Epithelial inflammasomes in the defense against Salmonella gut infection
•NAIP/NLRC4 and Caspase-4/11 inflammasomes restrict S.Tm infection of gut epithelium.•Importance of NAIP/NLRC4 versus Caspase-4/11 may shift between early and late infection.•Cell state and species-specific differences affect IEC inflammasome defense.•Interconnected inflammasome signalling may lead...
Saved in:
Published in | Current opinion in microbiology Vol. 59; pp. 86 - 94 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •NAIP/NLRC4 and Caspase-4/11 inflammasomes restrict S.Tm infection of gut epithelium.•Importance of NAIP/NLRC4 versus Caspase-4/11 may shift between early and late infection.•Cell state and species-specific differences affect IEC inflammasome defense.•Interconnected inflammasome signalling may lead to apoptotic or lytic IEC expulsion.
The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens. |
---|---|
AbstractList | The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens. •NAIP/NLRC4 and Caspase-4/11 inflammasomes restrict S.Tm infection of gut epithelium.•Importance of NAIP/NLRC4 versus Caspase-4/11 may shift between early and late infection.•Cell state and species-specific differences affect IEC inflammasome defense.•Interconnected inflammasome signalling may lead to apoptotic or lytic IEC expulsion. The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens. The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens.The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens. |
Author | Sellin, Mikael E Fattinger, Stefan A Hardt, Wolf-Dietrich |
Author_xml | – sequence: 1 givenname: Stefan A surname: Fattinger fullname: Fattinger, Stefan A organization: Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland – sequence: 2 givenname: Mikael E orcidid: 0000-0002-8355-0803 surname: Sellin fullname: Sellin, Mikael E organization: Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden – sequence: 3 givenname: Wolf-Dietrich surname: Hardt fullname: Hardt, Wolf-Dietrich email: hardt@micro.biol.ethz.ch organization: Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33128958$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438803$$DView record from Swedish Publication Index |
BookMark | eNqFkT1v1TAUhi3Uin7xA1hQRgaS2rEdO2KqSqFIlRiArtaJc3LxxbEvcVLUf4-jWzp0aCfb8vMcvTrvCTkIMSAhbxmtGGXN-bYaXVfVtKYVbSvKxCtyzLRqS8obcZDvvGlLWStxRE5S2lJKRSub1-SIc1brVupjcn21c_Mv9A584cLgYRwhxRFTfhX5o-hxwJCwgA24kObiO_gxp_Aeis0yrw7a2cVwRg4H8AnfPJyn5Ofnqx-X1-XNty9fLy9uSitZM5dM4SDZoHVD6x4sA9YD9rRGbmWNHdYopBIUISdUYuC67y2nwKSiIDqu-Cn5sJ-b_uJu6cxuciNM9yaCM5_c7YWJ08YsixFca8oz_n6P76b4Z8E0m9Elu8YPGJdkailZq6RoxMuokI1gSjU6o-8e0KUbsX8M8X-vGWB7wE4xpQmHR4RRs3Zntnl6Z9buDG1N7i476olj3QzrbucJnH_W_Lg3MS_-zuFkknUYLPZuyu2YPrpn7faJbb0LzoL_jfcvuP8AqYHFyw |
CitedBy_id | crossref_primary_10_1007_s12088_023_01176_4 crossref_primary_10_3390_microorganisms10050911 crossref_primary_10_1186_s12866_024_03641_6 crossref_primary_10_1371_journal_ppat_1011235 crossref_primary_10_1016_j_mib_2021_08_007 crossref_primary_10_1016_j_psj_2023_102833 crossref_primary_10_1128_iai_00041_22 crossref_primary_10_1002_jcp_31016 crossref_primary_10_1038_s41385_021_00381_y crossref_primary_10_1111_imr_13408 crossref_primary_10_1155_2022_2655801 crossref_primary_10_1038_s41385_021_00450_2 crossref_primary_10_1016_j_smim_2023_101812 crossref_primary_10_1016_j_psj_2024_103483 crossref_primary_10_1038_s41579_021_00561_4 crossref_primary_10_1111_febs_16211 crossref_primary_10_1080_19490976_2023_2172667 crossref_primary_10_3390_foods14020253 crossref_primary_10_1038_s41467_024_45057_w crossref_primary_10_1016_j_mib_2021_09_004 crossref_primary_10_1080_19490976_2023_2180315 crossref_primary_10_1371_journal_pbio_3002597 crossref_primary_10_1146_annurev_micro_032521_024017 crossref_primary_10_1371_journal_ppat_1011183 crossref_primary_10_3389_fmicb_2022_906238 crossref_primary_10_1073_pnas_2013963118 crossref_primary_10_1016_j_mucimm_2024_08_006 crossref_primary_10_1073_pnas_2315503120 crossref_primary_10_3390_pathogens14010043 crossref_primary_10_1016_j_celrep_2022_110316 crossref_primary_10_1038_s41575_023_00743_w crossref_primary_10_1371_journal_ppat_1010425 |
Cites_doi | 10.1016/j.celrep.2019.04.023 10.1111/j.1462-5822.2011.01703.x 10.1016/j.micinf.2019.08.002 10.1128/IAI.00017-20 10.1084/jem.20060206 10.1128/IAI.71.5.2839-2858.2003 10.1038/s41564-019-0407-8 10.4049/jimmunol.1302839 10.1016/j.cmet.2016.08.013 10.1016/j.chom.2016.12.008 10.1371/journal.ppat.1008503 10.1016/j.mam.2020.100863 10.1111/j.1600-065X.2011.01070.x 10.1038/nature13157 10.1371/journal.ppat.1006925 10.1038/ni.2263 10.1084/jem.20140474 10.1073/pnas.1306376110 10.1371/journal.ppat.1004385 10.1128/IAI.72.7.4138-4150.2004 10.1074/mcp.M800132-MCP200 10.1073/pnas.96.5.2396 10.1128/microbiolspec.BAI-0023-2019 10.1016/j.chom.2014.07.002 10.1038/mi.2013.95 10.4049/jimmunol.175.2.1127 10.1073/pnas.1809548115 10.1038/nature10394 10.1038/nature07067 10.1084/jem.20151809 10.1128/JB.01144-09 10.1126/science.aam9949 10.1016/j.cell.2018.02.055 10.1371/journal.ppat.1004557 10.1038/s41385-018-0011-x 10.1016/j.mib.2017.07.003 10.1016/j.celrep.2019.04.106 10.1126/sciimmunol.aax0062 10.1128/IAI.00417-06 10.1038/mi.2012.8 10.1371/journal.ppat.1007886 10.1038/s41467-019-09753-2 10.1371/journal.ppat.1000711 10.1371/journal.pbio.0050244 10.1038/ncomms13292 10.1371/journal.ppat.1008498 10.1016/j.chom.2014.07.001 10.1038/s41467-020-16889-z 10.1371/journal.ppat.1005723 10.1099/jmm.0.010231-0 10.1016/j.chom.2017.03.009 10.1111/cmi.13079 10.1016/j.immuni.2017.03.016 10.1146/annurev-micro-020420-013457 10.1371/journal.ppat.1008360 10.1038/nature09415 10.1038/nature22393 10.1126/science.aau2818 10.1073/pnas.1006098107 10.1042/BJ20120249 10.1126/sciimmunol.aar6676 10.1111/j.1462-5822.2008.01118.x 10.1084/jem.20160006 10.1128/IAI.01691-07 10.1371/journal.pone.0022459 10.1016/j.chom.2020.04.013 10.1111/cmi.13191 10.1038/nature10510 10.1128/IAI.01189-07 10.3389/fcimb.2020.00237 10.1038/s41385-019-0247-0 10.1016/j.cgh.2018.09.034 10.1084/jem.20100257 10.1038/s41590-020-0697-2 10.1038/nrmicro3420 10.4049/jimmunol.1301549 10.1016/j.celrep.2017.11.088 10.1111/1348-0421.12756 10.1128/microbiolspec.BAI-0004-2019 10.1038/nrmicro2265 10.1016/j.coi.2019.05.001 10.1016/j.immuni.2017.07.011 10.1016/j.chom.2009.07.007 10.1016/j.immuni.2018.04.001 10.1038/nmicrobiol.2016.215 10.1084/jem.20070633 10.1038/nrmicro3315 10.4049/jimmunol.1001512 10.1038/s41564-019-0568-5 10.1038/nature10558 10.1128/microbiolspec.BAI-0003-2019 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1016/j.mib.2020.09.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0364 |
EndPage | 94 |
ExternalDocumentID | oai_DiVA_org_uu_438803 33128958 10_1016_j_mib_2020_09_014 S1369527420301181 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSI SSZ T5K Z5R ~G- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c516t-17ef51f88602dac1a1daed02e3c52ebe2e45740ea31274f38ddc30a1570a4b373 |
IEDL.DBID | .~1 |
ISSN | 1369-5274 1879-0364 |
IngestDate | Thu Aug 21 06:47:14 EDT 2025 Tue Aug 05 10:06:14 EDT 2025 Fri Jul 11 03:01:00 EDT 2025 Mon Jul 21 05:40:41 EDT 2025 Tue Jul 01 03:08:22 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Fri Feb 23 02:46:16 EST 2024 Tue Aug 26 17:12:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-17ef51f88602dac1a1daed02e3c52ebe2e45740ea31274f38ddc30a1570a4b373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8355-0803 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1369527420301181 |
PMID | 33128958 |
PQID | 2456417768 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_438803 proquest_miscellaneous_2551975464 proquest_miscellaneous_2456417768 pubmed_primary_33128958 crossref_primary_10_1016_j_mib_2020_09_014 crossref_citationtrail_10_1016_j_mib_2020_09_014 elsevier_sciencedirect_doi_10_1016_j_mib_2020_09_014 elsevier_clinicalkey_doi_10_1016_j_mib_2020_09_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in microbiology |
PublicationTitleAlternate | Curr Opin Microbiol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rhee, Walker, Cherayil (bib0285) 2005; 175 Zhang (bib0370) 2018; 14 Axelrad (bib0435) 2019; 17 Stecher (bib0040) 2010; 6 Luan, Medzhitov (bib0065) 2016; 24 Mamantopoulos, Ronchi, McCoy, Wullaert (bib0085) 2018; 9 Koscso (bib0135) 2020; 5 Sellin (bib0195) 2014; 16 Hefele (bib0430) 2018; 11 Kayagaki (bib0210) 2011; 479 Rauch (bib0250) 2017; 46 Zhang (bib0045) 2014; 10 Gurung (bib0405) 2014; 192 Wotzka, Nguyen, Hardt (bib0010) 2017; 21 Zhao (bib0355) 2016; 213 Stecher (bib0110) 2008; 10 Mahib (bib0390) 2020; 64 Broz (bib0170) 2019; 7 Wullaert, Lamkanfi, McCoy (bib0090) 2018; 48 Orning (bib0410) 2018; 362 Sarhan (bib0415) 2018; 115 Knodler (bib0180) 2014; 16 Raupach, Peuschel, Monack, Zychlinsky (bib0205) 2006; 74 Hapfelmeier (bib0265) 2008; 205 Orchard, Alto (bib0450) 2012; 14 Allam (bib0255) 2015; 212 Muller (bib0235) 2009; 6 Knodler (bib0185) 2010; 107 Kenneth (bib0215) 2012; 443 Arbeloa (bib0440) 2009; 58 Crowley (bib0275) 2020; 16 Collins (bib0455) 2014; 12 Ackermann (bib0120) 2008; 454 Maier (bib0145) 2014; 10 Lawley (bib0140) 2008; 76 Broz (bib0220) 2010; 207 Chen (bib0310) 2018; 3 Schnupf, Sansonetti (bib0465) 2019; 7 Fattinger (bib0125) 2020; 16 Nordlander, Pott, Maloy (bib0190) 2014; 7 Brewer, Brubaker, Monack (bib0270) 2019; 60 Hausmann, Hardt (bib0095) 2019; 7 Petty (bib0460) 2010; 192 Godinez (bib0280) 2008; 76 Barthel (bib0025) 2003; 71 Karki (bib0315) 2018; 173 Yang, Zhao, Shi, Shao (bib0350) 2013; 110 Franchi (bib0245) 2012; 13 Kofoed, Vance (bib0335) 2011; 477 Byndloss (bib0130) 2017; 357 Robertson (bib0075) 2019; 27 Hersh (bib0365) 1999; 96 Goncalves (bib0380) 2019; 15 Lamkanfi (bib0385) 2008; 7 Winter (bib0160) 2010; 467 Tsuchiya (bib0400) 2019; 10 Songhet (bib0290) 2011; 6 Holly, Han, Zhao, Crowley, Allaire, Knodler (bib0330) 2020; 88 Stecher (bib0115) 2004; 72 Wandel (bib0305) 2020; 21 Croxen, Finlay (bib0445) 2010; 8 Malireddi, Ippagunta, Lamkanfi, Kanneganti (bib0395) 2010; 185 Van Opdenbosch (bib0375) 2017; 21 Mamantopoulos (bib0070) 2017; 47 Rauch (bib0340) 2016; 213 Furter, Sellin, Hansson, Hardt (bib0105) 2019; 27 Rayamajhi, Zak, Chavarria-Smith, Vance, Miao (bib0345) 2013; 191 Santos (bib0300) 2020; 11 Shutinoski, Patel, Tomlinson, Schlossmacher, Sad (bib0320) 2020; 22 Miki, Goto, Fujimoto, Okada, Hardt (bib0060) 2017; 21 Meunier (bib0295) 2014; 509 Lara-Tejero (bib0200) 2006; 203 Lai (bib0230) 2013; 8 Wotzka (bib0020) 2019; 4 Litvak, Byndloss, Tsolis, Baumler (bib0100) 2017; 39 Hausmann (bib0260) 2020; 22 Brugiroux (bib0030) 2016; 2 Carvalho (bib0240) 2012; 5 Zhao (bib0360) 2011; 477 Stecher (bib0155) 2007; 5 LaRock, Chaudhary, Miller (bib0005) 2015; 13 Hausmann (bib0225) 2020; 13 Thurston (bib0325) 2016; 7 Christgen (bib0425) 2020; 10 Kaiser, Diard, Stecher, Hardt (bib0080) 2012; 245 Muller (bib0150) 2016; 12 Nguyen (bib0035) 2020; 27 Iyer (bib0055) 2020; 16 Bauer, Rauch (bib0165) 2020 Winsor, Krustev, Bruce, Philpott, Girardin (bib0175) 2019; 21 Wang (bib0420) 2017; 547 Velazquez (bib0015) 2019; 4 Kreuzer, Hardt (bib0050) 2020; 74 Santos (10.1016/j.mib.2020.09.014_sbref0300) 2020; 11 Kreuzer (10.1016/j.mib.2020.09.014_bib0050) 2020; 74 Wotzka (10.1016/j.mib.2020.09.014_bib0010) 2017; 21 Rauch (10.1016/j.mib.2020.09.014_bib0250) 2017; 46 Petty (10.1016/j.mib.2020.09.014_bib0460) 2010; 192 Sellin (10.1016/j.mib.2020.09.014_bib0195) 2014; 16 LaRock (10.1016/j.mib.2020.09.014_bib0005) 2015; 13 Lara-Tejero (10.1016/j.mib.2020.09.014_bib0200) 2006; 203 Carvalho (10.1016/j.mib.2020.09.014_bib0240) 2012; 5 Zhao (10.1016/j.mib.2020.09.014_bib0360) 2011; 477 Hersh (10.1016/j.mib.2020.09.014_bib0365) 1999; 96 Velazquez (10.1016/j.mib.2020.09.014_bib0015) 2019; 4 Stecher (10.1016/j.mib.2020.09.014_bib0040) 2010; 6 Knodler (10.1016/j.mib.2020.09.014_bib0185) 2010; 107 Wandel (10.1016/j.mib.2020.09.014_sbref0305) 2020; 21 Knodler (10.1016/j.mib.2020.09.014_bib0180) 2014; 16 Hausmann (10.1016/j.mib.2020.09.014_sbref0260) 2020; 22 Chen (10.1016/j.mib.2020.09.014_bib0310) 2018; 3 Rauch (10.1016/j.mib.2020.09.014_bib0340) 2016; 213 Winter (10.1016/j.mib.2020.09.014_bib0160) 2010; 467 Zhang (10.1016/j.mib.2020.09.014_bib0045) 2014; 10 Broz (10.1016/j.mib.2020.09.014_bib0170) 2019; 7 Barthel (10.1016/j.mib.2020.09.014_bib0025) 2003; 71 Litvak (10.1016/j.mib.2020.09.014_bib0100) 2017; 39 Brewer (10.1016/j.mib.2020.09.014_bib0270) 2019; 60 Kofoed (10.1016/j.mib.2020.09.014_bib0335) 2011; 477 Schnupf (10.1016/j.mib.2020.09.014_bib0465) 2019; 7 Furter (10.1016/j.mib.2020.09.014_sbref0105) 2019; 27 Nguyen (10.1016/j.mib.2020.09.014_bib0035) 2020; 27 Nordlander (10.1016/j.mib.2020.09.014_bib0190) 2014; 7 Holly (10.1016/j.mib.2020.09.014_sbref0330) 2020; 88 Rayamajhi (10.1016/j.mib.2020.09.014_bib0345) 2013; 191 Christgen (10.1016/j.mib.2020.09.014_bib0425) 2020; 10 Stecher (10.1016/j.mib.2020.09.014_bib0115) 2004; 72 Wullaert (10.1016/j.mib.2020.09.014_bib0090) 2018; 48 Koscso (10.1016/j.mib.2020.09.014_bib0135) 2020; 5 Shutinoski (10.1016/j.mib.2020.09.014_bib0320) 2020; 22 Croxen (10.1016/j.mib.2020.09.014_bib0445) 2010; 8 Rhee (10.1016/j.mib.2020.09.014_bib0285) 2005; 175 Robertson (10.1016/j.mib.2020.09.014_sbref0075) 2019; 27 Orning (10.1016/j.mib.2020.09.014_bib0410) 2018; 362 Yang (10.1016/j.mib.2020.09.014_bib0350) 2013; 110 Winsor (10.1016/j.mib.2020.09.014_bib0175) 2019; 21 Luan (10.1016/j.mib.2020.09.014_bib0065) 2016; 24 Axelrad (10.1016/j.mib.2020.09.014_bib0435) 2019; 17 Arbeloa (10.1016/j.mib.2020.09.014_bib0440) 2009; 58 Broz (10.1016/j.mib.2020.09.014_bib0220) 2010; 207 Sarhan (10.1016/j.mib.2020.09.014_bib0415) 2018; 115 Kenneth (10.1016/j.mib.2020.09.014_bib0215) 2012; 443 Meunier (10.1016/j.mib.2020.09.014_bib0295) 2014; 509 Malireddi (10.1016/j.mib.2020.09.014_bib0395) 2010; 185 Wang (10.1016/j.mib.2020.09.014_bib0420) 2017; 547 Mamantopoulos (10.1016/j.mib.2020.09.014_bib0070) 2017; 47 Stecher (10.1016/j.mib.2020.09.014_bib0155) 2007; 5 Wotzka (10.1016/j.mib.2020.09.014_bib0020) 2019; 4 Lamkanfi (10.1016/j.mib.2020.09.014_bib0385) 2008; 7 Tsuchiya (10.1016/j.mib.2020.09.014_bib0400) 2019; 10 Lawley (10.1016/j.mib.2020.09.014_bib0140) 2008; 76 Allam (10.1016/j.mib.2020.09.014_bib0255) 2015; 212 Orchard (10.1016/j.mib.2020.09.014_bib0450) 2012; 14 Ackermann (10.1016/j.mib.2020.09.014_bib0120) 2008; 454 Hapfelmeier (10.1016/j.mib.2020.09.014_bib0265) 2008; 205 Godinez (10.1016/j.mib.2020.09.014_bib0280) 2008; 76 Maier (10.1016/j.mib.2020.09.014_bib0145) 2014; 10 Karki (10.1016/j.mib.2020.09.014_bib0315) 2018; 173 Zhao (10.1016/j.mib.2020.09.014_bib0355) 2016; 213 Iyer (10.1016/j.mib.2020.09.014_sbref0055) 2020; 16 Fattinger (10.1016/j.mib.2020.09.014_sbref0125) 2020; 16 Raupach (10.1016/j.mib.2020.09.014_bib0205) 2006; 74 Kayagaki (10.1016/j.mib.2020.09.014_bib0210) 2011; 479 Kaiser (10.1016/j.mib.2020.09.014_bib0080) 2012; 245 Lai (10.1016/j.mib.2020.09.014_bib0230) 2013; 8 Thurston (10.1016/j.mib.2020.09.014_bib0325) 2016; 7 Zhang (10.1016/j.mib.2020.09.014_bib0370) 2018; 14 Hefele (10.1016/j.mib.2020.09.014_bib0430) 2018; 11 Van Opdenbosch (10.1016/j.mib.2020.09.014_bib0375) 2017; 21 Gurung (10.1016/j.mib.2020.09.014_bib0405) 2014; 192 Collins (10.1016/j.mib.2020.09.014_bib0455) 2014; 12 Stecher (10.1016/j.mib.2020.09.014_bib0110) 2008; 10 Crowley (10.1016/j.mib.2020.09.014_sbref0275) 2020; 16 Miki (10.1016/j.mib.2020.09.014_bib0060) 2017; 21 Songhet (10.1016/j.mib.2020.09.014_bib0290) 2011; 6 Hausmann (10.1016/j.mib.2020.09.014_sbref0225) 2020; 13 Bauer (10.1016/j.mib.2020.09.014_bib0165) 2020 Brugiroux (10.1016/j.mib.2020.09.014_bib0030) 2016; 2 Byndloss (10.1016/j.mib.2020.09.014_bib0130) 2017; 357 Muller (10.1016/j.mib.2020.09.014_bib0235) 2009; 6 Mahib (10.1016/j.mib.2020.09.014_bib0390) 2020; 64 Goncalves (10.1016/j.mib.2020.09.014_bib0380) 2019; 15 Hausmann (10.1016/j.mib.2020.09.014_bib0095) 2019; 7 Muller (10.1016/j.mib.2020.09.014_bib0150) 2016; 12 Franchi (10.1016/j.mib.2020.09.014_bib0245) 2012; 13 Mamantopoulos (10.1016/j.mib.2020.09.014_bib0085) 2018; 9 |
References_xml | – volume: 115 start-page: E10888 year: 2018 end-page: E10897 ident: bib0415 article-title: Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection publication-title: Proc Natl Acad Sci U S A – volume: 13 start-page: 530 year: 2020 end-page: 544 ident: bib0225 article-title: Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen publication-title: Mucosal Immunol – volume: 203 start-page: 1407 year: 2006 end-page: 1412 ident: bib0200 article-title: Role of the caspase-1 inflammasome in publication-title: J Exp Med – volume: 15 year: 2019 ident: bib0380 article-title: Gasdermin-D and Caspase-7 are the key Caspase-1/8 substrates downstream of the NAIP5/NLRC4 inflammasome required for restriction of publication-title: PLoS Pathog – volume: 467 start-page: 426 year: 2010 end-page: 429 ident: bib0160 article-title: Gut inflammation provides a respiratory electron acceptor for publication-title: Nature – volume: 46 start-page: 649 year: 2017 end-page: 659 ident: bib0250 article-title: NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8 publication-title: Immunity – volume: 4 start-page: 1057 year: 2019 end-page: 1064 ident: bib0015 article-title: Endogenous enterobacteriaceae underlie variation in susceptibility to publication-title: Nat Microbiol – volume: 16 start-page: 237 year: 2014 end-page: 248 ident: bib0195 article-title: Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict publication-title: Cell Host Microbe – volume: 16 year: 2020 ident: bib0275 article-title: Intestinal restriction of publication-title: PLoS Pathog – volume: 13 start-page: 191 year: 2015 end-page: 205 ident: bib0005 article-title: interactions with host processes publication-title: Nat Rev Microbiol – volume: 12 start-page: 612 year: 2014 end-page: 623 ident: bib0455 article-title: : infection, inflammation and the microbiota publication-title: Nat Rev Microbiol – volume: 192 start-page: 1835 year: 2014 end-page: 1846 ident: bib0405 article-title: FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes publication-title: J Immunol – volume: 8 year: 2013 ident: bib0230 article-title: Innate immune detection of flagellin positively and negatively regulates publication-title: PLoS One – volume: 547 start-page: 99 year: 2017 end-page: 103 ident: bib0420 article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin publication-title: Nature – volume: 11 start-page: 1191 year: 2018 end-page: 1202 ident: bib0430 article-title: Intestinal epithelial Caspase-8 signaling is essential to prevent necroptosis during publication-title: Mucosal Immunol – volume: 21 start-page: 880 year: 2020 end-page: 891 ident: bib0305 article-title: Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms publication-title: Nat Immunol – volume: 21 start-page: 3427 year: 2017 end-page: 3444 ident: bib0375 article-title: Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/Caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4 publication-title: Cell Rep – volume: 27 start-page: 2665 year: 2019 end-page: 2678 ident: bib0105 article-title: Mucus architecture and near-surface swimming affect distinct publication-title: Cell Rep – volume: 205 start-page: 437 year: 2008 end-page: 450 ident: bib0265 article-title: Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG publication-title: J Exp Med – volume: 207 start-page: 1745 year: 2010 end-page: 1755 ident: bib0220 article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against publication-title: J Exp Med – volume: 213 start-page: 657 year: 2016 end-page: 665 ident: bib0340 article-title: NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo publication-title: J Exp Med – volume: 74 start-page: 787 year: 2020 end-page: 813 ident: bib0050 article-title: How food affects colonization resistance against enteropathogenic bacteria publication-title: Annu Rev Microbiol – volume: 48 start-page: 605 year: 2018 end-page: 607 ident: bib0090 article-title: Defining the impact of host genotypes on microbiota composition requires meticulous control of experimental variables publication-title: Immunity – volume: 76 start-page: 403 year: 2008 end-page: 416 ident: bib0140 article-title: Host transmission of publication-title: Infect Immun – volume: 7 year: 2019 ident: bib0465 article-title: Shigella pathogenesis: new insights through advanced methodologies publication-title: Microbiol Spectr – volume: 213 start-page: 647 year: 2016 end-page: 656 ident: bib0355 article-title: Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice publication-title: J Exp Med – volume: 17 start-page: 1311 year: 2019 end-page: 1322 ident: bib0435 article-title: Gastrointestinal infection increases odds of inflammatory bowel disease in a nationwide case-control study publication-title: Clin Gastroenterol Hepatol – volume: 362 start-page: 1064 year: 2018 end-page: 1069 ident: bib0410 article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death publication-title: Science – volume: 110 start-page: 14408 year: 2013 end-page: 14413 ident: bib0350 article-title: Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 237 year: 2020 ident: bib0425 article-title: Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: Front Cell Infect Microbiol – volume: 9 start-page: 374 year: 2018 end-page: 381 ident: bib0085 article-title: Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions publication-title: Gut Microbes – volume: 7 year: 2019 ident: bib0095 article-title: The interplay between publication-title: Microbiol Spectr – volume: 3 year: 2018 ident: bib0310 article-title: Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps publication-title: Sci Immunol – volume: 7 start-page: 2350 year: 2008 end-page: 2363 ident: bib0385 article-title: Targeted peptidecentric proteomics reveals Caspase-7 as a substrate of the caspase-1 inflammasomes publication-title: Mol Cell Proteomics – volume: 454 start-page: 987 year: 2008 end-page: 990 ident: bib0120 article-title: Self-destructive cooperation mediated by phenotypic noise publication-title: Nature – volume: 6 start-page: 125 year: 2009 end-page: 136 ident: bib0235 article-title: The publication-title: Cell Host Microbe – volume: 13 start-page: 449 year: 2012 end-page: 456 ident: bib0245 article-title: NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense publication-title: Nat Immunol – volume: 185 start-page: 3127 year: 2010 end-page: 3130 ident: bib0395 article-title: Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes publication-title: J Immunol – volume: 357 start-page: 570 year: 2017 end-page: 575 ident: bib0130 article-title: Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion publication-title: Science – volume: 64 start-page: 143 year: 2020 end-page: 152 ident: bib0390 article-title: Caspase-7 mediates caspase-1-induced apoptosis independently of Bid publication-title: Microbiol Immunol – volume: 21 year: 2019 ident: bib0175 article-title: Canonical and noncanonical inflammasomes in intestinal epithelial cells publication-title: Cell Microbiol – volume: 96 start-page: 2396 year: 1999 end-page: 2401 ident: bib0365 article-title: The publication-title: Proc Natl Acad Sci U S A – volume: 24 start-page: 379 year: 2016 end-page: 387 ident: bib0065 article-title: Food fight: role of itaconate and other metabolites in antimicrobial defense publication-title: Cell Metab – volume: 8 start-page: 26 year: 2010 end-page: 38 ident: bib0445 article-title: Molecular mechanisms of publication-title: Nat Rev Microbiol – volume: 27 start-page: 1910 year: 2019 end-page: 1919 ident: bib0075 article-title: Comparison of co-housing and littermate methods for microbiota standardization in mouse models publication-title: Cell Rep – volume: 7 year: 2016 ident: bib0325 article-title: Growth inhibition of cytosolic publication-title: Nat Commun – volume: 60 start-page: 63 year: 2019 end-page: 70 ident: bib0270 article-title: Host inflammasome defense mechanisms and bacterial pathogen evasion strategies publication-title: Curr Opin Immunol – volume: 21 start-page: 195 year: 2017 end-page: 207 ident: bib0060 article-title: The bactericidal lectin RegIIIbeta prolongs gut colonization and enteropathy in the streptomycin mouse model for publication-title: Cell Host Microbe – volume: 7 year: 2019 ident: bib0170 article-title: Recognition of intracellular bacteria by inflammasomes publication-title: Microbiol Spectr – volume: 22 year: 2020 ident: bib0260 article-title: Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes publication-title: Cell Microbiol – volume: 173 start-page: 920 year: 2018 end-page: 933 ident: bib0315 article-title: IRF8 regulates transcription of NAIPs for NLRC4 inflammasome activation publication-title: Cell – volume: 88 start-page: e00017 year: 2020 end-page: e00020 ident: bib0330 article-title: infection of murine and human enteroid-derived monolayers elicits differential activation of epithelial-intrinsic inflammasomes publication-title: Infect Immun – volume: 6 year: 2011 ident: bib0290 article-title: Stromal IFN-gammaR-signaling modulates goblet cell function during publication-title: PLoS One – volume: 479 start-page: 117 year: 2011 end-page: 121 ident: bib0210 article-title: Non-canonical inflammasome activation targets caspase-11 publication-title: Nature – volume: 192 start-page: 525 year: 2010 end-page: 538 ident: bib0460 article-title: The publication-title: J Bacteriol – volume: 443 start-page: 355 year: 2012 end-page: 359 ident: bib0215 article-title: An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1 publication-title: Biochem J – volume: 12 year: 2016 ident: bib0150 article-title: An NK cell perforin response elicited via IL-18 controls mucosal inflammation kinetics during publication-title: PLoS Pathog – year: 2020 ident: bib0165 article-title: The NAIP/NLRC4 inflammasome in infection and pathology publication-title: Mol Aspects Med – volume: 74 start-page: 4922 year: 2006 end-page: 4926 ident: bib0205 article-title: Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against publication-title: Infect Immun – volume: 4 start-page: 2164 year: 2019 end-page: 2174 ident: bib0020 article-title: limits publication-title: Nat Microbiol – volume: 2 year: 2016 ident: bib0030 article-title: Genome-guided design of a defined mouse microbiota that confers colonization resistance against publication-title: Nat Microbiol – volume: 14 start-page: 10 year: 2012 end-page: 18 ident: bib0450 article-title: Mimicking GEFs: a common theme for bacterial pathogens publication-title: Cell Microbiol – volume: 10 year: 2014 ident: bib0045 article-title: Age-dependent enterocyte invasion and microcolony formation by publication-title: PLoS Pathog – volume: 16 year: 2020 ident: bib0055 article-title: Epithelium intrinsic vitamin A signaling co-ordinates pathogen clearance in the gut via IL-18 publication-title: PLoS Pathog – volume: 6 year: 2010 ident: bib0040 article-title: Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria publication-title: PLoS Pathog – volume: 5 start-page: 288 year: 2012 end-page: 298 ident: bib0240 article-title: Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges publication-title: Mucosal Immunol – volume: 21 start-page: 443 year: 2017 end-page: 454 ident: bib0010 article-title: Typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange publication-title: Cell Host Microbe – volume: 10 start-page: 1166 year: 2008 end-page: 1180 ident: bib0110 article-title: Motility allows publication-title: Cell Microbiol – volume: 5 start-page: 2177 year: 2007 end-page: 2189 ident: bib0155 article-title: serovar Typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol – volume: 107 start-page: 17733 year: 2010 end-page: 17738 ident: bib0185 article-title: Dissemination of invasive publication-title: Proc Natl Acad Sci U S A – volume: 509 start-page: 366 year: 2014 end-page: 370 ident: bib0295 article-title: Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases publication-title: Nature – volume: 16 start-page: 249 year: 2014 end-page: 256 ident: bib0180 article-title: Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens publication-title: Cell Host Microbe – volume: 477 start-page: 596 year: 2011 end-page: 600 ident: bib0360 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature – volume: 477 start-page: 592 year: 2011 end-page: 595 ident: bib0335 article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity publication-title: Nature – volume: 10 year: 2014 ident: bib0145 article-title: Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during publication-title: PLoS Pathog – volume: 71 start-page: 2839 year: 2003 end-page: 2858 ident: bib0025 article-title: Pretreatment of mice with streptomycin provides a publication-title: Infect Immun – volume: 245 start-page: 56 year: 2012 end-page: 83 ident: bib0080 article-title: The streptomycin mouse model for publication-title: Immunol Rev – volume: 47 start-page: 339 year: 2017 end-page: 348 ident: bib0070 article-title: Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition publication-title: Immunity – volume: 16 year: 2020 ident: bib0125 article-title: Typhimurium discreet-invasion of the murine gut absorptive epithelium publication-title: PLoS Pathog – volume: 39 start-page: 1 year: 2017 end-page: 6 ident: bib0100 article-title: Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction publication-title: Curr Opin Microbiol – volume: 191 start-page: 3986 year: 2013 end-page: 3989 ident: bib0345 article-title: Cutting edge: mouse NAIP1 detects the type III secretion system needle protein publication-title: J Immunol – volume: 11 year: 2020 ident: bib0300 article-title: Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria publication-title: Nat Commun – volume: 22 start-page: 40 year: 2020 end-page: 45 ident: bib0320 article-title: Ripk3 licenced protection against microbial infection in the absence of caspase1-11 inflammasome publication-title: Microbes Infect – volume: 76 start-page: 2008 year: 2008 end-page: 2017 ident: bib0280 article-title: T cells help to amplify inflammatory responses induced by publication-title: Infect Immun – volume: 10 year: 2019 ident: bib0400 article-title: Caspase-1 initiates apoptosis in the absence of gasdermin D publication-title: Nat Commun – volume: 58 start-page: 988 year: 2009 end-page: 995 ident: bib0440 article-title: Distribution of espM and espT among enteropathogenic and enterohaemorrhagic publication-title: J Med Microbiol – volume: 175 start-page: 1127 year: 2005 end-page: 1136 ident: bib0285 article-title: Developmentally regulated intestinal expression of IFN-gamma and its target genes and the age-specific response to enteric publication-title: J Immunol – volume: 7 start-page: 775 year: 2014 end-page: 785 ident: bib0190 article-title: NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen publication-title: Mucosal Immunol – volume: 14 year: 2018 ident: bib0370 article-title: Minimal SPI1-T3SS effector requirement for publication-title: PLoS Pathog – volume: 72 start-page: 4138 year: 2004 end-page: 4150 ident: bib0115 article-title: Flagella and chemotaxis are required for efficient induction of publication-title: Infect Immun – volume: 212 start-page: 369 year: 2015 end-page: 383 ident: bib0255 article-title: Epithelial NAIPs protect against colonic tumorigenesis publication-title: J Exp Med – volume: 27 start-page: 922 year: 2020 end-page: 936 ident: bib0035 article-title: Import of aspartate and malate by DcuABC drives H publication-title: Cell Host Microbe – volume: 5 year: 2020 ident: bib0135 article-title: Gut-resident CX3CR1(hi) macrophages induce tertiary lymphoid structures and IgA response in situ publication-title: Sci Immunol – volume: 27 start-page: 1910 year: 2019 ident: 10.1016/j.mib.2020.09.014_sbref0075 article-title: Comparison of co-housing and littermate methods for microbiota standardization in mouse models publication-title: Cell Rep doi: 10.1016/j.celrep.2019.04.023 – volume: 14 start-page: 10 year: 2012 ident: 10.1016/j.mib.2020.09.014_bib0450 article-title: Mimicking GEFs: a common theme for bacterial pathogens publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2011.01703.x – volume: 22 start-page: 40 year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0320 article-title: Ripk3 licenced protection against microbial infection in the absence of caspase1-11 inflammasome publication-title: Microbes Infect doi: 10.1016/j.micinf.2019.08.002 – volume: 88 start-page: e00017 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0330 article-title: Salmonella enterica infection of murine and human enteroid-derived monolayers elicits differential activation of epithelial-intrinsic inflammasomes publication-title: Infect Immun doi: 10.1128/IAI.00017-20 – volume: 203 start-page: 1407 year: 2006 ident: 10.1016/j.mib.2020.09.014_bib0200 article-title: Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis publication-title: J Exp Med doi: 10.1084/jem.20060206 – volume: 71 start-page: 2839 year: 2003 ident: 10.1016/j.mib.2020.09.014_bib0025 article-title: Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host publication-title: Infect Immun doi: 10.1128/IAI.71.5.2839-2858.2003 – volume: 4 start-page: 1057 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0015 article-title: Endogenous enterobacteriaceae underlie variation in susceptibility to Salmonella infection publication-title: Nat Microbiol doi: 10.1038/s41564-019-0407-8 – volume: 192 start-page: 1835 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0405 article-title: FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes publication-title: J Immunol doi: 10.4049/jimmunol.1302839 – volume: 24 start-page: 379 year: 2016 ident: 10.1016/j.mib.2020.09.014_bib0065 article-title: Food fight: role of itaconate and other metabolites in antimicrobial defense publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.013 – volume: 21 start-page: 195 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0060 article-title: The bactericidal lectin RegIIIbeta prolongs gut colonization and enteropathy in the streptomycin mouse model for Salmonella diarrhea publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.12.008 – volume: 16 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0125 article-title: Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008503 – year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0165 article-title: The NAIP/NLRC4 inflammasome in infection and pathology publication-title: Mol Aspects Med doi: 10.1016/j.mam.2020.100863 – volume: 245 start-page: 56 year: 2012 ident: 10.1016/j.mib.2020.09.014_bib0080 article-title: The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2011.01070.x – volume: 509 start-page: 366 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0295 article-title: Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases publication-title: Nature doi: 10.1038/nature13157 – volume: 14 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0370 article-title: Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006925 – volume: 13 start-page: 449 year: 2012 ident: 10.1016/j.mib.2020.09.014_bib0245 article-title: NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense publication-title: Nat Immunol doi: 10.1038/ni.2263 – volume: 212 start-page: 369 year: 2015 ident: 10.1016/j.mib.2020.09.014_bib0255 article-title: Epithelial NAIPs protect against colonic tumorigenesis publication-title: J Exp Med doi: 10.1084/jem.20140474 – volume: 110 start-page: 14408 year: 2013 ident: 10.1016/j.mib.2020.09.014_bib0350 article-title: Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1306376110 – volume: 10 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0045 article-title: Age-dependent enterocyte invasion and microcolony formation by Salmonella publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004385 – volume: 72 start-page: 4138 year: 2004 ident: 10.1016/j.mib.2020.09.014_bib0115 article-title: Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice publication-title: Infect Immun doi: 10.1128/IAI.72.7.4138-4150.2004 – volume: 7 start-page: 2350 year: 2008 ident: 10.1016/j.mib.2020.09.014_bib0385 article-title: Targeted peptidecentric proteomics reveals Caspase-7 as a substrate of the caspase-1 inflammasomes publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M800132-MCP200 – volume: 96 start-page: 2396 year: 1999 ident: 10.1016/j.mib.2020.09.014_bib0365 article-title: The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.5.2396 – volume: 7 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0465 article-title: Shigella pathogenesis: new insights through advanced methodologies publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.BAI-0023-2019 – volume: 16 start-page: 249 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0180 article-title: Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.07.002 – volume: 7 start-page: 775 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0190 article-title: NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen publication-title: Mucosal Immunol doi: 10.1038/mi.2013.95 – volume: 175 start-page: 1127 year: 2005 ident: 10.1016/j.mib.2020.09.014_bib0285 article-title: Developmentally regulated intestinal expression of IFN-gamma and its target genes and the age-specific response to enteric Salmonella infection publication-title: J Immunol doi: 10.4049/jimmunol.175.2.1127 – volume: 115 start-page: E10888 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0415 article-title: Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1809548115 – volume: 477 start-page: 592 year: 2011 ident: 10.1016/j.mib.2020.09.014_bib0335 article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity publication-title: Nature doi: 10.1038/nature10394 – volume: 454 start-page: 987 year: 2008 ident: 10.1016/j.mib.2020.09.014_bib0120 article-title: Self-destructive cooperation mediated by phenotypic noise publication-title: Nature doi: 10.1038/nature07067 – volume: 213 start-page: 657 year: 2016 ident: 10.1016/j.mib.2020.09.014_bib0340 article-title: NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo publication-title: J Exp Med doi: 10.1084/jem.20151809 – volume: 192 start-page: 525 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0460 article-title: The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.01144-09 – volume: 357 start-page: 570 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0130 article-title: Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion publication-title: Science doi: 10.1126/science.aam9949 – volume: 173 start-page: 920 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0315 article-title: IRF8 regulates transcription of NAIPs for NLRC4 inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2018.02.055 – volume: 10 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0145 article-title: Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during Salmonella typhimurium colitis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004557 – volume: 11 start-page: 1191 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0430 article-title: Intestinal epithelial Caspase-8 signaling is essential to prevent necroptosis during Salmonella Typhimurium induced enteritis publication-title: Mucosal Immunol doi: 10.1038/s41385-018-0011-x – volume: 39 start-page: 1 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0100 article-title: Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2017.07.003 – volume: 27 start-page: 2665 year: 2019 ident: 10.1016/j.mib.2020.09.014_sbref0105 article-title: Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract publication-title: Cell Rep doi: 10.1016/j.celrep.2019.04.106 – volume: 5 year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0135 article-title: Gut-resident CX3CR1(hi) macrophages induce tertiary lymphoid structures and IgA response in situ publication-title: Sci Immunol doi: 10.1126/sciimmunol.aax0062 – volume: 74 start-page: 4922 year: 2006 ident: 10.1016/j.mib.2020.09.014_bib0205 article-title: Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection publication-title: Infect Immun doi: 10.1128/IAI.00417-06 – volume: 5 start-page: 288 year: 2012 ident: 10.1016/j.mib.2020.09.014_bib0240 article-title: Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges publication-title: Mucosal Immunol doi: 10.1038/mi.2012.8 – volume: 15 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0380 article-title: Gasdermin-D and Caspase-7 are the key Caspase-1/8 substrates downstream of the NAIP5/NLRC4 inflammasome required for restriction of Legionella pneumophila publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007886 – volume: 10 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0400 article-title: Caspase-1 initiates apoptosis in the absence of gasdermin D publication-title: Nat Commun doi: 10.1038/s41467-019-09753-2 – volume: 6 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0040 article-title: Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000711 – volume: 5 start-page: 2177 year: 2007 ident: 10.1016/j.mib.2020.09.014_bib0155 article-title: Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050244 – volume: 7 year: 2016 ident: 10.1016/j.mib.2020.09.014_bib0325 article-title: Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death publication-title: Nat Commun doi: 10.1038/ncomms13292 – volume: 16 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0275 article-title: Intestinal restriction of Salmonella Typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008498 – volume: 16 start-page: 237 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0195 article-title: Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.07.001 – volume: 11 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0300 article-title: Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria publication-title: Nat Commun doi: 10.1038/s41467-020-16889-z – volume: 12 year: 2016 ident: 10.1016/j.mib.2020.09.014_bib0150 article-title: An NK cell perforin response elicited via IL-18 controls mucosal inflammation kinetics during Salmonella gut infection publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005723 – volume: 58 start-page: 988 year: 2009 ident: 10.1016/j.mib.2020.09.014_bib0440 article-title: Distribution of espM and espT among enteropathogenic and enterohaemorrhagic Escherichia coli publication-title: J Med Microbiol doi: 10.1099/jmm.0.010231-0 – volume: 21 start-page: 443 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0010 article-title: Salmonella Typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.03.009 – volume: 21 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0175 article-title: Canonical and noncanonical inflammasomes in intestinal epithelial cells publication-title: Cell Microbiol doi: 10.1111/cmi.13079 – volume: 46 start-page: 649 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0250 article-title: NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8 publication-title: Immunity doi: 10.1016/j.immuni.2017.03.016 – volume: 74 start-page: 787 year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0050 article-title: How food affects colonization resistance against enteropathogenic bacteria publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-020420-013457 – volume: 16 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0055 article-title: Epithelium intrinsic vitamin A signaling co-ordinates pathogen clearance in the gut via IL-18 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008360 – volume: 467 start-page: 426 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0160 article-title: Gut inflammation provides a respiratory electron acceptor for Salmonella publication-title: Nature doi: 10.1038/nature09415 – volume: 8 year: 2013 ident: 10.1016/j.mib.2020.09.014_bib0230 article-title: Innate immune detection of flagellin positively and negatively regulates salmonella infection publication-title: PLoS One – volume: 547 start-page: 99 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0420 article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin publication-title: Nature doi: 10.1038/nature22393 – volume: 362 start-page: 1064 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0410 article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death publication-title: Science doi: 10.1126/science.aau2818 – volume: 107 start-page: 17733 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0185 article-title: Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1006098107 – volume: 443 start-page: 355 year: 2012 ident: 10.1016/j.mib.2020.09.014_bib0215 article-title: An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1 publication-title: Biochem J doi: 10.1042/BJ20120249 – volume: 3 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0310 article-title: Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps publication-title: Sci Immunol doi: 10.1126/sciimmunol.aar6676 – volume: 10 start-page: 1166 year: 2008 ident: 10.1016/j.mib.2020.09.014_bib0110 article-title: Motility allows S. Typhimurium to benefit from the mucosal defence publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01118.x – volume: 213 start-page: 647 year: 2016 ident: 10.1016/j.mib.2020.09.014_bib0355 article-title: Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice publication-title: J Exp Med doi: 10.1084/jem.20160006 – volume: 76 start-page: 2008 year: 2008 ident: 10.1016/j.mib.2020.09.014_bib0280 article-title: T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa publication-title: Infect Immun doi: 10.1128/IAI.01691-07 – volume: 6 year: 2011 ident: 10.1016/j.mib.2020.09.014_bib0290 article-title: Stromal IFN-gammaR-signaling modulates goblet cell function during Salmonella Typhimurium infection publication-title: PLoS One doi: 10.1371/journal.pone.0022459 – volume: 27 start-page: 922 year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0035 article-title: Import of aspartate and malate by DcuABC drives H2/fumarate respiration to promote initial Salmonella gut-lumen colonization in mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.013 – volume: 22 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0260 article-title: Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes publication-title: Cell Microbiol doi: 10.1111/cmi.13191 – volume: 477 start-page: 596 year: 2011 ident: 10.1016/j.mib.2020.09.014_bib0360 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature doi: 10.1038/nature10510 – volume: 76 start-page: 403 year: 2008 ident: 10.1016/j.mib.2020.09.014_bib0140 article-title: Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota publication-title: Infect Immun doi: 10.1128/IAI.01189-07 – volume: 10 start-page: 237 year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0425 article-title: Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00237 – volume: 13 start-page: 530 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0225 article-title: Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression publication-title: Mucosal Immunol doi: 10.1038/s41385-019-0247-0 – volume: 17 start-page: 1311 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0435 article-title: Gastrointestinal infection increases odds of inflammatory bowel disease in a nationwide case-control study publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2018.09.034 – volume: 207 start-page: 1745 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0220 article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella publication-title: J Exp Med doi: 10.1084/jem.20100257 – volume: 21 start-page: 880 year: 2020 ident: 10.1016/j.mib.2020.09.014_sbref0305 article-title: Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms publication-title: Nat Immunol doi: 10.1038/s41590-020-0697-2 – volume: 13 start-page: 191 year: 2015 ident: 10.1016/j.mib.2020.09.014_bib0005 article-title: Salmonellae interactions with host processes publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3420 – volume: 191 start-page: 3986 year: 2013 ident: 10.1016/j.mib.2020.09.014_bib0345 article-title: Cutting edge: mouse NAIP1 detects the type III secretion system needle protein publication-title: J Immunol doi: 10.4049/jimmunol.1301549 – volume: 21 start-page: 3427 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0375 article-title: Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/Caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.11.088 – volume: 64 start-page: 143 year: 2020 ident: 10.1016/j.mib.2020.09.014_bib0390 article-title: Caspase-7 mediates caspase-1-induced apoptosis independently of Bid publication-title: Microbiol Immunol doi: 10.1111/1348-0421.12756 – volume: 7 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0095 article-title: The interplay between Salmonella enterica Serovar Typhimurium and the intestinal mucosa during oral infection publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.BAI-0004-2019 – volume: 8 start-page: 26 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0445 article-title: Molecular mechanisms of Escherichia coli pathogenicity publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2265 – volume: 60 start-page: 63 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0270 article-title: Host inflammasome defense mechanisms and bacterial pathogen evasion strategies publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2019.05.001 – volume: 47 start-page: 339 year: 2017 ident: 10.1016/j.mib.2020.09.014_bib0070 article-title: Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition publication-title: Immunity doi: 10.1016/j.immuni.2017.07.011 – volume: 6 start-page: 125 year: 2009 ident: 10.1016/j.mib.2020.09.014_bib0235 article-title: The S. typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.07.007 – volume: 48 start-page: 605 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0090 article-title: Defining the impact of host genotypes on microbiota composition requires meticulous control of experimental variables publication-title: Immunity doi: 10.1016/j.immuni.2018.04.001 – volume: 2 year: 2016 ident: 10.1016/j.mib.2020.09.014_bib0030 article-title: Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.215 – volume: 205 start-page: 437 year: 2008 ident: 10.1016/j.mib.2020.09.014_bib0265 article-title: Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG S. Typhimurium colitis publication-title: J Exp Med doi: 10.1084/jem.20070633 – volume: 12 start-page: 612 year: 2014 ident: 10.1016/j.mib.2020.09.014_bib0455 article-title: Citrobacter rodentium: infection, inflammation and the microbiota publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3315 – volume: 185 start-page: 3127 year: 2010 ident: 10.1016/j.mib.2020.09.014_bib0395 article-title: Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes publication-title: J Immunol doi: 10.4049/jimmunol.1001512 – volume: 4 start-page: 2164 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0020 article-title: Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice publication-title: Nat Microbiol doi: 10.1038/s41564-019-0568-5 – volume: 9 start-page: 374 year: 2018 ident: 10.1016/j.mib.2020.09.014_bib0085 article-title: Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions publication-title: Gut Microbes – volume: 479 start-page: 117 year: 2011 ident: 10.1016/j.mib.2020.09.014_bib0210 article-title: Non-canonical inflammasome activation targets caspase-11 publication-title: Nature doi: 10.1038/nature10558 – volume: 7 year: 2019 ident: 10.1016/j.mib.2020.09.014_bib0170 article-title: Recognition of intracellular bacteria by inflammasomes publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.BAI-0003-2019 |
SSID | ssj0004956 |
Score | 2.4873984 |
SecondaryResourceType | review_article |
Snippet | •NAIP/NLRC4 and Caspase-4/11 inflammasomes restrict S.Tm infection of gut epithelium.•Importance of NAIP/NLRC4 versus Caspase-4/11 may shift between early and... The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | cell death enteropathogens flagellum inflammasomes microbiology Salmonella Typhimurium |
Title | Epithelial inflammasomes in the defense against Salmonella gut infection |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1369527420301181 https://dx.doi.org/10.1016/j.mib.2020.09.014 https://www.ncbi.nlm.nih.gov/pubmed/33128958 https://www.proquest.com/docview/2456417768 https://www.proquest.com/docview/2551975464 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438803 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuqLxLoTISXJDC-p3NcbW0Wl4VohT1Ztmxswral7qbAxd-OzNOsohWLBKnKLEnj5kv4xl5HoS89JUzXgmfAUBCplyU2bBiVWZiLnzuHXOpxManMzO5UO8v9eUeGfe5MBhW2en-Vqcnbd1dGXTcHKzqenDOpSk07jQmqz6lXyuVI8rf_Pwd5oEOQJt7VWQ4u9_ZTDFe89qDiyhYKnXK1d_Wppu257XComkxOj0gdzsrko7aF71H9uLiPrnd9pX88YBMTlaYajEDbFFAEAh97tbLeVzDGYUBGmIF7mukbupqsA_puZsBHDEQik6bDe0jtBYPycXpydfxJOtaJmSl5maT8TxWmldD7CwVXMkdDy4GJqIstQB5iah0rlh0kgMvKjkMoZTMcZ0zp7zM5SOyv4DnPSGUhWAwC1Zp5pU33AtTBCWDqkSIYEYeEtYzy5ZdPXFsazGzfeDYdwv8tchfywoL_D0kr7ckq7aYxq7JopeA7bNEQa9ZUPW7iNSW6A8Y_YvsRS9iGFrjnolbxGWztrgvrHgOTtmOORqzf7UycJ_HLT62nyeB0cNCA_WrFjDbEazr_bb-NrLLq6ltGquwLI98-n8fcETuCAy2SeHkz8j-5qqJz8Fa2vjj9Dsck1uj8ZePn_H47sPk7BfRlxPR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQCLUX1NIX9IErtZdK6fqdzRFR0EKBC1Bxs-zYWaXal9jNgQu_nZk8tmorFoljYk8Sj8eTGc03M4R88YUzXgmfgICERLkok37BisTEVPjUO-bqEhtn52ZwpU6u9fUaOehyYRBW2er-RqfX2rq902u52ZuVZe-CS5NpjDTWVj2mX28oOL7YxuD73R-cB3oATfJVluD0LrRZg7zGpQcfUbC61ilXD_2c_jc-_6ksWv-Njl6QrdaMpPvNl74ka3GyTTabxpK3r8jgcIa5FiMQLgoiBLs-dvPpOM7hisIADbEA_zVSN3QlGIj0wo1AHhEJRYfVgnYQrclrcnV0eHkwSNqeCUmuuVkkPI2F5kUfW0sFl3PHg4uBiShzLWDDRFQ6VSw6yYEXheyHkEvmuE6ZU16m8g1Zn8D73hHKQjCYBqs088ob7oXJgpJBFSJEsCN3COuYZfO2oDj2tRjZDjn22wJ_LfLXsswCf3fItyXJrKmmsWqy6HbAdmmioNgs6PpVRGpJ9JccPUb2udtiGJpj0MRN4rSaWwwMK56CV7Zijsb0X60MPOdtIx_L5UlgdD_TQP21EZjlCBb2_lH-2rfTm6GtKquwLo_cfdoC9sizweXZqT09Pv_5njwXiLypseUfyPripoofwXRa-E_10bgHWhQTyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial+inflammasomes+in+the+defense+against+Salmonella+gut+infection&rft.jtitle=Current+opinion+in+microbiology&rft.au=Fattinger%2C+Stefan+A&rft.au=Sellin%2C+Mikael+E&rft.au=Hardt%2C+Wolf-Dietrich&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=1369-5274&rft.eissn=1879-0364&rft.volume=59&rft.spage=86&rft.epage=94&rft_id=info:doi/10.1016%2Fj.mib.2020.09.014&rft.externalDocID=S1369527420301181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-5274&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-5274&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-5274&client=summon |