Transforming Growth Factor-β1 (TGF-β1)-stimulated Fibroblast to Myofibroblast Differentiation Is Mediated by Hyaluronan (HA)-facilitated Epidermal Growth Factor Receptor (EGFR) and CD44 Co-localization in Lipid Rafts
Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previo...
Saved in:
Published in | The Journal of biological chemistry Vol. 288; no. 21; pp. 14824 - 14838 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.05.2013
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca2+/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing.
Background: Wound healing and scarring are driven by transforming growth factor-β1 (TGF-β1)-dependent fibroblast to myofibroblast differentiation.
Results: Cell surface CD44 and epidermal growth factor receptor (EGFR) co-localize in lipid rafts to signal through mitogen-activated protein kinase 1/2 (ERK1/2) and Ca2+/calmodulin kinase II (CaMKII).
Conclusion: CD44 moves into lipid rafts in a TGF-β1- and hyaluronan-dependent manner, co-localizes with EGFR, and triggers differentiation.
Significance: This pathway presents novel targets for the therapy of wound-healing and fibrosis. |
---|---|
AbstractList | Background:
Wound healing and scarring are driven by transforming growth factor-β1 (TGF-β1)-dependent fibroblast to myofibroblast differentiation.
Results:
Cell surface CD44 and epidermal growth factor receptor (EGFR) co-localize in lipid rafts to signal through mitogen-activated protein kinase 1/2 (ERK1/2) and Ca
2+
/calmodulin kinase II (CaMKII).
Conclusion:
CD44 moves into lipid rafts in a TGF-β1- and hyaluronan-dependent manner, co-localizes with EGFR, and triggers differentiation.
Significance:
This pathway presents novel targets for the therapy of wound-healing and fibrosis.
Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca
2+
/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing. Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca2+/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing. Background: Wound healing and scarring are driven by transforming growth factor-β1 (TGF-β1)-dependent fibroblast to myofibroblast differentiation. Results: Cell surface CD44 and epidermal growth factor receptor (EGFR) co-localize in lipid rafts to signal through mitogen-activated protein kinase 1/2 (ERK1/2) and Ca2+/calmodulin kinase II (CaMKII). Conclusion: CD44 moves into lipid rafts in a TGF-β1- and hyaluronan-dependent manner, co-localizes with EGFR, and triggers differentiation. Significance: This pathway presents novel targets for the therapy of wound-healing and fibrosis. Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca(2+)/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing. |
Author | Midgley, Adam C. Rogers, Mathew Hallett, Maurice B. Clayton, Aled Bowen, Timothy Steadman, Robert Phillips, Aled O. |
Author_xml | – sequence: 1 givenname: Adam C. surname: Midgley fullname: Midgley, Adam C. organization: From the Institute of Nephrology and – sequence: 2 givenname: Mathew surname: Rogers fullname: Rogers, Mathew organization: From the Institute of Nephrology and – sequence: 3 givenname: Maurice B. surname: Hallett fullname: Hallett, Maurice B. organization: Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, School of Medicine and Cardiff Institute of Tissue Engineering and Repair, University of Cardiff, Heath Park, Cardiff CF14 4XN, United Kingdom and – sequence: 4 givenname: Aled surname: Clayton fullname: Clayton, Aled organization: the Institute of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom – sequence: 5 givenname: Timothy surname: Bowen fullname: Bowen, Timothy organization: From the Institute of Nephrology and – sequence: 6 givenname: Aled O. surname: Phillips fullname: Phillips, Aled O. organization: From the Institute of Nephrology and – sequence: 7 givenname: Robert surname: Steadman fullname: Steadman, Robert email: steadmanr@cf.ac.uk organization: From the Institute of Nephrology and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23589287$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UstuEzEUtVARfcCaHfIyWUzq10xmNkhVmkelREhRkNhZHtvTuvLYwXaKwmfxIXwAX4PTlEIXeHOvfM899_j6nIMT550G4D1GI4zG7PK-laMVxnTESkxp9QqcYVTTgpb4ywk4Q4jgoiFlfQrOY7xH-bAGvwGnhJZ1Q-rxGfi1CcLFzofeuFs4D_5buoMzIZMPxc8fGA4289khGRYxmX5nRdIKzkwbfGtFTDB5uNr77u_Ftek6HbRLRiTjHbyJcKWVeexr93CxF3YXvBMODhZXw6IT0liTHsvTrVE69MK-1AHXWurtIRlM57P1EAqn4OSaMTjxhfVSWPP9OMs4uDSZBK5Fl-Jb8LoTNup3T_ECfJ5NN5NFsfw0v5lcLQtZ4qoqFKUNoU2turomHSqJqCnLkY0xURVlpGloOZaoYkTkTQs1rpnSTdcSxFpMML0AH4-8213bayXz24OwfBtML8Kee2H4y4ozd_zWP3BaVbREVSYYPBEE_3WnY-K9iVJbK5z2u8gxLausEeEyQy-PUBl8jEF3z2Mw4gdH8OwIfnAEPzoid3z4V90z_o8FMqA5AnTe0YPRgUdptJP504KWiStv_kv-G4AdyeA |
CitedBy_id | crossref_primary_10_2217_rme_14_54 crossref_primary_10_1038_s41467_019_10965_9 crossref_primary_10_3390_biology13020076 crossref_primary_10_1371_journal_pone_0159490 crossref_primary_10_1016_j_matbio_2022_04_001 crossref_primary_10_3892_ijmm_2015_2222 crossref_primary_10_1016_j_bbadis_2019_07_017 crossref_primary_10_3390_cells12030472 crossref_primary_10_1155_2015_427038 crossref_primary_10_1016_j_mcpro_2021_100091 crossref_primary_10_1177_1947603519876354 crossref_primary_10_3390_cancers12040879 crossref_primary_10_3390_ijms20246362 crossref_primary_10_3390_ijms21020617 crossref_primary_10_3390_ijms20092256 crossref_primary_10_2142_biophysico_bppb_v21_s018 crossref_primary_10_4103_jomfp_jomfp_86_21 crossref_primary_10_1016_j_jhep_2017_03_003 crossref_primary_10_1161_CIRCRESAHA_118_313285 crossref_primary_10_1155_2015_385682 crossref_primary_10_1681_ASN_2019111160 crossref_primary_10_1016_j_ccell_2021_09_003 crossref_primary_10_1152_ajpcell_00575_2020 crossref_primary_10_1111_bph_15898 crossref_primary_10_1093_jnci_djt369 crossref_primary_10_1016_j_matbio_2018_06_004 crossref_primary_10_3389_fcell_2019_00281 crossref_primary_10_1038_s41598_018_36140_6 crossref_primary_10_1002_jev2_12461 crossref_primary_10_3389_fonc_2015_00045 crossref_primary_10_1021_nn506408v crossref_primary_10_1088_1758_5090_abbb82 crossref_primary_10_1089_wound_2020_1192 crossref_primary_10_18632_oncotarget_11739 crossref_primary_10_3892_ol_2017_6463 crossref_primary_10_1016_j_jcjp_2024_100174 crossref_primary_10_1016_j_carbpol_2023_121179 crossref_primary_10_1016_j_toxlet_2021_06_014 crossref_primary_10_1016_j_canlet_2016_02_031 crossref_primary_10_1111_acel_12167 crossref_primary_10_1183_13993003_01287_2018 crossref_primary_10_1016_j_addr_2017_10_008 crossref_primary_10_1074_jbc_M116_756627 crossref_primary_10_1111_jdv_15120 crossref_primary_10_1161_CIRCULATIONAHA_118_035420 crossref_primary_10_1039_D0NJ03139A crossref_primary_10_1161_CIRCRESAHA_120_316958 crossref_primary_10_1074_jbc_M115_682229 crossref_primary_10_1016_j_redox_2019_101122 crossref_primary_10_1016_j_ajpath_2020_02_012 crossref_primary_10_3390_ijms242316851 crossref_primary_10_1016_j_biopha_2018_02_090 crossref_primary_10_1080_03008207_2016_1264944 crossref_primary_10_3892_mmr_2016_5155 crossref_primary_10_1016_j_smaim_2023_04_005 crossref_primary_10_1039_C7QI00707H crossref_primary_10_3390_biom11020310 crossref_primary_10_1073_pnas_2012854118 crossref_primary_10_1161_HYPERTENSIONAHA_121_17299 crossref_primary_10_1016_j_nano_2015_12_363 crossref_primary_10_1002_ar_24147 crossref_primary_10_1167_iovs_61_5_64 crossref_primary_10_1089_ten_tea_2020_0001 crossref_primary_10_3390_cells11244093 crossref_primary_10_1074_jbc_M114_625939 crossref_primary_10_1016_j_bioadv_2023_213705 crossref_primary_10_1038_nrc3915 crossref_primary_10_3390_molecules28010116 crossref_primary_10_1210_en_2018_01071 crossref_primary_10_1007_s40139_016_0099_1 crossref_primary_10_1371_journal_pone_0219697 crossref_primary_10_1016_j_apmt_2021_101186 crossref_primary_10_1016_j_addr_2022_114298 crossref_primary_10_1186_s13058_016_0740_2 crossref_primary_10_1007_s00296_020_04658_6 crossref_primary_10_3390_ijms22041575 crossref_primary_10_1002_prca_201800069 crossref_primary_10_1155_2014_103923 crossref_primary_10_3389_fbioe_2022_1067480 crossref_primary_10_3390_ijms24054713 crossref_primary_10_1167_iovs_18_26268 crossref_primary_10_1021_jm5000276 crossref_primary_10_1073_pnas_1413970111 crossref_primary_10_1016_j_biochi_2019_04_010 crossref_primary_10_1002_jbm_b_33537 crossref_primary_10_1002_stem_2419 crossref_primary_10_1038_s41584_019_0212_z crossref_primary_10_1016_j_bbrc_2013_09_009 crossref_primary_10_1002_adbi_201700099 crossref_primary_10_1007_s00418_018_1718_1 crossref_primary_10_1152_ajpheart_00123_2018 crossref_primary_10_1016_j_imlet_2015_04_003 crossref_primary_10_1098_rsob_180033 crossref_primary_10_3389_fimmu_2022_1040233 crossref_primary_10_3390_cells11162531 crossref_primary_10_1016_j_yexcr_2018_04_029 crossref_primary_10_1369_0022155420966663 crossref_primary_10_4236_abb_2020_114010 crossref_primary_10_3389_fonc_2020_541281 crossref_primary_10_1016_j_ijbiomac_2023_124622 crossref_primary_10_1074_jbc_M114_578377 crossref_primary_10_1016_j_cej_2020_125414 crossref_primary_10_1002_jor_24176 crossref_primary_10_1016_j_matbio_2018_01_011 crossref_primary_10_1002_adma_201701154 crossref_primary_10_3389_fsurg_2022_902871 crossref_primary_10_1002_adma_202208364 crossref_primary_10_1016_j_lfs_2021_119750 crossref_primary_10_1096_fj_202000380RR crossref_primary_10_1096_fj_202300745RR crossref_primary_10_3389_fimmu_2015_00420 crossref_primary_10_1080_14779072_2019_1562902 crossref_primary_10_3892_mmr_2018_9722 crossref_primary_10_3390_bioengineering8110163 crossref_primary_10_1074_jbc_RA119_007834 crossref_primary_10_3389_fcvm_2023_1129384 crossref_primary_10_1016_j_matbio_2018_08_008 crossref_primary_10_1111_acel_12462 crossref_primary_10_3390_ijms21228610 crossref_primary_10_1038_srep21071 crossref_primary_10_1371_journal_pone_0162933 crossref_primary_10_15789_2220_7619_NGP_1257 crossref_primary_10_1016_j_actbio_2017_11_025 crossref_primary_10_1016_j_bbamcr_2020_118703 crossref_primary_10_3390_cancers14071847 crossref_primary_10_1097_PRS_0000000000000326 crossref_primary_10_7554_eLife_57243 crossref_primary_10_3390_cells8121607 crossref_primary_10_1074_jbc_M116_752451 crossref_primary_10_3389_fimmu_2018_02787 crossref_primary_10_1016_j_micpath_2020_104380 crossref_primary_10_1038_s41598_021_84363_x crossref_primary_10_1155_2018_5196023 crossref_primary_10_1016_j_abb_2015_01_001 crossref_primary_10_1155_2015_834893 crossref_primary_10_3390_molecules24183291 crossref_primary_10_1111_bjd_17851 crossref_primary_10_1016_j_matbio_2015_03_008 crossref_primary_10_1074_jbc_M115_670521 crossref_primary_10_1007_s12015_020_09963_y crossref_primary_10_1038_cdd_2017_119 crossref_primary_10_3390_antiox11081604 crossref_primary_10_1272_jnms_JNMS_2020_87_302 crossref_primary_10_1172_jci_insight_171307 crossref_primary_10_17116_klinderma202221061840 crossref_primary_10_1088_2516_1091_ac6e18 crossref_primary_10_12968_jowc_2021_30_Sup9a_V crossref_primary_10_1093_jbcr_irac119 crossref_primary_10_1080_09273948_2019_1672196 crossref_primary_10_1016_j_theriogenology_2018_09_005 crossref_primary_10_1016_j_yjmcc_2022_08_002 crossref_primary_10_3389_fimmu_2022_814533 crossref_primary_10_3892_mmr_2019_10802 crossref_primary_10_3390_bioengineering5020045 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024052889 crossref_primary_10_1074_jbc_REV120_014391 crossref_primary_10_1111_1751_2980_12852 crossref_primary_10_1002_hep4_1721 crossref_primary_10_3390_ijms222212179 crossref_primary_10_1177_10668969221080072 crossref_primary_10_1515_pp_2018_0103 crossref_primary_10_1016_j_ijrobp_2018_05_068 crossref_primary_10_1155_2015_790203 crossref_primary_10_1007_s00395_014_0440_y crossref_primary_10_1186_s12931_023_02421_6 crossref_primary_10_1165_rcmb_2017_0095OC crossref_primary_10_3892_ijmm_2016_2813 crossref_primary_10_3892_ijmm_2017_3199 crossref_primary_10_3390_ijms18102114 crossref_primary_10_1016_j_ejpb_2020_08_003 crossref_primary_10_1016_j_amjms_2019_03_006 crossref_primary_10_1007_s00403_018_1822_z crossref_primary_10_1016_j_biochi_2018_05_005 crossref_primary_10_1007_s10620_021_06847_0 crossref_primary_10_1016_j_identj_2024_04_011 crossref_primary_10_1002_pgr2_4 crossref_primary_10_1152_ajplung_00523_2016 crossref_primary_10_1186_s13287_017_0534_1 crossref_primary_10_1002_jcp_31256 crossref_primary_10_1002_term_2014 crossref_primary_10_3390_ijms18112494 crossref_primary_10_1002_1878_0261_12583 crossref_primary_10_1186_s12905_023_02668_7 crossref_primary_10_3389_fphys_2015_00082 crossref_primary_10_3390_biom11081095 crossref_primary_10_1021_acsami_0c07629 crossref_primary_10_1111_febs_14139 crossref_primary_10_1186_s12929_023_00931_5 crossref_primary_10_1038_ni_3035 crossref_primary_10_1016_j_yjmcc_2013_10_006 crossref_primary_10_1126_scisignal_aao1822 crossref_primary_10_1007_s00018_019_03212_3 crossref_primary_10_1016_j_carpath_2016_05_003 crossref_primary_10_1002_anbr_202300048 crossref_primary_10_1002_adhm_202102265 crossref_primary_10_1021_acsbiomaterials_1c00178 crossref_primary_10_1038_bjc_2013_809 crossref_primary_10_1016_j_trecan_2022_08_005 crossref_primary_10_1002_adhm_202301370 crossref_primary_10_1371_journal_pone_0166480 crossref_primary_10_1007_s13770_020_00283_3 crossref_primary_10_1016_j_actbio_2022_07_039 crossref_primary_10_1016_j_actbio_2019_03_052 crossref_primary_10_1016_j_jbc_2021_100987 crossref_primary_10_1161_JAHA_122_028121 crossref_primary_10_18632_oncotarget_2711 crossref_primary_10_3892_etm_2017_4807 crossref_primary_10_3390_biom13081179 crossref_primary_10_1186_s12967_016_0787_y |
Cites_doi | 10.1007/s11626-998-0103-0 10.2741/s17 10.1111/j.1523-1755.2004.00457.x 10.1074/jbc.M601530200 10.1152/ajplung.00020.2008 10.1042/bst0270109 10.1016/S0166-2236(02)02215-4 10.1074/jbc.M704819200 10.2353/ajpath.2010.090802 10.1046/j.1365-2133.2001.04006.x 10.1074/jbc.M403135200 10.1161/01.ATV.19.4.1004 10.1016/j.canlet.2008.01.014 10.1016/S0014-4827(02)00015-0 10.1083/jcb.122.1.103 10.1038/nrm809 10.1074/jbc.273.4.1923 10.1074/jbc.M401678200 10.1016/j.yjmcc.2007.12.006 10.2353/ajpath.2009.090045 10.1152/ajprenal.00406.2005 10.1002/jcb.20675 10.1160/TH03-05-0328 10.1074/jbc.M806989200 10.1074/jbc.M111.226563 10.1021/bi025943i 10.1042/bj2390445 10.1523/JNEUROSCI.0346-04.2004 10.1074/jbc.M610054200 10.1097/01.blo.0000143804.26638.82 10.1083/jcb.124.4.401 10.1038/ncb797 10.1902/jop.1997.68.11.1063 10.1016/j.ejphar.2005.04.035 10.1016/S0006-3495(76)85755-4 10.1002/jcp.22570 10.1038/ki.1997.190 10.1194/jlr.R800040-JLR200 10.1056/NEJM199411103311907 10.1056/NEJM199306033282203 10.1002/path.1427 10.1053/j.ackd.2005.07.011 10.1074/jbc.M201422200 10.1080/10929080600990500 10.1074/jbc.M507734200 10.1016/j.yexcr.2006.11.016 10.1097/01.LAB.0000101911.53973.90 10.1074/jbc.M700773200 10.1113/jphysiol.2011.222232 10.1001/archotol.132.7.771 10.1038/sj.jid.5700168 10.1074/jbc.R100038200 10.1073/pnas.052026799 10.1172/JCI118107 10.1002/art.23677 |
ContentType | Journal Article |
Copyright | 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
Copyright_xml | – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1074/jbc.M113.451336 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | EGFR and CD44 in Lipid Rafts Induce Myofibroblast Differentiation |
EISSN | 1083-351X |
EndPage | 14838 |
ExternalDocumentID | 10_1074_jbc_M113_451336 23589287 S0021925820460223 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM 0R~ AALRI ADVLN AITUG AKRWK CGR CUY CVF ECM EIF H13 NPM .55 .GJ 186 3O- 41~ 6TJ AAYJJ AAYOK AAYXX ABFSI ABTAH ACSFO ACYGS AFFNX AI. C1A CITATION FA8 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 7X8 5PM |
ID | FETCH-LOGICAL-c5166-d3392398df882f052a834f054712d634299357c0642a113ad784de9fb204b1213 |
IEDL.DBID | RPM |
ISSN | 0021-9258 |
IngestDate | Tue Sep 17 21:26:31 EDT 2024 Fri Oct 25 06:02:40 EDT 2024 Fri Dec 06 01:25:42 EST 2024 Sat Sep 28 08:24:26 EDT 2024 Fri Feb 23 02:45:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Lipid Raft Hyaluronate Epidermal Growth Factor Receptor (EGFR) Myofibroblast CD44 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5166-d3392398df882f052a834f054712d634299357c0642a113ad784de9fb204b1213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Both authors contributed equally to this work. |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M113.451336 |
PMID | 23589287 |
PQID | 1356392015 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3663506 proquest_miscellaneous_1356392015 crossref_primary_10_1074_jbc_M113_451336 pubmed_primary_23589287 elsevier_sciencedirect_doi_10_1074_jbc_M113_451336 |
PublicationCentury | 2000 |
PublicationDate | 2013-05-24 |
PublicationDateYYYYMMDD | 2013-05-24 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2013 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Tomasek, Gabbiani, Hinz, Chaponnier, Brown (bib4) 2002; 3 Desmoulière, Geinoz, Gabbiani, Gabbiani (bib10) 1993; 122 Ito, Williams, Al-Assaf, Phillips, Phillips (bib19) 2004; 65 Samarakoon, Higgins, Higgins, Higgins (bib29) 2008; 44 Gabbiani (bib2) 2003; 200 Hardie, Davidson, Ikegami, Leikauf, Le Cras, Prestridge, Whitsett, Korfhagen (bib31) 2008; 294 Ma, Sachchithananthan, Flanc, Nikolic-Paterson (bib54) 2009; 1 Brecht, Mayer, Schlosser, Prehm (bib20) 1986; 239 Akhmetshina, Dees, Pileckyte, Szucs, Spriewald, Zwerina, Distler, Schett, Distler (bib43) 2008; 58 Jenkins, Thomas, Williams, Steadman (bib26) 2004; 279 Krieg, Heckmann (bib3) 1989; 80 Evans, Tian, Steadman, Phillips (bib13) 2003; 282 Bourguignon, Gilad, Peyrollier (bib40) 2007; 282 Meran, Luo, Simpson, Martin, Wells, Steadman, Phillips (bib33) 2011; 286 Bourguignon, Gilad, Brightman, Diedrich, Singleton (bib44) 2006; 281 Deng, Li, Jin, Chen, Lü (bib55) 2009; 122 Tsui-Pierchala, Encinas, Milbrandt, Johnson (bib39) 2002; 25 Palyi-Krekk, Barok, Kovacs, Saya, Nagano, Szollosi, Nagy (bib46) 2008; 263 Grinnell (bib1) 1994; 124 Thankamony, Knudson (bib53) 2006; 281 Spicer, McDonald (bib24) 1998; 273 Meran, Thomas, Stephens, Enoch, Martin, Steadman, Phillips (bib15) 2008; 283 Meran, Thomas, Stephens, Martin, Bowen, Phillips, Steadman (bib22) 2007; 282 Eddy (bib11) 2005; 12 al-Khateeb, Stephens, Shepherd, Thomas (bib7) 1997; 68 Stephens, Davies, Occleston, Pleass, Kon, Daniels, Khaw, Thomas (bib34) 2001; 144 Singer (bib42) 2012; 590 Nylander, Smith, Underwood, Piepkorn (bib49) 1998; 34 Zayzafoon (bib45) 2006; 97 Roepstorff, Thomsen, Sandvig, van Deurs (bib50) 2002; 277 Liu, Sun, Wan, Wang, Oppenheim, Chen, Zhang (bib51) 2007; 24 Border, Noble (bib5) 1994; 331 Li, Lau, Morris, Guo, Fordyce, Stanley (bib36) 2004; 24 Pike, Casey (bib48) 2002; 41 Legg, Lewis, Parsons, Ng, Isacke (bib17) 2002; 4 Lambert, Vind-Kezunovic, Karvinen, Gniadecki (bib56) 2006; 126 Webber, Meran, Steadman, Phillips (bib27) 2009; 284 Docherty, O'Sullivan, Healy, Murphy, O'neill A, Fitzpatrick, Watson (bib30) 2006; 290 Wang, Bourguignon (bib47) 2006; 132 Hinz, Gabbiani (bib9) 2003; 90 Itano, Atsumi, Sawai, Yamada, Miyaishi, Senga, Hamaguchi, Kimata (bib18) 2002; 99 Knudson, Knudson (bib58) 2004; 427 Ellis, Schor, Schor (bib28) 2007; 313 Border, Noble (bib6) 1995; 96 Anscher, Peters, Reisenbichler, Petros, Jirtle (bib35) 1993; 328 Pike (bib57) 2009; 50 Turley, Noble, Bourguignon (bib59) 2002; 277 Zhai, Nakade, Oda, Mitsumoto, Akagi, Sakurai, Fukuyama (bib41) 2005; 516 Axelrod, Koppel, Schlessinger, Elson, Webb (bib37) 1976; 16 Desmoulière, Darby, Gabbiani (bib12) 2003; 83 Evanko, Angello, Wight (bib21) 1999; 19 Poumay, Mitev (bib60) 2009; 51 Border, Noble (bib8) 1997; 51 Ito, Williams, Fraser, Phillips (bib14) 2004; 279 Kosaki, Watanabe, Yamaguchi (bib16) 1999; 59 Irwin, Mueller, Bohin, Ge, Boerner (bib52) 2011; 226 Simpson, Wells, Thomas, Stephens, Steadman, Phillips (bib32) 2010; 176 Simpson, Meran, Thomas, Stephens, Bowen, Steadman, Phillips (bib23) 2009; 175 Spicer, Nguyen (bib25) 1999; 27 Zhuang, Lin, Lu, Solomon, Freeman (bib38) 2002; 62 Pike (10.1074/jbc.M113.451336_bib48) 2002; 41 Ma (10.1074/jbc.M113.451336_bib54) 2009; 1 Simpson (10.1074/jbc.M113.451336_bib32) 2010; 176 Tsui-Pierchala (10.1074/jbc.M113.451336_bib39) 2002; 25 Border (10.1074/jbc.M113.451336_bib8) 1997; 51 Knudson (10.1074/jbc.M113.451336_bib58) 2004; 427 Ellis (10.1074/jbc.M113.451336_bib28) 2007; 313 Stephens (10.1074/jbc.M113.451336_bib34) 2001; 144 al-Khateeb (10.1074/jbc.M113.451336_bib7) 1997; 68 Deng (10.1074/jbc.M113.451336_bib55) 2009; 122 Eddy (10.1074/jbc.M113.451336_bib11) 2005; 12 Border (10.1074/jbc.M113.451336_bib6) 1995; 96 Hinz (10.1074/jbc.M113.451336_bib9) 2003; 90 Itano (10.1074/jbc.M113.451336_bib18) 2002; 99 Spicer (10.1074/jbc.M113.451336_bib25) 1999; 27 Gabbiani (10.1074/jbc.M113.451336_bib2) 2003; 200 Hardie (10.1074/jbc.M113.451336_bib31) 2008; 294 Irwin (10.1074/jbc.M113.451336_bib52) 2011; 226 Meran (10.1074/jbc.M113.451336_bib33) 2011; 286 Pike (10.1074/jbc.M113.451336_bib57) 2009; 50 Roepstorff (10.1074/jbc.M113.451336_bib50) 2002; 277 Thankamony (10.1074/jbc.M113.451336_bib53) 2006; 281 Turley (10.1074/jbc.M113.451336_bib59) 2002; 277 Desmoulière (10.1074/jbc.M113.451336_bib10) 1993; 122 Liu (10.1074/jbc.M113.451336_bib51) 2007; 24 Singer (10.1074/jbc.M113.451336_bib42) 2012; 590 Poumay (10.1074/jbc.M113.451336_bib60) 2009; 51 Meran (10.1074/jbc.M113.451336_bib22) 2007; 282 Nylander (10.1074/jbc.M113.451336_bib49) 1998; 34 Axelrod (10.1074/jbc.M113.451336_bib37) 1976; 16 Palyi-Krekk (10.1074/jbc.M113.451336_bib46) 2008; 263 Spicer (10.1074/jbc.M113.451336_bib24) 1998; 273 Anscher (10.1074/jbc.M113.451336_bib35) 1993; 328 Li (10.1074/jbc.M113.451336_bib36) 2004; 24 Grinnell (10.1074/jbc.M113.451336_bib1) 1994; 124 Border (10.1074/jbc.M113.451336_bib5) 1994; 331 Ito (10.1074/jbc.M113.451336_bib19) 2004; 65 Kosaki (10.1074/jbc.M113.451336_bib16) 1999; 59 Wang (10.1074/jbc.M113.451336_bib47) 2006; 132 Lambert (10.1074/jbc.M113.451336_bib56) 2006; 126 Brecht (10.1074/jbc.M113.451336_bib20) 1986; 239 Simpson (10.1074/jbc.M113.451336_bib23) 2009; 175 Zhai (10.1074/jbc.M113.451336_bib41) 2005; 516 Krieg (10.1074/jbc.M113.451336_bib3) 1989; 80 Jenkins (10.1074/jbc.M113.451336_bib26) 2004; 279 Bourguignon (10.1074/jbc.M113.451336_bib44) 2006; 281 Desmoulière (10.1074/jbc.M113.451336_bib12) 2003; 83 Tomasek (10.1074/jbc.M113.451336_bib4) 2002; 3 Samarakoon (10.1074/jbc.M113.451336_bib29) 2008; 44 Docherty (10.1074/jbc.M113.451336_bib30) 2006; 290 Webber (10.1074/jbc.M113.451336_bib27) 2009; 284 Evans (10.1074/jbc.M113.451336_bib13) 2003; 282 Meran (10.1074/jbc.M113.451336_bib15) 2008; 283 Bourguignon (10.1074/jbc.M113.451336_bib40) 2007; 282 Zayzafoon (10.1074/jbc.M113.451336_bib45) 2006; 97 Ito (10.1074/jbc.M113.451336_bib14) 2004; 279 Legg (10.1074/jbc.M113.451336_bib17) 2002; 4 Zhuang (10.1074/jbc.M113.451336_bib38) 2002; 62 Evanko (10.1074/jbc.M113.451336_bib21) 1999; 19 Akhmetshina (10.1074/jbc.M113.451336_bib43) 2008; 58 |
References_xml | – volume: 281 start-page: 34601 year: 2006 end-page: 34609 ident: bib53 article-title: Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis publication-title: J. Biol. Chem contributor: fullname: Knudson – volume: 294 start-page: L1217 year: 2008 end-page: L1225 ident: bib31 article-title: EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-α-induced pulmonary fibrosis publication-title: Am. J. Physiol. Lung Cell Mol. Physiol contributor: fullname: Korfhagen – volume: 68 start-page: 1063 year: 1997 end-page: 1069 ident: bib7 article-title: An investigation of preferential fibroblast wound repopulation using a novel publication-title: J. Periodontol contributor: fullname: Thomas – volume: 97 start-page: 56 year: 2006 end-page: 70 ident: bib45 article-title: Calcium/calmodulin signaling controls osteoblast growth and differentiation publication-title: J. Cell Biochem contributor: fullname: Zayzafoon – volume: 59 start-page: 1141 year: 1999 end-page: 1145 ident: bib16 article-title: Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity publication-title: Cancer Res contributor: fullname: Yamaguchi – volume: 3 start-page: 349 year: 2002 end-page: 363 ident: bib4 article-title: Myofibroblasts and mechano-regulation of connective tissue remodelling publication-title: Nat. Rev. Mol. Cell Biol contributor: fullname: Brown – volume: 144 start-page: 229 year: 2001 end-page: 237 ident: bib34 article-title: Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity publication-title: Br J. Dermatol contributor: fullname: Thomas – volume: 281 start-page: 14026 year: 2006 end-page: 14040 ident: bib44 article-title: Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca publication-title: J. Biol. Chem contributor: fullname: Singleton – volume: 124 start-page: 401 year: 1994 end-page: 404 ident: bib1 article-title: Fibroblasts, myofibroblasts, and wound contraction publication-title: J. Cell Biol contributor: fullname: Grinnell – volume: 41 start-page: 10315 year: 2002 end-page: 10322 ident: bib48 article-title: Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking publication-title: Biochemistry contributor: fullname: Casey – volume: 51 start-page: 1388 year: 1997 end-page: 1396 ident: bib8 article-title: TGF-β in kidney fibrosis. A target for gene therapy publication-title: Kidney Int contributor: fullname: Noble – volume: 279 start-page: 41453 year: 2004 end-page: 41460 ident: bib26 article-title: Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover publication-title: J. Biol. Chem contributor: fullname: Steadman – volume: 99 start-page: 3609 year: 2002 end-page: 3614 ident: bib18 article-title: Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration publication-title: Proc. Natl. Acad. Sci. U.S.A contributor: fullname: Kimata – volume: 44 start-page: 527 year: 2008 end-page: 538 ident: bib29 article-title: TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling publication-title: J. Mol. Cell Cardiol contributor: fullname: Higgins – volume: 16 start-page: 1055 year: 1976 end-page: 1069 ident: bib37 article-title: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics publication-title: Biophys. J contributor: fullname: Webb – volume: 328 start-page: 1592 year: 1993 end-page: 1598 ident: bib35 article-title: Transforming growth factor β as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer publication-title: N. Engl. J. Med contributor: fullname: Jirtle – volume: 132 start-page: 771 year: 2006 end-page: 778 ident: bib47 article-title: Hyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer publication-title: Arch Otolaryngol. Head Neck Surg contributor: fullname: Bourguignon – volume: 263 start-page: 231 year: 2008 end-page: 242 ident: bib46 article-title: EGFR and ErbB2 are functionally coupled to CD44 and regulate shedding, internalization and motogenic effect of CD44 publication-title: Cancer Lett contributor: fullname: Nagy – volume: 51 start-page: 5 year: 2009 end-page: 17 ident: bib60 article-title: Members of the EGF receptor family in normal and pathological epidermis publication-title: Folia Med. (Plovdiv) contributor: fullname: Mitev – volume: 126 start-page: 954 year: 2006 end-page: 962 ident: bib56 article-title: Ligand-independent activation of the EGFR by lipid raft disruption publication-title: J. Invest. Dermatol contributor: fullname: Gniadecki – volume: 239 start-page: 445 year: 1986 end-page: 450 ident: bib20 article-title: Increased hyaluronate synthesis is required for fibroblast detachment and mitosis publication-title: Biochem. J contributor: fullname: Prehm – volume: 427 start-page: S152 year: 2004 end-page: S162 ident: bib58 article-title: Hyaluronan and CD44. Modulators of chondrocyte metabolism publication-title: Clin. Orthop. Relat. Res contributor: fullname: Knudson – volume: 4 start-page: 399 year: 2002 end-page: 407 ident: bib17 article-title: A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility publication-title: Nat. Cell Biol contributor: fullname: Isacke – volume: 290 start-page: F1202 year: 2006 end-page: F1212 ident: bib30 article-title: TGF-β1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation publication-title: Am. J. Physiol. Renal Physiol contributor: fullname: Watson – volume: 590 start-page: 1349 year: 2012 end-page: 1356 ident: bib42 article-title: Ca publication-title: J. Physiol contributor: fullname: Singer – volume: 282 start-page: 25687 year: 2007 end-page: 25697 ident: bib22 article-title: Involvement of hyaluronan in regulation of fibroblast phenotype publication-title: J. Biol. Chem contributor: fullname: Steadman – volume: 516 start-page: 112 year: 2005 end-page: 117 ident: bib41 article-title: Honokiol-induced neurite outgrowth promotion depends on activation of extracellular signal-regulated kinases (ERK1/2) publication-title: Eur. J. Pharmacol contributor: fullname: Fukuyama – volume: 283 start-page: 6530 year: 2008 end-page: 6545 ident: bib15 article-title: Hyaluronan facilitates transforming growth factor-β1-mediated fibroblast proliferation publication-title: J. Biol. Chem contributor: fullname: Phillips – volume: 331 start-page: 1286 year: 1994 end-page: 1292 ident: bib5 article-title: Transforming growth factor β in tissue fibrosis publication-title: N. Engl. J. Med contributor: fullname: Noble – volume: 273 start-page: 1923 year: 1998 end-page: 1932 ident: bib24 article-title: Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family publication-title: J. Biol. Chem contributor: fullname: McDonald – volume: 90 start-page: 993 year: 2003 end-page: 1002 ident: bib9 article-title: Cell-matrix and cell-cell contacts of myofibroblasts. Role in connective tissue remodeling publication-title: Thromb. Haemost contributor: fullname: Gabbiani – volume: 200 start-page: 500 year: 2003 end-page: 503 ident: bib2 article-title: The myofibroblast in wound healing and fibrocontractive diseases publication-title: J. Pathol contributor: fullname: Gabbiani – volume: 24 start-page: 4070 year: 2004 end-page: 4081 ident: bib36 article-title: A syntaxin 1, Gα publication-title: J. Neurosci contributor: fullname: Stanley – volume: 25 start-page: 412 year: 2002 end-page: 417 ident: bib39 article-title: Lipid rafts in neuronal signaling and function publication-title: Trends Neurosci contributor: fullname: Johnson – volume: 176 start-page: 1215 year: 2010 end-page: 1228 ident: bib32 article-title: Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling publication-title: Am. J. Pathol contributor: fullname: Phillips – volume: 34 start-page: 182 year: 1998 end-page: 188 ident: bib49 article-title: Topography of amphiregulin expression in cultured human keratinocytes. Colocalization with the epidermal growth factor receptor and CD44 publication-title: In Vitro Cell Dev. Biol. Anim contributor: fullname: Piepkorn – volume: 286 start-page: 17618 year: 2011 end-page: 17630 ident: bib33 article-title: Hyaluronan facilitates transforming growth factor-β1-dependent proliferation via CD44 and epidermal growth factor receptor interaction publication-title: J. Biol. Chem contributor: fullname: Phillips – volume: 19 start-page: 1004 year: 1999 end-page: 1013 ident: bib21 article-title: Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells publication-title: Arterioscler. Thromb. Vasc. Biol contributor: fullname: Wight – volume: 1 start-page: 171 year: 2009 end-page: 187 ident: bib54 article-title: Mitogen activated protein kinases in renal fibrosis publication-title: Front. Biosci. (Schol. Ed.) contributor: fullname: Nikolic-Paterson – volume: 282 start-page: 19426 year: 2007 end-page: 19441 ident: bib40 article-title: Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration publication-title: J. Biol. Chem contributor: fullname: Peyrollier – volume: 277 start-page: 18954 year: 2002 end-page: 18960 ident: bib50 article-title: Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding publication-title: J. Biol. Chem contributor: fullname: van Deurs – volume: 62 start-page: 2227 year: 2002 end-page: 2231 ident: bib38 article-title: Cholesterol-rich lipid rafts mediate Akt-regulated survival in prostate cancer cells publication-title: Cancer Res contributor: fullname: Freeman – volume: 50 start-page: S323 year: 2009 end-page: S328 ident: bib57 article-title: The challenge of lipid rafts publication-title: J. Lipid Res contributor: fullname: Pike – volume: 277 start-page: 4589 year: 2002 end-page: 4592 ident: bib59 article-title: Signaling properties of hyaluronan receptors publication-title: J. Biol. Chem contributor: fullname: Bourguignon – volume: 122 start-page: 103 year: 1993 end-page: 111 ident: bib10 article-title: Transforming growth factor-β 1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts publication-title: J. Cell Biol contributor: fullname: Gabbiani – volume: 122 start-page: 1449 year: 2009 end-page: 1454 ident: bib55 article-title: Effect of oxymatrine on the p38 mitogen-activated protein kinases signalling pathway in rats with CCl4 induced hepatic fibrosis publication-title: Chin. Med. J contributor: fullname: Lü – volume: 12 start-page: 353 year: 2005 end-page: 365 ident: bib11 article-title: Progression in chronic kidney disease publication-title: Adv. Chronic Kidney Dis contributor: fullname: Eddy – volume: 313 start-page: 732 year: 2007 end-page: 741 ident: bib28 article-title: EGF and TGF-α motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms publication-title: Exp. Cell Res contributor: fullname: Schor – volume: 24 start-page: 91 year: 2007 end-page: 101 ident: bib51 article-title: The involvement of lipid rafts in epidermal growth factor-induced chemotaxis of breast cancer cells publication-title: Mol. Membr. Biol contributor: fullname: Zhang – volume: 65 start-page: 823 year: 2004 end-page: 833 ident: bib19 article-title: Hyaluronan and proximal tubular cell migration publication-title: Kidney Int contributor: fullname: Phillips – volume: 80 start-page: 594 year: 1989 end-page: 598 ident: bib3 article-title: Regulatory mechanisms of fibroblast activity publication-title: Recenti Prog. Med contributor: fullname: Heckmann – volume: 58 start-page: 2553 year: 2008 end-page: 2564 ident: bib43 article-title: Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts publication-title: Arthritis Rheum contributor: fullname: Distler – volume: 96 start-page: 655 year: 1995 end-page: 656 ident: bib6 article-title: Fibrosis linked to TGF-β in yet another disease publication-title: J. Clin. Invest contributor: fullname: Noble – volume: 282 start-page: 90 year: 2003 end-page: 100 ident: bib13 article-title: TGF-β1-mediated fibroblast-myofibroblast terminal differentiation. The role of Smad proteins publication-title: Exp. Cell Res contributor: fullname: Phillips – volume: 279 start-page: 25326 year: 2004 end-page: 25332 ident: bib14 article-title: Hyaluronan regulates transforming growth factor-β1 receptor compartmentalization publication-title: J. Biol. Chem contributor: fullname: Phillips – volume: 27 start-page: 109 year: 1999 end-page: 115 ident: bib25 article-title: Mammalian hyaluronan synthases. Investigation of functional relationships publication-title: Biochem. Soc. Trans contributor: fullname: Nguyen – volume: 175 start-page: 1915 year: 2009 end-page: 1928 ident: bib23 article-title: Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation publication-title: Am. J. Pathol contributor: fullname: Phillips – volume: 284 start-page: 9083 year: 2009 end-page: 9092 ident: bib27 article-title: Hyaluronan orchestrates transforming growth factor-β1-dependent maintenance of myofibroblast phenotype publication-title: J. Biol. Chem contributor: fullname: Phillips – volume: 226 start-page: 2316 year: 2011 end-page: 2328 ident: bib52 article-title: Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib publication-title: J. Cell Physiol contributor: fullname: Boerner – volume: 83 start-page: 1689 year: 2003 end-page: 1707 ident: bib12 article-title: Normal and pathologic soft tissue remodeling. Role of the myofibroblast, with special emphasis on liver and kidney fibrosis publication-title: Lab. Invest contributor: fullname: Gabbiani – volume: 34 start-page: 182 year: 1998 ident: 10.1074/jbc.M113.451336_bib49 article-title: Topography of amphiregulin expression in cultured human keratinocytes. Colocalization with the epidermal growth factor receptor and CD44 publication-title: In Vitro Cell Dev. Biol. Anim doi: 10.1007/s11626-998-0103-0 contributor: fullname: Nylander – volume: 1 start-page: 171 year: 2009 ident: 10.1074/jbc.M113.451336_bib54 article-title: Mitogen activated protein kinases in renal fibrosis publication-title: Front. Biosci. (Schol. Ed.) doi: 10.2741/s17 contributor: fullname: Ma – volume: 59 start-page: 1141 year: 1999 ident: 10.1074/jbc.M113.451336_bib16 article-title: Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity publication-title: Cancer Res contributor: fullname: Kosaki – volume: 65 start-page: 823 year: 2004 ident: 10.1074/jbc.M113.451336_bib19 article-title: Hyaluronan and proximal tubular cell migration publication-title: Kidney Int doi: 10.1111/j.1523-1755.2004.00457.x contributor: fullname: Ito – volume: 281 start-page: 34601 year: 2006 ident: 10.1074/jbc.M113.451336_bib53 article-title: Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis publication-title: J. Biol. Chem doi: 10.1074/jbc.M601530200 contributor: fullname: Thankamony – volume: 294 start-page: L1217 year: 2008 ident: 10.1074/jbc.M113.451336_bib31 article-title: EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-α-induced pulmonary fibrosis publication-title: Am. J. Physiol. Lung Cell Mol. Physiol doi: 10.1152/ajplung.00020.2008 contributor: fullname: Hardie – volume: 27 start-page: 109 year: 1999 ident: 10.1074/jbc.M113.451336_bib25 article-title: Mammalian hyaluronan synthases. Investigation of functional relationships in vivo publication-title: Biochem. Soc. Trans doi: 10.1042/bst0270109 contributor: fullname: Spicer – volume: 25 start-page: 412 year: 2002 ident: 10.1074/jbc.M113.451336_bib39 article-title: Lipid rafts in neuronal signaling and function publication-title: Trends Neurosci doi: 10.1016/S0166-2236(02)02215-4 contributor: fullname: Tsui-Pierchala – volume: 283 start-page: 6530 year: 2008 ident: 10.1074/jbc.M113.451336_bib15 article-title: Hyaluronan facilitates transforming growth factor-β1-mediated fibroblast proliferation publication-title: J. Biol. Chem doi: 10.1074/jbc.M704819200 contributor: fullname: Meran – volume: 176 start-page: 1215 year: 2010 ident: 10.1074/jbc.M113.451336_bib32 article-title: Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling publication-title: Am. J. Pathol doi: 10.2353/ajpath.2010.090802 contributor: fullname: Simpson – volume: 144 start-page: 229 year: 2001 ident: 10.1074/jbc.M113.451336_bib34 article-title: Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity publication-title: Br J. Dermatol doi: 10.1046/j.1365-2133.2001.04006.x contributor: fullname: Stephens – volume: 279 start-page: 25326 year: 2004 ident: 10.1074/jbc.M113.451336_bib14 article-title: Hyaluronan regulates transforming growth factor-β1 receptor compartmentalization publication-title: J. Biol. Chem doi: 10.1074/jbc.M403135200 contributor: fullname: Ito – volume: 51 start-page: 5 year: 2009 ident: 10.1074/jbc.M113.451336_bib60 article-title: Members of the EGF receptor family in normal and pathological epidermis publication-title: Folia Med. (Plovdiv) contributor: fullname: Poumay – volume: 19 start-page: 1004 year: 1999 ident: 10.1074/jbc.M113.451336_bib21 article-title: Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells publication-title: Arterioscler. Thromb. Vasc. Biol doi: 10.1161/01.ATV.19.4.1004 contributor: fullname: Evanko – volume: 263 start-page: 231 year: 2008 ident: 10.1074/jbc.M113.451336_bib46 article-title: EGFR and ErbB2 are functionally coupled to CD44 and regulate shedding, internalization and motogenic effect of CD44 publication-title: Cancer Lett doi: 10.1016/j.canlet.2008.01.014 contributor: fullname: Palyi-Krekk – volume: 282 start-page: 90 year: 2003 ident: 10.1074/jbc.M113.451336_bib13 article-title: TGF-β1-mediated fibroblast-myofibroblast terminal differentiation. The role of Smad proteins publication-title: Exp. Cell Res doi: 10.1016/S0014-4827(02)00015-0 contributor: fullname: Evans – volume: 122 start-page: 103 year: 1993 ident: 10.1074/jbc.M113.451336_bib10 article-title: Transforming growth factor-β 1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts publication-title: J. Cell Biol doi: 10.1083/jcb.122.1.103 contributor: fullname: Desmoulière – volume: 3 start-page: 349 year: 2002 ident: 10.1074/jbc.M113.451336_bib4 article-title: Myofibroblasts and mechano-regulation of connective tissue remodelling publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm809 contributor: fullname: Tomasek – volume: 273 start-page: 1923 year: 1998 ident: 10.1074/jbc.M113.451336_bib24 article-title: Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family publication-title: J. Biol. Chem doi: 10.1074/jbc.273.4.1923 contributor: fullname: Spicer – volume: 279 start-page: 41453 year: 2004 ident: 10.1074/jbc.M113.451336_bib26 article-title: Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover publication-title: J. Biol. Chem doi: 10.1074/jbc.M401678200 contributor: fullname: Jenkins – volume: 44 start-page: 527 year: 2008 ident: 10.1074/jbc.M113.451336_bib29 article-title: TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling publication-title: J. Mol. Cell Cardiol doi: 10.1016/j.yjmcc.2007.12.006 contributor: fullname: Samarakoon – volume: 175 start-page: 1915 year: 2009 ident: 10.1074/jbc.M113.451336_bib23 article-title: Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation publication-title: Am. J. Pathol doi: 10.2353/ajpath.2009.090045 contributor: fullname: Simpson – volume: 290 start-page: F1202 year: 2006 ident: 10.1074/jbc.M113.451336_bib30 article-title: TGF-β1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation publication-title: Am. J. Physiol. Renal Physiol doi: 10.1152/ajprenal.00406.2005 contributor: fullname: Docherty – volume: 97 start-page: 56 year: 2006 ident: 10.1074/jbc.M113.451336_bib45 article-title: Calcium/calmodulin signaling controls osteoblast growth and differentiation publication-title: J. Cell Biochem doi: 10.1002/jcb.20675 contributor: fullname: Zayzafoon – volume: 90 start-page: 993 year: 2003 ident: 10.1074/jbc.M113.451336_bib9 article-title: Cell-matrix and cell-cell contacts of myofibroblasts. Role in connective tissue remodeling publication-title: Thromb. Haemost doi: 10.1160/TH03-05-0328 contributor: fullname: Hinz – volume: 284 start-page: 9083 year: 2009 ident: 10.1074/jbc.M113.451336_bib27 article-title: Hyaluronan orchestrates transforming growth factor-β1-dependent maintenance of myofibroblast phenotype publication-title: J. Biol. Chem doi: 10.1074/jbc.M806989200 contributor: fullname: Webber – volume: 286 start-page: 17618 year: 2011 ident: 10.1074/jbc.M113.451336_bib33 article-title: Hyaluronan facilitates transforming growth factor-β1-dependent proliferation via CD44 and epidermal growth factor receptor interaction publication-title: J. Biol. Chem doi: 10.1074/jbc.M111.226563 contributor: fullname: Meran – volume: 41 start-page: 10315 year: 2002 ident: 10.1074/jbc.M113.451336_bib48 article-title: Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking publication-title: Biochemistry doi: 10.1021/bi025943i contributor: fullname: Pike – volume: 122 start-page: 1449 year: 2009 ident: 10.1074/jbc.M113.451336_bib55 article-title: Effect of oxymatrine on the p38 mitogen-activated protein kinases signalling pathway in rats with CCl4 induced hepatic fibrosis publication-title: Chin. Med. J contributor: fullname: Deng – volume: 239 start-page: 445 year: 1986 ident: 10.1074/jbc.M113.451336_bib20 article-title: Increased hyaluronate synthesis is required for fibroblast detachment and mitosis publication-title: Biochem. J doi: 10.1042/bj2390445 contributor: fullname: Brecht – volume: 24 start-page: 4070 year: 2004 ident: 10.1074/jbc.M113.451336_bib36 article-title: A syntaxin 1, Gαo, and N-type calcium channel complex at a presynaptic nerve terminal. Analysis by quantitative immunocolocalization publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.0346-04.2004 contributor: fullname: Li – volume: 282 start-page: 19426 year: 2007 ident: 10.1074/jbc.M113.451336_bib40 article-title: Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration publication-title: J. Biol. Chem doi: 10.1074/jbc.M610054200 contributor: fullname: Bourguignon – volume: 427 start-page: S152 year: 2004 ident: 10.1074/jbc.M113.451336_bib58 article-title: Hyaluronan and CD44. Modulators of chondrocyte metabolism publication-title: Clin. Orthop. Relat. Res doi: 10.1097/01.blo.0000143804.26638.82 contributor: fullname: Knudson – volume: 62 start-page: 2227 year: 2002 ident: 10.1074/jbc.M113.451336_bib38 article-title: Cholesterol-rich lipid rafts mediate Akt-regulated survival in prostate cancer cells publication-title: Cancer Res contributor: fullname: Zhuang – volume: 124 start-page: 401 year: 1994 ident: 10.1074/jbc.M113.451336_bib1 article-title: Fibroblasts, myofibroblasts, and wound contraction publication-title: J. Cell Biol doi: 10.1083/jcb.124.4.401 contributor: fullname: Grinnell – volume: 4 start-page: 399 year: 2002 ident: 10.1074/jbc.M113.451336_bib17 article-title: A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility publication-title: Nat. Cell Biol doi: 10.1038/ncb797 contributor: fullname: Legg – volume: 68 start-page: 1063 year: 1997 ident: 10.1074/jbc.M113.451336_bib7 article-title: An investigation of preferential fibroblast wound repopulation using a novel in vitro wound model publication-title: J. Periodontol doi: 10.1902/jop.1997.68.11.1063 contributor: fullname: al-Khateeb – volume: 516 start-page: 112 year: 2005 ident: 10.1074/jbc.M113.451336_bib41 article-title: Honokiol-induced neurite outgrowth promotion depends on activation of extracellular signal-regulated kinases (ERK1/2) publication-title: Eur. J. Pharmacol doi: 10.1016/j.ejphar.2005.04.035 contributor: fullname: Zhai – volume: 16 start-page: 1055 year: 1976 ident: 10.1074/jbc.M113.451336_bib37 article-title: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics publication-title: Biophys. J doi: 10.1016/S0006-3495(76)85755-4 contributor: fullname: Axelrod – volume: 226 start-page: 2316 year: 2011 ident: 10.1074/jbc.M113.451336_bib52 article-title: Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib publication-title: J. Cell Physiol doi: 10.1002/jcp.22570 contributor: fullname: Irwin – volume: 51 start-page: 1388 year: 1997 ident: 10.1074/jbc.M113.451336_bib8 article-title: TGF-β in kidney fibrosis. A target for gene therapy publication-title: Kidney Int doi: 10.1038/ki.1997.190 contributor: fullname: Border – volume: 50 start-page: S323 year: 2009 ident: 10.1074/jbc.M113.451336_bib57 article-title: The challenge of lipid rafts publication-title: J. Lipid Res doi: 10.1194/jlr.R800040-JLR200 contributor: fullname: Pike – volume: 331 start-page: 1286 year: 1994 ident: 10.1074/jbc.M113.451336_bib5 article-title: Transforming growth factor β in tissue fibrosis publication-title: N. Engl. J. Med doi: 10.1056/NEJM199411103311907 contributor: fullname: Border – volume: 328 start-page: 1592 year: 1993 ident: 10.1074/jbc.M113.451336_bib35 article-title: Transforming growth factor β as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer publication-title: N. Engl. J. Med doi: 10.1056/NEJM199306033282203 contributor: fullname: Anscher – volume: 200 start-page: 500 year: 2003 ident: 10.1074/jbc.M113.451336_bib2 article-title: The myofibroblast in wound healing and fibrocontractive diseases publication-title: J. Pathol doi: 10.1002/path.1427 contributor: fullname: Gabbiani – volume: 12 start-page: 353 year: 2005 ident: 10.1074/jbc.M113.451336_bib11 article-title: Progression in chronic kidney disease publication-title: Adv. Chronic Kidney Dis doi: 10.1053/j.ackd.2005.07.011 contributor: fullname: Eddy – volume: 277 start-page: 18954 year: 2002 ident: 10.1074/jbc.M113.451336_bib50 article-title: Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding publication-title: J. Biol. Chem doi: 10.1074/jbc.M201422200 contributor: fullname: Roepstorff – volume: 24 start-page: 91 year: 2007 ident: 10.1074/jbc.M113.451336_bib51 article-title: The involvement of lipid rafts in epidermal growth factor-induced chemotaxis of breast cancer cells publication-title: Mol. Membr. Biol doi: 10.1080/10929080600990500 contributor: fullname: Liu – volume: 281 start-page: 14026 year: 2006 ident: 10.1074/jbc.M113.451336_bib44 article-title: Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells publication-title: J. Biol. Chem doi: 10.1074/jbc.M507734200 contributor: fullname: Bourguignon – volume: 313 start-page: 732 year: 2007 ident: 10.1074/jbc.M113.451336_bib28 article-title: EGF and TGF-α motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms publication-title: Exp. Cell Res doi: 10.1016/j.yexcr.2006.11.016 contributor: fullname: Ellis – volume: 83 start-page: 1689 year: 2003 ident: 10.1074/jbc.M113.451336_bib12 article-title: Normal and pathologic soft tissue remodeling. Role of the myofibroblast, with special emphasis on liver and kidney fibrosis publication-title: Lab. Invest doi: 10.1097/01.LAB.0000101911.53973.90 contributor: fullname: Desmoulière – volume: 282 start-page: 25687 year: 2007 ident: 10.1074/jbc.M113.451336_bib22 article-title: Involvement of hyaluronan in regulation of fibroblast phenotype publication-title: J. Biol. Chem doi: 10.1074/jbc.M700773200 contributor: fullname: Meran – volume: 590 start-page: 1349 year: 2012 ident: 10.1074/jbc.M113.451336_bib42 article-title: Ca2+/calmodulin-dependent protein kinase II function in vascular remodeling publication-title: J. Physiol doi: 10.1113/jphysiol.2011.222232 contributor: fullname: Singer – volume: 80 start-page: 594 year: 1989 ident: 10.1074/jbc.M113.451336_bib3 article-title: Regulatory mechanisms of fibroblast activity publication-title: Recenti Prog. Med contributor: fullname: Krieg – volume: 132 start-page: 771 year: 2006 ident: 10.1074/jbc.M113.451336_bib47 article-title: Hyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer publication-title: Arch Otolaryngol. Head Neck Surg doi: 10.1001/archotol.132.7.771 contributor: fullname: Wang – volume: 126 start-page: 954 year: 2006 ident: 10.1074/jbc.M113.451336_bib56 article-title: Ligand-independent activation of the EGFR by lipid raft disruption publication-title: J. Invest. Dermatol doi: 10.1038/sj.jid.5700168 contributor: fullname: Lambert – volume: 277 start-page: 4589 year: 2002 ident: 10.1074/jbc.M113.451336_bib59 article-title: Signaling properties of hyaluronan receptors publication-title: J. Biol. Chem doi: 10.1074/jbc.R100038200 contributor: fullname: Turley – volume: 99 start-page: 3609 year: 2002 ident: 10.1074/jbc.M113.451336_bib18 article-title: Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.052026799 contributor: fullname: Itano – volume: 96 start-page: 655 year: 1995 ident: 10.1074/jbc.M113.451336_bib6 article-title: Fibrosis linked to TGF-β in yet another disease publication-title: J. Clin. Invest doi: 10.1172/JCI118107 contributor: fullname: Border – volume: 58 start-page: 2553 year: 2008 ident: 10.1074/jbc.M113.451336_bib43 article-title: Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts publication-title: Arthritis Rheum doi: 10.1002/art.23677 contributor: fullname: Akhmetshina |
SSID | ssj0000491 |
Score | 2.5764115 |
Snippet | Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1).... Background: Wound healing and scarring are driven by transforming growth factor-β1 (TGF-β1)-dependent fibroblast to myofibroblast differentiation. Results:... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 14824 |
SubjectTerms | Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism CD44 Cell Differentiation - physiology Cell Line, Transformed Enzyme Activation - physiology Epidermal Growth Factor Receptor (EGFR) ErbB Receptors - genetics ErbB Receptors - metabolism Extracellular Signal-Regulated MAP Kinases - genetics Extracellular Signal-Regulated MAP Kinases - metabolism Glucuronosyltransferase - genetics Glucuronosyltransferase - metabolism Glycobiology and Extracellular Matrices Humans Hyaluronan Receptors - genetics Hyaluronan Receptors - metabolism Hyaluronan Synthases Hyaluronate Hyaluronic Acid - genetics Hyaluronic Acid - metabolism Lipid Raft Membrane Microdomains - genetics Membrane Microdomains - metabolism Myofibroblast Myofibroblasts - cytology Myofibroblasts - metabolism Signal Transduction - physiology Smad Proteins - genetics Smad Proteins - metabolism Transforming Growth Factor beta1 - genetics Transforming Growth Factor beta1 - metabolism Wound Healing - physiology |
Title | Transforming Growth Factor-β1 (TGF-β1)-stimulated Fibroblast to Myofibroblast Differentiation Is Mediated by Hyaluronan (HA)-facilitated Epidermal Growth Factor Receptor (EGFR) and CD44 Co-localization in Lipid Rafts |
URI | https://dx.doi.org/10.1074/jbc.M113.451336 https://www.ncbi.nlm.nih.gov/pubmed/23589287 https://search.proquest.com/docview/1356392015 https://pubmed.ncbi.nlm.nih.gov/PMC3663506 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LitswFBWT2bSb0s70kT6GWyglWSiJZfm1DJ44aYtLO2RgdkayZSZD4oSJs8hv9UP6Af2aXslWaPrYdGVjWyC4Rz7n2lf3EPLOiYQjXEdRp8wl5SxQNIpUQHnh-YjnMMyNa0n62Z9d84833s0J8exeGFO0n8vFoFquBtXi1tRWblb50NaJDb-ksatpcuQPO6SD9GtTdPv65a1Nnq49YF5o-_kEfHgn80HqOO6Aa1cT7V6kN4pGTNfT_Z2V_lSdvxdP_sJGyWPyqJWRMG6m-4ScqOqMnI8rTKFXe3gPprDTfDE_Iw9ia-p2Tn7MrVBFyoIp5uD1LSTGc4d-_-ZAbz5N9Emf4tJfaWsvVUCCKfVaosyuoV5Dukc8Hi5ctgYrdRNi-LCF1Lh_4Di5h9leLHf3qPYr6M3GfVqKvGkLjrcn2pwWeWF5PA9AJas2-qQ3mSZXfRBVAfEl5xCvqaHedusoLCrQ1tsFXImy3j4l18lkHs9oa-9Ac8_xfVq4qM3cKCxKVPnlyGMidDkekS5Z4buaKF0vyHWGJDBooghCXqiolGzEpe5E94ycVutKvSAQMiV1o3lHMcV9gWSCvCwYV2EoPCmLLunZ8GabpotHZv6-BzxDUGQaFFkDii5hNvxZK0IacZEhx_x70FsLlAwDqv-5iEqtd9vMcRHzEaosr0ueN8A5zMCCr0uCI0gdHtCtv4_v4IowLcDbFfDyv0e-Ig-ZMfbwKOOvyWl9v1NvUF7V8oJ0Pn0NL8yi-glFQCbp |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtswECTS9JBeijRpG_fJAkVhH2ibFKnH0XAsO20UFIED5CaQEoW4sGUjlg_-rXxIP6Bf0yUlGnUfl54kSCJAYIeaWWm5g9BHGkkqPaoJLTJFOAs0iSIdEJ4LH_Achpl1LUmu_MkN_3wrbg-QcHthbNF-pmbdcr7olrM7W1u5WmQ9VyfW-5oMPUOTfb_3CD0WXhBRl6S7FzBvjPJM9QEToevoE_DeN5V1E0q9Lje-Jsa_yGwVjZipqPs7L_2pO38vn_yFj-Jj9LQRknhQT_gZOtDlCTodlJBEL7b4E7alnfab-Qk6Gjpbt1P0Y-qkKpAWHkMWXt3h2LrukO8PFLen49icdAgs_oUx99I5jiGpXioQ2hWuljjZAiJ3F84bi5WqDjK-WOPE-n_AOLXFk62cb-5B75e4PRl0SCGzujE43B4Ze1pghvn-PDBoWb0yJ-3ROL7uYFnmeHjOOR4uiSXfZvMonpXYmG_n-FoW1fo5uolH0-GENAYPJBPU90nugTrzojAvQOcXfcFk6HE4AmGy3PcMVXoiyEyOJCFoMg9CnuuoUKzPlelF9wIdlstSnyEcMq1Mq3mqmea-BDoBZpaM6zCUQqm8hdouvOmq7uOR2v_vAU8BFKkBRVqDooWYC3_ayJBaXqTAMv8e9MEBJYWAmr8ustTLzTqlHqA-Ap0lWuhlDZzdDBz4WijYg9TuAdP8e_8OrAnbBLxZA6_-e-R7dDSZJpfp5cXVl9foCbM2H4Iw_gYdVvcb_RbEVqXe2aX1E-9DKUk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgkIANghkYyvMiIdQu3DSO81pWbdMO0NFo1JFmF9mxoylq02qaLvpbfAgfwNdw7STVlMeGVaIklizd45xz45t7CPnoxsIVnqupm2eSchZqGsc6pFz5AeI5ijLrWjI9DyZX_PO1f33H6ssW7Wdy3i0Wy24xv7G1letl5jR1Ys7FdOAZmuwFzlrlzn3ywPcQZE2i3ryEeW2WZyoQmB81XX1C7nyTWXfqul6XG28T42FkfheNmamq-zs3_ak9fy-hvMNJyVPypBaT0K8m_Yzc08UxOekXmEgvd_AJbHmn_W5-TB4NGmu3E_Jz1shVJC4YYyZe3kBinXfoj-8utGfjxJx0KL4AlsbgSytIMLFeSRTbJZQrmO4QlfsLw9pmpawCDWcbmFoPEBwndzDZicX2FjV_Ae1Jv0NzkVXNwfH2yFjUIjssDucBqGf12py0R-PksgOiUDAYcg6DFbUEXP9ACvMCjAG3gkuRl5vn5CoZzQYTWps80Mx3g4AqDxWaF0cqR62f93wmIo_jEUmTqcAzdOn5YWbyJIFBEyqMuNJxLlmPS9OP7gU5KlaFfkkgYlqadvOuZpoHAikF2VkwrqNI-FKqFmk34U3XVS-P1O7BhzxFUKQGFGkFihZhTfjTWopUEiNFpvn3oA8NUFIMqNl5EYVebTep6yHyY9RafoucVsDZz6ABX4uEB5DaP2AagB_ewXVhG4HX6-DVf498Tx5eDJP069n5l9fkMbNOHz5l_A05Km-3-i3qrVK-syvrFyEOKlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+growth+factor-%CE%B21+%28TGF-%CE%B21%29-stimulated+fibroblast+to+myofibroblast+differentiation+is+mediated+by+hyaluronan+%28HA%29-facilitated+epidermal+growth+factor+receptor+%28EGFR%29+and+CD44+co-localization+in+lipid+rafts&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Midgley%2C+Adam+C&rft.au=Rogers%2C+Mathew&rft.au=Hallett%2C+Maurice+B&rft.au=Clayton%2C+Aled&rft.date=2013-05-24&rft.eissn=1083-351X&rft.volume=288&rft.issue=21&rft.spage=14824&rft.epage=14838&rft_id=info:doi/10.1074%2Fjbc.M113.451336&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |