An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes

In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich S...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 7; pp. 3661 - 3671
Main Authors Liu, Sufu, Ji, Xiao, Piao, Nan, Chen, Ji, Eidson, Nico, Xu, Jijian, Wang, Pengfei, Chen, Long, Zhang, Jiaxun, Deng, Tao, Hou, Singyuk, Jin, Ting, Wan, Hongli, Li, Jingru, Tu, Jiangping, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. An inorganic‐rich solid electrolyte interphase (SEI) has been constructed on Li metal to promote dense Li growth with a Coulombic efficiency of 99.55 % in the carbonate electrolyte. It was synthesized on the surface of the Li‐metal anode using concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive in the FEC‐based electrolyte, which participates in the primary Li+ solvation shell and promotes the reduction of NO3− ions to form the inorganic‐rich SEI.
AbstractList In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4 m concentrated LiNO 3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO 3 − ions and their participation in the primary Li + solvation sheath, abundant Li 2 O, Li 3 N, and LiN x O y grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF 6 − ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm −2 , 1.0 mAh cm −2 ) and the electrolyte also enables a Li||LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NMC811) full cell (2.5 mAh cm −2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO ions and their participation in the primary Li solvation sheath, abundant Li O, Li N, and LiN O grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm , 1.0 mAh cm ) and the electrolyte also enables a Li||LiNi Co Mn O (NMC811) full cell (2.5 mAh cm ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO3 - ions and their participation in the primary Li+ solvation sheath, abundant Li2 O, Li3 N, and LiNx Oy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6 - ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm-2 , 1.0 mAh cm-2 ) and the electrolyte also enables a Li||LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) full cell (2.5 mAh cm-2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO3 - ions and their participation in the primary Li+ solvation sheath, abundant Li2 O, Li3 N, and LiNx Oy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6 - ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm-2 , 1.0 mAh cm-2 ) and the electrolyte also enables a Li||LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) full cell (2.5 mAh cm-2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. An inorganic‐rich solid electrolyte interphase (SEI) has been constructed on Li metal to promote dense Li growth with a Coulombic efficiency of 99.55 % in the carbonate electrolyte. It was synthesized on the surface of the Li‐metal anode using concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive in the FEC‐based electrolyte, which participates in the primary Li+ solvation shell and promotes the reduction of NO3− ions to form the inorganic‐rich SEI.
Author Piao, Nan
Wang, Chunsheng
Jin, Ting
Deng, Tao
Eidson, Nico
Wan, Hongli
Li, Jingru
Chen, Ji
Hou, Singyuk
Ji, Xiao
Liu, Sufu
Chen, Long
Tu, Jiangping
Xu, Jijian
Wang, Pengfei
Zhang, Jiaxun
Author_xml – sequence: 1
  givenname: Sufu
  surname: Liu
  fullname: Liu, Sufu
  organization: University of Maryland
– sequence: 2
  givenname: Xiao
  surname: Ji
  fullname: Ji, Xiao
  organization: University of Maryland
– sequence: 3
  givenname: Nan
  surname: Piao
  fullname: Piao, Nan
  organization: University of Maryland
– sequence: 4
  givenname: Ji
  surname: Chen
  fullname: Chen, Ji
  organization: University of Maryland
– sequence: 5
  givenname: Nico
  surname: Eidson
  fullname: Eidson, Nico
  organization: University of Maryland
– sequence: 6
  givenname: Jijian
  surname: Xu
  fullname: Xu, Jijian
  organization: University of Maryland
– sequence: 7
  givenname: Pengfei
  surname: Wang
  fullname: Wang, Pengfei
  organization: University of Maryland
– sequence: 8
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: University of Maryland
– sequence: 9
  givenname: Jiaxun
  surname: Zhang
  fullname: Zhang, Jiaxun
  organization: University of Maryland
– sequence: 10
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: University of Maryland
– sequence: 11
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: University of Maryland
– sequence: 12
  givenname: Ting
  surname: Jin
  fullname: Jin, Ting
  organization: University of Maryland
– sequence: 13
  givenname: Hongli
  surname: Wan
  fullname: Wan, Hongli
  organization: University of Maryland
– sequence: 14
  givenname: Jingru
  surname: Li
  fullname: Li, Jingru
  organization: Zhejiang University
– sequence: 15
  givenname: Jiangping
  surname: Tu
  fullname: Tu, Jiangping
  organization: Zhejiang University
– sequence: 16
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33166432$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOGzEUhq0KVC7tliWyxKabCb6OJ8sQhTZSWiTKfuSxPcTIsYPtocqOR-AZeZI6CqUVEurKZ_F9_7HOfwT2fPAGgBOMRhghci69NSOCCMIEIf4BHGJOcEWFoHtlZpRWouH4AByldFf4pkH1R3BAKa5rRskhuJ94OPch3pYg9fz4dG3VEv4Mzmo4c0blGNwmm4JkE9dLmQzsQ4QT_SC9MhoubF7aYVXE7yZLBy9kLqA1CVoPpzJ2wcui_xOVPoH9XrpkPr-8x-DmcnYz_VYtrr7Op5NFpTiueaUVZ5wp1vV1TTHtO6p7znVHCWGN5BqP-7rHSlKiGSKaSjXGVOGmYUQ0GtNj8GUXu47hfjAptyublHFOehOG1BLGx5QLLlhBz96gd2GIvnyuUI3AAjGxDTx9oYZuZXS7jnYl46b9c8sCjHaAiiGlaPpXBKN2W1a7Lat9LasI7I2gbJbZBp-jtO59bbzTfllnNv9Z0k5-zGd_3d9Brqpu
CitedBy_id crossref_primary_10_1021_acsenergylett_1c02495
crossref_primary_10_1016_j_ensm_2022_05_001
crossref_primary_10_1002_anie_202214828
crossref_primary_10_1039_D3TA05793C
crossref_primary_10_1021_acsami_3c16230
crossref_primary_10_1039_D3QI01290E
crossref_primary_10_1039_D2TA06594K
crossref_primary_10_1002_smtd_202300388
crossref_primary_10_1021_acsnano_2c08441
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1021_acsami_1c22604
crossref_primary_10_1002_ange_202210522
crossref_primary_10_1016_j_apmt_2024_102378
crossref_primary_10_1002_anie_202416565
crossref_primary_10_1002_ange_202418811
crossref_primary_10_1080_15567036_2024_2394161
crossref_primary_10_1021_acs_jpcc_4c01342
crossref_primary_10_1002_adfm_202416800
crossref_primary_10_1016_j_ensm_2023_102816
crossref_primary_10_1021_acsami_3c14279
crossref_primary_10_1016_j_cej_2025_161858
crossref_primary_10_1016_j_apsusc_2023_157739
crossref_primary_10_1002_eem2_12635
crossref_primary_10_1021_acsenergylett_3c00235
crossref_primary_10_1016_j_nanoen_2024_109862
crossref_primary_10_1039_D3TA07655E
crossref_primary_10_1007_s40820_022_00833_5
crossref_primary_10_1002_ange_202314876
crossref_primary_10_1002_smll_202311961
crossref_primary_10_1021_acs_energyfuels_3c02989
crossref_primary_10_1021_jacs_3c02754
crossref_primary_10_1002_aenm_202406003
crossref_primary_10_1007_s40820_024_01508_z
crossref_primary_10_1002_aenm_202400933
crossref_primary_10_1002_ange_202219318
crossref_primary_10_1039_D4EB00042K
crossref_primary_10_1038_s41467_023_36853_x
crossref_primary_10_1007_s11426_024_2281_6
crossref_primary_10_1038_s41560_023_01443_0
crossref_primary_10_1002_anie_202106027
crossref_primary_10_1021_acsami_2c12497
crossref_primary_10_1039_D2TA07696A
crossref_primary_10_1002_ange_202319090
crossref_primary_10_1002_anie_202415251
crossref_primary_10_1002_smll_202308678
crossref_primary_10_1063_5_0181247
crossref_primary_10_1063_5_0102371
crossref_primary_10_1002_ange_202210859
crossref_primary_10_1002_advs_202104145
crossref_primary_10_1016_j_electacta_2023_143689
crossref_primary_10_1038_s41560_024_01494_x
crossref_primary_10_1016_j_ssi_2024_116585
crossref_primary_10_1039_D1SC01806J
crossref_primary_10_1016_j_jpowsour_2024_234611
crossref_primary_10_1002_adfm_202208629
crossref_primary_10_1002_ange_202318197
crossref_primary_10_1002_ange_202416565
crossref_primary_10_1039_D3CC02166A
crossref_primary_10_1002_aenm_202404120
crossref_primary_10_1016_j_xcrp_2023_101379
crossref_primary_10_1021_acsenergylett_3c00449
crossref_primary_10_1002_ange_202415251
crossref_primary_10_1021_acsami_2c02685
crossref_primary_10_1039_D2EE01756C
crossref_primary_10_1016_j_xcrp_2021_100722
crossref_primary_10_1039_D4EE04803B
crossref_primary_10_1002_batt_202400726
crossref_primary_10_1002_aenm_202303051
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1002_smll_202306187
crossref_primary_10_1016_j_jcis_2023_06_065
crossref_primary_10_1016_j_jechem_2023_02_051
crossref_primary_10_1016_j_est_2024_111683
crossref_primary_10_1016_j_cej_2024_158005
crossref_primary_10_1002_smll_202301737
crossref_primary_10_1016_j_jpowsour_2022_231644
crossref_primary_10_1016_j_jcis_2024_07_155
crossref_primary_10_1073_pnas_2316212121
crossref_primary_10_1002_adma_202305470
crossref_primary_10_1002_sstr_202200071
crossref_primary_10_1021_acs_nanolett_4c05058
crossref_primary_10_1002_advs_202310094
crossref_primary_10_1002_eom2_12325
crossref_primary_10_1002_eom2_12200
crossref_primary_10_1002_adfm_202401868
crossref_primary_10_1002_adfm_202406080
crossref_primary_10_1002_adfm_202414816
crossref_primary_10_1002_adma_202212111
crossref_primary_10_1002_smll_202412389
crossref_primary_10_3390_ma15103662
crossref_primary_10_1002_eem2_12704
crossref_primary_10_1016_j_nanoen_2024_109362
crossref_primary_10_1007_s40843_023_2745_x
crossref_primary_10_1007_s40820_023_01245_9
crossref_primary_10_1002_anie_202110589
crossref_primary_10_1016_j_cclet_2023_108640
crossref_primary_10_1038_s41560_023_01282_z
crossref_primary_10_1002_adfm_202414569
crossref_primary_10_1002_aenm_202300918
crossref_primary_10_1002_anie_202402456
crossref_primary_10_1016_j_jechem_2021_03_048
crossref_primary_10_1002_adfm_202110347
crossref_primary_10_1002_ange_202419653
crossref_primary_10_1016_j_scib_2023_11_039
crossref_primary_10_1002_anie_202418811
crossref_primary_10_1016_j_ensm_2024_103443
crossref_primary_10_1021_acsmaterialslett_2c00443
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1002_anie_202108397
crossref_primary_10_1149_1945_7111_ad71f7
crossref_primary_10_1002_adfm_202109377
crossref_primary_10_1002_ange_202306963
crossref_primary_10_1002_batt_202200142
crossref_primary_10_1039_D4TC04860A
crossref_primary_10_1002_qua_26886
crossref_primary_10_1002_smll_202406506
crossref_primary_10_1021_acsami_3c00261
crossref_primary_10_1039_D4EE02989E
crossref_primary_10_1016_j_nanoen_2021_106237
crossref_primary_10_1021_acsaem_3c00956
crossref_primary_10_1002_adfm_202204768
crossref_primary_10_1016_j_nanoen_2025_110849
crossref_primary_10_1002_adma_202312812
crossref_primary_10_1021_jacs_3c08224
crossref_primary_10_1007_s12274_024_6437_4
crossref_primary_10_1016_j_nanoen_2022_107881
crossref_primary_10_1016_j_ensm_2024_103783
crossref_primary_10_1002_ange_202214828
crossref_primary_10_1002_appl_202200096
crossref_primary_10_1038_s41467_023_40221_0
crossref_primary_10_1002_adfm_202214422
crossref_primary_10_20517_cs_2024_66
crossref_primary_10_1021_acsenergylett_3c00181
crossref_primary_10_1016_j_cjsc_2023_100203
crossref_primary_10_1016_j_mtener_2024_101734
crossref_primary_10_1002_adfm_202301976
crossref_primary_10_1002_aenm_202303672
crossref_primary_10_1016_j_nanoen_2021_106489
crossref_primary_10_1002_aenm_202100935
crossref_primary_10_1021_acs_energyfuels_2c02920
crossref_primary_10_1002_qua_27515
crossref_primary_10_1016_j_jechem_2022_12_049
crossref_primary_10_1016_j_jpowsour_2024_235311
crossref_primary_10_1016_j_ensm_2022_03_036
crossref_primary_10_1016_j_nanoen_2024_110031
crossref_primary_10_1002_inf2_12411
crossref_primary_10_1002_batt_202200453
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_1016_j_mtener_2022_101107
crossref_primary_10_1002_aenm_202304532
crossref_primary_10_1016_j_joule_2021_12_018
crossref_primary_10_1016_j_jcis_2023_03_069
crossref_primary_10_1016_j_jechem_2022_07_027
crossref_primary_10_1021_acssuschemeng_2c06824
crossref_primary_10_1002_ange_202316717
crossref_primary_10_1016_j_cej_2023_144888
crossref_primary_10_1016_j_cej_2024_151116
crossref_primary_10_1016_j_electacta_2022_141490
crossref_primary_10_1016_j_jpowsour_2024_234452
crossref_primary_10_1016_j_jechem_2022_06_046
crossref_primary_10_1002_adfm_202300980
crossref_primary_10_1088_1361_6528_ac3fe2
crossref_primary_10_1021_acsami_2c14575
crossref_primary_10_34133_energymatadv_0095
crossref_primary_10_1002_cey2_169
crossref_primary_10_1007_s40820_021_00780_7
crossref_primary_10_1016_j_cej_2025_161322
crossref_primary_10_1016_j_apenergy_2025_125509
crossref_primary_10_1039_D2TA01847K
crossref_primary_10_1002_adma_202102964
crossref_primary_10_1002_adfm_202300629
crossref_primary_10_1002_anie_202410020
crossref_primary_10_1016_j_ensm_2024_103352
crossref_primary_10_1016_j_jallcom_2025_179486
crossref_primary_10_1002_anie_202110441
crossref_primary_10_1039_D1TA04043J
crossref_primary_10_3390_molecules28155818
crossref_primary_10_1002_aenm_202401961
crossref_primary_10_1016_j_gee_2022_08_002
crossref_primary_10_1021_acsami_3c05630
crossref_primary_10_1016_j_jpowsour_2024_234559
crossref_primary_10_1021_jacsau_3c00035
crossref_primary_10_1002_anie_202300966
crossref_primary_10_1002_batt_202200114
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1021_acsnano_3c06088
crossref_primary_10_1002_ange_202305840
crossref_primary_10_1016_j_ensm_2024_103584
crossref_primary_10_1016_j_cej_2023_141478
crossref_primary_10_1039_D4TA01352B
crossref_primary_10_1002_ange_202218151
crossref_primary_10_1002_adma_202205421
crossref_primary_10_1016_j_nxmate_2024_100239
crossref_primary_10_1021_acsami_4c13009
crossref_primary_10_1039_D3EE00558E
crossref_primary_10_1021_acsami_4c05861
crossref_primary_10_1016_j_chempr_2022_12_005
crossref_primary_10_1002_cssc_202401029
crossref_primary_10_1002_aelm_202300772
crossref_primary_10_1039_D3CC05859J
crossref_primary_10_1002_ange_202422539
crossref_primary_10_1039_D2MH00469K
crossref_primary_10_1039_D1QM00352F
crossref_primary_10_1016_j_ensm_2024_103854
crossref_primary_10_1002_advs_202410129
crossref_primary_10_1021_acsmacrolett_3c00666
crossref_primary_10_1016_j_scib_2024_02_009
crossref_primary_10_1021_acsaem_1c01322
crossref_primary_10_1021_acsami_3c15703
crossref_primary_10_1021_acsnano_3c05016
crossref_primary_10_1039_D4TA01535E
crossref_primary_10_1016_j_nanoen_2022_107104
crossref_primary_10_1021_acsami_2c19417
crossref_primary_10_1016_j_jpowsour_2025_236210
crossref_primary_10_1088_1742_6596_2798_1_012025
crossref_primary_10_1002_anie_202412434
crossref_primary_10_1002_batt_202300123
crossref_primary_10_1002_advs_202101584
crossref_primary_10_1039_D2TA09044A
crossref_primary_10_1002_adfm_202414041
crossref_primary_10_1039_D4EE04478A
crossref_primary_10_1039_D3EE00664F
crossref_primary_10_1021_acsnano_3c08749
crossref_primary_10_1039_D3NJ02401F
crossref_primary_10_1039_D4TA05906A
crossref_primary_10_3390_batteries10040135
crossref_primary_10_1016_j_nanoen_2023_108722
crossref_primary_10_1021_acsaem_2c02179
crossref_primary_10_1016_j_mtener_2021_100841
crossref_primary_10_1016_j_apsusc_2022_154757
crossref_primary_10_1073_pnas_2214357120
crossref_primary_10_1021_acsenergylett_2c02240
crossref_primary_10_1039_D3SC03514J
crossref_primary_10_1016_j_jpowsour_2022_231170
crossref_primary_10_1016_j_jpowsour_2022_232497
crossref_primary_10_1016_j_cej_2022_138599
crossref_primary_10_1016_j_ces_2023_119088
crossref_primary_10_1002_smll_202306829
crossref_primary_10_1016_j_cej_2022_138359
crossref_primary_10_1021_acsami_4c13277
crossref_primary_10_1016_j_cej_2021_132897
crossref_primary_10_1002_aenm_202300734
crossref_primary_10_1002_metm_6
crossref_primary_10_1016_j_nanoen_2022_107122
crossref_primary_10_26599_EMD_2023_9370003
crossref_primary_10_1016_j_nanoen_2022_107470
crossref_primary_10_1002_batt_202300144
crossref_primary_10_1002_aenm_202204036
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1021_acsami_3c11673
crossref_primary_10_1016_j_cej_2022_138369
crossref_primary_10_1021_acsenergylett_1c00647
crossref_primary_10_1016_j_ensm_2024_103937
crossref_primary_10_1016_j_jechem_2022_11_017
crossref_primary_10_1002_ange_202400619
crossref_primary_10_1021_acsami_1c23034
crossref_primary_10_1038_s41586_024_08294_z
crossref_primary_10_1002_adma_202201801
crossref_primary_10_1016_j_pnsc_2024_03_005
crossref_primary_10_1002_aenm_202102454
crossref_primary_10_1002_adfm_202211364
crossref_primary_10_1016_j_electacta_2022_140212
crossref_primary_10_1016_j_est_2025_115876
crossref_primary_10_1002_adma_202403848
crossref_primary_10_1016_j_electacta_2022_141547
crossref_primary_10_1021_acsenergylett_1c01528
crossref_primary_10_1016_j_jpowsour_2023_233884
crossref_primary_10_1016_j_mtchem_2023_101735
crossref_primary_10_1016_j_ensm_2024_103407
crossref_primary_10_1039_D2NJ01247B
crossref_primary_10_1016_j_matre_2025_100317
crossref_primary_10_2139_ssrn_4105379
crossref_primary_10_1016_j_ensm_2024_103885
crossref_primary_10_1021_acsami_4c15287
crossref_primary_10_1002_adfm_202104395
crossref_primary_10_1002_elt2_8
crossref_primary_10_1002_aenm_202400202
crossref_primary_10_1038_s41467_024_44858_3
crossref_primary_10_1016_j_jece_2023_110878
crossref_primary_10_1002_ange_202100471
crossref_primary_10_1016_j_ensm_2021_08_015
crossref_primary_10_1016_j_ensm_2021_08_012
crossref_primary_10_1016_j_jechem_2023_05_020
crossref_primary_10_1002_adma_202301312
crossref_primary_10_1016_j_jechem_2022_04_025
crossref_primary_10_1016_j_jechem_2022_10_013
crossref_primary_10_1002_batt_202400284
crossref_primary_10_1016_j_ensm_2024_103875
crossref_primary_10_1021_acsnano_2c12470
crossref_primary_10_1002_anie_202205697
crossref_primary_10_1002_cnl2_184
crossref_primary_10_1002_anie_202100471
crossref_primary_10_1039_D3RA03184E
crossref_primary_10_1007_s12274_021_3643_1
crossref_primary_10_15407_hftp12_03_226
crossref_primary_10_1002_adma_202206009
crossref_primary_10_1021_acsami_3c13306
crossref_primary_10_1002_aenm_202300936
crossref_primary_10_1039_D2TA06898B
crossref_primary_10_1360_TB_2024_0526
crossref_primary_10_1126_sciadv_adj8889
crossref_primary_10_1016_j_esci_2022_06_005
crossref_primary_10_1021_acsami_4c18530
crossref_primary_10_3389_fchem_2022_916132
crossref_primary_10_1002_anie_202422539
crossref_primary_10_1016_j_electacta_2024_145394
crossref_primary_10_1016_j_ensm_2023_02_027
crossref_primary_10_1002_advs_202201297
crossref_primary_10_1016_j_cej_2023_146409
crossref_primary_10_1039_D3TA07184G
crossref_primary_10_1002_adma_202302418
crossref_primary_10_1002_aenm_202103332
crossref_primary_10_1002_smll_202102196
crossref_primary_10_1002_smll_202207290
crossref_primary_10_1016_j_electacta_2022_140107
crossref_primary_10_1021_acsenergylett_2c01090
crossref_primary_10_1002_anie_202318197
crossref_primary_10_1002_anie_202206682
crossref_primary_10_1002_cssc_202400210
crossref_primary_10_1002_smll_202304677
crossref_primary_10_1063_5_0165498
crossref_primary_10_54227_elab_20220014
crossref_primary_10_1016_j_ensm_2025_104024
crossref_primary_10_1002_smll_202303294
crossref_primary_10_2139_ssrn_4063569
crossref_primary_10_1002_adma_202207155
crossref_primary_10_1016_j_ensm_2022_07_014
crossref_primary_10_1021_acsami_2c01716
crossref_primary_10_1002_ange_202106027
crossref_primary_10_1002_ange_202206682
crossref_primary_10_1016_j_ensm_2021_10_034
crossref_primary_10_1002_ange_202410020
crossref_primary_10_1002_anie_202219318
crossref_primary_10_1002_adfm_202205393
crossref_primary_10_1007_s11664_021_08971_z
crossref_primary_10_1016_j_xcrp_2024_101999
crossref_primary_10_1002_ange_202205697
crossref_primary_10_1016_j_cej_2024_149757
crossref_primary_10_1016_j_electacta_2024_144568
crossref_primary_10_1002_smll_202202349
crossref_primary_10_1007_s42114_024_01070_7
crossref_primary_10_1016_j_scriptamat_2024_116191
crossref_primary_10_1016_j_ensm_2023_01_001
crossref_primary_10_1039_D1EE02959B
crossref_primary_10_1002_adma_202309062
crossref_primary_10_1016_j_xcrp_2022_101080
crossref_primary_10_1021_acs_jpclett_2c03304
crossref_primary_10_1016_j_esci_2023_100201
crossref_primary_10_1016_j_cclet_2024_109556
crossref_primary_10_1016_j_ensm_2023_102782
crossref_primary_10_1002_celc_202300702
crossref_primary_10_1016_j_jpowsour_2022_231681
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1002_cssc_202300293
crossref_primary_10_1002_anie_202400619
crossref_primary_10_1039_D2SC00244B
crossref_primary_10_1002_cphc_202400920
crossref_primary_10_1038_s41467_024_46186_y
crossref_primary_10_1002_adma_202108400
crossref_primary_10_1002_eem2_12230
crossref_primary_10_1002_anie_202210859
crossref_primary_10_1016_j_nxener_2023_100040
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1002_adfm_202106676
crossref_primary_10_1002_aenm_202204305
crossref_primary_10_2139_ssrn_4122757
crossref_primary_10_1126_sciadv_abg3626
crossref_primary_10_1149_1945_7111_acdd26
crossref_primary_10_1016_j_ensm_2022_12_017
crossref_primary_10_1039_D2CC04427G
crossref_primary_10_1002_aenm_202202493
crossref_primary_10_1021_acs_nanolett_3c00783
crossref_primary_10_1002_ente_202100114
crossref_primary_10_1002_aenm_202103402
crossref_primary_10_1002_ange_202412434
crossref_primary_10_1021_acs_nanolett_2c01524
crossref_primary_10_1002_anie_202218151
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1039_D3TA08019F
crossref_primary_10_1039_D4RA00737A
crossref_primary_10_1016_j_ensm_2025_104069
crossref_primary_10_1002_anie_202314876
crossref_primary_10_1016_j_cej_2023_142913
crossref_primary_10_1021_acsami_1c19479
crossref_primary_10_1016_j_esci_2021_12_006
crossref_primary_10_1016_j_jechem_2024_06_053
crossref_primary_10_1016_j_jechem_2023_03_009
crossref_primary_10_1016_j_ensm_2023_102957
crossref_primary_10_1016_j_etran_2021_100145
crossref_primary_10_1002_ange_202110441
crossref_primary_10_1016_j_cej_2022_137207
crossref_primary_10_1016_j_cclet_2024_110753
crossref_primary_10_1002_anie_202306963
crossref_primary_10_1002_anie_202319090
crossref_primary_10_1007_s11426_023_1681_x
crossref_primary_10_1016_j_jpowsour_2025_236495
crossref_primary_10_1016_j_matlet_2025_138455
crossref_primary_10_1002_adma_202202869
crossref_primary_10_1002_ange_202402456
crossref_primary_10_1002_aenm_202403674
crossref_primary_10_1039_D1SE01919H
crossref_primary_10_1039_D4EE00399C
crossref_primary_10_1039_D5EE00119F
crossref_primary_10_1039_D2IM00051B
crossref_primary_10_1021_acsami_2c20571
crossref_primary_10_1016_j_apsusc_2022_155888
crossref_primary_10_1021_jacs_2c04124
crossref_primary_10_1016_j_xcrp_2023_101324
crossref_primary_10_1002_anie_202316717
crossref_primary_10_1021_acsaem_3c03237
crossref_primary_10_1016_j_jpowsour_2024_236068
crossref_primary_10_1021_acsenergylett_3c01808
crossref_primary_10_1002_ange_202108397
crossref_primary_10_1016_j_electacta_2023_143189
crossref_primary_10_1002_smll_202207902
crossref_primary_10_1016_j_cej_2022_138318
crossref_primary_10_1016_j_jmst_2023_09_001
crossref_primary_10_1002_ange_202110589
crossref_primary_10_1021_acsaem_1c02158
crossref_primary_10_1002_smtd_202300839
crossref_primary_10_1002_anie_202210522
crossref_primary_10_1021_acsaem_3c03240
crossref_primary_10_1038_s41570_023_00557_z
crossref_primary_10_1039_D4TA05386A
crossref_primary_10_1002_adma_202305645
crossref_primary_10_1002_adfm_202212605
crossref_primary_10_1016_j_electacta_2023_143194
crossref_primary_10_1002_smll_202408164
crossref_primary_10_1002_adma_202312161
crossref_primary_10_1021_acs_nanolett_4c02983
crossref_primary_10_1016_j_ensm_2025_104176
crossref_primary_10_1016_j_ensm_2021_11_009
crossref_primary_10_1016_j_ensm_2023_102868
crossref_primary_10_1002_adma_202313135
crossref_primary_10_1002_ange_202300966
crossref_primary_10_1007_s12274_023_5795_7
crossref_primary_10_1002_anie_202419653
crossref_primary_10_1002_anie_202305840
crossref_primary_10_1002_eem2_12428
crossref_primary_10_1002_smll_202410486
Cites_doi 10.1021/acsenergylett.8b00526
10.1016/j.joule.2019.02.004
10.1016/j.jpowsour.2011.10.076
10.1021/acsenergylett.7b00982
10.1016/j.jpowsour.2015.12.123
10.1126/science.aab1595
10.1002/ange.201807034
10.1038/s41560-017-0005-z
10.1021/acsenergylett.7b00300
10.1002/anie.201801513
10.1038/s41467-018-06877-9
10.1002/anie.201914250
10.1002/anie.202004853
10.1021/jacs.7b05251
10.1021/acs.chemmater.6b02282
10.1002/adma.201603755
10.1002/aenm.201702097
10.1021/cr030203g
10.1126/sciadv.abb1122
10.1002/adma.202001740
10.1021/acsaem.9b00607
10.1021/acsenergylett.7b00273
10.1002/anie.201807034
10.1002/anie.201712702
10.1021/ja3091438
10.1039/C3EE40795K
10.1016/j.mattod.2020.04.004
10.1038/ncomms7362
10.1021/jacs.9b11750
10.1038/nenergy.2016.114
10.1021/la501368y
10.1023/A:1018409620079
10.1016/j.ensm.2018.12.007
10.1021/acs.chemmater.5b03358
10.1002/ange.201914250
10.1002/ange.202004853
10.1038/s41467-018-06077-5
10.1073/pnas.1505728112
10.1149/1.1798411
10.1038/s41565-018-0183-2
10.5796/electrochemistry.81.817
10.1016/j.elecom.2011.10.020
10.1016/j.chempr.2017.10.017
10.1016/0013-4686(89)87079-3
10.1021/acsenergylett.6b00650
10.1021/acsami.9b21679
10.1038/s41586-019-1481-z
10.1021/jp310591u
10.1002/ange.201712702
10.1016/S0167-2738(03)00167-X
10.1021/am508593s
10.1126/sciadv.aau9245
10.1038/s41524-018-0064-0
10.1149/2.0071509jes
10.1016/0022-4596(79)90195-6
10.1016/j.nanoen.2019.03.057
10.1039/C6EE00789A
10.1002/aenm.201903568
10.1021/jp3107809
10.1038/s41560-019-0464-5
10.1002/aenm.201903645
10.1021/acs.jpcc.8b01873
10.1038/s41586-019-1175-6
10.1149/2.1441707jes
10.1039/C7NR09058G
10.1021/acs.chemrev.7b00115
10.1002/adfm.201605989
10.1038/ncomms2513
10.1149/1.2128859
10.1002/ange.201801513
10.1073/pnas.1803634115
10.1149/1.3148721
10.1021/cr500003w
10.1038/s41560-019-0474-3
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202012005
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3671
ExternalDocumentID 33166432
10_1002_anie_202012005
ANIE202012005
Genre article
Journal Article
GrantInformation_xml – fundername: Office of Energy Efficiency and Renewable Energy
  funderid: No. DE-EE0008202
– fundername: Office of Energy Efficiency and Renewable Energy
  grantid: No. DE-EE0008202
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c5165-dc5454c4bf66313fb3df55db32248a5d19f6f1ca32d402d3ac913c1884278d13
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:22:43 EDT 2025
Sun Jul 13 05:00:58 EDT 2025
Thu Apr 03 07:03:53 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 01:17:51 EDT 2025
Wed Jan 22 16:58:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords lithium-metal batteries
carbonate electrolytes
lithium nitrate
electrode interphases
dendrite-free structures
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5165-dc5454c4bf66313fb3df55db32248a5d19f6f1ca32d402d3ac913c1884278d13
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8626-6381
OpenAccessLink https://www.osti.gov/biblio/1786166
PMID 33166432
PQID 2487170471
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2459357574
proquest_journals_2487170471
pubmed_primary_33166432
crossref_primary_10_1002_anie_202012005
crossref_citationtrail_10_1002_anie_202012005
wiley_primary_10_1002_anie_202012005_ANIE202012005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 15, 2021
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: February 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2017; 2
2013; 4
2012; 200
2016; 307
2020 2020; 59 132
2009; 156
2020; 12
2020; 10
2019; 569
2012; 14
2017; 117
2020; 6
2018; 9
2018; 8
1979; 29
2018; 3
2019; 60
1989; 34
2018; 4
2019; 21
2018 2018; 57 130
2013; 117
2003; 160
2017; 164
2014; 7
2015; 162
1979; 126
2019; 4
2015; 6
2004; 104
2019; 3
2020; 142
2019; 2
2017; 27
2020; 39
1997; 27
2017; 29
2020; 32
2015; 7
2014; 114
2017; 139
2015; 350
2016; 1
2015; 27
2004; 151
2015; 112
2018; 115
2013; 135
2013; 81
2016
2014; 30
2016; 28
2018; 10
2016; 9
2019; 572
2018; 13
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_36_2
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Gorobets M. I. (e_1_2_6_46_1) 2016
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_2
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_2
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_69_1
References_xml – volume: 34
  start-page: 141
  year: 1989
  end-page: 156
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 8316
  year: 2020
  end-page: 8323
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 6125
  year: 2018
  end-page: 6138
  publication-title: Nanoscale
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 414
  year: 1997
  end-page: 421
  publication-title: J. Appl. Electrochem.
– volume: 4
  start-page: 882
  year: 2019
  end-page: 890
  publication-title: Nat. Energy
– volume: 4
  start-page: 796
  year: 2019
  end-page: 805
  publication-title: Nat. Energy
– volume: 2
  start-page: 1321
  year: 2017
  end-page: 1326
  publication-title: ACS Energy Lett.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 3
  start-page: 1564
  year: 2018
  end-page: 1570
  publication-title: ACS Energy Lett.
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  publication-title: Science
– volume: 9
  start-page: 4509
  year: 2018
  publication-title: Nat. Commun.
– volume: 57 130
  start-page: 14055 14251
  year: 2018 2018
  end-page: 14059 14255
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 715
  year: 2018
  end-page: 722
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 21
  year: 2012
  end-page: 24
  publication-title: Electrochem. Commun.
– volume: 160
  start-page: 301
  year: 2003
  end-page: 307
  publication-title: Solid State Ionics
– volume: 7
  start-page: 6557
  year: 2015
  end-page: 6566
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 7414
  year: 2014
  end-page: 7424
  publication-title: Langmuir
– volume: 57 130
  start-page: 15002 15220
  year: 2018 2018
  end-page: 15027 15246
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 28
  start-page: 8149
  year: 2016
  end-page: 8159
  publication-title: Chem. Mater.
– volume: 59 132
  start-page: 14935 15045
  year: 2020 2020
  end-page: 14941 15051
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2016
  publication-title: J. Spectrosc.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 21
  start-page: 180
  year: 2019
  end-page: 189
  publication-title: Energy Storage Mater.
– volume: 112
  start-page: 9293
  year: 2015
  end-page: 9298
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1296
  year: 2017
  end-page: 1302
  publication-title: ACS Energy Lett.
– volume: 164
  start-page: A1703
  year: 2017
  end-page: A1719
  publication-title: J. Electrochem. Soc.
– volume: 115
  start-page: 5676
  year: 2018
  end-page: 5680
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 572
  start-page: 511
  year: 2019
  end-page: 515
  publication-title: Nature
– volume: 122
  start-page: 8829
  year: 2018
  end-page: 8835
  publication-title: J. Phys. Chem. C
– volume: 57 130
  start-page: 5301 5399
  year: 2018 2018
  end-page: 5305 5403
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 307
  start-page: 98
  year: 2016
  end-page: 104
  publication-title: J. Power Sources
– volume: 59 132
  start-page: 3505 3533
  year: 2020 2020
  end-page: 3510 3538
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 3656
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 14
  year: 2018
  end-page: 19
  publication-title: ACS Energy Lett.
– volume: 200
  start-page: 77
  year: 2012
  end-page: 82
  publication-title: J. Power Sources
– volume: 3
  start-page: 1094
  year: 2019
  end-page: 1105
  publication-title: Joule
– volume: 29
  start-page: 379
  year: 1979
  end-page: 392
  publication-title: J. Solid State Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 813
  year: 2017
  end-page: 820
  publication-title: Nat. Energy
– volume: 9
  start-page: 2603
  year: 2016
  end-page: 2608
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 142
  start-page: 2438
  year: 2020
  end-page: 2447
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 39
  start-page: 118
  year: 2020
  end-page: 126
  publication-title: Mater. Today
– volume: 4
  start-page: 174
  year: 2018
  end-page: 185
  publication-title: Chem
– volume: 139
  start-page: 11550
  year: 2017
  end-page: 11558
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 162
  start-page: A1683
  year: 2015
  end-page: A1692
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 4925
  year: 2019
  end-page: 4935
  publication-title: ACS Appl. Energy Mater.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 15
  year: 2018
  publication-title: npj Comput. Mater.
– volume: 27
  start-page: 7990
  year: 2015
  end-page: 8000
  publication-title: Chem. Mater.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 664
  year: 2017
  end-page: 672
  publication-title: ACS Energy Lett.
– volume: 60
  start-page: 257
  year: 2019
  end-page: 266
  publication-title: Nano Energy
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  publication-title: Energy Environ. Sci.
– volume: 126
  start-page: 2047
  year: 1979
  end-page: 2051
  publication-title: J. Electrochem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 81
  start-page: 817
  year: 2013
  end-page: 819
  publication-title: Electrochemistry
– volume: 117
  start-page: 5568
  year: 2013
  end-page: 5577
  publication-title: J. Phys. Chem. C
– volume: 151
  start-page: A1778
  year: 2004
  end-page: A1788
  publication-title: J. Electrochem. Soc.
– volume: 569
  start-page: 245
  year: 2019
  end-page: 250
  publication-title: Nature
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 117
  start-page: 8579
  year: 2013
  end-page: 8593
  publication-title: J. Phys. Chem. C
– ident: e_1_2_6_3_1
  doi: 10.1021/acsenergylett.8b00526
– ident: e_1_2_6_63_1
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_6_55_1
  doi: 10.1016/j.jpowsour.2011.10.076
– ident: e_1_2_6_29_1
  doi: 10.1021/acsenergylett.7b00982
– ident: e_1_2_6_54_1
  doi: 10.1016/j.jpowsour.2015.12.123
– ident: e_1_2_6_48_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_6_36_2
  doi: 10.1002/ange.201807034
– ident: e_1_2_6_47_1
  doi: 10.1038/s41560-017-0005-z
– ident: e_1_2_6_52_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.201801513
– ident: e_1_2_6_30_1
  doi: 10.1038/s41467-018-06877-9
– ident: e_1_2_6_37_1
  doi: 10.1002/anie.201914250
– ident: e_1_2_6_39_1
  doi: 10.1002/anie.202004853
– ident: e_1_2_6_65_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_6_66_1
  doi: 10.1021/acs.chemmater.6b02282
– ident: e_1_2_6_18_1
  doi: 10.1002/adma.201603755
– ident: e_1_2_6_60_1
  doi: 10.1002/aenm.201702097
– ident: e_1_2_6_11_1
  doi: 10.1021/cr030203g
– ident: e_1_2_6_14_1
  doi: 10.1126/sciadv.abb1122
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.202001740
– ident: e_1_2_6_61_1
  doi: 10.1021/acsaem.9b00607
– ident: e_1_2_6_9_1
  doi: 10.1021/acsenergylett.7b00273
– ident: e_1_2_6_36_1
  doi: 10.1002/anie.201807034
– ident: e_1_2_6_1_1
  doi: 10.1002/anie.201712702
– ident: e_1_2_6_2_1
  doi: 10.1021/ja3091438
– ident: e_1_2_6_5_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_6_22_1
  doi: 10.1016/j.mattod.2020.04.004
– start-page: 6978560
  year: 2016
  ident: e_1_2_6_46_1
  publication-title: J. Spectrosc.
– ident: e_1_2_6_50_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_6_24_1
  doi: 10.1021/jacs.9b11750
– ident: e_1_2_6_8_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_6_53_1
  doi: 10.1021/la501368y
– ident: e_1_2_6_57_1
  doi: 10.1023/A:1018409620079
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ensm.2018.12.007
– ident: e_1_2_6_68_1
  doi: 10.1021/acs.chemmater.5b03358
– ident: e_1_2_6_37_2
  doi: 10.1002/ange.201914250
– ident: e_1_2_6_39_2
  doi: 10.1002/ange.202004853
– ident: e_1_2_6_31_1
  doi: 10.1038/s41467-018-06077-5
– ident: e_1_2_6_45_1
  doi: 10.1073/pnas.1505728112
– ident: e_1_2_6_28_1
  doi: 10.1149/1.1798411
– ident: e_1_2_6_58_1
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_6_44_1
  doi: 10.5796/electrochemistry.81.817
– ident: e_1_2_6_33_1
  doi: 10.1016/j.elecom.2011.10.020
– ident: e_1_2_6_40_1
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_6_56_1
  doi: 10.1016/0013-4686(89)87079-3
– ident: e_1_2_6_7_1
  doi: 10.1021/acsenergylett.6b00650
– ident: e_1_2_6_64_1
  doi: 10.1021/acsami.9b21679
– ident: e_1_2_6_21_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_6_69_1
  doi: 10.1021/jp310591u
– ident: e_1_2_6_1_2
  doi: 10.1002/ange.201712702
– ident: e_1_2_6_43_1
  doi: 10.1016/S0167-2738(03)00167-X
– ident: e_1_2_6_59_1
  doi: 10.1021/am508593s
– ident: e_1_2_6_23_1
  doi: 10.1126/sciadv.aau9245
– ident: e_1_2_6_17_1
  doi: 10.1038/s41524-018-0064-0
– ident: e_1_2_6_32_1
  doi: 10.1149/2.0071509jes
– ident: e_1_2_6_67_1
  doi: 10.1016/0022-4596(79)90195-6
– ident: e_1_2_6_4_1
  doi: 10.1016/j.nanoen.2019.03.057
– ident: e_1_2_6_62_1
  doi: 10.1039/C6EE00789A
– ident: e_1_2_6_51_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_6_70_1
  doi: 10.1021/jp3107809
– ident: e_1_2_6_42_1
  doi: 10.1038/s41560-019-0464-5
– ident: e_1_2_6_15_1
  doi: 10.1002/aenm.201903645
– ident: e_1_2_6_25_1
  doi: 10.1021/acs.jpcc.8b01873
– ident: e_1_2_6_49_1
  doi: 10.1038/s41586-019-1175-6
– ident: e_1_2_6_16_1
  doi: 10.1149/2.1441707jes
– ident: e_1_2_6_19_1
  doi: 10.1039/C7NR09058G
– ident: e_1_2_6_6_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_6_26_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_6_20_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_6_13_1
  doi: 10.1149/1.2128859
– ident: e_1_2_6_27_2
  doi: 10.1002/ange.201801513
– ident: e_1_2_6_35_1
  doi: 10.1073/pnas.1803634115
– ident: e_1_2_6_34_1
  doi: 10.1149/1.3148721
– ident: e_1_2_6_12_1
  doi: 10.1021/cr500003w
– ident: e_1_2_6_41_1
  doi: 10.1038/s41560-019-0474-3
SSID ssj0028806
Score 2.7132654
Snippet In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and...
In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3661
SubjectTerms Anodes
Batteries
Bonding strength
carbonate electrolytes
dendrite-free structures
Dendritic structure
Dimethyl sulfoxide
electrode interphases
Electrolytes
Interphase
Ions
Lithium
Lithium fluoride
lithium nitrate
Lithium oxides
lithium-metal batteries
Metal surfaces
Metals
Molten salt electrolytes
Plating
Sheaths
Solid electrolytes
Solvation
Stripping
Title An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012005
https://www.ncbi.nlm.nih.gov/pubmed/33166432
https://www.proquest.com/docview/2487170471
https://www.proquest.com/docview/2459357574
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCLOnSJn06j4IBCnSSY5KibI-G4cAuGg-pA3gT-ISNOnISy0My5SfkN-aX5E6U1DhFUaAdBZHSiUfyvqPuviPkixTKecbbETcMHBRjZKTBjoCr4rWE-WWtKtg-x8nwIv42ldNnWfyBH6I-cMOVUezXuMCVXp38Ig3FDGzw7zhmfxYkphiwhajovOaP4jA5Q3qREBFWoa9YG1v8ZLP7plX6DWpuItfC9Jy-IaoSOkSc_Gyuc900dy_4HP_nq3bJ6xKX0l6YSHtky2VvyU6_Kgf3jlz3MjrKQhEo83j_gBn59MdyMbd0EErpLG5zR0MQ4wxsIwU4THtliAH9Ps9n8_UldDxzgPdp4PUEN53OM9pXNxpP8d3zR63ek8npYNIfRmW9hshIlsjIGoBjsYm1BxjDhNfCeimthj0j7ihpWdcnnhkluAWv1QplukwY1ulguQ_LxAeynS0z94lQUGVXIEepkUnseaKsAxyqPXNtPKfiDRJV6kpNyWWOJTUWaWBh5imOY1qPY4N8rdtfBRaPP7Y8rLSflqt5lYL44PW2wI43yHF9G8Yff66ozC3X2EaCyG3ZjhvkY5g19auEYAkgPxCbF7r_iwxpbzwa1Ff7_9LpgLziGHyDlWvkIdnOb9buCNBTrj8XK-QJHgwRDg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2hcmgvQGmB0FK2UiVObru7Xic5RlGqBNIcIJV6s7xfatTgQOsc2lN_Ar-RX8KM1zZNEaoExyi7yXi_5s165j2AAyUz57loR8JwDFCMUZFGP4KhitcK15e1Wcn2OUmGZ_HHc1VnE1ItTOCHaC7caGeU5zVtcLqQPvrNGkol2BjgCSr_JBbTpyTrXUZVnxsGKYHLMxQYSRmRDn3N23gsjlb7r_qlP8DmKnYtnc_Jc9C12SHn5PJwWehDc_uA0fG_nusFPKugKeuFtbQJT1z-Etb7tSLcFnzv5WyUBx0o8_PuBxXlsy-L-cyyQVDTmd8UjoU8xgt0jwwRMetVWQZsPCsuZsuv2PHUIeRngdoTI3U2y1k_u9J0ke_u_9T1NkxPBtP-MKokGyKjeKIiaxCRxSbWHpEMl15L65WyGo-NuJMpy7s-8dxkUlgMXK3MTJdLwzsdUvywXL6CtXyRuzfAuEy6kmhKjUpiL5LMOoSi2nPXpqsq0YKonq_UVHTmpKoxTwMRs0hpHNNmHFvwoWn_LRB5_LXlbj39abWhr1M0HwPfY3TlLdhvvsbxp_crWe4WS2qj0OS2ascteB2WTfNXUvIEwR-aLcrJf8SGtDcZDZpPb_-l03tYH05Px-l4NPm0AxuCcnFIyEbtwlpxtXTvEEwVeq_cLr8AKXsVKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIgGX8qaBAouExMltdtfrJMcoTdRAiRAUqTdrn2pE6vThHODET-A39pd0xmubBoSQ4Gh51x7vzux8s975BuC1ktoHLnqJsBwDFGtVYtCPYKgSjEL9ck5XbJ-zbP9z-vZIHV3L4o_8EO2GG1lGtV6TgZ-6sPuTNJQysDG-E5T9SSSmN9Os2ye93vvYEkgJ1M6YXyRlQmXoG9rGrthd77_uln7DmuvQtfI9k7ugG6njkZMvO6vS7NhvvxA6_s9n3YPNGpiyYdSk-3DDFw_g9qipB_cQzoYFmxaxCpS9_P6DUvLZp-Vi7tg41tJZfC09i6cYj9E5MsTDbFifMWAH8_J4vjrBju89An4WiT0xTmfzgo30uaFtfH_9UReP4HAyPhztJ3XBhsQqnqnEWcRjqU1NQBzDZTDSBaWcwUUj7Wvl-CBkgVsthcOw1UltB1xa3u9TvQ_H5WPYKJaF3wLGZTaQRFJqVZYGkWnnEYiawH2PNqpEB5JmunJbk5lTTY1FHmmYRU7jmLfj2IE3bfvTSOPxx5bbzezntTlf5Cg-hr1ddOQdeNXexvGnvyu68MsVtVEock_10g48iVrTvkpKniH0Q7FFNfd_kSEfzqbj9urpv3R6Cbc-7E3yg-ns3TO4I-ggDlWxUduwUZ6v_HNEUqV5URnLFfAVE-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Inorganic%E2%80%90Rich+Solid+Electrolyte+Interphase+for+Advanced+Lithium%E2%80%90Metal+Batteries+in+Carbonate+Electrolytes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Sufu&rft.au=Ji%2C+Xiao&rft.au=Piao%2C+Nan&rft.au=Chen%2C+Ji&rft.date=2021-02-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=7&rft.spage=3661&rft.epage=3671&rft_id=info:doi/10.1002%2Fanie.202012005&rft.externalDBID=10.1002%252Fanie.202012005&rft.externalDocID=ANIE202012005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon