0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible‐Light‐Driven Photocatalysis
0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g‐C3N4)...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 29; pp. 8407 - 8411 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.07.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g‐C3N4) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up‐conversion absorption, and nitrogen coordinating sites of g‐C3N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible‐light‐driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto‐electronic applications, not limited in photocatalysis.
Vanadate quantum dots including AgVO3, BiVO4, InVO4, and CuV2O6 were strongly coupled with graphitic carbon nitride nanosheets using an in situ growth strategy. These quantum dots displayed a much better visible‐light‐driven photoelectrochemical activity and photocatalytic degradation efficiency than single vanadate quantum dots, carbon nitride nanosheets or previously reported highly active photocatalysts. |
---|---|
AbstractList | 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g-C3N4) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis. 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO , BiVO , InVO and CuV O ) QDs/graphitic carbon nitride (g-C N ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C N NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis. 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3, BiVO4, InVO4 and CuV2O6) QDs/graphitic carbon nitride (g‐C3N4) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up‐conversion absorption, and nitrogen coordinating sites of g‐C3N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible‐light‐driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto‐electronic applications, not limited in photocatalysis. Vanadate quantum dots including AgVO3, BiVO4, InVO4, and CuV2O6 were strongly coupled with graphitic carbon nitride nanosheets using an in situ growth strategy. These quantum dots displayed a much better visible‐light‐driven photoelectrochemical activity and photocatalytic degradation efficiency than single vanadate quantum dots, carbon nitride nanosheets or previously reported highly active photocatalysts. 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3 , BiVO4 , InVO4 and CuV2 O6 ) QDs/graphitic carbon nitride (g-C3 N4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3 N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis. 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO 3 , BiVO 4 , InVO 4 and CuV 2 O 6 ) QDs/graphitic carbon nitride (g‐C 3 N 4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up‐conversion absorption, and nitrogen coordinating sites of g‐C 3 N 4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible‐light‐driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto‐electronic applications, not limited in photocatalysis. |
Author | Liu, Le‐Quan Ye, Meng‐Yang Zhao, Zhi‐Hao Hu, Zhuo‐Feng Ji, Hui‐Ming Ma, Tian‐Yi Shen, Zhu‐Rui |
Author_xml | – sequence: 1 givenname: Meng‐Yang surname: Ye fullname: Ye, Meng‐Yang organization: Tianjin University – sequence: 2 givenname: Zhi‐Hao surname: Zhao fullname: Zhao, Zhi‐Hao organization: Tianjin University – sequence: 3 givenname: Zhuo‐Feng surname: Hu fullname: Hu, Zhuo‐Feng organization: The Chinese University of Hong Kong – sequence: 4 givenname: Le‐Quan surname: Liu fullname: Liu, Le‐Quan organization: Tianjin University – sequence: 5 givenname: Hui‐Ming surname: Ji fullname: Ji, Hui‐Ming organization: Tianjin University – sequence: 6 givenname: Zhu‐Rui surname: Shen fullname: Shen, Zhu‐Rui email: shenzhurui@tju.edu.cn organization: Tianjin University – sequence: 7 givenname: Tian‐Yi orcidid: 0000-0002-1042-8700 surname: Ma fullname: Ma, Tian‐Yi email: tian-yi.ma@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28052568$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhleoiH7AlSOyxIXLJrZ3_bHHKgltpSiABL2uZr2zxNHGDrYXlFtvvfIb-SVslFKkSojTzOF5ZkbznmcnzjvMsteMThilfArO4oRTJhljXD3LzpjgLC-UKk7GviyKXGnBTrPzGDcjrzWVL7JTrqngQuqz7J7Op3xOrjFh8JvBmWS9i8R35BYctJCQfBrApWFL5j7F6VWA3doma8gMQuMdWdkUbItkBc7HNWKKpPOBLNwanMGW3Npomx5_3f1c2q_rNNZ5sN_RkY9rn7yBBP0-2vgye95BH_HVQ73IvrxffJ5d58sPVzezy2VuBJMq12UDFJSEhnLOi0a1UmlgTHPJpeGd6ExhqsbISlKmqeoqCR0VgLQUTCEWF9m749xd8N8GjKne2miw78GhH2LNtBCqYlzLEX37BN34IbjxuppVTKiykkU1Um8eqKHZYlvvgt1C2Nd_XjwCkyNggo8xYPeIMFofMqwPGdaPGY5C-UQwNsEhlxTA9v_WqqP2w_a4_8-S-nJ1s_jr_gY8qLKf |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2020_03_171 crossref_primary_10_1016_j_cej_2020_125258 crossref_primary_10_1039_D0TA06993K crossref_primary_10_1016_j_apcatb_2020_119007 crossref_primary_10_1016_j_jcis_2019_06_077 crossref_primary_10_1002_smll_201902744 crossref_primary_10_1016_j_cej_2021_134375 crossref_primary_10_1002_adfm_202306014 crossref_primary_10_1016_j_cplett_2018_09_070 crossref_primary_10_1016_j_apcatb_2021_120765 crossref_primary_10_1002_smsc_202300213 crossref_primary_10_1007_s10853_021_06774_5 crossref_primary_10_1021_acssuschemeng_7b00417 crossref_primary_10_1016_j_apsusc_2019_06_057 crossref_primary_10_1016_j_mtsust_2023_100416 crossref_primary_10_1016_j_cej_2025_159567 crossref_primary_10_1016_j_jece_2024_113415 crossref_primary_10_1038_s41598_020_75003_x crossref_primary_10_1021_acsami_9b10758 crossref_primary_10_1016_j_cej_2025_160317 crossref_primary_10_1021_acssuschemeng_8b01299 crossref_primary_10_1002_ange_202219214 crossref_primary_10_1016_j_apcatb_2021_120895 crossref_primary_10_1016_j_apcatb_2018_03_076 crossref_primary_10_1039_D4SC03663H crossref_primary_10_1016_j_apcatb_2018_03_077 crossref_primary_10_2174_1573411017666210108092850 crossref_primary_10_1016_j_apcatb_2018_09_036 crossref_primary_10_1016_j_cej_2020_127214 crossref_primary_10_1039_C9NH00805E crossref_primary_10_1002_ange_202116699 crossref_primary_10_1016_j_apcatb_2018_09_030 crossref_primary_10_1021_acssuschemeng_8b03006 crossref_primary_10_1016_j_inoche_2019_06_012 crossref_primary_10_1016_j_apcatb_2018_11_054 crossref_primary_10_3762_bjnano_8_159 crossref_primary_10_1002_ange_201914001 crossref_primary_10_1021_acs_analchem_8b02302 crossref_primary_10_1016_j_jechem_2018_05_013 crossref_primary_10_1016_j_apsusc_2022_155036 crossref_primary_10_1021_acs_inorgchem_0c03286 crossref_primary_10_1039_C8TA09735F crossref_primary_10_1002_ange_201812773 crossref_primary_10_1002_admi_201802088 crossref_primary_10_1039_D0CC04790B crossref_primary_10_1039_c8pp00387d crossref_primary_10_1021_acscatal_4c00290 crossref_primary_10_1088_1361_6528_ac0eae crossref_primary_10_1142_S0217984924504104 crossref_primary_10_3390_nano10061123 crossref_primary_10_1002_adfm_201705407 crossref_primary_10_1002_anie_201914001 crossref_primary_10_1002_anie_202002375 crossref_primary_10_1021_acs_inorgchem_1c02863 crossref_primary_10_1039_C7TA06176E crossref_primary_10_1039_D1NA00576F crossref_primary_10_1016_j_matpr_2022_04_118 crossref_primary_10_1039_D2QI01019D crossref_primary_10_1016_j_apcatb_2020_119167 crossref_primary_10_1016_j_ecoenv_2020_111147 crossref_primary_10_1016_j_talo_2024_100371 crossref_primary_10_1002_solr_202000351 crossref_primary_10_1016_j_jcis_2024_03_074 crossref_primary_10_1002_ange_202002375 crossref_primary_10_1016_j_jechem_2020_03_085 crossref_primary_10_1016_j_apcata_2019_04_002 crossref_primary_10_1016_j_gee_2025_01_007 crossref_primary_10_1002_cssc_201701984 crossref_primary_10_1016_j_jallcom_2021_162853 crossref_primary_10_1016_j_jmst_2023_03_027 crossref_primary_10_1021_acssuschemeng_8b03318 crossref_primary_10_1002_adma_201900709 crossref_primary_10_1016_j_apcatb_2018_11_012 crossref_primary_10_1016_j_apcatb_2019_03_017 crossref_primary_10_1088_1361_6528_ac15c8 crossref_primary_10_2139_ssrn_3999298 crossref_primary_10_1016_j_jallcom_2023_170700 crossref_primary_10_1016_j_jallcom_2024_176504 crossref_primary_10_1039_C9CC04049H crossref_primary_10_1021_acs_jpcc_7b12496 crossref_primary_10_1002_smll_201800416 crossref_primary_10_1016_j_cej_2018_07_071 crossref_primary_10_1016_j_jphotochem_2023_115249 crossref_primary_10_1021_acsenergylett_8b01853 crossref_primary_10_1016_j_jcis_2021_02_053 crossref_primary_10_1016_j_mcat_2020_111378 crossref_primary_10_1016_j_nanoen_2021_106714 crossref_primary_10_1016_j_jhazmat_2022_129244 crossref_primary_10_1016_j_apsusc_2019_04_006 crossref_primary_10_1016_j_cej_2021_130832 crossref_primary_10_1002_eom2_12204 crossref_primary_10_1016_j_envpol_2023_122168 crossref_primary_10_1021_acsaem_1c04077 crossref_primary_10_1039_C8CY02509F crossref_primary_10_1016_j_jcis_2020_08_124 crossref_primary_10_1021_acs_inorgchem_9b02309 crossref_primary_10_1016_j_apcatb_2019_117931 crossref_primary_10_1016_j_dyepig_2018_04_023 crossref_primary_10_1039_C8DT00242H crossref_primary_10_1016_j_cej_2021_128991 crossref_primary_10_1016_j_jcis_2021_03_080 crossref_primary_10_1016_j_apsusc_2023_156736 crossref_primary_10_1021_acs_langmuir_9b01796 crossref_primary_10_1039_C8EN00124C crossref_primary_10_1039_D2TC00432A crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1007_s10854_024_11958_1 crossref_primary_10_1016_j_ijhydene_2022_10_226 crossref_primary_10_1021_acs_jpcc_3c06896 crossref_primary_10_1016_j_apcatb_2022_122148 crossref_primary_10_1016_j_jallcom_2020_155057 crossref_primary_10_1021_acsami_8b06320 crossref_primary_10_1016_j_jcis_2020_06_116 crossref_primary_10_1039_C7TA09350K crossref_primary_10_1039_D3SU00006K crossref_primary_10_1016_j_cej_2021_131145 crossref_primary_10_1016_j_wasman_2022_06_030 crossref_primary_10_1016_j_jhazmat_2019_01_009 crossref_primary_10_1016_j_ijhydene_2019_01_094 crossref_primary_10_1039_C8DT02636J crossref_primary_10_1039_D2NJ06275E crossref_primary_10_1039_C9TA11958B crossref_primary_10_1016_j_apcata_2024_119774 crossref_primary_10_1002_anie_202204880 crossref_primary_10_1002_adma_202311937 crossref_primary_10_1016_j_apcatb_2019_05_007 crossref_primary_10_1039_D2TA01758J crossref_primary_10_1016_j_jwpe_2023_104495 crossref_primary_10_1016_j_matlet_2018_07_026 crossref_primary_10_1007_s11051_019_4632_0 crossref_primary_10_1016_j_seppur_2024_130608 crossref_primary_10_1021_acs_inorgchem_2c04366 crossref_primary_10_1016_j_cej_2021_131158 crossref_primary_10_1039_D3CY01461D crossref_primary_10_1039_C8TA07915C crossref_primary_10_1002_smll_202405533 crossref_primary_10_1021_acscatal_8b01645 crossref_primary_10_1039_C8QI01202D crossref_primary_10_1016_j_jechem_2020_01_017 crossref_primary_10_1016_j_cej_2019_06_030 crossref_primary_10_1016_S1872_2067_17_62911_5 crossref_primary_10_1016_j_jmst_2022_02_012 crossref_primary_10_1016_j_jphotochem_2019_111866 crossref_primary_10_1016_j_cej_2020_127841 crossref_primary_10_1021_acsami_3c00036 crossref_primary_10_1016_j_jhazmat_2020_122865 crossref_primary_10_1002_anie_201812773 crossref_primary_10_3390_catal10010142 crossref_primary_10_1016_j_seppur_2024_128991 crossref_primary_10_3390_catal10060679 crossref_primary_10_1016_j_apcatb_2022_121268 crossref_primary_10_1002_adfm_201806284 crossref_primary_10_1007_s12633_021_01056_w crossref_primary_10_1016_j_jmst_2021_01_022 crossref_primary_10_1039_D4NA00806E crossref_primary_10_1021_acsphotonics_3c01099 crossref_primary_10_1039_C8CY00698A crossref_primary_10_3390_nano10040643 crossref_primary_10_1016_j_jcis_2024_06_050 crossref_primary_10_1021_acsnano_9b03649 crossref_primary_10_1039_D0RA06226J crossref_primary_10_1021_acsami_7b06030 crossref_primary_10_1016_j_apcatb_2023_122624 crossref_primary_10_1016_j_jallcom_2020_157795 crossref_primary_10_1016_j_apcatb_2018_04_080 crossref_primary_10_1016_j_jmrt_2022_04_102 crossref_primary_10_1016_j_jhazmat_2017_07_056 crossref_primary_10_1039_C9DT00744J crossref_primary_10_1002_ange_201802014 crossref_primary_10_1007_s11708_023_0899_z crossref_primary_10_1016_j_apsusc_2018_09_222 crossref_primary_10_1039_C8DT02402B crossref_primary_10_1002_asia_202000419 crossref_primary_10_1021_acs_langmuir_4c00643 crossref_primary_10_1016_j_jhazmat_2020_122529 crossref_primary_10_1021_acsnano_3c04903 crossref_primary_10_1016_j_cattod_2019_03_058 crossref_primary_10_1016_j_envres_2021_110842 crossref_primary_10_1016_j_matpr_2021_11_381 crossref_primary_10_1039_C9TA09685J crossref_primary_10_1016_j_colsurfa_2019_124322 crossref_primary_10_1016_j_apmt_2020_100798 crossref_primary_10_1016_j_apcatb_2018_03_035 crossref_primary_10_1021_acs_inorgchem_1c04024 crossref_primary_10_1002_smll_201801353 crossref_primary_10_1016_j_apcatb_2022_121109 crossref_primary_10_1002_anie_201708709 crossref_primary_10_1016_j_jhazmat_2020_122659 crossref_primary_10_3389_fmats_2017_00011 crossref_primary_10_1002_anie_201810434 crossref_primary_10_1016_j_apmt_2021_100963 crossref_primary_10_1016_j_jwpe_2024_105419 crossref_primary_10_1039_D3NJ05134J crossref_primary_10_1002_adom_201900765 crossref_primary_10_1002_ange_201806514 crossref_primary_10_2139_ssrn_4148230 crossref_primary_10_1007_s10854_019_02573_6 crossref_primary_10_1016_j_ces_2018_12_011 crossref_primary_10_1002_adfm_201706545 crossref_primary_10_1002_solr_202000639 crossref_primary_10_1016_j_jallcom_2025_179252 crossref_primary_10_1016_j_apcatb_2020_118947 crossref_primary_10_1021_acsami_1c13167 crossref_primary_10_1002_aenm_201802181 crossref_primary_10_1002_smtd_202300163 crossref_primary_10_1016_j_chemosphere_2021_131906 crossref_primary_10_1021_acs_langmuir_3c01518 crossref_primary_10_1016_j_jhazmat_2020_123509 crossref_primary_10_1016_j_cej_2021_133254 crossref_primary_10_1016_j_ultsonch_2023_106362 crossref_primary_10_1016_j_seppur_2023_124177 crossref_primary_10_1016_j_jhazmat_2021_127177 crossref_primary_10_1002_adfm_201902486 crossref_primary_10_1021_acsami_2c17625 crossref_primary_10_1016_j_jallcom_2024_173771 crossref_primary_10_1016_j_seppur_2022_120875 crossref_primary_10_1039_D4TA02791D crossref_primary_10_1021_acsami_3c03831 crossref_primary_10_1016_j_ijhydene_2019_05_135 crossref_primary_10_1016_j_apcata_2023_119403 crossref_primary_10_1016_j_nanoen_2018_06_001 crossref_primary_10_1039_C8TA03018A crossref_primary_10_1021_acscatal_9b05240 crossref_primary_10_1016_j_apsusc_2023_158290 crossref_primary_10_1016_j_jclepro_2021_127980 crossref_primary_10_1002_smll_202205902 crossref_primary_10_1016_j_cej_2021_129574 crossref_primary_10_1002_chem_202102330 crossref_primary_10_1016_j_apcatb_2022_121216 crossref_primary_10_1016_j_cej_2021_132519 crossref_primary_10_1016_j_jallcom_2021_163589 crossref_primary_10_1016_j_jhazmat_2023_130908 crossref_primary_10_1016_j_physb_2020_412367 crossref_primary_10_1002_ange_202204880 crossref_primary_10_1021_acscatal_4c01712 crossref_primary_10_1016_j_cej_2022_137370 crossref_primary_10_1016_j_solener_2023_04_030 crossref_primary_10_1039_D3EN00112A crossref_primary_10_1016_j_materresbull_2018_03_029 crossref_primary_10_1021_acs_langmuir_4c00558 crossref_primary_10_1007_s11356_020_10814_z crossref_primary_10_1021_acsami_0c22654 crossref_primary_10_1002_smll_201902291 crossref_primary_10_1002_ange_201910510 crossref_primary_10_1002_eom2_12097 crossref_primary_10_1016_j_colsurfa_2018_01_023 crossref_primary_10_1007_s12598_022_02226_4 crossref_primary_10_1002_smtd_202100109 crossref_primary_10_1002_smll_202501949 crossref_primary_10_1016_j_jcis_2022_01_008 crossref_primary_10_1038_s41377_023_01327_8 crossref_primary_10_1002_cey2_252 crossref_primary_10_1016_j_cej_2021_132770 crossref_primary_10_1016_j_seppur_2024_128247 crossref_primary_10_1016_j_snb_2022_131903 crossref_primary_10_1016_j_cej_2021_129596 crossref_primary_10_1063_5_0055711 crossref_primary_10_1016_j_jes_2023_11_003 crossref_primary_10_1002_adfm_202213612 crossref_primary_10_1002_adsu_202000130 crossref_primary_10_1016_j_synthmet_2023_117452 crossref_primary_10_1039_C7CC07975C crossref_primary_10_1002_rpm_20230019 crossref_primary_10_1016_S1872_2067_21_64012_3 crossref_primary_10_1016_j_apcatb_2019_118137 crossref_primary_10_1016_j_jallcom_2022_168199 crossref_primary_10_1021_acssuschemeng_8b01751 crossref_primary_10_1039_D3YA00506B crossref_primary_10_1002_adfm_202002021 crossref_primary_10_1002_slct_201802452 crossref_primary_10_1016_j_jallcom_2020_157668 crossref_primary_10_1039_D2CP05609G crossref_primary_10_1016_j_jwpe_2023_104080 crossref_primary_10_1016_j_cclet_2020_11_065 crossref_primary_10_1021_acsami_7b13272 crossref_primary_10_1002_adfm_202313793 crossref_primary_10_1002_slct_202201348 crossref_primary_10_1016_j_apcatb_2022_121662 crossref_primary_10_1016_j_apcatb_2020_118879 crossref_primary_10_1016_j_jallcom_2019_152883 crossref_primary_10_1016_j_jcis_2019_09_083 crossref_primary_10_1016_j_apcatb_2020_119727 crossref_primary_10_1002_adfm_201809036 crossref_primary_10_1016_j_apcatb_2017_12_070 crossref_primary_10_1016_j_apcatb_2019_118466 crossref_primary_10_1016_j_jece_2021_106652 crossref_primary_10_1039_C9RA04227J crossref_primary_10_1016_j_jece_2022_109245 crossref_primary_10_1016_j_apsusc_2022_154601 crossref_primary_10_1002_advs_202001431 crossref_primary_10_1016_j_trac_2020_116126 crossref_primary_10_1039_C8TA08001A crossref_primary_10_1016_j_seppur_2020_118251 crossref_primary_10_1016_j_apcatb_2017_11_038 crossref_primary_10_1016_j_jallcom_2019_04_239 crossref_primary_10_1002_slct_202102952 crossref_primary_10_3389_fchem_2020_00015 crossref_primary_10_1016_j_cej_2019_122296 crossref_primary_10_1016_j_scitotenv_2020_144139 crossref_primary_10_1016_j_mtener_2023_101331 crossref_primary_10_1039_C8NR08611G crossref_primary_10_1021_acs_jpcc_9b06954 crossref_primary_10_1016_j_apcatb_2018_07_053 crossref_primary_10_1039_D4NJ01876A crossref_primary_10_1021_acs_nanolett_8b04768 crossref_primary_10_1016_j_seppur_2023_123102 crossref_primary_10_1021_acsami_8b21131 crossref_primary_10_1002_solr_201900517 crossref_primary_10_1039_D0TA07345H crossref_primary_10_1039_D3GC03711H crossref_primary_10_1002_adma_202210746 crossref_primary_10_1021_acsami_7b14275 crossref_primary_10_1016_j_ijhydene_2023_01_086 crossref_primary_10_1039_D1EN00318F crossref_primary_10_1016_j_jcou_2020_01_005 crossref_primary_10_1016_j_ijhydene_2022_12_257 crossref_primary_10_1016_j_tsf_2023_139863 crossref_primary_10_1039_D0DT04356G crossref_primary_10_1016_j_ecoenv_2024_116221 crossref_primary_10_1016_j_apsusc_2018_07_015 crossref_primary_10_1016_j_cej_2021_130035 crossref_primary_10_2139_ssrn_4120898 crossref_primary_10_1016_j_seppur_2024_127462 crossref_primary_10_1016_j_cej_2018_10_200 crossref_primary_10_1021_acscatal_8b00070 crossref_primary_10_1016_j_apcatb_2017_11_060 crossref_primary_10_1016_j_ijhydene_2018_11_152 crossref_primary_10_1007_s12274_024_6904_2 crossref_primary_10_1039_C8CY00351C crossref_primary_10_1088_1742_6596_2053_1_012004 crossref_primary_10_1016_j_ijhydene_2021_09_019 crossref_primary_10_1063_1674_0068_cjcp1905105 crossref_primary_10_1080_10584587_2020_1728622 crossref_primary_10_1016_j_jcis_2018_05_112 crossref_primary_10_1016_j_apsusc_2023_156710 crossref_primary_10_1007_s12209_020_00266_4 crossref_primary_10_1021_acsanm_8b00907 crossref_primary_10_1021_acscatal_9b03462 crossref_primary_10_1016_j_diamond_2020_108149 crossref_primary_10_1039_C8RA02882F crossref_primary_10_1016_j_ijhydene_2020_11_019 crossref_primary_10_1016_j_jallcom_2019_01_204 crossref_primary_10_1016_j_jece_2017_08_045 crossref_primary_10_1016_j_cej_2020_126061 crossref_primary_10_1039_C8NR10445J crossref_primary_10_1007_s00604_020_04373_w crossref_primary_10_1039_C9CY02212K crossref_primary_10_1039_D0GC03784B crossref_primary_10_1016_j_ijhydene_2020_11_151 crossref_primary_10_3390_catal14060374 crossref_primary_10_1007_s11356_024_32802_3 crossref_primary_10_1021_acsnano_7b08691 crossref_primary_10_1016_j_jallcom_2023_168995 crossref_primary_10_1016_j_cej_2022_135238 crossref_primary_10_1016_j_ceramint_2022_09_181 crossref_primary_10_2139_ssrn_4164493 crossref_primary_10_1007_s13738_020_02060_4 crossref_primary_10_1016_j_apsusc_2023_156839 crossref_primary_10_1016_j_carbon_2017_12_048 crossref_primary_10_1002_anie_201806514 crossref_primary_10_1002_chem_202000708 crossref_primary_10_1016_j_apsusc_2022_154110 crossref_primary_10_1021_acssuschemeng_8b03406 crossref_primary_10_1016_j_jallcom_2022_168103 crossref_primary_10_1016_j_jece_2023_111349 crossref_primary_10_1016_j_apcatb_2020_119789 crossref_primary_10_1016_j_chempr_2019_07_019 crossref_primary_10_1016_j_matpr_2020_05_571 crossref_primary_10_1007_s10853_018_2509_8 crossref_primary_10_1021_acs_iecr_0c02397 crossref_primary_10_1016_j_jmst_2024_02_055 crossref_primary_10_1002_smll_202302188 crossref_primary_10_1016_j_apsusc_2022_155555 crossref_primary_10_1016_j_cclet_2019_04_068 crossref_primary_10_1016_j_cej_2021_131844 crossref_primary_10_1021_acsomega_1c03276 crossref_primary_10_3724_SP_J_1249_2024_03323 crossref_primary_10_1002_anie_202116699 crossref_primary_10_1039_D2QI00317A crossref_primary_10_1007_s10853_019_04316_8 crossref_primary_10_1016_j_cattod_2018_06_045 crossref_primary_10_1016_j_surfin_2023_103137 crossref_primary_10_2139_ssrn_3989393 crossref_primary_10_1016_S1872_2067_22_64142_1 crossref_primary_10_3390_ijms19041162 crossref_primary_10_1016_j_nanoen_2023_108228 crossref_primary_10_1007_s10853_020_05120_5 crossref_primary_10_1016_j_apcatb_2018_08_071 crossref_primary_10_1016_j_apcatb_2018_08_072 crossref_primary_10_1016_j_apcatb_2019_118181 crossref_primary_10_1021_acs_inorgchem_3c03502 crossref_primary_10_1002_adma_201903942 crossref_primary_10_1016_j_apcatb_2019_118067 crossref_primary_10_1016_j_mtchem_2018_11_002 crossref_primary_10_1016_j_jece_2023_111689 crossref_primary_10_1016_j_jmst_2020_11_039 crossref_primary_10_1016_j_jpowsour_2022_232430 crossref_primary_10_1007_s11164_018_3561_3 crossref_primary_10_1016_j_apcatb_2019_02_075 crossref_primary_10_1016_j_seppur_2024_130022 crossref_primary_10_3390_bios13010058 crossref_primary_10_1016_j_cclet_2024_110752 crossref_primary_10_1002_cctc_202001631 crossref_primary_10_1016_j_apmt_2022_101636 crossref_primary_10_3390_en13020420 crossref_primary_10_1016_j_jmst_2019_03_008 crossref_primary_10_1002_asia_202200031 crossref_primary_10_1002_eem2_12772 crossref_primary_10_1021_acs_jpclett_4c02102 crossref_primary_10_1016_j_molliq_2024_124017 crossref_primary_10_1016_j_seppur_2020_117328 crossref_primary_10_1016_j_cjche_2021_03_055 crossref_primary_10_3390_nano12162864 crossref_primary_10_1016_j_cej_2021_131973 crossref_primary_10_1016_j_talanta_2019_120288 crossref_primary_10_1016_j_desal_2023_117277 crossref_primary_10_1002_anie_201802014 crossref_primary_10_1016_j_envres_2024_120656 crossref_primary_10_3390_nano10020253 crossref_primary_10_1021_acsanm_4c00014 crossref_primary_10_1016_j_cej_2021_129556 crossref_primary_10_3390_catal11111345 crossref_primary_10_1016_j_fuel_2023_129860 crossref_primary_10_1016_j_cej_2022_140633 crossref_primary_10_1007_s10854_024_12264_6 crossref_primary_10_1002_anie_202219214 crossref_primary_10_1016_j_apcatb_2021_120622 crossref_primary_10_1016_j_matlet_2019_06_057 crossref_primary_10_1016_j_apcatb_2019_01_036 crossref_primary_10_1016_j_apcatb_2021_120628 crossref_primary_10_1016_j_colsurfa_2024_133729 crossref_primary_10_1002_anie_201910510 crossref_primary_10_1021_acs_iecr_2c02674 crossref_primary_10_1016_j_jelechem_2021_115772 crossref_primary_10_1002_adfm_202213814 crossref_primary_10_1007_s40843_024_2907_9 crossref_primary_10_1016_j_jcis_2018_08_028 crossref_primary_10_1039_D0QI01026J crossref_primary_10_1002_ange_201708709 crossref_primary_10_1002_ange_201810434 crossref_primary_10_1007_s10854_023_09815_8 crossref_primary_10_1016_j_jtice_2019_09_002 crossref_primary_10_1039_C8TC03812K crossref_primary_10_1016_j_ces_2018_02_046 crossref_primary_10_1016_j_jallcom_2025_178844 crossref_primary_10_1016_j_jcis_2020_03_061 |
Cites_doi | 10.1021/acs.est.5b00531 10.1021/cm052256f 10.1039/C2CS35374A 10.1039/C1CS15172J 10.1039/c3nr03043a 10.1039/C6TB00418K 10.1002/adfm.201400330 10.1002/adma.201500033 10.1021/jp210033y 10.1002/adma.200801153 10.1002/adfm.201200922 10.1002/ange.201501131 10.1002/anie.201509758 10.1021/ja302846n 10.1039/C2CS35266D 10.1039/c3ee43750g 10.1016/j.apcatb.2014.08.013 10.1021/la304753x 10.1002/anie.200906291 10.1021/acs.chemrev.5b00063 10.1038/nmat2635 10.1021/acs.chemrev.5b00267 10.1002/adma.200802627 10.1038/nmat2317 10.1016/j.apcatb.2014.10.016 10.1002/ange.201509758 10.1021/cr400299t 10.1002/anie.201501131 10.1038/ncomms11954 10.1038/nature13829 10.1002/ange.200906291 10.1016/S0009-2614(02)00254-3 10.1021/ja411651e 10.1126/science.1246913 10.1021/ja308249k 10.1063/1.1321795 10.1038/ncomms2401 10.1002/adfm.201502429 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201611127 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8411 |
ExternalDocumentID | 28052568 10_1002_anie_201611127 ANIE201611127 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DE150101306; LP160100927 – fundername: National Natural Science Foundation of China funderid: 21303118 – fundername: Seed Foundation of Tianjin University – fundername: Doctor Project for Young Teachers of Ministry of Education funderid: 20110032120021 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c5167-84ba0a76ab02223b7d678a1182626c2f5fc3c9bc69601807f96af05ae04517ee3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Thu Jul 10 18:39:23 EDT 2025 Fri Jul 25 10:32:08 EDT 2025 Wed Feb 19 02:33:27 EST 2025 Tue Jul 01 03:27:25 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Wed Jan 22 16:59:18 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | vanadates quantum dots photocatalysis heterojunctions graphitic carbon nitride |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5167-84ba0a76ab02223b7d678a1182626c2f5fc3c9bc69601807f96af05ae04517ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1042-8700 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.201611127 |
PMID | 28052568 |
PQID | 1915749639 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1855791286 proquest_journals_1915749639 pubmed_primary_28052568 crossref_primary_10_1002_anie_201611127 crossref_citationtrail_10_1002_anie_201611127 wiley_primary_10_1002_anie_201611127_ANIE201611127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 10, 2017 |
PublicationDateYYYYMMDD | 2017-07-10 |
PublicationDate_xml | – month: 07 year: 2017 text: July 10, 2017 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 515 2015; 163 2013; 29 2013; 4 2009; 21 2002; 356 2000; 88 2013; 42 2015; 165 2006; 18 2014; 24 2010 2010; 49 122 2013; 5 2014; 114 2014; 136 2016; 4 2016; 7 2015; 25 2015; 27 2016 2016; 55 128 2015; 49 2012; 134 2015; 115 2015 2015; 54 127 2009; 8 2013; 135 2008; 20 2014; 7 2012; 116 2012; 22 2012; 41 2014; 343 2010; 9 e_1_2_2_3_2 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_23_1 e_1_2_2_6_2 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_40_2 e_1_2_2_41_1 e_1_2_2_29_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_25_2 e_1_2_2_36_2 e_1_2_2_11_3 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_37_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 134 start-page: 6575 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 165 start-page: 335 year: 2015 publication-title: Appl. Catal. B – volume: 163 start-page: 298 year: 2015 publication-title: Appl. Catal. B – volume: 54 127 start-page: 3892 3964 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 343 start-page: 990 year: 2014 publication-title: Science – volume: 116 start-page: 2967 year: 2012 publication-title: J. Phys. Chem. C – volume: 20 start-page: 3958 year: 2008 publication-title: Adv. Mater. – volume: 49 start-page: 6264 year: 2015 publication-title: Environ. Sci. Technol. – volume: 21 start-page: 1609 year: 2009 publication-title: Adv. Mater. – volume: 7 start-page: 1895 year: 2014 publication-title: Energy Environ. Sci. – volume: 115 start-page: 10307 year: 2015 publication-title: Chem. Rev. – volume: 114 start-page: 863 year: 2014 publication-title: Chem. Rev. – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 18 start-page: 867 year: 2006 publication-title: Chem. Mater. – volume: 9 start-page: 239 year: 2010 publication-title: Nat. Mater. – volume: 25 start-page: 5816 year: 2015 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 1559 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 4111 year: 2013 publication-title: Langmuir – volume: 115 start-page: 12732 year: 2015 publication-title: Chem. Rev. – volume: 356 start-page: 221 year: 2002 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 11954 year: 2016 publication-title: Nat. Commun. – volume: 4 start-page: 4980 year: 2016 publication-title: J. Mater. Chem. B – volume: 4 start-page: 1432 year: 2013 publication-title: Nat. Commun. – volume: 55 128 start-page: 1138 1150 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 782 year: 2012 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 18 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 88 start-page: 6272 year: 2000 publication-title: J. Appl. Phys. – volume: 515 start-page: 96 year: 2014 publication-title: Nature – volume: 27 start-page: 2150 year: 2015 publication-title: Adv. Mater. – volume: 22 start-page: 4763 year: 2012 publication-title: Adv. Funct. Mater. – volume: 49 122 start-page: 3014 3078 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 9830 year: 2013 publication-title: Nanoscale – volume: 42 start-page: 2294 year: 2013 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 2963 year: 2013 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 5798 year: 2014 publication-title: Adv. Funct. Mater. – ident: e_1_2_2_41_1 doi: 10.1021/acs.est.5b00531 – ident: e_1_2_2_1_1 – ident: e_1_2_2_39_2 doi: 10.1021/cm052256f – ident: e_1_2_2_7_1 doi: 10.1039/C2CS35374A – ident: e_1_2_2_18_1 doi: 10.1039/C1CS15172J – ident: e_1_2_2_15_2 doi: 10.1039/c3nr03043a – ident: e_1_2_2_27_2 doi: 10.1039/C6TB00418K – ident: e_1_2_2_10_2 doi: 10.1002/adfm.201400330 – ident: e_1_2_2_35_1 – ident: e_1_2_2_28_2 doi: 10.1002/adma.201500033 – ident: e_1_2_2_38_1 – ident: e_1_2_2_43_1 doi: 10.1021/jp210033y – ident: e_1_2_2_5_2 doi: 10.1002/adma.200801153 – ident: e_1_2_2_23_1 – ident: e_1_2_2_30_1 doi: 10.1002/adfm.201200922 – ident: e_1_2_2_8_2 doi: 10.1002/ange.201501131 – ident: e_1_2_2_29_2 doi: 10.1002/anie.201509758 – ident: e_1_2_2_14_2 doi: 10.1021/ja302846n – ident: e_1_2_2_37_2 doi: 10.1039/C2CS35266D – ident: e_1_2_2_42_1 doi: 10.1039/c3ee43750g – ident: e_1_2_2_31_1 doi: 10.1016/j.apcatb.2014.08.013 – ident: e_1_2_2_34_1 doi: 10.1021/la304753x – ident: e_1_2_2_11_2 doi: 10.1002/anie.200906291 – ident: e_1_2_2_2_2 doi: 10.1021/acs.chemrev.5b00063 – ident: e_1_2_2_4_1 – ident: e_1_2_2_40_2 doi: 10.1038/nmat2635 – ident: e_1_2_2_17_2 doi: 10.1021/acs.chemrev.5b00267 – ident: e_1_2_2_32_1 doi: 10.1002/adma.200802627 – ident: e_1_2_2_24_2 doi: 10.1038/nmat2317 – ident: e_1_2_2_36_2 doi: 10.1016/j.apcatb.2014.10.016 – ident: e_1_2_2_13_1 – ident: e_1_2_2_19_1 – ident: e_1_2_2_29_3 doi: 10.1002/ange.201509758 – ident: e_1_2_2_6_2 doi: 10.1021/cr400299t – ident: e_1_2_2_8_1 doi: 10.1002/anie.201501131 – ident: e_1_2_2_12_2 doi: 10.1038/ncomms11954 – ident: e_1_2_2_3_2 doi: 10.1038/nature13829 – ident: e_1_2_2_11_3 doi: 10.1002/ange.200906291 – ident: e_1_2_2_21_2 doi: 10.1016/S0009-2614(02)00254-3 – ident: e_1_2_2_9_1 – ident: e_1_2_2_16_2 doi: 10.1021/ja411651e – ident: e_1_2_2_20_2 doi: 10.1126/science.1246913 – ident: e_1_2_2_26_2 doi: 10.1021/ja308249k – ident: e_1_2_2_33_1 doi: 10.1063/1.1321795 – ident: e_1_2_2_22_2 doi: 10.1038/ncomms2401 – ident: e_1_2_2_25_2 doi: 10.1002/adfm.201502429 |
SSID | ssj0028806 |
Score | 2.6632445 |
Snippet | 0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8407 |
SubjectTerms | Carbon nitride Crystals graphitic carbon nitride Heterojunctions Nanocomposites Nanocrystals Nanosheets Optoelectronics Photocatalysis Quantum dots Two dimensional composites Upconversion Vanadate vanadates |
Title | 0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible‐Light‐Driven Photocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201611127 https://www.ncbi.nlm.nih.gov/pubmed/28052568 https://www.proquest.com/docview/1915749639 https://www.proquest.com/docview/1855791286 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqXugFSvlKWyojIXFKN9hJHB-r3S0LaleAaNVbZHsd7UIbV5vk0hM3rv2N_SXMOJvAghASnKIkjuLYM-M3zswbQl7CRW5TEYUmSUwYg_kLlS2KcMYlN7EthPK1AU-n6eQsfneRXPyUxd_yQ_QbbqgZ3l6jgitdDX6QhmIGNoZmpaCtDNPJMWALUdHHnj-KgXC26UWch1iFvmNtjNhg_fH1Vek3qLmOXP3Sc_yAqK7TbcTJl8Om1ofm5hc-x__5qm1yf4VL6VErSA_Jhi13yL1hVw7uEfkWjQZsRCcYPuM-w2roBZa6gp5j3BhAVvqhgWlqrujI1dXgDTJhY2gdHaqldiWdLurlYmYp2HNXza2tKwqAmY7LuQ9CoOcL0M5Le_f19gQ3DOA4WqIppu_nrnZ-mwnZUx6Ts-Pxp-EkXFVxgOlHUvUs1ipSIlUafUuuxQzWR-X9GpYaViSF4UZqk4Iv9TqLRCFTVUSJssh8I6zlT8hm6Ur7jFCZRUoKIzOpZ7HlUlluM42gFHAkONsBCbtZzM2K4hwrbVzmLTkzy3F48354A_Kqb3_dknv8seV-JxT5SsmrHFzdRMRgwWRAXvS3YVrwn4sqrWugTZYkQgIISAPytBWm_lUMy0lA3wPCvEj8pQ_50fTtuD_b_ZeH9sgWQ1iCxKDRPtmsl419DqCq1gdecb4DA9QaVQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BclguvB-BBYyExCnbrJ3E8XHVdulCtwK0u-IW2a6jFpYEtcmFEzeu_EZ-CTNOE1QQQoJTlMRRHHtm_M1k_A3AM7woXCqj0CaJDWM0f6F2RRHOhRI2doXUvjbgySydnMUv3yVdNiHthWn5IfqAG2mGt9ek4BSQHvxkDaUt2JSblaK6cnkZrlBZb-9Vve0ZpDiKZ7vBSIiQ6tB3vI0RH2w_v70u_QY2t7GrX3yOroPput3mnHzYb2qzbz__wuj4X991A65toCk7bGXpJlxy5S3YHXYV4W7D12g04CM2oQya6j0uiF5mWVWwc0odQ9TK3jQ4U81HNqrq9eAFkWFTdh0b6pWpSjZb1qvl3DE06dV64Vy9ZoiZ2bhc-DwEdr5EBb1w3798m1LMAI-jFVlj9npR1ZWPNBGByh04OxqfDifhppADSgDxqmex0ZGWqTbkXgoj57hEau_a8NTyIimssMrYFN2pgyyShUp1ESXaEfmNdE7chZ2yKt19YCqLtJJWZcrMYyeUdsJlhnApQkn0twMIu2nM7YblnIptXOQtPzPPaXjzfngDeN63_9Tye_yx5V4nFflGz9c5eruJjNGIqQCe9rdxWui3iy5d1WCbLEmkQhyQBnCvlab-VZwqSmDfA-BeJv7Sh_xwdjzuzx78y0NPYHdyejLNp8ezVw_hKieUQjyh0R7s1KvGPUKMVZvHXot-AJvPHnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb5RAFH_RmqiX-lmLVh0TE090cQYY5tgsu261bqqxTW9kGIbs2haaXbh48ua1f2P_Et-DBV2NMdETAYYwzPuY3xve_B7AS7wobCg91wSBcX10f662ee5mQgnj21zqpjbg-2k4OfLfngQnP-3ib_kh-gU3sozGX5OBX2T54AdpKO3AptSsEK2Vy-twww-9iPQ6_tgTSHHUznZ_kRAulaHvaBs9Plh_fn1a-g1rrkPXZu4Z3wHd9bpNOTndrat013z5hdDxfz7rLmyugCnbazXpHlyzxX24NezqwT2Ab1484DGbUP5M-Rmnw0ZjWZmzY0ocQ8zKPtQop_qcxWW1HLwhKmzKrWNDvUjLgk3n1WKeWYYOvVzOrK2WDBEzGxWzJguBHc_RPM_s1dfLA1oxwGO8IF_MDmdlVTbrTESf8hCOxqNPw4m7KuOA8idW9chPtadlqFMKLkUqM5wgdRPY8NDwPMiNMCo1IQZTryNP5irUuRdoS9Q30lqxBRtFWdhtYCrytJJGRSrNfCuUtsJGKaFSBJIYbTvgdlJMzIrjnEptnCUtOzNPaHiTfngdeNW3v2jZPf7YcqdTimRl5csEY91A-ujClAMv-tsoFvrpogtb1tgmCgKpEAWEDjxqlal_Fad6Eth3B3ijEn_pQ7I33R_1Z4__5aHncPMwHicH-9N3T-A2J4hCJKHeDmxUi9o-RYBVpc8aG_oOQqQdKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=0D%2F2D+Heterojunctions+of+Vanadate+Quantum+Dots%2FGraphitic+Carbon+Nitride+Nanosheets+for+Enhanced+Visible-Light-Driven+Photocatalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ye%2C+Meng-Yang&rft.au=Zhao%2C+Zhi-Hao&rft.au=Hu%2C+Zhuo-Feng&rft.au=Liu%2C+Le-Quan&rft.date=2017-07-10&rft.eissn=1521-3773&rft.volume=56&rft.issue=29&rft.spage=8407&rft_id=info:doi/10.1002%2Fanie.201611127&rft_id=info%3Apmid%2F28052568&rft.externalDocID=28052568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |