Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography Signals

Non-invasive brain-computer interfaces (BCI) have been developed for recognizing human mental states with high accuracy and for decoding various types of mental conditions. In particular, accurately decoding a pilot’s mental state is a critical issue as more than 70% of aviation accidents are caused...

Full description

Saved in:
Bibliographic Details
Published inBrain Sciences Vol. 9; no. 12; p. 348
Main Authors Jeong, Ji-Hoon, Yu, Baek-Woon, Lee, Dae-Hyeok, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.11.2019
MDPI
Subjects
Online AccessGet full text
ISSN2076-3425
2076-3425
DOI10.3390/brainsci9120348

Cover

Loading…
More Information
Summary:Non-invasive brain-computer interfaces (BCI) have been developed for recognizing human mental states with high accuracy and for decoding various types of mental conditions. In particular, accurately decoding a pilot’s mental state is a critical issue as more than 70% of aviation accidents are caused by human factors, such as fatigue or drowsiness. In this study, we report the classification of not only two mental states (i.e., alert and drowsy states) but also five drowsiness levels from electroencephalogram (EEG) signals. To the best of our knowledge, this approach is the first to classify drowsiness levels in detail using only EEG signals. We acquired EEG data from ten pilots in a simulated night flight environment. For accurate detection, we proposed a deep spatio-temporal convolutional bidirectional long short-term memory network (DSTCLN) model. We evaluated the classification performance using Karolinska sleepiness scale (KSS) values for two mental states and five drowsiness levels. The grand-averaged classification accuracies were 0.87 (±0.01) and 0.69 (±0.02), respectively. Hence, we demonstrated the feasibility of classifying five drowsiness levels with high accuracy using deep learning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci9120348