0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible‐Light‐Driven Photocatalysis

0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g‐C3N4)...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 29; pp. 8407 - 8411
Main Authors Ye, Meng‐Yang, Zhao, Zhi‐Hao, Hu, Zhuo‐Feng, Liu, Le‐Quan, Ji, Hui‐Ming, Shen, Zhu‐Rui, Ma, Tian‐Yi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.07.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g‐C3N4) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up‐conversion absorption, and nitrogen coordinating sites of g‐C3N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible‐light‐driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto‐electronic applications, not limited in photocatalysis. Vanadate quantum dots including AgVO3, BiVO4, InVO4, and CuV2O6 were strongly coupled with graphitic carbon nitride nanosheets using an in situ growth strategy. These quantum dots displayed a much better visible‐light‐driven photoelectrochemical activity and photocatalytic degradation efficiency than single vanadate quantum dots, carbon nitride nanosheets or previously reported highly active photocatalysts.
AbstractList 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g-C3N4) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis.
0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO , BiVO , InVO and CuV O ) QDs/graphitic carbon nitride (g-C N ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C N NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis.
0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g‐C3N4) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up‐conversion absorption, and nitrogen coordinating sites of g‐C3N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible‐light‐driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto‐electronic applications, not limited in photocatalysis. Vanadate quantum dots including AgVO3, BiVO4, InVO4, and CuV2O6 were strongly coupled with graphitic carbon nitride nanosheets using an in situ growth strategy. These quantum dots displayed a much better visible‐light‐driven photoelectrochemical activity and photocatalytic degradation efficiency than single vanadate quantum dots, carbon nitride nanosheets or previously reported highly active photocatalysts.
0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3 , BiVO4 , InVO4 and CuV2 O6 ) QDs/graphitic carbon nitride (g-C3 N4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3 N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis.
0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO 3 , BiVO 4 , InVO 4 and CuV 2 O 6 ) QDs/graphitic carbon nitride (g‐C 3 N 4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up‐conversion absorption, and nitrogen coordinating sites of g‐C 3 N 4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible‐light‐driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto‐electronic applications, not limited in photocatalysis.
Author Liu, Le‐Quan
Ye, Meng‐Yang
Zhao, Zhi‐Hao
Hu, Zhuo‐Feng
Ji, Hui‐Ming
Ma, Tian‐Yi
Shen, Zhu‐Rui
Author_xml – sequence: 1
  givenname: Meng‐Yang
  surname: Ye
  fullname: Ye, Meng‐Yang
  organization: Tianjin University
– sequence: 2
  givenname: Zhi‐Hao
  surname: Zhao
  fullname: Zhao, Zhi‐Hao
  organization: Tianjin University
– sequence: 3
  givenname: Zhuo‐Feng
  surname: Hu
  fullname: Hu, Zhuo‐Feng
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Le‐Quan
  surname: Liu
  fullname: Liu, Le‐Quan
  organization: Tianjin University
– sequence: 5
  givenname: Hui‐Ming
  surname: Ji
  fullname: Ji, Hui‐Ming
  organization: Tianjin University
– sequence: 6
  givenname: Zhu‐Rui
  surname: Shen
  fullname: Shen, Zhu‐Rui
  email: shenzhurui@tju.edu.cn
  organization: Tianjin University
– sequence: 7
  givenname: Tian‐Yi
  orcidid: 0000-0002-1042-8700
  surname: Ma
  fullname: Ma, Tian‐Yi
  email: tian-yi.ma@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28052568$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhleoiH7AlSOyxIXLJrZ3_bHHKgltpSiABL2uZr2zxNHGDrYXlFtvvfIb-SVslFKkSojTzOF5ZkbznmcnzjvMsteMThilfArO4oRTJhljXD3LzpjgLC-UKk7GviyKXGnBTrPzGDcjrzWVL7JTrqngQuqz7J7Op3xOrjFh8JvBmWS9i8R35BYctJCQfBrApWFL5j7F6VWA3doma8gMQuMdWdkUbItkBc7HNWKKpPOBLNwanMGW3Npomx5_3f1c2q_rNNZ5sN_RkY9rn7yBBP0-2vgye95BH_HVQ73IvrxffJ5d58sPVzezy2VuBJMq12UDFJSEhnLOi0a1UmlgTHPJpeGd6ExhqsbISlKmqeoqCR0VgLQUTCEWF9m749xd8N8GjKne2miw78GhH2LNtBCqYlzLEX37BN34IbjxuppVTKiykkU1Um8eqKHZYlvvgt1C2Nd_XjwCkyNggo8xYPeIMFofMqwPGdaPGY5C-UQwNsEhlxTA9v_WqqP2w_a4_8-S-nJ1s_jr_gY8qLKf
CitedBy_id crossref_primary_10_1016_j_ceramint_2020_03_171
crossref_primary_10_1016_j_cej_2020_125258
crossref_primary_10_1039_D0TA06993K
crossref_primary_10_1016_j_apcatb_2020_119007
crossref_primary_10_1016_j_jcis_2019_06_077
crossref_primary_10_1002_smll_201902744
crossref_primary_10_1016_j_cej_2021_134375
crossref_primary_10_1002_adfm_202306014
crossref_primary_10_1016_j_cplett_2018_09_070
crossref_primary_10_1016_j_apcatb_2021_120765
crossref_primary_10_1002_smsc_202300213
crossref_primary_10_1007_s10853_021_06774_5
crossref_primary_10_1021_acssuschemeng_7b00417
crossref_primary_10_1016_j_apsusc_2019_06_057
crossref_primary_10_1016_j_mtsust_2023_100416
crossref_primary_10_1016_j_cej_2025_159567
crossref_primary_10_1016_j_jece_2024_113415
crossref_primary_10_1038_s41598_020_75003_x
crossref_primary_10_1021_acsami_9b10758
crossref_primary_10_1016_j_cej_2025_160317
crossref_primary_10_1021_acssuschemeng_8b01299
crossref_primary_10_1002_ange_202219214
crossref_primary_10_1016_j_apcatb_2021_120895
crossref_primary_10_1016_j_apcatb_2018_03_076
crossref_primary_10_1039_D4SC03663H
crossref_primary_10_1016_j_apcatb_2018_03_077
crossref_primary_10_2174_1573411017666210108092850
crossref_primary_10_1016_j_apcatb_2018_09_036
crossref_primary_10_1016_j_cej_2020_127214
crossref_primary_10_1039_C9NH00805E
crossref_primary_10_1002_ange_202116699
crossref_primary_10_1016_j_apcatb_2018_09_030
crossref_primary_10_1021_acssuschemeng_8b03006
crossref_primary_10_1016_j_inoche_2019_06_012
crossref_primary_10_1016_j_apcatb_2018_11_054
crossref_primary_10_3762_bjnano_8_159
crossref_primary_10_1002_ange_201914001
crossref_primary_10_1021_acs_analchem_8b02302
crossref_primary_10_1016_j_jechem_2018_05_013
crossref_primary_10_1016_j_apsusc_2022_155036
crossref_primary_10_1021_acs_inorgchem_0c03286
crossref_primary_10_1039_C8TA09735F
crossref_primary_10_1002_ange_201812773
crossref_primary_10_1002_admi_201802088
crossref_primary_10_1039_D0CC04790B
crossref_primary_10_1039_c8pp00387d
crossref_primary_10_1021_acscatal_4c00290
crossref_primary_10_1088_1361_6528_ac0eae
crossref_primary_10_1142_S0217984924504104
crossref_primary_10_3390_nano10061123
crossref_primary_10_1002_adfm_201705407
crossref_primary_10_1002_anie_201914001
crossref_primary_10_1002_anie_202002375
crossref_primary_10_1021_acs_inorgchem_1c02863
crossref_primary_10_1039_C7TA06176E
crossref_primary_10_1039_D1NA00576F
crossref_primary_10_1016_j_matpr_2022_04_118
crossref_primary_10_1039_D2QI01019D
crossref_primary_10_1016_j_apcatb_2020_119167
crossref_primary_10_1016_j_ecoenv_2020_111147
crossref_primary_10_1016_j_talo_2024_100371
crossref_primary_10_1002_solr_202000351
crossref_primary_10_1016_j_jcis_2024_03_074
crossref_primary_10_1002_ange_202002375
crossref_primary_10_1016_j_jechem_2020_03_085
crossref_primary_10_1016_j_apcata_2019_04_002
crossref_primary_10_1016_j_gee_2025_01_007
crossref_primary_10_1002_cssc_201701984
crossref_primary_10_1016_j_jallcom_2021_162853
crossref_primary_10_1016_j_jmst_2023_03_027
crossref_primary_10_1021_acssuschemeng_8b03318
crossref_primary_10_1002_adma_201900709
crossref_primary_10_1016_j_apcatb_2018_11_012
crossref_primary_10_1016_j_apcatb_2019_03_017
crossref_primary_10_1088_1361_6528_ac15c8
crossref_primary_10_2139_ssrn_3999298
crossref_primary_10_1016_j_jallcom_2023_170700
crossref_primary_10_1016_j_jallcom_2024_176504
crossref_primary_10_1039_C9CC04049H
crossref_primary_10_1021_acs_jpcc_7b12496
crossref_primary_10_1002_smll_201800416
crossref_primary_10_1016_j_cej_2018_07_071
crossref_primary_10_1016_j_jphotochem_2023_115249
crossref_primary_10_1021_acsenergylett_8b01853
crossref_primary_10_1016_j_jcis_2021_02_053
crossref_primary_10_1016_j_mcat_2020_111378
crossref_primary_10_1016_j_nanoen_2021_106714
crossref_primary_10_1016_j_jhazmat_2022_129244
crossref_primary_10_1016_j_apsusc_2019_04_006
crossref_primary_10_1016_j_cej_2021_130832
crossref_primary_10_1002_eom2_12204
crossref_primary_10_1016_j_envpol_2023_122168
crossref_primary_10_1021_acsaem_1c04077
crossref_primary_10_1039_C8CY02509F
crossref_primary_10_1016_j_jcis_2020_08_124
crossref_primary_10_1021_acs_inorgchem_9b02309
crossref_primary_10_1016_j_apcatb_2019_117931
crossref_primary_10_1016_j_dyepig_2018_04_023
crossref_primary_10_1039_C8DT00242H
crossref_primary_10_1016_j_cej_2021_128991
crossref_primary_10_1016_j_jcis_2021_03_080
crossref_primary_10_1016_j_apsusc_2023_156736
crossref_primary_10_1021_acs_langmuir_9b01796
crossref_primary_10_1039_C8EN00124C
crossref_primary_10_1039_D2TC00432A
crossref_primary_10_1080_01614940_2023_2250652
crossref_primary_10_1007_s10854_024_11958_1
crossref_primary_10_1016_j_ijhydene_2022_10_226
crossref_primary_10_1021_acs_jpcc_3c06896
crossref_primary_10_1016_j_apcatb_2022_122148
crossref_primary_10_1016_j_jallcom_2020_155057
crossref_primary_10_1021_acsami_8b06320
crossref_primary_10_1016_j_jcis_2020_06_116
crossref_primary_10_1039_C7TA09350K
crossref_primary_10_1039_D3SU00006K
crossref_primary_10_1016_j_cej_2021_131145
crossref_primary_10_1016_j_wasman_2022_06_030
crossref_primary_10_1016_j_jhazmat_2019_01_009
crossref_primary_10_1016_j_ijhydene_2019_01_094
crossref_primary_10_1039_C8DT02636J
crossref_primary_10_1039_D2NJ06275E
crossref_primary_10_1039_C9TA11958B
crossref_primary_10_1016_j_apcata_2024_119774
crossref_primary_10_1002_anie_202204880
crossref_primary_10_1002_adma_202311937
crossref_primary_10_1016_j_apcatb_2019_05_007
crossref_primary_10_1039_D2TA01758J
crossref_primary_10_1016_j_jwpe_2023_104495
crossref_primary_10_1016_j_matlet_2018_07_026
crossref_primary_10_1007_s11051_019_4632_0
crossref_primary_10_1016_j_seppur_2024_130608
crossref_primary_10_1021_acs_inorgchem_2c04366
crossref_primary_10_1016_j_cej_2021_131158
crossref_primary_10_1039_D3CY01461D
crossref_primary_10_1039_C8TA07915C
crossref_primary_10_1002_smll_202405533
crossref_primary_10_1021_acscatal_8b01645
crossref_primary_10_1039_C8QI01202D
crossref_primary_10_1016_j_jechem_2020_01_017
crossref_primary_10_1016_j_cej_2019_06_030
crossref_primary_10_1016_S1872_2067_17_62911_5
crossref_primary_10_1016_j_jmst_2022_02_012
crossref_primary_10_1016_j_jphotochem_2019_111866
crossref_primary_10_1016_j_cej_2020_127841
crossref_primary_10_1021_acsami_3c00036
crossref_primary_10_1016_j_jhazmat_2020_122865
crossref_primary_10_1002_anie_201812773
crossref_primary_10_3390_catal10010142
crossref_primary_10_1016_j_seppur_2024_128991
crossref_primary_10_3390_catal10060679
crossref_primary_10_1016_j_apcatb_2022_121268
crossref_primary_10_1002_adfm_201806284
crossref_primary_10_1007_s12633_021_01056_w
crossref_primary_10_1016_j_jmst_2021_01_022
crossref_primary_10_1039_D4NA00806E
crossref_primary_10_1021_acsphotonics_3c01099
crossref_primary_10_1039_C8CY00698A
crossref_primary_10_3390_nano10040643
crossref_primary_10_1016_j_jcis_2024_06_050
crossref_primary_10_1021_acsnano_9b03649
crossref_primary_10_1039_D0RA06226J
crossref_primary_10_1021_acsami_7b06030
crossref_primary_10_1016_j_apcatb_2023_122624
crossref_primary_10_1016_j_jallcom_2020_157795
crossref_primary_10_1016_j_apcatb_2018_04_080
crossref_primary_10_1016_j_jmrt_2022_04_102
crossref_primary_10_1016_j_jhazmat_2017_07_056
crossref_primary_10_1039_C9DT00744J
crossref_primary_10_1002_ange_201802014
crossref_primary_10_1007_s11708_023_0899_z
crossref_primary_10_1016_j_apsusc_2018_09_222
crossref_primary_10_1039_C8DT02402B
crossref_primary_10_1002_asia_202000419
crossref_primary_10_1021_acs_langmuir_4c00643
crossref_primary_10_1016_j_jhazmat_2020_122529
crossref_primary_10_1021_acsnano_3c04903
crossref_primary_10_1016_j_cattod_2019_03_058
crossref_primary_10_1016_j_envres_2021_110842
crossref_primary_10_1016_j_matpr_2021_11_381
crossref_primary_10_1039_C9TA09685J
crossref_primary_10_1016_j_colsurfa_2019_124322
crossref_primary_10_1016_j_apmt_2020_100798
crossref_primary_10_1016_j_apcatb_2018_03_035
crossref_primary_10_1021_acs_inorgchem_1c04024
crossref_primary_10_1002_smll_201801353
crossref_primary_10_1016_j_apcatb_2022_121109
crossref_primary_10_1002_anie_201708709
crossref_primary_10_1016_j_jhazmat_2020_122659
crossref_primary_10_3389_fmats_2017_00011
crossref_primary_10_1002_anie_201810434
crossref_primary_10_1016_j_apmt_2021_100963
crossref_primary_10_1016_j_jwpe_2024_105419
crossref_primary_10_1039_D3NJ05134J
crossref_primary_10_1002_adom_201900765
crossref_primary_10_1002_ange_201806514
crossref_primary_10_2139_ssrn_4148230
crossref_primary_10_1007_s10854_019_02573_6
crossref_primary_10_1016_j_ces_2018_12_011
crossref_primary_10_1002_adfm_201706545
crossref_primary_10_1002_solr_202000639
crossref_primary_10_1016_j_jallcom_2025_179252
crossref_primary_10_1016_j_apcatb_2020_118947
crossref_primary_10_1021_acsami_1c13167
crossref_primary_10_1002_aenm_201802181
crossref_primary_10_1002_smtd_202300163
crossref_primary_10_1016_j_chemosphere_2021_131906
crossref_primary_10_1021_acs_langmuir_3c01518
crossref_primary_10_1016_j_jhazmat_2020_123509
crossref_primary_10_1016_j_cej_2021_133254
crossref_primary_10_1016_j_ultsonch_2023_106362
crossref_primary_10_1016_j_seppur_2023_124177
crossref_primary_10_1016_j_jhazmat_2021_127177
crossref_primary_10_1002_adfm_201902486
crossref_primary_10_1021_acsami_2c17625
crossref_primary_10_1016_j_jallcom_2024_173771
crossref_primary_10_1016_j_seppur_2022_120875
crossref_primary_10_1039_D4TA02791D
crossref_primary_10_1021_acsami_3c03831
crossref_primary_10_1016_j_ijhydene_2019_05_135
crossref_primary_10_1016_j_apcata_2023_119403
crossref_primary_10_1016_j_nanoen_2018_06_001
crossref_primary_10_1039_C8TA03018A
crossref_primary_10_1021_acscatal_9b05240
crossref_primary_10_1016_j_apsusc_2023_158290
crossref_primary_10_1016_j_jclepro_2021_127980
crossref_primary_10_1002_smll_202205902
crossref_primary_10_1016_j_cej_2021_129574
crossref_primary_10_1002_chem_202102330
crossref_primary_10_1016_j_apcatb_2022_121216
crossref_primary_10_1016_j_cej_2021_132519
crossref_primary_10_1016_j_jallcom_2021_163589
crossref_primary_10_1016_j_jhazmat_2023_130908
crossref_primary_10_1016_j_physb_2020_412367
crossref_primary_10_1002_ange_202204880
crossref_primary_10_1021_acscatal_4c01712
crossref_primary_10_1016_j_cej_2022_137370
crossref_primary_10_1016_j_solener_2023_04_030
crossref_primary_10_1039_D3EN00112A
crossref_primary_10_1016_j_materresbull_2018_03_029
crossref_primary_10_1021_acs_langmuir_4c00558
crossref_primary_10_1007_s11356_020_10814_z
crossref_primary_10_1021_acsami_0c22654
crossref_primary_10_1002_smll_201902291
crossref_primary_10_1002_ange_201910510
crossref_primary_10_1002_eom2_12097
crossref_primary_10_1016_j_colsurfa_2018_01_023
crossref_primary_10_1007_s12598_022_02226_4
crossref_primary_10_1002_smtd_202100109
crossref_primary_10_1002_smll_202501949
crossref_primary_10_1016_j_jcis_2022_01_008
crossref_primary_10_1038_s41377_023_01327_8
crossref_primary_10_1002_cey2_252
crossref_primary_10_1016_j_cej_2021_132770
crossref_primary_10_1016_j_seppur_2024_128247
crossref_primary_10_1016_j_snb_2022_131903
crossref_primary_10_1016_j_cej_2021_129596
crossref_primary_10_1063_5_0055711
crossref_primary_10_1016_j_jes_2023_11_003
crossref_primary_10_1002_adfm_202213612
crossref_primary_10_1002_adsu_202000130
crossref_primary_10_1016_j_synthmet_2023_117452
crossref_primary_10_1039_C7CC07975C
crossref_primary_10_1002_rpm_20230019
crossref_primary_10_1016_S1872_2067_21_64012_3
crossref_primary_10_1016_j_apcatb_2019_118137
crossref_primary_10_1016_j_jallcom_2022_168199
crossref_primary_10_1021_acssuschemeng_8b01751
crossref_primary_10_1039_D3YA00506B
crossref_primary_10_1002_adfm_202002021
crossref_primary_10_1002_slct_201802452
crossref_primary_10_1016_j_jallcom_2020_157668
crossref_primary_10_1039_D2CP05609G
crossref_primary_10_1016_j_jwpe_2023_104080
crossref_primary_10_1016_j_cclet_2020_11_065
crossref_primary_10_1021_acsami_7b13272
crossref_primary_10_1002_adfm_202313793
crossref_primary_10_1002_slct_202201348
crossref_primary_10_1016_j_apcatb_2022_121662
crossref_primary_10_1016_j_apcatb_2020_118879
crossref_primary_10_1016_j_jallcom_2019_152883
crossref_primary_10_1016_j_jcis_2019_09_083
crossref_primary_10_1016_j_apcatb_2020_119727
crossref_primary_10_1002_adfm_201809036
crossref_primary_10_1016_j_apcatb_2017_12_070
crossref_primary_10_1016_j_apcatb_2019_118466
crossref_primary_10_1016_j_jece_2021_106652
crossref_primary_10_1039_C9RA04227J
crossref_primary_10_1016_j_jece_2022_109245
crossref_primary_10_1016_j_apsusc_2022_154601
crossref_primary_10_1002_advs_202001431
crossref_primary_10_1016_j_trac_2020_116126
crossref_primary_10_1039_C8TA08001A
crossref_primary_10_1016_j_seppur_2020_118251
crossref_primary_10_1016_j_apcatb_2017_11_038
crossref_primary_10_1016_j_jallcom_2019_04_239
crossref_primary_10_1002_slct_202102952
crossref_primary_10_3389_fchem_2020_00015
crossref_primary_10_1016_j_cej_2019_122296
crossref_primary_10_1016_j_scitotenv_2020_144139
crossref_primary_10_1016_j_mtener_2023_101331
crossref_primary_10_1039_C8NR08611G
crossref_primary_10_1021_acs_jpcc_9b06954
crossref_primary_10_1016_j_apcatb_2018_07_053
crossref_primary_10_1039_D4NJ01876A
crossref_primary_10_1021_acs_nanolett_8b04768
crossref_primary_10_1016_j_seppur_2023_123102
crossref_primary_10_1021_acsami_8b21131
crossref_primary_10_1002_solr_201900517
crossref_primary_10_1039_D0TA07345H
crossref_primary_10_1039_D3GC03711H
crossref_primary_10_1002_adma_202210746
crossref_primary_10_1021_acsami_7b14275
crossref_primary_10_1016_j_ijhydene_2023_01_086
crossref_primary_10_1039_D1EN00318F
crossref_primary_10_1016_j_jcou_2020_01_005
crossref_primary_10_1016_j_ijhydene_2022_12_257
crossref_primary_10_1016_j_tsf_2023_139863
crossref_primary_10_1039_D0DT04356G
crossref_primary_10_1016_j_ecoenv_2024_116221
crossref_primary_10_1016_j_apsusc_2018_07_015
crossref_primary_10_1016_j_cej_2021_130035
crossref_primary_10_2139_ssrn_4120898
crossref_primary_10_1016_j_seppur_2024_127462
crossref_primary_10_1016_j_cej_2018_10_200
crossref_primary_10_1021_acscatal_8b00070
crossref_primary_10_1016_j_apcatb_2017_11_060
crossref_primary_10_1016_j_ijhydene_2018_11_152
crossref_primary_10_1007_s12274_024_6904_2
crossref_primary_10_1039_C8CY00351C
crossref_primary_10_1088_1742_6596_2053_1_012004
crossref_primary_10_1016_j_ijhydene_2021_09_019
crossref_primary_10_1063_1674_0068_cjcp1905105
crossref_primary_10_1080_10584587_2020_1728622
crossref_primary_10_1016_j_jcis_2018_05_112
crossref_primary_10_1016_j_apsusc_2023_156710
crossref_primary_10_1007_s12209_020_00266_4
crossref_primary_10_1021_acsanm_8b00907
crossref_primary_10_1021_acscatal_9b03462
crossref_primary_10_1016_j_diamond_2020_108149
crossref_primary_10_1039_C8RA02882F
crossref_primary_10_1016_j_ijhydene_2020_11_019
crossref_primary_10_1016_j_jallcom_2019_01_204
crossref_primary_10_1016_j_jece_2017_08_045
crossref_primary_10_1016_j_cej_2020_126061
crossref_primary_10_1039_C8NR10445J
crossref_primary_10_1007_s00604_020_04373_w
crossref_primary_10_1039_C9CY02212K
crossref_primary_10_1039_D0GC03784B
crossref_primary_10_1016_j_ijhydene_2020_11_151
crossref_primary_10_3390_catal14060374
crossref_primary_10_1007_s11356_024_32802_3
crossref_primary_10_1021_acsnano_7b08691
crossref_primary_10_1016_j_jallcom_2023_168995
crossref_primary_10_1016_j_cej_2022_135238
crossref_primary_10_1016_j_ceramint_2022_09_181
crossref_primary_10_2139_ssrn_4164493
crossref_primary_10_1007_s13738_020_02060_4
crossref_primary_10_1016_j_apsusc_2023_156839
crossref_primary_10_1016_j_carbon_2017_12_048
crossref_primary_10_1002_anie_201806514
crossref_primary_10_1002_chem_202000708
crossref_primary_10_1016_j_apsusc_2022_154110
crossref_primary_10_1021_acssuschemeng_8b03406
crossref_primary_10_1016_j_jallcom_2022_168103
crossref_primary_10_1016_j_jece_2023_111349
crossref_primary_10_1016_j_apcatb_2020_119789
crossref_primary_10_1016_j_chempr_2019_07_019
crossref_primary_10_1016_j_matpr_2020_05_571
crossref_primary_10_1007_s10853_018_2509_8
crossref_primary_10_1021_acs_iecr_0c02397
crossref_primary_10_1016_j_jmst_2024_02_055
crossref_primary_10_1002_smll_202302188
crossref_primary_10_1016_j_apsusc_2022_155555
crossref_primary_10_1016_j_cclet_2019_04_068
crossref_primary_10_1016_j_cej_2021_131844
crossref_primary_10_1021_acsomega_1c03276
crossref_primary_10_3724_SP_J_1249_2024_03323
crossref_primary_10_1002_anie_202116699
crossref_primary_10_1039_D2QI00317A
crossref_primary_10_1007_s10853_019_04316_8
crossref_primary_10_1016_j_cattod_2018_06_045
crossref_primary_10_1016_j_surfin_2023_103137
crossref_primary_10_2139_ssrn_3989393
crossref_primary_10_1016_S1872_2067_22_64142_1
crossref_primary_10_3390_ijms19041162
crossref_primary_10_1016_j_nanoen_2023_108228
crossref_primary_10_1007_s10853_020_05120_5
crossref_primary_10_1016_j_apcatb_2018_08_071
crossref_primary_10_1016_j_apcatb_2018_08_072
crossref_primary_10_1016_j_apcatb_2019_118181
crossref_primary_10_1021_acs_inorgchem_3c03502
crossref_primary_10_1002_adma_201903942
crossref_primary_10_1016_j_apcatb_2019_118067
crossref_primary_10_1016_j_mtchem_2018_11_002
crossref_primary_10_1016_j_jece_2023_111689
crossref_primary_10_1016_j_jmst_2020_11_039
crossref_primary_10_1016_j_jpowsour_2022_232430
crossref_primary_10_1007_s11164_018_3561_3
crossref_primary_10_1016_j_apcatb_2019_02_075
crossref_primary_10_1016_j_seppur_2024_130022
crossref_primary_10_3390_bios13010058
crossref_primary_10_1016_j_cclet_2024_110752
crossref_primary_10_1002_cctc_202001631
crossref_primary_10_1016_j_apmt_2022_101636
crossref_primary_10_3390_en13020420
crossref_primary_10_1016_j_jmst_2019_03_008
crossref_primary_10_1002_asia_202200031
crossref_primary_10_1002_eem2_12772
crossref_primary_10_1021_acs_jpclett_4c02102
crossref_primary_10_1016_j_molliq_2024_124017
crossref_primary_10_1016_j_seppur_2020_117328
crossref_primary_10_1016_j_cjche_2021_03_055
crossref_primary_10_3390_nano12162864
crossref_primary_10_1016_j_cej_2021_131973
crossref_primary_10_1016_j_talanta_2019_120288
crossref_primary_10_1016_j_desal_2023_117277
crossref_primary_10_1002_anie_201802014
crossref_primary_10_1016_j_envres_2024_120656
crossref_primary_10_3390_nano10020253
crossref_primary_10_1021_acsanm_4c00014
crossref_primary_10_1016_j_cej_2021_129556
crossref_primary_10_3390_catal11111345
crossref_primary_10_1016_j_fuel_2023_129860
crossref_primary_10_1016_j_cej_2022_140633
crossref_primary_10_1007_s10854_024_12264_6
crossref_primary_10_1002_anie_202219214
crossref_primary_10_1016_j_apcatb_2021_120622
crossref_primary_10_1016_j_matlet_2019_06_057
crossref_primary_10_1016_j_apcatb_2019_01_036
crossref_primary_10_1016_j_apcatb_2021_120628
crossref_primary_10_1016_j_colsurfa_2024_133729
crossref_primary_10_1002_anie_201910510
crossref_primary_10_1021_acs_iecr_2c02674
crossref_primary_10_1016_j_jelechem_2021_115772
crossref_primary_10_1002_adfm_202213814
crossref_primary_10_1007_s40843_024_2907_9
crossref_primary_10_1016_j_jcis_2018_08_028
crossref_primary_10_1039_D0QI01026J
crossref_primary_10_1002_ange_201708709
crossref_primary_10_1002_ange_201810434
crossref_primary_10_1007_s10854_023_09815_8
crossref_primary_10_1016_j_jtice_2019_09_002
crossref_primary_10_1039_C8TC03812K
crossref_primary_10_1016_j_ces_2018_02_046
crossref_primary_10_1016_j_jallcom_2025_178844
crossref_primary_10_1016_j_jcis_2020_03_061
Cites_doi 10.1021/acs.est.5b00531
10.1021/cm052256f
10.1039/C2CS35374A
10.1039/C1CS15172J
10.1039/c3nr03043a
10.1039/C6TB00418K
10.1002/adfm.201400330
10.1002/adma.201500033
10.1021/jp210033y
10.1002/adma.200801153
10.1002/adfm.201200922
10.1002/ange.201501131
10.1002/anie.201509758
10.1021/ja302846n
10.1039/C2CS35266D
10.1039/c3ee43750g
10.1016/j.apcatb.2014.08.013
10.1021/la304753x
10.1002/anie.200906291
10.1021/acs.chemrev.5b00063
10.1038/nmat2635
10.1021/acs.chemrev.5b00267
10.1002/adma.200802627
10.1038/nmat2317
10.1016/j.apcatb.2014.10.016
10.1002/ange.201509758
10.1021/cr400299t
10.1002/anie.201501131
10.1038/ncomms11954
10.1038/nature13829
10.1002/ange.200906291
10.1016/S0009-2614(02)00254-3
10.1021/ja411651e
10.1126/science.1246913
10.1021/ja308249k
10.1063/1.1321795
10.1038/ncomms2401
10.1002/adfm.201502429
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201611127
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8411
ExternalDocumentID 28052568
10_1002_anie_201611127
ANIE201611127
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DE150101306; LP160100927
– fundername: National Natural Science Foundation of China
  funderid: 21303118
– fundername: Seed Foundation of Tianjin University
– fundername: Doctor Project for Young Teachers of Ministry of Education
  funderid: 20110032120021
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c5167-84ba0a76ab02223b7d678a1182626c2f5fc3c9bc69601807f96af05ae04517ee3
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Thu Jul 10 18:39:23 EDT 2025
Fri Jul 25 10:32:08 EDT 2025
Wed Feb 19 02:33:27 EST 2025
Tue Jul 01 03:27:25 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Wed Jan 22 16:59:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords vanadates
quantum dots
photocatalysis
heterojunctions
graphitic carbon nitride
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5167-84ba0a76ab02223b7d678a1182626c2f5fc3c9bc69601807f96af05ae04517ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1042-8700
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.201611127
PMID 28052568
PQID 1915749639
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1855791286
proquest_journals_1915749639
pubmed_primary_28052568
crossref_primary_10_1002_anie_201611127
crossref_citationtrail_10_1002_anie_201611127
wiley_primary_10_1002_anie_201611127_ANIE201611127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 10, 2017
PublicationDateYYYYMMDD 2017-07-10
PublicationDate_xml – month: 07
  year: 2017
  text: July 10, 2017
  day: 10
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 515
2015; 163
2013; 29
2013; 4
2009; 21
2002; 356
2000; 88
2013; 42
2015; 165
2006; 18
2014; 24
2010 2010; 49 122
2013; 5
2014; 114
2014; 136
2016; 4
2016; 7
2015; 25
2015; 27
2016 2016; 55 128
2015; 49
2012; 134
2015; 115
2015 2015; 54 127
2009; 8
2013; 135
2008; 20
2014; 7
2012; 116
2012; 22
2012; 41
2014; 343
2010; 9
e_1_2_2_3_2
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_23_1
e_1_2_2_6_2
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_40_2
e_1_2_2_41_1
e_1_2_2_29_3
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_25_2
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_37_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 134
  start-page: 6575
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 165
  start-page: 335
  year: 2015
  publication-title: Appl. Catal. B
– volume: 163
  start-page: 298
  year: 2015
  publication-title: Appl. Catal. B
– volume: 54 127
  start-page: 3892 3964
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 343
  start-page: 990
  year: 2014
  publication-title: Science
– volume: 116
  start-page: 2967
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 3958
  year: 2008
  publication-title: Adv. Mater.
– volume: 49
  start-page: 6264
  year: 2015
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 1609
  year: 2009
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1895
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 115
  start-page: 10307
  year: 2015
  publication-title: Chem. Rev.
– volume: 114
  start-page: 863
  year: 2014
  publication-title: Chem. Rev.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 18
  start-page: 867
  year: 2006
  publication-title: Chem. Mater.
– volume: 9
  start-page: 239
  year: 2010
  publication-title: Nat. Mater.
– volume: 25
  start-page: 5816
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 1559
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 4111
  year: 2013
  publication-title: Langmuir
– volume: 115
  start-page: 12732
  year: 2015
  publication-title: Chem. Rev.
– volume: 356
  start-page: 221
  year: 2002
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 11954
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  start-page: 4980
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 1432
  year: 2013
  publication-title: Nat. Commun.
– volume: 55 128
  start-page: 1138 1150
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 782
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 18
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 88
  start-page: 6272
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 515
  start-page: 96
  year: 2014
  publication-title: Nature
– volume: 27
  start-page: 2150
  year: 2015
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4763
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 49 122
  start-page: 3014 3078
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 9830
  year: 2013
  publication-title: Nanoscale
– volume: 42
  start-page: 2294
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 2963
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 5798
  year: 2014
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_2_41_1
  doi: 10.1021/acs.est.5b00531
– ident: e_1_2_2_1_1
– ident: e_1_2_2_39_2
  doi: 10.1021/cm052256f
– ident: e_1_2_2_7_1
  doi: 10.1039/C2CS35374A
– ident: e_1_2_2_18_1
  doi: 10.1039/C1CS15172J
– ident: e_1_2_2_15_2
  doi: 10.1039/c3nr03043a
– ident: e_1_2_2_27_2
  doi: 10.1039/C6TB00418K
– ident: e_1_2_2_10_2
  doi: 10.1002/adfm.201400330
– ident: e_1_2_2_35_1
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.201500033
– ident: e_1_2_2_38_1
– ident: e_1_2_2_43_1
  doi: 10.1021/jp210033y
– ident: e_1_2_2_5_2
  doi: 10.1002/adma.200801153
– ident: e_1_2_2_23_1
– ident: e_1_2_2_30_1
  doi: 10.1002/adfm.201200922
– ident: e_1_2_2_8_2
  doi: 10.1002/ange.201501131
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.201509758
– ident: e_1_2_2_14_2
  doi: 10.1021/ja302846n
– ident: e_1_2_2_37_2
  doi: 10.1039/C2CS35266D
– ident: e_1_2_2_42_1
  doi: 10.1039/c3ee43750g
– ident: e_1_2_2_31_1
  doi: 10.1016/j.apcatb.2014.08.013
– ident: e_1_2_2_34_1
  doi: 10.1021/la304753x
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.200906291
– ident: e_1_2_2_2_2
  doi: 10.1021/acs.chemrev.5b00063
– ident: e_1_2_2_4_1
– ident: e_1_2_2_40_2
  doi: 10.1038/nmat2635
– ident: e_1_2_2_17_2
  doi: 10.1021/acs.chemrev.5b00267
– ident: e_1_2_2_32_1
  doi: 10.1002/adma.200802627
– ident: e_1_2_2_24_2
  doi: 10.1038/nmat2317
– ident: e_1_2_2_36_2
  doi: 10.1016/j.apcatb.2014.10.016
– ident: e_1_2_2_13_1
– ident: e_1_2_2_19_1
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.201509758
– ident: e_1_2_2_6_2
  doi: 10.1021/cr400299t
– ident: e_1_2_2_8_1
  doi: 10.1002/anie.201501131
– ident: e_1_2_2_12_2
  doi: 10.1038/ncomms11954
– ident: e_1_2_2_3_2
  doi: 10.1038/nature13829
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.200906291
– ident: e_1_2_2_21_2
  doi: 10.1016/S0009-2614(02)00254-3
– ident: e_1_2_2_9_1
– ident: e_1_2_2_16_2
  doi: 10.1021/ja411651e
– ident: e_1_2_2_20_2
  doi: 10.1126/science.1246913
– ident: e_1_2_2_26_2
  doi: 10.1021/ja308249k
– ident: e_1_2_2_33_1
  doi: 10.1063/1.1321795
– ident: e_1_2_2_22_2
  doi: 10.1038/ncomms2401
– ident: e_1_2_2_25_2
  doi: 10.1002/adfm.201502429
SSID ssj0028806
Score 2.6632445
Snippet 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8407
SubjectTerms Carbon nitride
Crystals
graphitic carbon nitride
Heterojunctions
Nanocomposites
Nanocrystals
Nanosheets
Optoelectronics
Photocatalysis
Quantum dots
Two dimensional composites
Upconversion
Vanadate
vanadates
Title 0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible‐Light‐Driven Photocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201611127
https://www.ncbi.nlm.nih.gov/pubmed/28052568
https://www.proquest.com/docview/1915749639
https://www.proquest.com/docview/1855791286
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqXugFSvlKWyojIXFKN9hJHB-r3S0LaleAaNVbZHsd7UIbV5vk0hM3rv2N_SXMOJvAghASnKIkjuLYM-M3zswbQl7CRW5TEYUmSUwYg_kLlS2KcMYlN7EthPK1AU-n6eQsfneRXPyUxd_yQ_QbbqgZ3l6jgitdDX6QhmIGNoZmpaCtDNPJMWALUdHHnj-KgXC26UWch1iFvmNtjNhg_fH1Vek3qLmOXP3Sc_yAqK7TbcTJl8Om1ofm5hc-x__5qm1yf4VL6VErSA_Jhi13yL1hVw7uEfkWjQZsRCcYPuM-w2roBZa6gp5j3BhAVvqhgWlqrujI1dXgDTJhY2gdHaqldiWdLurlYmYp2HNXza2tKwqAmY7LuQ9CoOcL0M5Le_f19gQ3DOA4WqIppu_nrnZ-mwnZUx6Ts-Pxp-EkXFVxgOlHUvUs1ipSIlUafUuuxQzWR-X9GpYaViSF4UZqk4Iv9TqLRCFTVUSJssh8I6zlT8hm6Ur7jFCZRUoKIzOpZ7HlUlluM42gFHAkONsBCbtZzM2K4hwrbVzmLTkzy3F48354A_Kqb3_dknv8seV-JxT5SsmrHFzdRMRgwWRAXvS3YVrwn4sqrWugTZYkQgIISAPytBWm_lUMy0lA3wPCvEj8pQ_50fTtuD_b_ZeH9sgWQ1iCxKDRPtmsl419DqCq1gdecb4DA9QaVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BclguvB-BBYyExCnbrJ3E8XHVdulCtwK0u-IW2a6jFpYEtcmFEzeu_EZ-CTNOE1QQQoJTlMRRHHtm_M1k_A3AM7woXCqj0CaJDWM0f6F2RRHOhRI2doXUvjbgySydnMUv3yVdNiHthWn5IfqAG2mGt9ek4BSQHvxkDaUt2JSblaK6cnkZrlBZb-9Vve0ZpDiKZ7vBSIiQ6tB3vI0RH2w_v70u_QY2t7GrX3yOroPput3mnHzYb2qzbz__wuj4X991A65toCk7bGXpJlxy5S3YHXYV4W7D12g04CM2oQya6j0uiF5mWVWwc0odQ9TK3jQ4U81HNqrq9eAFkWFTdh0b6pWpSjZb1qvl3DE06dV64Vy9ZoiZ2bhc-DwEdr5EBb1w3798m1LMAI-jFVlj9npR1ZWPNBGByh04OxqfDifhppADSgDxqmex0ZGWqTbkXgoj57hEau_a8NTyIimssMrYFN2pgyyShUp1ESXaEfmNdE7chZ2yKt19YCqLtJJWZcrMYyeUdsJlhnApQkn0twMIu2nM7YblnIptXOQtPzPPaXjzfngDeN63_9Tye_yx5V4nFflGz9c5eruJjNGIqQCe9rdxWui3iy5d1WCbLEmkQhyQBnCvlab-VZwqSmDfA-BeJv7Sh_xwdjzuzx78y0NPYHdyejLNp8ezVw_hKieUQjyh0R7s1KvGPUKMVZvHXot-AJvPHnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb5RAFH_RmqiX-lmLVh0TE090cQYY5tgsu261bqqxTW9kGIbs2haaXbh48ua1f2P_Et-DBV2NMdETAYYwzPuY3xve_B7AS7wobCg91wSBcX10f662ee5mQgnj21zqpjbg-2k4OfLfngQnP-3ib_kh-gU3sozGX5OBX2T54AdpKO3AptSsEK2Vy-twww-9iPQ6_tgTSHHUznZ_kRAulaHvaBs9Plh_fn1a-g1rrkPXZu4Z3wHd9bpNOTndrat013z5hdDxfz7rLmyugCnbazXpHlyzxX24NezqwT2Ab1484DGbUP5M-Rmnw0ZjWZmzY0ocQ8zKPtQop_qcxWW1HLwhKmzKrWNDvUjLgk3n1WKeWYYOvVzOrK2WDBEzGxWzJguBHc_RPM_s1dfLA1oxwGO8IF_MDmdlVTbrTESf8hCOxqNPw4m7KuOA8idW9chPtadlqFMKLkUqM5wgdRPY8NDwPMiNMCo1IQZTryNP5irUuRdoS9Q30lqxBRtFWdhtYCrytJJGRSrNfCuUtsJGKaFSBJIYbTvgdlJMzIrjnEptnCUtOzNPaHiTfngdeNW3v2jZPf7YcqdTimRl5csEY91A-ujClAMv-tsoFvrpogtb1tgmCgKpEAWEDjxqlal_Fad6Eth3B3ijEn_pQ7I33R_1Z4__5aHncPMwHicH-9N3T-A2J4hCJKHeDmxUi9o-RYBVpc8aG_oOQqQdKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=0D%2F2D+Heterojunctions+of+Vanadate+Quantum+Dots%2FGraphitic+Carbon+Nitride+Nanosheets+for+Enhanced+Visible-Light-Driven+Photocatalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ye%2C+Meng-Yang&rft.au=Zhao%2C+Zhi-Hao&rft.au=Hu%2C+Zhuo-Feng&rft.au=Liu%2C+Le-Quan&rft.date=2017-07-10&rft.eissn=1521-3773&rft.volume=56&rft.issue=29&rft.spage=8407&rft_id=info:doi/10.1002%2Fanie.201611127&rft_id=info%3Apmid%2F28052568&rft.externalDocID=28052568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon