Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR

► NMR data show that endogenous ligands copurify with DHFR expressed in bacterial cells. ► Human DHFR is preferentially bound to NADP, and Escherichia coli DHFR is bound to THF. ► An E. coli DHFR mutant switches binding specificities to resemble the human enzyme. ► We describe purification schemes t...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 585; no. 22; pp. 3528 - 3532
Main Authors Bhabha, Gira, Tuttle, Lisa, Martinez-Yamout, Maria A., Wright, Peter E.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 16.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► NMR data show that endogenous ligands copurify with DHFR expressed in bacterial cells. ► Human DHFR is preferentially bound to NADP, and Escherichia coli DHFR is bound to THF. ► An E. coli DHFR mutant switches binding specificities to resemble the human enzyme. ► We describe purification schemes to obtain DHFR samples with only desired ligands. Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand-bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and Escherichia coli DHFR (ecDHFR), which bind different co-purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ecDHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed “humanized” mutant of ecDHFR switches binding specificity in the cell.
AbstractList Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand-bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and Escherichia coli DHFR (ecDHFR), which bind different co-purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ecDHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed "humanized" mutant of ecDHFR switches binding specificity in the cell.
Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand-bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and E. coli DHFR (ecDHFR), which bind different co-purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ec DHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed “humanized” mutant of ec DHFR switches binding specificity in the cell.
Dihydrofolate reductase (DHFR) is a well‐studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand‐bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and Escherichia coli DHFR (ecDHFR), which bind different co‐purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ecDHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed “humanized” mutant of ecDHFR switches binding specificity in the cell. ► NMR data show that endogenous ligands copurify with DHFR expressed in bacterial cells. ► Human DHFR is preferentially bound to NADP, and Escherichia coli DHFR is bound to THF. ► An E. coli DHFR mutant switches binding specificities to resemble the human enzyme. ► We describe purification schemes to obtain DHFR samples with only desired ligands.
► NMR data show that endogenous ligands copurify with DHFR expressed in bacterial cells. ► Human DHFR is preferentially bound to NADP, and Escherichia coli DHFR is bound to THF. ► An E. coli DHFR mutant switches binding specificities to resemble the human enzyme. ► We describe purification schemes to obtain DHFR samples with only desired ligands. Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand-bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and Escherichia coli DHFR (ecDHFR), which bind different co-purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ecDHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed “humanized” mutant of ecDHFR switches binding specificity in the cell.
Author Bhabha, Gira
Martinez-Yamout, Maria A.
Tuttle, Lisa
Wright, Peter E.
Author_xml – sequence: 1
  givenname: Gira
  surname: Bhabha
  fullname: Bhabha, Gira
– sequence: 2
  givenname: Lisa
  surname: Tuttle
  fullname: Tuttle, Lisa
– sequence: 3
  givenname: Maria A.
  surname: Martinez-Yamout
  fullname: Martinez-Yamout, Maria A.
  email: yamout@scripps.edu
– sequence: 4
  givenname: Peter E.
  surname: Wright
  fullname: Wright, Peter E.
  email: wright@scripps.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22024482$$D View this record in MEDLINE/PubMed
BookMark eNqNkltvEzEQhS1URC_wE0B-4ynB4_XeXkBQUlqpgMRF6pvltWcTR44d7N2W_Hu8JFTwVJ4sH39zNOMzp-TIB4-EPAc2BwbVq_W8xy45HOacAWRtzkA8IifQ1MWsEFVzRE5YlmZl3RbH5DSlNcv3Bton5JhzxoVo-Am5uzLoB9tbrQYbPA09RW_CEn0YE3V2qbxJtAujN3QItFN6wGiVczuKP7cRU0JDV-NGeZpJuphTHZylxq52JoY-ODUgjWhGPaiEtNtR_p5--vjlKXncK5fw2eE8I98vFt_OL2fXnz9cnb-9nukSqpuZ6qo8T1cJDVyjavsaFVQ963QvGkAs0Wjsea2aTrRMsYa1bdGJPks101wXZ-T13nc7dpsJ9kNUTm6j3ai4k0FZ-e-Ltyu5DLey4FA2ArLBy4NBDD9GTIPc2KTROeUxf5FsoWEVVA17mGSCQQkgMlnuSR1DShH7-36AySlduZaHdOWU7iSz33Uv_h7mvupPnBm43AN31uHu_1zlxeId_zqtyrQpAIzVpbjJVm_2VpjTubUYZdIWvUZjI-pBmmAf6PYXaAHSzQ
CitedBy_id crossref_primary_10_1073_pnas_1621154114
crossref_primary_10_1073_pnas_2214123120
crossref_primary_10_1021_acs_jpcb_3c00477
crossref_primary_10_1021_bi400322e
crossref_primary_10_1021_bi4015314
crossref_primary_10_1107_S2053230X1400942X
crossref_primary_10_1016_j_bpj_2020_11_2267
crossref_primary_10_1007_s12104_012_9378_x
crossref_primary_10_1021_jacs_5b05707
crossref_primary_10_1038_nsmb_2676
crossref_primary_10_1074_mcp_M115_054999
crossref_primary_10_1021_acschembio_9b00537
crossref_primary_10_1021_acs_biochem_5b00945
Cites_doi 10.1016/S0021-9258(19)81659-9
10.1016/j.str.2009.01.005
10.1021/bi00410a022
10.1021/bi00635a010
10.1093/nar/gkf562
10.1146/annurev.biophys.33.110502.133613
10.1016/S0021-9258(19)39864-3
10.1016/S0021-9258(19)76524-7
10.1126/science.3125607
10.1073/pnas.0505642102
10.1074/jbc.270.10.5057
10.1021/bi00479a014
10.1107/S1744309110008092
10.1021/bi962337c
10.1126/science.1130258
10.1073/pnas.0710042105
10.1021/bi00387a052
10.1126/science.1198542
10.1006/jmbi.1994.0140
ContentType Journal Article
Copyright 2011 Federation of European Biochemical Societies
FEBS Letters 585 (2011) 1873-3468 © 2015 Federation of European Biochemical Societies
Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. 2011
Copyright_xml – notice: 2011 Federation of European Biochemical Societies
– notice: FEBS Letters 585 (2011) 1873-3468 © 2015 Federation of European Biochemical Societies
– notice: Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
– notice: 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. 2011
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QL
7T7
8FD
C1K
FR3
P64
5PM
DOI 10.1016/j.febslet.2011.10.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE


Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 3532
ExternalDocumentID 10_1016_j_febslet_2011_10_014
22024482
FEB2S001457931100754X
S001457931100754X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM075995
– fundername: NIGMS NIH HHS
  grantid: R01 GM075995-07
– fundername: NIGMS NIH HHS
  grantid: GM75995
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHHS
AAIKJ
AAJUZ
AALRI
AANLZ
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABHUG
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADOZA
ADQTV
ADUVX
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUQT
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGHFR
AGJLS
AGYEJ
AHBTC
AHPSJ
AI.
AIACR
AIAGR
AITUG
AIURR
AIWBW
AJBDE
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CBWCG
CS3
DCZOG
DIK
DOVZS
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LCYCR
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
XFK
Y6R
YK3
ZA5
ZGI
ZZTAW
~02
AAHBH
ADVLN
AITYG
AKRWK
ALUQN
HGLYW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QL
7T7
8FD
C1K
FR3
P64
5PM
ID FETCH-LOGICAL-c516X-ab6873b64c12cea9f7ea16f0bcf481ee5edcef27a8b490a080993b4ff2770c2c3
IEDL.DBID IXB
ISSN 0014-5793
IngestDate Tue Sep 17 21:29:06 EDT 2024
Fri Aug 16 10:31:15 EDT 2024
Thu Jul 25 09:04:23 EDT 2024
Fri Aug 23 02:57:07 EDT 2024
Sat Sep 28 07:50:01 EDT 2024
Sat Aug 24 01:00:27 EDT 2024
Fri Feb 23 02:33:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords NMR
Purification
Dihydrofolate reductase
Expression
Ligand
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516X-ab6873b64c12cea9f7ea16f0bcf481ee5edcef27a8b490a080993b4ff2770c2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S001457931100754X
PMID 22024482
PQID 904015114
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3215841
proquest_miscellaneous_918061680
proquest_miscellaneous_904015114
crossref_primary_10_1016_j_febslet_2011_10_014
pubmed_primary_22024482
wiley_primary_10_1016_j_febslet_2011_10_014_FEB2S001457931100754X
elsevier_sciencedirect_doi_10_1016_j_febslet_2011_10_014
PublicationCentury 2000
PublicationDate November 16, 2011
PublicationDateYYYYMMDD 2011-11-16
PublicationDate_xml – month: 11
  year: 2011
  text: November 16, 2011
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Benkovic, Fierke, Naylor (b0010) 1988; 239
Prendergast, Delcamp, Smith, Freisheim (b0035) 1988; 27
Horst, Bertelsen, Fiaux, Wider, Horwich (b0070) 2005; 102
Appleman, Howell, Kraut, Kuhl, Blakley (b0080) 1988; 263
Sawaya, Kraut (b0030) 1997; 36
Fierke, Johnson, Benkovic (b0015) 1987; 26
Tai, Ding, Schmitz, Chu (b0050) 2002; 30
Baccanari, Averett, Briggs, Burchall (b0045) 1977; 16
Boehr, McElheny, Dyson, Wright (b0040) 2006; 313
Schnell, Dyson, Wright (b0005) 2004; 33
Bhabha, Lee, Ekiert, Gam, Wilson (b0055) 2011; 332
Appleman, Beard, Delcamp, Prendergast, Freisheim (b0020) 1989; 264
Horst, Fenton, Englander, Wuthrich, Horwich (b0065) 2007; 104
Kumar, Chiu, Axelrod, Morse, Elsliger (b0095) 2010; 66
Mauldin, Carroll, Lee (b0060) 2009; 17
Lewis, Cody, Galitsky, Luft, Pangborn (b0085) 1995; 270
Tsay, Appleman, Beard, Prendergast, Delcamp (b0090) 1990; 29
Appleman, Beard, Delcamp, Prendergast, Freisheim (b0025) 1990; 265
Meiering, Wagner (b0075) 1995; 247
2004; 33
2007; 104
2010; 66
2002; 30
1977; 16
2005; 102
1990; 29
1997; 36
1989; 264
1988; 27
1995; 247
1988; 263
2006; 313
1990; 265
1988; 239
2011; 332
1995; 270
1987; 26
2009; 17
3125607 - Science. 1988 Mar 4;239(4844):1105-10
12384595 - Nucleic Acids Res. 2002 Oct 15;30(20):4481-8
2303423 - J Biol Chem. 1990 Feb 15;265(5):2740-8
21474759 - Science. 2011 Apr 8;332(6026):234-8
16116078 - Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12748-53
7890613 - J Biol Chem. 1995 Mar 10;270(10):5057-64
19278653 - Structure. 2009 Mar 11;17(3):386-94
3307916 - Biochemistry. 1987 Jun 30;26(13):4085-92
2207084 - Biochemistry. 1990 Jul 10;29(27):6428-36
3288632 - J Biol Chem. 1988 Jul 5;263(19):9187-98
7707376 - J Mol Biol. 1995 Mar 24;247(2):294-308
20944227 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Oct 1;66(Pt 10):1309-16
15139807 - Annu Rev Biophys Biomol Struct. 2004;33:119-40
2492521 - J Biol Chem. 1989 Feb 15;264(5):2625-33
3044447 - Biochemistry. 1988 May 17;27(10):3664-71
9012674 - Biochemistry. 1997 Jan 21;36(3):586-603
19054 - Biochemistry. 1977 Aug 9;16(16):3566-72
16973882 - Science. 2006 Sep 15;313(5793):1638-42
18093916 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20788-92
Tai (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0050|feb2s001457931100754x-cit-b0050) 2002; 30
Mauldin (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0060|feb2s001457931100754x-cit-b0060) 2009; 17
Meiering (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0075|feb2s001457931100754x-cit-b0075) 1995; 247
Tsay (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0090|feb2s001457931100754x-cit-b0090) 1990; 29
Prendergast (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0035|feb2s001457931100754x-cit-b0035) 1988; 27
Benkovic (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0010|feb2s001457931100754x-cit-b0010) 1988; 239
Sawaya (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0030|feb2s001457931100754x-cit-b0030) 1997; 36
Lewis (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0085|feb2s001457931100754x-cit-b0085) 1995; 270
Bhabha (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0055|feb2s001457931100754x-cit-b0055) 2011; 332
Appleman (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0080|feb2s001457931100754x-cit-b0080) 1988; 263
Horst (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0065|feb2s001457931100754x-cit-b0065) 2007; 104
Kumar (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0095|feb2s001457931100754x-cit-b0095) 2010; 66
Fierke (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0015|feb2s001457931100754x-cit-b0015) 1987; 26
Schnell (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0005|feb2s001457931100754x-cit-b0005) 2004; 33
Baccanari (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0045|feb2s001457931100754x-cit-b0045) 1977; 16
Boehr (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0040|feb2s001457931100754x-cit-b0040) 2006; 313
Appleman (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0025|feb2s001457931100754x-cit-b0025) 1990; 265
Horst (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0070|feb2s001457931100754x-cit-b0070) 2005; 102
Appleman (10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0020|feb2s001457931100754x-cit-b0020) 1989; 264
References_xml – volume: 27
  start-page: 3664
  year: 1988
  end-page: 3671
  ident: b0035
  article-title: Expression and site-directed mutagenesis of human dihydrofolate reductase
  publication-title: Biochemistry
  contributor:
    fullname: Freisheim
– volume: 26
  start-page: 4085
  year: 1987
  end-page: 4092
  ident: b0015
  article-title: Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from
  publication-title: Biochemistry
  contributor:
    fullname: Benkovic
– volume: 30
  start-page: 4481
  year: 2002
  end-page: 4488
  ident: b0050
  article-title: Identification of critical amino acid residues on human dihydrofolate reductase protein that mediate RNA recognition
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Chu
– volume: 265
  start-page: 2740
  year: 1990
  end-page: 2748
  ident: b0025
  article-title: Unusual transient and steady state kinetic behavior is predicted by the kinetic scheme operational for recombinant human dihydrofolate reductase
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Freisheim
– volume: 239
  start-page: 1105
  year: 1988
  end-page: 1110
  ident: b0010
  article-title: Insights into enzyme function from studies on mutants of dihydrofolate reductase
  publication-title: Science
  contributor:
    fullname: Naylor
– volume: 263
  start-page: 9187
  year: 1988
  end-page: 9198
  ident: b0080
  article-title: Role of aspartate 27 in the binding of methotrexate to dihydrofolate reductase from
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Blakley
– volume: 264
  start-page: 2625
  year: 1989
  end-page: 2633
  ident: b0020
  article-title: Atypical transient state kinetics of recombinant human dihydrofolate reductase produced by hysteretic behavior. Comparison with dihydrofolate reductases from other sources
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Freisheim
– volume: 16
  start-page: 3566
  year: 1977
  end-page: 3572
  ident: b0045
  article-title:
  publication-title: Biochemistry
  contributor:
    fullname: Burchall
– volume: 247
  start-page: 294
  year: 1995
  end-page: 308
  ident: b0075
  article-title: Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH
  publication-title: J. Mol. Biol.
  contributor:
    fullname: Wagner
– volume: 313
  start-page: 1638
  year: 2006
  end-page: 1642
  ident: b0040
  article-title: The dynamic energy landscape of dihydrofolate reductase catalysis
  publication-title: Science
  contributor:
    fullname: Wright
– volume: 17
  start-page: 386
  year: 2009
  end-page: 394
  ident: b0060
  article-title: Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state
  publication-title: Structure
  contributor:
    fullname: Lee
– volume: 104
  start-page: 20788
  year: 2007
  end-page: 20792
  ident: b0065
  article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Horwich
– volume: 270
  start-page: 5057
  year: 1995
  end-page: 5064
  ident: b0085
  article-title: Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Pangborn
– volume: 66
  start-page: 1309
  year: 2010
  end-page: 1316
  ident: b0095
  article-title: Ligands in PSI structures
  publication-title: Acta Crystallogr., Sect. F Struct. Biol. Cryst. Commun.
  contributor:
    fullname: Elsliger
– volume: 36
  start-page: 586
  year: 1997
  end-page: 603
  ident: b0030
  article-title: Loop and subdomain movements in the mechanism of
  publication-title: Biochemistry
  contributor:
    fullname: Kraut
– volume: 332
  start-page: 234
  year: 2011
  end-page: 238
  ident: b0055
  article-title: A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis
  publication-title: Science
  contributor:
    fullname: Wilson
– volume: 102
  start-page: 12748
  year: 2005
  end-page: 12753
  ident: b0070
  article-title: Direct NMR observation of a substrate protein bound to the chaperonin GroEL
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Horwich
– volume: 29
  start-page: 6428
  year: 1990
  end-page: 6436
  ident: b0090
  article-title: Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase
  publication-title: Biochemistry
  contributor:
    fullname: Delcamp
– volume: 33
  start-page: 119
  year: 2004
  end-page: 140
  ident: b0005
  article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  contributor:
    fullname: Wright
– volume: 270
  start-page: 5057
  year: 1995
  end-page: 5064
  article-title: Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 4085
  year: 1987
  end-page: 4092
  article-title: Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from
  publication-title: Biochemistry
– volume: 30
  start-page: 4481
  year: 2002
  end-page: 4488
  article-title: Identification of critical amino acid residues on human dihydrofolate reductase protein that mediate RNA recognition
  publication-title: Nucleic Acids Res.
– volume: 239
  start-page: 1105
  year: 1988
  end-page: 1110
  article-title: Insights into enzyme function from studies on mutants of dihydrofolate reductase
  publication-title: Science
– volume: 264
  start-page: 2625
  year: 1989
  end-page: 2633
  article-title: Atypical transient state kinetics of recombinant human dihydrofolate reductase produced by hysteretic behavior. Comparison with dihydrofolate reductases from other sources
  publication-title: J. Biol. Chem.
– volume: 36
  start-page: 586
  year: 1997
  end-page: 603
  article-title: Loop and subdomain movements in the mechanism of dihydrofolate reductase: crystallographic evidence
  publication-title: Biochemistry
– volume: 16
  start-page: 3566
  year: 1977
  end-page: 3572
  article-title: dihydrofolate reductase: isolation and characterization of two isozymes
  publication-title: Biochemistry
– volume: 102
  start-page: 12748
  year: 2005
  end-page: 12753
  article-title: Direct NMR observation of a substrate protein bound to the chaperonin GroEL
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 104
  start-page: 20788
  year: 2007
  end-page: 20792
  article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 247
  start-page: 294
  year: 1995
  end-page: 308
  article-title: Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH
  publication-title: J. Mol. Biol.
– volume: 263
  start-page: 9187
  year: 1988
  end-page: 9198
  article-title: Role of aspartate 27 in the binding of methotrexate to dihydrofolate reductase from
  publication-title: J. Biol. Chem.
– volume: 66
  start-page: 1309
  year: 2010
  end-page: 1316
  article-title: Ligands in PSI structures
  publication-title: Acta Crystallogr., Sect. F Struct. Biol. Cryst. Commun.
– volume: 33
  start-page: 119
  year: 2004
  end-page: 140
  article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 265
  start-page: 2740
  year: 1990
  end-page: 2748
  article-title: Unusual transient and steady state kinetic behavior is predicted by the kinetic scheme operational for recombinant human dihydrofolate reductase
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 6428
  year: 1990
  end-page: 6436
  article-title: Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase
  publication-title: Biochemistry
– volume: 332
  start-page: 234
  year: 2011
  end-page: 238
  article-title: A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis
  publication-title: Science
– volume: 17
  start-page: 386
  year: 2009
  end-page: 394
  article-title: Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state
  publication-title: Structure
– volume: 27
  start-page: 3664
  year: 1988
  end-page: 3671
  article-title: Expression and site-directed mutagenesis of human dihydrofolate reductase
  publication-title: Biochemistry
– volume: 313
  start-page: 1638
  year: 2006
  end-page: 1642
  article-title: The dynamic energy landscape of dihydrofolate reductase catalysis
  publication-title: Science
– volume: 264
  start-page: 2625
  year: 1989
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0020|feb2s001457931100754x-cit-b0020
  article-title: Atypical transient state kinetics of recombinant human dihydrofolate reductase produced by hysteretic behavior. Comparison with dihydrofolate reductases from other sources
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)81659-9
  contributor:
    fullname: Appleman
– volume: 17
  start-page: 386
  year: 2009
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0060|feb2s001457931100754x-cit-b0060
  article-title: Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state
  publication-title: Structure
  doi: 10.1016/j.str.2009.01.005
  contributor:
    fullname: Mauldin
– volume: 27
  start-page: 3664
  year: 1988
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0035|feb2s001457931100754x-cit-b0035
  article-title: Expression and site-directed mutagenesis of human dihydrofolate reductase
  publication-title: Biochemistry
  doi: 10.1021/bi00410a022
  contributor:
    fullname: Prendergast
– volume: 16
  start-page: 3566
  year: 1977
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0045|feb2s001457931100754x-cit-b0045
  article-title: Escherichia coli dihydrofolate reductase: isolation and characterization of two isozymes
  publication-title: Biochemistry
  doi: 10.1021/bi00635a010
  contributor:
    fullname: Baccanari
– volume: 30
  start-page: 4481
  year: 2002
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0050|feb2s001457931100754x-cit-b0050
  article-title: Identification of critical amino acid residues on human dihydrofolate reductase protein that mediate RNA recognition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf562
  contributor:
    fullname: Tai
– volume: 33
  start-page: 119
  year: 2004
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0005|feb2s001457931100754x-cit-b0005
  article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.33.110502.133613
  contributor:
    fullname: Schnell
– volume: 265
  start-page: 2740
  year: 1990
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0025|feb2s001457931100754x-cit-b0025
  article-title: Unusual transient and steady state kinetic behavior is predicted by the kinetic scheme operational for recombinant human dihydrofolate reductase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39864-3
  contributor:
    fullname: Appleman
– volume: 263
  start-page: 9187
  year: 1988
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0080|feb2s001457931100754x-cit-b0080
  article-title: Role of aspartate 27 in the binding of methotrexate to dihydrofolate reductase from Escherichia coli
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)76524-7
  contributor:
    fullname: Appleman
– volume: 239
  start-page: 1105
  year: 1988
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0010|feb2s001457931100754x-cit-b0010
  article-title: Insights into enzyme function from studies on mutants of dihydrofolate reductase
  publication-title: Science
  doi: 10.1126/science.3125607
  contributor:
    fullname: Benkovic
– volume: 102
  start-page: 12748
  year: 2005
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0070|feb2s001457931100754x-cit-b0070
  article-title: Direct NMR observation of a substrate protein bound to the chaperonin GroEL
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0505642102
  contributor:
    fullname: Horst
– volume: 270
  start-page: 5057
  year: 1995
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0085|feb2s001457931100754x-cit-b0085
  article-title: Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.10.5057
  contributor:
    fullname: Lewis
– volume: 29
  start-page: 6428
  year: 1990
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0090|feb2s001457931100754x-cit-b0090
  article-title: Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase
  publication-title: Biochemistry
  doi: 10.1021/bi00479a014
  contributor:
    fullname: Tsay
– volume: 66
  start-page: 1309
  year: 2010
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0095|feb2s001457931100754x-cit-b0095
  article-title: Ligands in PSI structures
  publication-title: Acta Crystallogr., Sect. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309110008092
  contributor:
    fullname: Kumar
– volume: 36
  start-page: 586
  year: 1997
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0030|feb2s001457931100754x-cit-b0030
  article-title: Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence
  publication-title: Biochemistry
  doi: 10.1021/bi962337c
  contributor:
    fullname: Sawaya
– volume: 313
  start-page: 1638
  year: 2006
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0040|feb2s001457931100754x-cit-b0040
  article-title: The dynamic energy landscape of dihydrofolate reductase catalysis
  publication-title: Science
  doi: 10.1126/science.1130258
  contributor:
    fullname: Boehr
– volume: 104
  start-page: 20788
  year: 2007
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0065|feb2s001457931100754x-cit-b0065
  article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0710042105
  contributor:
    fullname: Horst
– volume: 26
  start-page: 4085
  year: 1987
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0015|feb2s001457931100754x-cit-b0015
  article-title: Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli
  publication-title: Biochemistry
  doi: 10.1021/bi00387a052
  contributor:
    fullname: Fierke
– volume: 332
  start-page: 234
  year: 2011
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0055|feb2s001457931100754x-cit-b0055
  article-title: A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis
  publication-title: Science
  doi: 10.1126/science.1198542
  contributor:
    fullname: Bhabha
– volume: 247
  start-page: 294
  year: 1995
  ident: 10.1016/j.febslet.2011.10.014-BIB2s001457931100754x-bib-b0075|feb2s001457931100754x-cit-b0075
  article-title: Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.0140
  contributor:
    fullname: Meiering
SSID ssj0001819
Score 2.1579971
Snippet ► NMR data show that endogenous ligands copurify with DHFR expressed in bacterial cells. ► Human DHFR is preferentially bound to NADP, and Escherichia coli...
Dihydrofolate reductase (DHFR) is a well‐studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined...
Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3528
SubjectTerms Binding Sites
Dihydrofolate reductase
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - metabolism
Expression
Folic Acid - metabolism
Humans
Ligand
Ligands
Magnetic Resonance Spectroscopy
Models, Molecular
NADP - chemistry
NADP - metabolism
NMR
Purification
Tetrahydrofolate Dehydrogenase - chemistry
Tetrahydrofolate Dehydrogenase - genetics
Tetrahydrofolate Dehydrogenase - metabolism
Tetrahydrofolates - metabolism
Title Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR
URI https://dx.doi.org/10.1016/j.febslet.2011.10.014
https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2011.10.014
https://www.ncbi.nlm.nih.gov/pubmed/22024482
https://search.proquest.com/docview/904015114
https://search.proquest.com/docview/918061680
https://pubmed.ncbi.nlm.nih.gov/PMC3215841
Volume 585
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXBBsf4aO6B8Rb2nzYjvPYllYTZXuYGOQtshN7y1TSacsEfeFv5-wkhariQ0iREjmOZN2d737n3Achb4SQSVwa48ep0j5NeOpLRtFxDZgxTMYli22C8_EJPzqj7zOW7ZFpnwtjwyo73d_qdKetu5FRR83RVVXZHN-QMhQvW_QsYTRDPRyjdbZJfNlko43RgrUQOKS-nf0zi2d0OTRa3SB52kqeNsgrpL-zT7v4czeM8ld46-zT_BF52AFLGLdrf0z2dH1ADsc1OtVf1vAWXKinO0M_IPcm_dP9ad_w7ZB8bZN2TXeKBysDui5XbRVXWFbnNisYlO3DBM0KVFvnWS6Xa9DfXDytLsH1_AOcCbMhoJBVUFYX6xK1PfrQjYZrWyq2QdMJag3ROzg5Pn1Czuazj9Mjv-vL4Bcs5JkvFRdJrDgtwqjQMjWJliE3gSoMFaHWzJLERIkUiqaBREyKIEhRg0NJUERF_JTs16taPycQJ2XJtTYWRtoAHfRXJStTRFGcFZJyjwx7buRXbfmNvI9Lu8w79uWWfXYY2ecR0fMs35KjHE3E3z6Fnsc5Ut7-OJG1RgrnKWo6REZ_nBIKREZcBB551krFZr1RhDiIisgjyZa8bCbYCt_bb-rqwlX6jhGQCRp6ZOwk699IkM9nk2hnd7z4f8K8JA_cSbq9-Cuy31zf6tcIxRo1IHeG38MBuTuefFp8sPfF6efFwO3AH9M_NZo
link.rule.ids 230,315,783,787,888,3515,4511,27583,27938,27939,45599,45677,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELaWXaHlBcEuRzjnAfGWNoeP5LEtrQrb9gHtor5ZdmLvZlXS1RIE_feMcxSqikNIeYgcW7JmxjPfOHMQ8iZJlIhza_041cangqe-YhQd14BZy1Scs9glOM8XfHpBPyzZ8oCMulwYF1bZ6v5Gp9fauh3pt9Ts3xSFy_ENKUPxckXPBKPLO-QI0YBAD-xoMPx0NtsqZDRiDQoOqe8W_Ezk6V_3rNFfkEJNMU8X5xXS35mofQi6H0n5K8KtTdTkAbnfYksYNNt_SA5MeUJOByX61Z838BbqaM_6Gv2E3B12b8ejrufbKfnW5O3a9iIP1hZMma-bQq6wKi5dYjBo14oJqjXoptSzWq02YL7XIbUmh7rtH-BMGPcA5ayAvLja5Kjw0Y2uDNy6arEVWk_QG4jewWL-8RG5mIzPR1O_bc3gZyzkS19pnohYc5qFUWZUaoVRIbeBzixNQmOYI4mNhEo0TQOFsBRxkKYWh0SQRVn8mByW69I8JRCLPOfGWIckXYwOuqyK5SkCKc4yRblHeh035E1TgUN2oWnXsmWfdOxzw8g-jyQdz-SOKEm0En9bCh2PJVLe_TtRpUEKyxSVHYKjP04JEwRHPAk88qSRiu1-owihEE0ij4gdedlOcEW-d7-UxVVd7DtGTJbQ0CODWrL-jQRyMh5Gewfk2f8T5jU5np7PZ3L2fnH2nNyrL9bdw1-Qw-r2q3mJyKzSr9qT9wODxTWu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+endogenous+ligands+bound+to+bacterially+expressed+human+and+E.+coli+dihydrofolate+reductase+by+2D+NMR&rft.jtitle=FEBS+letters&rft.au=Bhabha%2C+Gira&rft.au=Tuttle%2C+Lisa&rft.au=Martinez-Yamout%2C+Maria+A&rft.au=Wright%2C+Peter+E&rft.date=2011-11-16&rft.issn=0014-5793&rft.volume=585&rft.issue=22&rft.spage=3528&rft.epage=3532&rft_id=info:doi/10.1016%2Fj.febslet.2011.10.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon