_1371_journal_pone_0172337
crossref_primary_10_1016_j_colsurfa_2019_124089
crossref_primary_10_1016_j_jes_2017_11_003
crossref_primary_10_1016_j_scitotenv_2023_163011
crossref_primary_10_1016_j_jhazmat_2013_12_062
crossref_primary_10_1080_09593330_2017_1329350
crossref_primary_10_1007_s13738_020_01900_7
crossref_primary_10_1016_j_jhazmat_2014_05_010
crossref_primary_10_1007_s11783_019_1142_3
crossref_primary_10_1007_s41742_020_00243_8
crossref_primary_10_1039_C5RA17165B
crossref_primary_10_1016_j_chemosphere_2019_125339
crossref_primary_10_1007_s41742_018_0132_9
crossref_primary_10_1016_j_cej_2021_133187
crossref_primary_10_1039_C6TA10007D
crossref_primary_10_3389_fchem_2020_00274
crossref_primary_10_1080_19443994_2015_1108238
crossref_primary_10_1021_es405622d
crossref_primary_10_1021_ie4009524
crossref_primary_10_1051_matecconf_201710102009
crossref_primary_10_1016_j_chemosphere_2020_126917
crossref_primary_10_1080_03067319_2020_1832483
crossref_primary_10_1021_acssuschemeng_6b02105
crossref_primary_10_1155_2013_148129
crossref_primary_10_1016_j_jenvman_2022_116577
crossref_primary_10_1016_j_powtec_2014_05_017
crossref_primary_10_1016_j_jes_2017_05_034
crossref_primary_10_1007_s11356_015_5387_5
crossref_primary_10_1016_j_scitotenv_2019_134479
crossref_primary_10_1016_j_jtice_2018_07_035
crossref_primary_10_1016_j_cej_2018_01_102
crossref_primary_10_1039_C8CC03066A
crossref_primary_10_1016_j_chemosphere_2016_04_048
crossref_primary_10_1007_s10967_018_6037_4
crossref_primary_10_1080_19443994_2012_749328
crossref_primary_10_3390_pr7100660
crossref_primary_10_1021_acs_inorgchem_2c03773
crossref_primary_10_1007_s10967_023_09091_0
crossref_primary_10_1016_j_jhazmat_2014_08_029
crossref_primary_10_1016_j_matchemphys_2017_04_071
crossref_primary_10_1016_j_jhazmat_2017_12_008
crossref_primary_10_1007_s10570_015_0759_z
crossref_primary_10_1142_S1793292019500619
crossref_primary_10_1016_j_cej_2014_05_030
crossref_primary_10_1016_j_jece_2018_01_017
crossref_primary_10_1016_j_cej_2020_127992
crossref_primary_10_1016_j_jwpe_2024_105971
crossref_primary_10_1080_01932691_2019_1614036
crossref_primary_10_1007_s10311_014_0473_3
crossref_primary_10_1039_C7EM00035A
crossref_primary_10_1016_j_memsci_2015_03_089
crossref_primary_10_1016_j_ecoleng_2017_08_029
crossref_primary_10_1016_j_seppur_2018_03_064
crossref_primary_10_1016_j_jes_2015_12_032
crossref_primary_10_1021_acssuschemeng_8b04921
crossref_primary_10_1007_s11356_020_10321_1
crossref_primary_10_1016_j_jtice_2012_12_007
crossref_primary_10_1016_j_jece_2021_106268
crossref_primary_10_1080_19443994_2015_1005686
crossref_primary_10_4491_KSEE_2019_41_9_473
crossref_primary_10_1021_acsestwater_2c00574
crossref_primary_10_1039_C5RA17074E
crossref_primary_10_1016_j_jtice_2020_08_025
crossref_primary_10_1016_j_biortech_2016_06_061
crossref_primary_10_1016_j_jece_2020_104808
crossref_primary_10_1016_j_jhazmat_2012_06_037
crossref_primary_10_1088_1757_899X_509_1_012042
crossref_primary_10_1021_es4056565
crossref_primary_10_1039_C4RA06760F
crossref_primary_10_1016_j_scitotenv_2021_148649
crossref_primary_10_1016_j_cej_2016_02_010
crossref_primary_10_1016_j_envpol_2023_121880
crossref_primary_10_1061__ASCE_EE_1943_7870_0000981
crossref_primary_10_1016_j_cej_2024_157832
crossref_primary_10_1016_j_ibiod_2022_105524
crossref_primary_10_1007_s11356_021_15427_8
crossref_primary_10_1007_s13762_021_03452_6
crossref_primary_10_1016_j_jhazmat_2015_07_038
crossref_primary_10_1016_j_chemosphere_2020_129271
crossref_primary_10_1016_j_jenvman_2017_02_014
crossref_primary_10_1016_j_reactfunctpolym_2022_105210
crossref_primary_10_1016_j_biortech_2014_07_062
crossref_primary_10_1021_acssuschemeng_6b02375
crossref_primary_10_1016_S1001_0742_11_61054_1
crossref_primary_10_1039_D1CS00857A
crossref_primary_10_1111_wej_12838
crossref_primary_10_1007_s40090_016_0089_5
crossref_primary_10_3390_w14020260
crossref_primary_10_1016_j_jhazmat_2020_122782
crossref_primary_10_1016_j_chemosphere_2020_126712
crossref_primary_10_1016_j_catcom_2015_09_017
crossref_primary_10_1016_j_jconhyd_2020_103677
crossref_primary_10_1016_j_colsurfa_2022_128614
crossref_primary_10_1016_j_cej_2021_133370
crossref_primary_10_1016_j_scitotenv_2019_01_070
crossref_primary_10_1039_C5RA16005G
crossref_primary_10_1016_j_seppur_2015_10_043
crossref_primary_10_1016_j_watres_2015_02_034
crossref_primary_10_1039_C4TA02920H
crossref_primary_10_3390_molecules21070953
crossref_primary_10_2139_ssrn_4125382
crossref_primary_10_4491_KSEE_2016_38_9_521
crossref_primary_10_1016_j_reactfunctpolym_2020_104614
Cites_doi 10.1021/es061349a
10.1016/j.desal.2007.03.015
10.1081/ESE-100105729
10.1016/j.watres.2009.04.037
10.1021/es800227r
10.1002/etc.5620160404
10.1016/j.chemosphere.2006.03.075
10.1021/es702589u
10.1021/es990884q
10.1016/0016-2361(86)90120-1
10.1016/j.chemosphere.2006.03.009
10.1016/j.chemosphere.2006.05.026
10.1021/es800387p
10.1016/j.jmmm.2007.05.012
10.1021/es025533h
10.1021/ed075p43
10.1016/j.jmmm.2006.08.045
10.1021/es049195r
10.1023/A:1025520116015
10.1002/rem.20078
10.1016/j.envpol.2008.12.024
10.1002/ep.3300160221
10.1016/S1003-6326(06)60207-0
10.1021/es9509644
10.1021/es051737x
10.1021/es0616534
10.1016/j.chemosphere.2006.09.075
10.1021/es990334s
10.1021/cm8003613
10.1021/es060685o
10.1021/es048991u
10.1021/jp0461448
10.1021/es0525758
10.1021/es00061a012
10.1021/es8015815
10.1016/S1748-0132(06)70048-2
10.1021/es702214x
10.1089/ees.2007.0174
10.1016/S0008-6223(97)00173-5
10.1021/es803535b
10.1021/es950053u
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
7X8
7ST
7TV
7U7
C1K
SOI
DOI 10.1016/j.jhazmat.2011.05.047
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Pollution Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
MEDLINE
Materials Research Database

MEDLINE - Academic
Pollution Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Applied Sciences
EISSN 1873-3336
EndPage 506
ExternalDocumentID 21676545
24354690
10_1016_j_jhazmat_2011_05_047
US201500194566
S0304389411006868
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
T9H
TAE
UAO
VH1
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
7X8
7ST
7TV
7U7
C1K
SOI
ID FETCH-LOGICAL-c516t-1f9d61d8da4091bff58eb20c3e32fdb995e63bfa0483449e6d4fe32b7a779cd73
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Mon Jul 21 09:32:50 EDT 2025
Fri Jul 11 05:40:14 EDT 2025
Fri Jul 11 06:47:02 EDT 2025
Tue Aug 05 09:57:37 EDT 2025
Mon Jul 21 05:52:16 EDT 2025
Wed Apr 02 07:28:24 EDT 2025
Tue Jul 01 05:28:40 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Thu Apr 03 09:44:05 EDT 2025
Fri Feb 23 02:33:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Groundwater remediation
Reactive activated carbon
Reduction
Waste water treatment
Chlorinated solvent
Dehalogenation
Dispersant
Zerovalent metal
Composite material
Chemical reduction
Dechlorination
Activated carbon
Chlorine Organic compounds
Rate constant
Organic compounds
Ground water
Ethylene(trichloro)
Desorption
Impregnation
Organic solvent
Adsorption
First order
Water pollution
Kinetics
Waste water purification
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-1f9d61d8da4091bff58eb20c3e32fdb995e63bfa0483449e6d4fe32b7a779cd73
Notes http://dx.doi.org/10.1016/j.jhazmat.2011.05.047
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21676545
PQID 1671347912
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_883033945
proquest_miscellaneous_878030885
proquest_miscellaneous_1694505412
proquest_miscellaneous_1671347912
pubmed_primary_21676545
pascalfrancis_primary_24354690
crossref_citationtrail_10_1016_j_jhazmat_2011_05_047
crossref_primary_10_1016_j_jhazmat_2011_05_047
fao_agris_US201500194566
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2011_05_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-30
PublicationDateYYYYMMDD 2011-08-30
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-30
  day: 30
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Liu, Majetich, Tilton, Sholl, Lowry (bib0180) 2005; 39
Campbell, Burris, Roberts, Wells (bib0165) 1997; 16
Matheson, Tratnyek (bib0020) 1994; 28
Liang, Lai (bib0175) 2008; 2008
Sohn, Kang, Ahn, Woo, Yang (bib0205) 2006; 40
Liu, Lowry (bib0170) 2006; 40
Ghauch, Tuqan, Assi (bib0105) 2009; 157
Phenrat, Saleh, Sirk, Tilton, Lowry (bib0035) 2007; 41
Zhang (bib0005) 2003; 5
Giasuddin, Kanel, Choi (bib0130) 2007; 41
Arnold, Roberts (bib0155) 2000; 34
Kohn, Arnold, Roberts (bib0185) 2006; 40
Xu, Bhattacharyya (bib0055) 2008; 112
Parshetti, Doong (bib0060) 2009; 43
Liang, Wang, Bruell (bib0120) 2007; 66
Xiong, Ye, Gu, Chen (bib0135) 2008; 320
Choi, Al-Abed, Agarwal (bib0070) 2009; 43
Fan, Chen, Lee, Chiu (bib0110) 2007; 67
Jüntgen (bib0075) 1986; 65
Zhang, Elliott (bib0095) 2006; 16
Zhu, Lim, Feng (bib0210) 2008; 42
Sun, Takaoka, Takeda, Matsumoto, Oshita (bib0115) 2006; 65
Kim, Hong, Lee, Shin, Yang (bib0140) 2008; 223
Gotpagar, Grulke, Tsang, Bhattacharyya (bib0145) 1997; 16
Zhang, Ji, Han, Qin (bib0045) 2006; 16
Orth, Gillham (bib0160) 1996; 30
Zheng, Zhan, He, Day, Lu, McPherson, Piringer, John (bib0050) 2008; 42
Uludag-Demirer, Bowers (bib0025) 2001; 36
Kanel, Manning, Charlet, Choi (bib0190) 2005; 39
Hoch, Mack, Hydutsky, Hershman, Skluzacek, Mallouk (bib0030) 2008; 42
Li, Jones, Bowman, Helferich (bib0040) 1999; 33
Rodriguez-Reinoso (bib0125) 1998; 36
Treptow, Jean (bib0215) 1998; 75
Tratnyek, Johnson (bib0010) 2006; 1
Zhan, Zheng, Piringer, Day, McPherson, Lu, Papadopoulos, John (bib0015) 2008; 42
Furukawa, Kim, Watkins, Wilkin (bib0195) 2002; 36
Wen, Wang, Ding, Wang, Yang (bib0090) 2005; 109
Roberts, Totten, Arnold, Burris, Campbell (bib0150) 1996; 30
Choi, Agarwal, Al-Abed (bib0065) 2009; 43
Choi, Al-Abed, Agarwal, Dionysiou (bib0085) 2008; 20
Wang, Jin, Li, Zhang, Gao (bib0100) 2006; 65
Chowdhury, Arya, Raha (bib0200) 2008; 38
Bonder, Zhang, Kiick, Papaefthymiou, Hadjipanayis (bib0080) 2007; 311
Li (10.1016/j.jhazmat.2011.05.047_bib0040) 1999; 33
Zhang (10.1016/j.jhazmat.2011.05.047_bib0045) 2006; 16
Zheng (10.1016/j.jhazmat.2011.05.047_bib0050) 2008; 42
Kim (10.1016/j.jhazmat.2011.05.047_bib0140) 2008; 223
Campbell (10.1016/j.jhazmat.2011.05.047_bib0165) 1997; 16
Giasuddin (10.1016/j.jhazmat.2011.05.047_bib0130) 2007; 41
Xu (10.1016/j.jhazmat.2011.05.047_bib0055) 2008; 112
Ghauch (10.1016/j.jhazmat.2011.05.047_bib0105) 2009; 157
Arnold (10.1016/j.jhazmat.2011.05.047_bib0155) 2000; 34
Choi (10.1016/j.jhazmat.2011.05.047_bib0065) 2009; 43
Kanel (10.1016/j.jhazmat.2011.05.047_bib0190) 2005; 39
Phenrat (10.1016/j.jhazmat.2011.05.047_bib0035) 2007; 41
Liang (10.1016/j.jhazmat.2011.05.047_bib0120) 2007; 66
Orth (10.1016/j.jhazmat.2011.05.047_bib0160) 1996; 30
Wang (10.1016/j.jhazmat.2011.05.047_bib0100) 2006; 65
Gotpagar (10.1016/j.jhazmat.2011.05.047_bib0145) 1997; 16
Liu (10.1016/j.jhazmat.2011.05.047_bib0180) 2005; 39
Zhan (10.1016/j.jhazmat.2011.05.047_bib0015) 2008; 42
Treptow (10.1016/j.jhazmat.2011.05.047_bib0215) 1998; 75
Zhang (10.1016/j.jhazmat.2011.05.047_bib0095) 2006; 16
Bonder (10.1016/j.jhazmat.2011.05.047_bib0080) 2007; 311
Kohn (10.1016/j.jhazmat.2011.05.047_bib0185) 2006; 40
Rodriguez-Reinoso (10.1016/j.jhazmat.2011.05.047_bib0125) 1998; 36
Roberts (10.1016/j.jhazmat.2011.05.047_bib0150) 1996; 30
Zhang (10.1016/j.jhazmat.2011.05.047_bib0005) 2003; 5
Liu (10.1016/j.jhazmat.2011.05.047_bib0170) 2006; 40
Sohn (10.1016/j.jhazmat.2011.05.047_bib0205) 2006; 40
Choi (10.1016/j.jhazmat.2011.05.047_bib0085) 2008; 20
Wen (10.1016/j.jhazmat.2011.05.047_bib0090) 2005; 109
Sun (10.1016/j.jhazmat.2011.05.047_bib0115) 2006; 65
Uludag-Demirer (10.1016/j.jhazmat.2011.05.047_bib0025) 2001; 36
Tratnyek (10.1016/j.jhazmat.2011.05.047_bib0010) 2006; 1
Chowdhury (10.1016/j.jhazmat.2011.05.047_bib0200) 2008; 38
Zhu (10.1016/j.jhazmat.2011.05.047_bib0210) 2008; 42
Parshetti (10.1016/j.jhazmat.2011.05.047_bib0060) 2009; 43
Liang (10.1016/j.jhazmat.2011.05.047_bib0175) 2008; 2008
Furukawa (10.1016/j.jhazmat.2011.05.047_bib0195) 2002; 36
Choi (10.1016/j.jhazmat.2011.05.047_bib0070) 2009; 43
Matheson (10.1016/j.jhazmat.2011.05.047_bib0020) 1994; 28
Jüntgen (10.1016/j.jhazmat.2011.05.047_bib0075) 1986; 65
Hoch (10.1016/j.jhazmat.2011.05.047_bib0030) 2008; 42
Fan (10.1016/j.jhazmat.2011.05.047_bib0110) 2007; 67
Xiong (10.1016/j.jhazmat.2011.05.047_bib0135) 2008; 320
References_xml – volume: 41
  start-page: 284
  year: 2007
  end-page: 290
  ident: bib0035
  article-title: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 1338
  year: 2005
  end-page: 1345
  ident: bib0180
  article-title: TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 2600
  year: 2008
  end-page: 2605
  ident: bib0030
  article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 183
  year: 2006
  end-page: 189
  ident: bib0115
  article-title: Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron
  publication-title: Chemosphere
– volume: 2008
  start-page: 1071
  year: 2008
  end-page: 1078
  ident: bib0175
  article-title: Trichloroethylene degradation by zero valent iron activated persulfate oxidation
  publication-title: Environ. Eng. Sci.
– volume: 36
  start-page: 159
  year: 1998
  end-page: 175
  ident: bib0125
  article-title: The role of carbon materials in heterogeneous catalysis
  publication-title: Carbon
– volume: 33
  start-page: 4326
  year: 1999
  end-page: 4330
  ident: bib0040
  article-title: Enhanced reduction of chromate and PCE pelletized surfactant-modified zeolite/zerovalent iron
  publication-title: Environ. Sci. Technol.
– volume: 223
  start-page: 212
  year: 2008
  end-page: 220
  ident: bib0140
  article-title: Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane
  publication-title: Desalination
– volume: 43
  start-page: 3086
  year: 2009
  end-page: 3094
  ident: bib0060
  article-title: Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes
  publication-title: Water Res.
– volume: 112
  start-page: 9133
  year: 2008
  end-page: 9144
  ident: bib0055
  article-title: Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature
  publication-title: J. Phys. Chem.
– volume: 1
  start-page: 44
  year: 2006
  end-page: 48
  ident: bib0010
  article-title: Nanotechnologies for environmental cleanup
  publication-title: Nano Today
– volume: 41
  start-page: 2022
  year: 2007
  end-page: 2027
  ident: bib0130
  article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 2654
  year: 1996
  end-page: 2659
  ident: bib0150
  article-title: Reductive elimination of chlorinated ethylenes by zero-valent metals
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 1291
  year: 2005
  end-page: 1298
  ident: bib0190
  article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 488
  year: 2009
  end-page: 493
  ident: bib0065
  article-title: Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept
  publication-title: Environ. Sci. Technol.
– volume: 66
  start-page: 238
  year: 2007
  end-page: 259
  ident: bib0120
  article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures
  publication-title: Chemosphere
– volume: 40
  start-page: 4253
  year: 2006
  end-page: 4260
  ident: bib0185
  article-title: Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin: a correlation analysis
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 1535
  year: 2001
  end-page: 1547
  ident: bib0025
  article-title: Gas phase reduction of chlorinated VOCs by zero valent iron
  publication-title: J. Environ. Sci. Health Part A
– volume: 42
  start-page: 4513
  year: 2008
  end-page: 4519
  ident: bib0210
  article-title: Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 2045
  year: 1994
  end-page: 2053
  ident: bib0020
  article-title: Reductive dehalogenation of chlorinated methane by iron metal
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 1396
  year: 2006
  end-page: 1404
  ident: bib0100
  article-title: Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal
  publication-title: Chemosphere
– volume: 109
  start-page: 215
  year: 2005
  end-page: 220
  ident: bib0090
  article-title: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 323
  year: 2003
  end-page: 332
  ident: bib0005
  article-title: Nanoscale iron particles for environmental remediation: an overview
  publication-title: J. Nanoparticle Res.
– volume: 38
  start-page: 212
  year: 2008
  end-page: 216
  ident: bib0200
  article-title: Synthesis and characterization of α-Fe
  publication-title: Syn. React. Inorg. Met.
– volume: 157
  start-page: 1626
  year: 2009
  end-page: 1635
  ident: bib0105
  article-title: Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles
  publication-title: Environ. Pollut.
– volume: 320
  start-page: 107
  year: 2008
  end-page: 112
  ident: bib0135
  article-title: Synthesis and magnetic properties of iron oxide nanoparticles/C and α-Fe/iron oxide nanoparticles/C composites
  publication-title: J. Magn. Magn. Mater.
– volume: 40
  start-page: 5514
  year: 2006
  end-page: 5519
  ident: bib0205
  article-title: Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 66
  year: 1996
  end-page: 71
  ident: bib0160
  article-title: Dechlorination of trichloroethene in aqueous solution using Fe
  publication-title: Environ. Sci. Technol.
– volume: 16
  year: 2006
  ident: bib0045
  article-title: Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 311
  start-page: 658
  year: 2007
  end-page: 664
  ident: bib0080
  article-title: Controlling synthesis of Fe nanoparticles with polyethylene glycol
  publication-title: J. Magn. Magn. Mater.
– volume: 42
  start-page: 8871
  year: 2008
  end-page: 8876
  ident: bib0015
  article-title: Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 43
  year: 1998
  end-page: 47
  ident: bib0215
  article-title: The iron blast furnace: a study in chemical thermodynamics
  publication-title: J. Chem. Educ.
– volume: 16
  start-page: 7
  year: 2006
  end-page: 21
  ident: bib0095
  article-title: Applications of iron nanoparticles for groundwater remediation
  publication-title: Rem. J.
– volume: 20
  start-page: 3649
  year: 2008
  end-page: 3655
  ident: bib0085
  article-title: Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs
  publication-title: Chem. Mater.
– volume: 36
  start-page: 5469
  year: 2002
  end-page: 5475
  ident: bib0195
  article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 67
  start-page: 1647
  year: 2007
  end-page: 1652
  ident: bib0110
  article-title: Using FeGAC/H
  publication-title: Chemosphere
– volume: 65
  start-page: 1436
  year: 1986
  end-page: 1446
  ident: bib0075
  article-title: Activated carbon as catalyst support: a review of new research results
  publication-title: Fuel
– volume: 34
  start-page: 1794
  year: 2000
  end-page: 1805
  ident: bib0155
  article-title: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 4137
  year: 2009
  end-page: 4142
  ident: bib0070
  article-title: Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 625
  year: 1997
  end-page: 630
  ident: bib0165
  article-title: Trichloroethylene and tetrachloroethylene reduction in a metallic iron–water–vapor batch system
  publication-title: Environ. Toxicol. Chem.
– volume: 42
  start-page: 4494
  year: 2008
  end-page: 4499
  ident: bib0050
  article-title: Reactivity characteristics of nanoscale zerovalent iron/silica composites for trichloroethylene remediation
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 6085
  year: 2006
  end-page: 6090
  ident: bib0170
  article-title: Effect of particle age (Fe
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 137
  year: 1997
  end-page: 143
  ident: bib0145
  article-title: Reductive dehalogenation of trichloroethylene using zero-valent iron
  publication-title: Env. Prog.
– volume: 41
  start-page: 284
  year: 2007
  ident: 10.1016/j.jhazmat.2011.05.047_bib0035
  article-title: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061349a
– volume: 223
  start-page: 212
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0140
  article-title: Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.03.015
– volume: 36
  start-page: 1535
  year: 2001
  ident: 10.1016/j.jhazmat.2011.05.047_bib0025
  article-title: Gas phase reduction of chlorinated VOCs by zero valent iron
  publication-title: J. Environ. Sci. Health Part A
  doi: 10.1081/ESE-100105729
– volume: 43
  start-page: 3086
  year: 2009
  ident: 10.1016/j.jhazmat.2011.05.047_bib0060
  article-title: Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.04.037
– volume: 42
  start-page: 4513
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0210
  article-title: Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800227r
– volume: 16
  start-page: 625
  year: 1997
  ident: 10.1016/j.jhazmat.2011.05.047_bib0165
  article-title: Trichloroethylene and tetrachloroethylene reduction in a metallic iron–water–vapor batch system
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620160404
– volume: 65
  start-page: 1396
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0100
  article-title: Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.03.075
– volume: 42
  start-page: 2600
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0030
  article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702589u
– volume: 34
  start-page: 1794
  year: 2000
  ident: 10.1016/j.jhazmat.2011.05.047_bib0155
  article-title: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990884q
– volume: 65
  start-page: 1436
  year: 1986
  ident: 10.1016/j.jhazmat.2011.05.047_bib0075
  article-title: Activated carbon as catalyst support: a review of new research results
  publication-title: Fuel
  doi: 10.1016/0016-2361(86)90120-1
– volume: 65
  start-page: 183
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0115
  article-title: Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.03.009
– volume: 66
  start-page: 238
  year: 2007
  ident: 10.1016/j.jhazmat.2011.05.047_bib0120
  article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.05.026
– volume: 42
  start-page: 8871
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0015
  article-title: Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800387p
– volume: 320
  start-page: 107
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0135
  article-title: Synthesis and magnetic properties of iron oxide nanoparticles/C and α-Fe/iron oxide nanoparticles/C composites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.05.012
– volume: 36
  start-page: 5469
  year: 2002
  ident: 10.1016/j.jhazmat.2011.05.047_bib0195
  article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025533h
– volume: 75
  start-page: 43
  year: 1998
  ident: 10.1016/j.jhazmat.2011.05.047_bib0215
  article-title: The iron blast furnace: a study in chemical thermodynamics
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed075p43
– volume: 311
  start-page: 658
  year: 2007
  ident: 10.1016/j.jhazmat.2011.05.047_bib0080
  article-title: Controlling synthesis of Fe nanoparticles with polyethylene glycol
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.08.045
– volume: 39
  start-page: 1338
  year: 2005
  ident: 10.1016/j.jhazmat.2011.05.047_bib0180
  article-title: TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049195r
– volume: 5
  start-page: 323
  year: 2003
  ident: 10.1016/j.jhazmat.2011.05.047_bib0005
  article-title: Nanoscale iron particles for environmental remediation: an overview
  publication-title: J. Nanoparticle Res.
  doi: 10.1023/A:1025520116015
– volume: 16
  start-page: 7
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0095
  article-title: Applications of iron nanoparticles for groundwater remediation
  publication-title: Rem. J.
  doi: 10.1002/rem.20078
– volume: 157
  start-page: 1626
  year: 2009
  ident: 10.1016/j.jhazmat.2011.05.047_bib0105
  article-title: Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.12.024
– volume: 16
  start-page: 137
  year: 1997
  ident: 10.1016/j.jhazmat.2011.05.047_bib0145
  article-title: Reductive dehalogenation of trichloroethylene using zero-valent iron
  publication-title: Env. Prog.
  doi: 10.1002/ep.3300160221
– volume: 16
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0045
  article-title: Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(06)60207-0
– volume: 30
  start-page: 2654
  year: 1996
  ident: 10.1016/j.jhazmat.2011.05.047_bib0150
  article-title: Reductive elimination of chlorinated ethylenes by zero-valent metals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9509644
– volume: 40
  start-page: 4253
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0185
  article-title: Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin: a correlation analysis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051737x
– volume: 41
  start-page: 2022
  year: 2007
  ident: 10.1016/j.jhazmat.2011.05.047_bib0130
  article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0616534
– volume: 67
  start-page: 1647
  year: 2007
  ident: 10.1016/j.jhazmat.2011.05.047_bib0110
  article-title: Using FeGAC/H2O2 process for landfill leachate treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.09.075
– volume: 33
  start-page: 4326
  year: 1999
  ident: 10.1016/j.jhazmat.2011.05.047_bib0040
  article-title: Enhanced reduction of chromate and PCE pelletized surfactant-modified zeolite/zerovalent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990334s
– volume: 20
  start-page: 3649
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0085
  article-title: Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs
  publication-title: Chem. Mater.
  doi: 10.1021/cm8003613
– volume: 40
  start-page: 6085
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0170
  article-title: Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060685o
– volume: 39
  start-page: 1291
  year: 2005
  ident: 10.1016/j.jhazmat.2011.05.047_bib0190
  article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048991u
– volume: 109
  start-page: 215
  year: 2005
  ident: 10.1016/j.jhazmat.2011.05.047_bib0090
  article-title: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0461448
– volume: 40
  start-page: 5514
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0205
  article-title: Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0525758
– volume: 28
  start-page: 2045
  year: 1994
  ident: 10.1016/j.jhazmat.2011.05.047_bib0020
  article-title: Reductive dehalogenation of chlorinated methane by iron metal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00061a012
– volume: 112
  start-page: 9133
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0055
  article-title: Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature
  publication-title: J. Phys. Chem.
– volume: 43
  start-page: 488
  year: 2009
  ident: 10.1016/j.jhazmat.2011.05.047_bib0065
  article-title: Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8015815
– volume: 38
  start-page: 212
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0200
  article-title: Synthesis and characterization of α-Fe2O3 nanoparticles of different shapes
  publication-title: Syn. React. Inorg. Met.
– volume: 1
  start-page: 44
  year: 2006
  ident: 10.1016/j.jhazmat.2011.05.047_bib0010
  article-title: Nanotechnologies for environmental cleanup
  publication-title: Nano Today
  doi: 10.1016/S1748-0132(06)70048-2
– volume: 42
  start-page: 4494
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0050
  article-title: Reactivity characteristics of nanoscale zerovalent iron/silica composites for trichloroethylene remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702214x
– volume: 2008
  start-page: 1071
  year: 2008
  ident: 10.1016/j.jhazmat.2011.05.047_bib0175
  article-title: Trichloroethylene degradation by zero valent iron activated persulfate oxidation
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2007.0174
– volume: 36
  start-page: 159
  year: 1998
  ident: 10.1016/j.jhazmat.2011.05.047_bib0125
  article-title: The role of carbon materials in heterogeneous catalysis
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00173-5
– volume: 43
  start-page: 4137
  year: 2009
  ident: 10.1016/j.jhazmat.2011.05.047_bib0070
  article-title: Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803535b
– volume: 30
  start-page: 66
  year: 1996
  ident: 10.1016/j.jhazmat.2011.05.047_bib0160
  article-title: Dechlorination of trichloroethene in aqueous solution using Fe0
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950053u
SSID ssj0001754
Score 2.4151583
Snippet ► The synthesis of new materials, GAC–ZVI composites, which combine the advantages of a sorption material (granular activated carbon) and a reduction material...
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 500
SubjectTerms Activated carbon
Adsorption
Applied sciences
Biological and physicochemical phenomena
Carbon - chemistry
Chemical engineering
Chlorinated solvent
Chlorine - chemistry
Dechlorination
Degradation
desorption
Exact sciences and technology
Groundwater remediation
Groundwaters
Iron
Iron - chemistry
Kinetics
Natural water pollution
nitrogen
Pollution
Rate constants
Reactive activated carbon
Reactors
Reduction
Streams
Trichloroethylene
Trichloroethylene - chemistry
Waste water treatment
Water treatment and pollution
Title Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene
URI https://dx.doi.org/10.1016/j.jhazmat.2011.05.047
https://www.ncbi.nlm.nih.gov/pubmed/21676545
https://www.proquest.com/docview/1671347912
https://www.proquest.com/docview/1694505412
https://www.proquest.com/docview/878030885
https://www.proquest.com/docview/883033945
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoEDgvJoeKyMxDWbje04zrGqqJZXL8tKvVl2bLe7qpJqswXRAwd-OTN57FKJthJXa_yQZzzz2Z4HIe9F8FjBuoxLZkUsmHWxCTyNgwIsYnKhmMN3yK8ncjoXn06z0x1yNMTCoFtlr_s7nd5q674l6XczuVwskhl-6oG5FZj0TCqJAb9C5Cjl419bNw8wj10KKfwBAOptFE-yHC_PzTUAwz6TZzaeYJWVf9un3WBqdJw0Dexd6Ipe3I5KW-t0_IQ87mElPexW_pTs-GqfPPor2eA-2f1ifjwjv2c_K8B8zaKhdaBnMAP6oVIMb_gOsNPR0qxsXSXXflVTkEKwSRQj4Sj6nqODl28o4FzaLNAV0VS-vmqocU29anVP4nx53jr1tRzHObAEADbVHmQCxvPPyfz4w7ejadzXYYjLLJXrOA2Fk6lTzsBlMLUhZAru45OSe86Cs0WRecltMJidXojCSwcSwJnNTZ4Xpcv5C7JX1ZU_IBSuYyVXzBS5VcKaoghC8AB8MY57QHMREcPu67JPUo61Mi704I221D3TNDJNTzINTIvIeNPtssvScV8HNbBW3xA3DZbkvq4HIAranIES1vMZwycjwMkARGVERjfkY7MWBqAU3yEi8m4QGA3HGP9mOkbpVHZBvSm7iwZmAYiNNPQWGpUrzECksjtIFMAWDkNF5GUns9t1wjIkYOpX_789r8nDzbP75A3ZW6-u_FvAbWs7ag_miDw4_Ph5evIHJhxEHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51ywE4ICiPhkcxEtdsNomTOEdUUS2w7WW7Um-WHdvtrqqk2mxB7aEHfjkzeexSibYSV2v8kGc889meB8Bn7ixVsC78ItLc55E2vnJx6DuBWERlXESG3iEPj9LxjH8_SU62YL-PhSG3yk73tzq90dZdS9DtZnAxnwdT-tRDc8sp6VkqUjGARxyPL5UxGN5s_DzQPrY5pOgLAMk3YTzBYrg4U9eIDLtUnslwRGVW_m2gBk5V5Dmpatw811a9uBuWNubp4Dk863Al-9Iu_QVs2XIHnv6VbXAHBhP16yX8nl6VCPrqec0qx05xBnJEZRTf8BNxp2GFWuqqDK7tsmIohmiUGIXCMXI-Jw8vWzMEuqyeky-iKm11WTNl6mrZKJ_A2OKs8eprWE5zUA0AaqosCgWOZ1_B7ODr8f7Y7wox-EUSpis_dLlJQyOMwttgqJ1LBF7IR0Vs48gZneeJTWPtFKWn5zy3qUERiCOdqSzLC5PFr2G7rEq7CwzvYwXySOWZFlyrPHecxw75okxsEc55wPvdl0WXpZyKZZzL3h1tITumSWKaHCUSmebBcN3tok3T8VAH0bNW3pI3iabkoa67KApSnaIWlrNpRG9GCJQRiaYe7N2Sj_VaIkSl9BDhwadeYCSeY_qcaRklw7SN6g2j-2hwFsTYRMPuoBGZoBREIrmHRCBuiXEoD960MrtZJy4jRVD99v-35yM8Hh8fTuTk29GPd_Bk_QY_eg_bq-Wl_YAgbqX3mkP6ByfARaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+granular+activated+carbon%2Fzero+valent+iron+composites+for+simultaneous+adsorption%2Fdechlorination+of+trichloroethylene&rft.jtitle=Journal+of+hazardous+materials&rft.au=TSENG%2C+Hui-Hsin&rft.au=SU%2C+Jhih-Gang&rft.au=CHENJU+LIANG&rft.date=2011-08-30&rft.pub=Elsevier&rft.issn=0304-3894&rft.volume=192&rft.issue=2&rft.spage=500&rft.epage=506&rft_id=info:doi/10.1016%2Fj.jhazmat.2011.05.047&rft.externalDBID=n%2Fa&rft.externalDocID=24354690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon