An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes
In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich S...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 7; pp. 3661 - 3671 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
An inorganic‐rich solid electrolyte interphase (SEI) has been constructed on Li metal to promote dense Li growth with a Coulombic efficiency of 99.55 % in the carbonate electrolyte. It was synthesized on the surface of the Li‐metal anode using concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive in the FEC‐based electrolyte, which participates in the primary Li+ solvation shell and promotes the reduction of NO3− ions to form the inorganic‐rich SEI. |
---|---|
AbstractList | In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4
m
concentrated LiNO
3
in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO
3
−
ions and their participation in the primary Li
+
solvation sheath, abundant Li
2
O, Li
3
N, and LiN
x
O
y
grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF
6
−
ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm
−2
, 1.0 mAh cm
−2
) and the electrolyte also enables a Li||LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NMC811) full cell (2.5 mAh cm
−2
) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO ions and their participation in the primary Li solvation sheath, abundant Li O, Li N, and LiN O grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm , 1.0 mAh cm ) and the electrolyte also enables a Li||LiNi Co Mn O (NMC811) full cell (2.5 mAh cm ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO3 - ions and their participation in the primary Li+ solvation sheath, abundant Li2 O, Li3 N, and LiNx Oy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6 - ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm-2 , 1.0 mAh cm-2 ) and the electrolyte also enables a Li||LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) full cell (2.5 mAh cm-2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO3 - ions and their participation in the primary Li+ solvation sheath, abundant Li2 O, Li3 N, and LiNx Oy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6 - ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm-2 , 1.0 mAh cm-2 ) and the electrolyte also enables a Li||LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) full cell (2.5 mAh cm-2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %. An inorganic‐rich solid electrolyte interphase (SEI) has been constructed on Li metal to promote dense Li growth with a Coulombic efficiency of 99.55 % in the carbonate electrolyte. It was synthesized on the surface of the Li‐metal anode using concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive in the FEC‐based electrolyte, which participates in the primary Li+ solvation shell and promotes the reduction of NO3− ions to form the inorganic‐rich SEI. |
Author | Piao, Nan Wang, Chunsheng Jin, Ting Deng, Tao Eidson, Nico Wan, Hongli Li, Jingru Chen, Ji Hou, Singyuk Ji, Xiao Liu, Sufu Chen, Long Tu, Jiangping Xu, Jijian Wang, Pengfei Zhang, Jiaxun |
Author_xml | – sequence: 1 givenname: Sufu surname: Liu fullname: Liu, Sufu organization: University of Maryland – sequence: 2 givenname: Xiao surname: Ji fullname: Ji, Xiao organization: University of Maryland – sequence: 3 givenname: Nan surname: Piao fullname: Piao, Nan organization: University of Maryland – sequence: 4 givenname: Ji surname: Chen fullname: Chen, Ji organization: University of Maryland – sequence: 5 givenname: Nico surname: Eidson fullname: Eidson, Nico organization: University of Maryland – sequence: 6 givenname: Jijian surname: Xu fullname: Xu, Jijian organization: University of Maryland – sequence: 7 givenname: Pengfei surname: Wang fullname: Wang, Pengfei organization: University of Maryland – sequence: 8 givenname: Long surname: Chen fullname: Chen, Long organization: University of Maryland – sequence: 9 givenname: Jiaxun surname: Zhang fullname: Zhang, Jiaxun organization: University of Maryland – sequence: 10 givenname: Tao surname: Deng fullname: Deng, Tao organization: University of Maryland – sequence: 11 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: University of Maryland – sequence: 12 givenname: Ting surname: Jin fullname: Jin, Ting organization: University of Maryland – sequence: 13 givenname: Hongli surname: Wan fullname: Wan, Hongli organization: University of Maryland – sequence: 14 givenname: Jingru surname: Li fullname: Li, Jingru organization: Zhejiang University – sequence: 15 givenname: Jiangping surname: Tu fullname: Tu, Jiangping organization: Zhejiang University – sequence: 16 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33166432$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOGzEUhq0KVC7tliWyxKabCb6OJ8sQhTZSWiTKfuSxPcTIsYPtocqOR-AZeZI6CqUVEurKZ_F9_7HOfwT2fPAGgBOMRhghci69NSOCCMIEIf4BHGJOcEWFoHtlZpRWouH4AByldFf4pkH1R3BAKa5rRskhuJ94OPch3pYg9fz4dG3VEv4Mzmo4c0blGNwmm4JkE9dLmQzsQ4QT_SC9MhoubF7aYVXE7yZLBy9kLqA1CVoPpzJ2wcui_xOVPoH9XrpkPr-8x-DmcnYz_VYtrr7Op5NFpTiueaUVZ5wp1vV1TTHtO6p7znVHCWGN5BqP-7rHSlKiGSKaSjXGVOGmYUQ0GtNj8GUXu47hfjAptyublHFOehOG1BLGx5QLLlhBz96gd2GIvnyuUI3AAjGxDTx9oYZuZXS7jnYl46b9c8sCjHaAiiGlaPpXBKN2W1a7Lat9LasI7I2gbJbZBp-jtO59bbzTfllnNv9Z0k5-zGd_3d9Brqpu |
CitedBy_id | crossref_primary_10_1021_acsenergylett_1c02495 crossref_primary_10_1016_j_ensm_2022_05_001 crossref_primary_10_1002_anie_202214828 crossref_primary_10_1039_D3TA05793C crossref_primary_10_1021_acsami_3c16230 crossref_primary_10_1039_D3QI01290E crossref_primary_10_1039_D2TA06594K crossref_primary_10_1002_smtd_202300388 crossref_primary_10_1021_acsnano_2c08441 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1021_acsami_1c22604 crossref_primary_10_1002_ange_202210522 crossref_primary_10_1016_j_apmt_2024_102378 crossref_primary_10_1002_anie_202416565 crossref_primary_10_1002_ange_202418811 crossref_primary_10_1080_15567036_2024_2394161 crossref_primary_10_1021_acs_jpcc_4c01342 crossref_primary_10_1002_adfm_202416800 crossref_primary_10_1016_j_ensm_2023_102816 crossref_primary_10_1021_acsami_3c14279 crossref_primary_10_1016_j_cej_2025_161858 crossref_primary_10_1016_j_apsusc_2023_157739 crossref_primary_10_1002_eem2_12635 crossref_primary_10_1021_acsenergylett_3c00235 crossref_primary_10_1016_j_nanoen_2024_109862 crossref_primary_10_1039_D3TA07655E crossref_primary_10_1007_s40820_022_00833_5 crossref_primary_10_1002_ange_202314876 crossref_primary_10_1002_smll_202311961 crossref_primary_10_1021_acs_energyfuels_3c02989 crossref_primary_10_1021_jacs_3c02754 crossref_primary_10_1002_aenm_202406003 crossref_primary_10_1007_s40820_024_01508_z crossref_primary_10_1002_aenm_202400933 crossref_primary_10_1002_ange_202219318 crossref_primary_10_1039_D4EB00042K crossref_primary_10_1038_s41467_023_36853_x crossref_primary_10_1007_s11426_024_2281_6 crossref_primary_10_1038_s41560_023_01443_0 crossref_primary_10_1002_anie_202106027 crossref_primary_10_1021_acsami_2c12497 crossref_primary_10_1039_D2TA07696A crossref_primary_10_1002_ange_202319090 crossref_primary_10_1002_anie_202415251 crossref_primary_10_1002_smll_202308678 crossref_primary_10_1063_5_0181247 crossref_primary_10_1063_5_0102371 crossref_primary_10_1002_ange_202210859 crossref_primary_10_1002_advs_202104145 crossref_primary_10_1016_j_electacta_2023_143689 crossref_primary_10_1038_s41560_024_01494_x crossref_primary_10_1016_j_ssi_2024_116585 crossref_primary_10_1039_D1SC01806J crossref_primary_10_1016_j_jpowsour_2024_234611 crossref_primary_10_1002_adfm_202208629 crossref_primary_10_1002_ange_202318197 crossref_primary_10_1002_ange_202416565 crossref_primary_10_1039_D3CC02166A crossref_primary_10_1002_aenm_202404120 crossref_primary_10_1016_j_xcrp_2023_101379 crossref_primary_10_1021_acsenergylett_3c00449 crossref_primary_10_1002_ange_202415251 crossref_primary_10_1021_acsami_2c02685 crossref_primary_10_1039_D2EE01756C crossref_primary_10_1016_j_xcrp_2021_100722 crossref_primary_10_1039_D4EE04803B crossref_primary_10_1002_batt_202400726 crossref_primary_10_1002_aenm_202303051 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1002_smll_202306187 crossref_primary_10_1016_j_jcis_2023_06_065 crossref_primary_10_1016_j_jechem_2023_02_051 crossref_primary_10_1016_j_est_2024_111683 crossref_primary_10_1016_j_cej_2024_158005 crossref_primary_10_1002_smll_202301737 crossref_primary_10_1016_j_jpowsour_2022_231644 crossref_primary_10_1016_j_jcis_2024_07_155 crossref_primary_10_1073_pnas_2316212121 crossref_primary_10_1002_adma_202305470 crossref_primary_10_1002_sstr_202200071 crossref_primary_10_1021_acs_nanolett_4c05058 crossref_primary_10_1002_advs_202310094 crossref_primary_10_1002_eom2_12325 crossref_primary_10_1002_eom2_12200 crossref_primary_10_1002_adfm_202401868 crossref_primary_10_1002_adfm_202406080 crossref_primary_10_1002_adfm_202414816 crossref_primary_10_1002_adma_202212111 crossref_primary_10_1002_smll_202412389 crossref_primary_10_3390_ma15103662 crossref_primary_10_1002_eem2_12704 crossref_primary_10_1016_j_nanoen_2024_109362 crossref_primary_10_1007_s40843_023_2745_x crossref_primary_10_1007_s40820_023_01245_9 crossref_primary_10_1002_anie_202110589 crossref_primary_10_1016_j_cclet_2023_108640 crossref_primary_10_1038_s41560_023_01282_z crossref_primary_10_1002_adfm_202414569 crossref_primary_10_1002_aenm_202300918 crossref_primary_10_1002_anie_202402456 crossref_primary_10_1016_j_jechem_2021_03_048 crossref_primary_10_1002_adfm_202110347 crossref_primary_10_1002_ange_202419653 crossref_primary_10_1016_j_scib_2023_11_039 crossref_primary_10_1002_anie_202418811 crossref_primary_10_1016_j_ensm_2024_103443 crossref_primary_10_1021_acsmaterialslett_2c00443 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_1002_anie_202108397 crossref_primary_10_1149_1945_7111_ad71f7 crossref_primary_10_1002_adfm_202109377 crossref_primary_10_1002_ange_202306963 crossref_primary_10_1002_batt_202200142 crossref_primary_10_1039_D4TC04860A crossref_primary_10_1002_qua_26886 crossref_primary_10_1002_smll_202406506 crossref_primary_10_1021_acsami_3c00261 crossref_primary_10_1039_D4EE02989E crossref_primary_10_1016_j_nanoen_2021_106237 crossref_primary_10_1021_acsaem_3c00956 crossref_primary_10_1002_adfm_202204768 crossref_primary_10_1016_j_nanoen_2025_110849 crossref_primary_10_1002_adma_202312812 crossref_primary_10_1021_jacs_3c08224 crossref_primary_10_1007_s12274_024_6437_4 crossref_primary_10_1016_j_nanoen_2022_107881 crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_1002_ange_202214828 crossref_primary_10_1002_appl_202200096 crossref_primary_10_1038_s41467_023_40221_0 crossref_primary_10_1002_adfm_202214422 crossref_primary_10_20517_cs_2024_66 crossref_primary_10_1021_acsenergylett_3c00181 crossref_primary_10_1016_j_cjsc_2023_100203 crossref_primary_10_1016_j_mtener_2024_101734 crossref_primary_10_1002_adfm_202301976 crossref_primary_10_1002_aenm_202303672 crossref_primary_10_1016_j_nanoen_2021_106489 crossref_primary_10_1002_aenm_202100935 crossref_primary_10_1021_acs_energyfuels_2c02920 crossref_primary_10_1002_qua_27515 crossref_primary_10_1016_j_jechem_2022_12_049 crossref_primary_10_1016_j_jpowsour_2024_235311 crossref_primary_10_1016_j_ensm_2022_03_036 crossref_primary_10_1016_j_nanoen_2024_110031 crossref_primary_10_1002_inf2_12411 crossref_primary_10_1002_batt_202200453 crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_1016_j_mtener_2022_101107 crossref_primary_10_1002_aenm_202304532 crossref_primary_10_1016_j_joule_2021_12_018 crossref_primary_10_1016_j_jcis_2023_03_069 crossref_primary_10_1016_j_jechem_2022_07_027 crossref_primary_10_1021_acssuschemeng_2c06824 crossref_primary_10_1002_ange_202316717 crossref_primary_10_1016_j_cej_2023_144888 crossref_primary_10_1016_j_cej_2024_151116 crossref_primary_10_1016_j_electacta_2022_141490 crossref_primary_10_1016_j_jpowsour_2024_234452 crossref_primary_10_1016_j_jechem_2022_06_046 crossref_primary_10_1002_adfm_202300980 crossref_primary_10_1088_1361_6528_ac3fe2 crossref_primary_10_1021_acsami_2c14575 crossref_primary_10_34133_energymatadv_0095 crossref_primary_10_1002_cey2_169 crossref_primary_10_1007_s40820_021_00780_7 crossref_primary_10_1016_j_cej_2025_161322 crossref_primary_10_1016_j_apenergy_2025_125509 crossref_primary_10_1039_D2TA01847K crossref_primary_10_1002_adma_202102964 crossref_primary_10_1002_adfm_202300629 crossref_primary_10_1002_anie_202410020 crossref_primary_10_1016_j_ensm_2024_103352 crossref_primary_10_1016_j_jallcom_2025_179486 crossref_primary_10_1002_anie_202110441 crossref_primary_10_1039_D1TA04043J crossref_primary_10_3390_molecules28155818 crossref_primary_10_1002_aenm_202401961 crossref_primary_10_1016_j_gee_2022_08_002 crossref_primary_10_1021_acsami_3c05630 crossref_primary_10_1016_j_jpowsour_2024_234559 crossref_primary_10_1021_jacsau_3c00035 crossref_primary_10_1002_anie_202300966 crossref_primary_10_1002_batt_202200114 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1021_acsnano_3c06088 crossref_primary_10_1002_ange_202305840 crossref_primary_10_1016_j_ensm_2024_103584 crossref_primary_10_1016_j_cej_2023_141478 crossref_primary_10_1039_D4TA01352B crossref_primary_10_1002_ange_202218151 crossref_primary_10_1002_adma_202205421 crossref_primary_10_1016_j_nxmate_2024_100239 crossref_primary_10_1021_acsami_4c13009 crossref_primary_10_1039_D3EE00558E crossref_primary_10_1021_acsami_4c05861 crossref_primary_10_1016_j_chempr_2022_12_005 crossref_primary_10_1002_cssc_202401029 crossref_primary_10_1002_aelm_202300772 crossref_primary_10_1039_D3CC05859J crossref_primary_10_1002_ange_202422539 crossref_primary_10_1039_D2MH00469K crossref_primary_10_1039_D1QM00352F crossref_primary_10_1016_j_ensm_2024_103854 crossref_primary_10_1002_advs_202410129 crossref_primary_10_1021_acsmacrolett_3c00666 crossref_primary_10_1016_j_scib_2024_02_009 crossref_primary_10_1021_acsaem_1c01322 crossref_primary_10_1021_acsami_3c15703 crossref_primary_10_1021_acsnano_3c05016 crossref_primary_10_1039_D4TA01535E crossref_primary_10_1016_j_nanoen_2022_107104 crossref_primary_10_1021_acsami_2c19417 crossref_primary_10_1016_j_jpowsour_2025_236210 crossref_primary_10_1088_1742_6596_2798_1_012025 crossref_primary_10_1002_anie_202412434 crossref_primary_10_1002_batt_202300123 crossref_primary_10_1002_advs_202101584 crossref_primary_10_1039_D2TA09044A crossref_primary_10_1002_adfm_202414041 crossref_primary_10_1039_D4EE04478A crossref_primary_10_1039_D3EE00664F crossref_primary_10_1021_acsnano_3c08749 crossref_primary_10_1039_D3NJ02401F crossref_primary_10_1039_D4TA05906A crossref_primary_10_3390_batteries10040135 crossref_primary_10_1016_j_nanoen_2023_108722 crossref_primary_10_1021_acsaem_2c02179 crossref_primary_10_1016_j_mtener_2021_100841 crossref_primary_10_1016_j_apsusc_2022_154757 crossref_primary_10_1073_pnas_2214357120 crossref_primary_10_1021_acsenergylett_2c02240 crossref_primary_10_1039_D3SC03514J crossref_primary_10_1016_j_jpowsour_2022_231170 crossref_primary_10_1016_j_jpowsour_2022_232497 crossref_primary_10_1016_j_cej_2022_138599 crossref_primary_10_1016_j_ces_2023_119088 crossref_primary_10_1002_smll_202306829 crossref_primary_10_1016_j_cej_2022_138359 crossref_primary_10_1021_acsami_4c13277 crossref_primary_10_1016_j_cej_2021_132897 crossref_primary_10_1002_aenm_202300734 crossref_primary_10_1002_metm_6 crossref_primary_10_1016_j_nanoen_2022_107122 crossref_primary_10_26599_EMD_2023_9370003 crossref_primary_10_1016_j_nanoen_2022_107470 crossref_primary_10_1002_batt_202300144 crossref_primary_10_1002_aenm_202204036 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1021_acsami_3c11673 crossref_primary_10_1016_j_cej_2022_138369 crossref_primary_10_1021_acsenergylett_1c00647 crossref_primary_10_1016_j_ensm_2024_103937 crossref_primary_10_1016_j_jechem_2022_11_017 crossref_primary_10_1002_ange_202400619 crossref_primary_10_1021_acsami_1c23034 crossref_primary_10_1038_s41586_024_08294_z crossref_primary_10_1002_adma_202201801 crossref_primary_10_1016_j_pnsc_2024_03_005 crossref_primary_10_1002_aenm_202102454 crossref_primary_10_1002_adfm_202211364 crossref_primary_10_1016_j_electacta_2022_140212 crossref_primary_10_1016_j_est_2025_115876 crossref_primary_10_1002_adma_202403848 crossref_primary_10_1016_j_electacta_2022_141547 crossref_primary_10_1021_acsenergylett_1c01528 crossref_primary_10_1016_j_jpowsour_2023_233884 crossref_primary_10_1016_j_mtchem_2023_101735 crossref_primary_10_1016_j_ensm_2024_103407 crossref_primary_10_1039_D2NJ01247B crossref_primary_10_1016_j_matre_2025_100317 crossref_primary_10_2139_ssrn_4105379 crossref_primary_10_1016_j_ensm_2024_103885 crossref_primary_10_1021_acsami_4c15287 crossref_primary_10_1002_adfm_202104395 crossref_primary_10_1002_elt2_8 crossref_primary_10_1002_aenm_202400202 crossref_primary_10_1038_s41467_024_44858_3 crossref_primary_10_1016_j_jece_2023_110878 crossref_primary_10_1002_ange_202100471 crossref_primary_10_1016_j_ensm_2021_08_015 crossref_primary_10_1016_j_ensm_2021_08_012 crossref_primary_10_1016_j_jechem_2023_05_020 crossref_primary_10_1002_adma_202301312 crossref_primary_10_1016_j_jechem_2022_04_025 crossref_primary_10_1016_j_jechem_2022_10_013 crossref_primary_10_1002_batt_202400284 crossref_primary_10_1016_j_ensm_2024_103875 crossref_primary_10_1021_acsnano_2c12470 crossref_primary_10_1002_anie_202205697 crossref_primary_10_1002_cnl2_184 crossref_primary_10_1002_anie_202100471 crossref_primary_10_1039_D3RA03184E crossref_primary_10_1007_s12274_021_3643_1 crossref_primary_10_15407_hftp12_03_226 crossref_primary_10_1002_adma_202206009 crossref_primary_10_1021_acsami_3c13306 crossref_primary_10_1002_aenm_202300936 crossref_primary_10_1039_D2TA06898B crossref_primary_10_1360_TB_2024_0526 crossref_primary_10_1126_sciadv_adj8889 crossref_primary_10_1016_j_esci_2022_06_005 crossref_primary_10_1021_acsami_4c18530 crossref_primary_10_3389_fchem_2022_916132 crossref_primary_10_1002_anie_202422539 crossref_primary_10_1016_j_electacta_2024_145394 crossref_primary_10_1016_j_ensm_2023_02_027 crossref_primary_10_1002_advs_202201297 crossref_primary_10_1016_j_cej_2023_146409 crossref_primary_10_1039_D3TA07184G crossref_primary_10_1002_adma_202302418 crossref_primary_10_1002_aenm_202103332 crossref_primary_10_1002_smll_202102196 crossref_primary_10_1002_smll_202207290 crossref_primary_10_1016_j_electacta_2022_140107 crossref_primary_10_1021_acsenergylett_2c01090 crossref_primary_10_1002_anie_202318197 crossref_primary_10_1002_anie_202206682 crossref_primary_10_1002_cssc_202400210 crossref_primary_10_1002_smll_202304677 crossref_primary_10_1063_5_0165498 crossref_primary_10_54227_elab_20220014 crossref_primary_10_1016_j_ensm_2025_104024 crossref_primary_10_1002_smll_202303294 crossref_primary_10_2139_ssrn_4063569 crossref_primary_10_1002_adma_202207155 crossref_primary_10_1016_j_ensm_2022_07_014 crossref_primary_10_1021_acsami_2c01716 crossref_primary_10_1002_ange_202106027 crossref_primary_10_1002_ange_202206682 crossref_primary_10_1016_j_ensm_2021_10_034 crossref_primary_10_1002_ange_202410020 crossref_primary_10_1002_anie_202219318 crossref_primary_10_1002_adfm_202205393 crossref_primary_10_1007_s11664_021_08971_z crossref_primary_10_1016_j_xcrp_2024_101999 crossref_primary_10_1002_ange_202205697 crossref_primary_10_1016_j_cej_2024_149757 crossref_primary_10_1016_j_electacta_2024_144568 crossref_primary_10_1002_smll_202202349 crossref_primary_10_1007_s42114_024_01070_7 crossref_primary_10_1016_j_scriptamat_2024_116191 crossref_primary_10_1016_j_ensm_2023_01_001 crossref_primary_10_1039_D1EE02959B crossref_primary_10_1002_adma_202309062 crossref_primary_10_1016_j_xcrp_2022_101080 crossref_primary_10_1021_acs_jpclett_2c03304 crossref_primary_10_1016_j_esci_2023_100201 crossref_primary_10_1016_j_cclet_2024_109556 crossref_primary_10_1016_j_ensm_2023_102782 crossref_primary_10_1002_celc_202300702 crossref_primary_10_1016_j_jpowsour_2022_231681 crossref_primary_10_1039_D3CS00151B crossref_primary_10_1002_cssc_202300293 crossref_primary_10_1002_anie_202400619 crossref_primary_10_1039_D2SC00244B crossref_primary_10_1002_cphc_202400920 crossref_primary_10_1038_s41467_024_46186_y crossref_primary_10_1002_adma_202108400 crossref_primary_10_1002_eem2_12230 crossref_primary_10_1002_anie_202210859 crossref_primary_10_1016_j_nxener_2023_100040 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1002_adfm_202106676 crossref_primary_10_1002_aenm_202204305 crossref_primary_10_2139_ssrn_4122757 crossref_primary_10_1126_sciadv_abg3626 crossref_primary_10_1149_1945_7111_acdd26 crossref_primary_10_1016_j_ensm_2022_12_017 crossref_primary_10_1039_D2CC04427G crossref_primary_10_1002_aenm_202202493 crossref_primary_10_1021_acs_nanolett_3c00783 crossref_primary_10_1002_ente_202100114 crossref_primary_10_1002_aenm_202103402 crossref_primary_10_1002_ange_202412434 crossref_primary_10_1021_acs_nanolett_2c01524 crossref_primary_10_1002_anie_202218151 crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1039_D3TA08019F crossref_primary_10_1039_D4RA00737A crossref_primary_10_1016_j_ensm_2025_104069 crossref_primary_10_1002_anie_202314876 crossref_primary_10_1016_j_cej_2023_142913 crossref_primary_10_1021_acsami_1c19479 crossref_primary_10_1016_j_esci_2021_12_006 crossref_primary_10_1016_j_jechem_2024_06_053 crossref_primary_10_1016_j_jechem_2023_03_009 crossref_primary_10_1016_j_ensm_2023_102957 crossref_primary_10_1016_j_etran_2021_100145 crossref_primary_10_1002_ange_202110441 crossref_primary_10_1016_j_cej_2022_137207 crossref_primary_10_1016_j_cclet_2024_110753 crossref_primary_10_1002_anie_202306963 crossref_primary_10_1002_anie_202319090 crossref_primary_10_1007_s11426_023_1681_x crossref_primary_10_1016_j_jpowsour_2025_236495 crossref_primary_10_1016_j_matlet_2025_138455 crossref_primary_10_1002_adma_202202869 crossref_primary_10_1002_ange_202402456 crossref_primary_10_1002_aenm_202403674 crossref_primary_10_1039_D1SE01919H crossref_primary_10_1039_D4EE00399C crossref_primary_10_1039_D5EE00119F crossref_primary_10_1039_D2IM00051B crossref_primary_10_1021_acsami_2c20571 crossref_primary_10_1016_j_apsusc_2022_155888 crossref_primary_10_1021_jacs_2c04124 crossref_primary_10_1016_j_xcrp_2023_101324 crossref_primary_10_1002_anie_202316717 crossref_primary_10_1021_acsaem_3c03237 crossref_primary_10_1016_j_jpowsour_2024_236068 crossref_primary_10_1021_acsenergylett_3c01808 crossref_primary_10_1002_ange_202108397 crossref_primary_10_1016_j_electacta_2023_143189 crossref_primary_10_1002_smll_202207902 crossref_primary_10_1016_j_cej_2022_138318 crossref_primary_10_1016_j_jmst_2023_09_001 crossref_primary_10_1002_ange_202110589 crossref_primary_10_1021_acsaem_1c02158 crossref_primary_10_1002_smtd_202300839 crossref_primary_10_1002_anie_202210522 crossref_primary_10_1021_acsaem_3c03240 crossref_primary_10_1038_s41570_023_00557_z crossref_primary_10_1039_D4TA05386A crossref_primary_10_1002_adma_202305645 crossref_primary_10_1002_adfm_202212605 crossref_primary_10_1016_j_electacta_2023_143194 crossref_primary_10_1002_smll_202408164 crossref_primary_10_1002_adma_202312161 crossref_primary_10_1021_acs_nanolett_4c02983 crossref_primary_10_1016_j_ensm_2025_104176 crossref_primary_10_1016_j_ensm_2021_11_009 crossref_primary_10_1016_j_ensm_2023_102868 crossref_primary_10_1002_adma_202313135 crossref_primary_10_1002_ange_202300966 crossref_primary_10_1007_s12274_023_5795_7 crossref_primary_10_1002_anie_202419653 crossref_primary_10_1002_anie_202305840 crossref_primary_10_1002_eem2_12428 crossref_primary_10_1002_smll_202410486 |
Cites_doi | 10.1021/acsenergylett.8b00526 10.1016/j.joule.2019.02.004 10.1016/j.jpowsour.2011.10.076 10.1021/acsenergylett.7b00982 10.1016/j.jpowsour.2015.12.123 10.1126/science.aab1595 10.1002/ange.201807034 10.1038/s41560-017-0005-z 10.1021/acsenergylett.7b00300 10.1002/anie.201801513 10.1038/s41467-018-06877-9 10.1002/anie.201914250 10.1002/anie.202004853 10.1021/jacs.7b05251 10.1021/acs.chemmater.6b02282 10.1002/adma.201603755 10.1002/aenm.201702097 10.1021/cr030203g 10.1126/sciadv.abb1122 10.1002/adma.202001740 10.1021/acsaem.9b00607 10.1021/acsenergylett.7b00273 10.1002/anie.201807034 10.1002/anie.201712702 10.1021/ja3091438 10.1039/C3EE40795K 10.1016/j.mattod.2020.04.004 10.1038/ncomms7362 10.1021/jacs.9b11750 10.1038/nenergy.2016.114 10.1021/la501368y 10.1023/A:1018409620079 10.1016/j.ensm.2018.12.007 10.1021/acs.chemmater.5b03358 10.1002/ange.201914250 10.1002/ange.202004853 10.1038/s41467-018-06077-5 10.1073/pnas.1505728112 10.1149/1.1798411 10.1038/s41565-018-0183-2 10.5796/electrochemistry.81.817 10.1016/j.elecom.2011.10.020 10.1016/j.chempr.2017.10.017 10.1016/0013-4686(89)87079-3 10.1021/acsenergylett.6b00650 10.1021/acsami.9b21679 10.1038/s41586-019-1481-z 10.1021/jp310591u 10.1002/ange.201712702 10.1016/S0167-2738(03)00167-X 10.1021/am508593s 10.1126/sciadv.aau9245 10.1038/s41524-018-0064-0 10.1149/2.0071509jes 10.1016/0022-4596(79)90195-6 10.1016/j.nanoen.2019.03.057 10.1039/C6EE00789A 10.1002/aenm.201903568 10.1021/jp3107809 10.1038/s41560-019-0464-5 10.1002/aenm.201903645 10.1021/acs.jpcc.8b01873 10.1038/s41586-019-1175-6 10.1149/2.1441707jes 10.1039/C7NR09058G 10.1021/acs.chemrev.7b00115 10.1002/adfm.201605989 10.1038/ncomms2513 10.1149/1.2128859 10.1002/ange.201801513 10.1073/pnas.1803634115 10.1149/1.3148721 10.1021/cr500003w 10.1038/s41560-019-0474-3 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202012005 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3671 |
ExternalDocumentID | 33166432 10_1002_anie_202012005 ANIE202012005 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Office of Energy Efficiency and Renewable Energy funderid: No. DE-EE0008202 – fundername: Office of Energy Efficiency and Renewable Energy grantid: No. DE-EE0008202 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c5165-dc5454c4bf66313fb3df55db32248a5d19f6f1ca32d402d3ac913c1884278d13 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:22:43 EDT 2025 Sun Jul 13 05:00:58 EDT 2025 Thu Apr 03 07:03:53 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 01:17:51 EDT 2025 Wed Jan 22 16:58:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | lithium-metal batteries carbonate electrolytes lithium nitrate electrode interphases dendrite-free structures |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5165-dc5454c4bf66313fb3df55db32248a5d19f6f1ca32d402d3ac913c1884278d13 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8626-6381 |
OpenAccessLink | https://www.osti.gov/biblio/1786166 |
PMID | 33166432 |
PQID | 2487170471 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2459357574 proquest_journals_2487170471 pubmed_primary_33166432 crossref_primary_10_1002_anie_202012005 crossref_citationtrail_10_1002_anie_202012005 wiley_primary_10_1002_anie_202012005_ANIE202012005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 15, 2021 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: February 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 122 2017; 2 2013; 4 2012; 200 2016; 307 2020 2020; 59 132 2009; 156 2020; 12 2020; 10 2019; 569 2012; 14 2017; 117 2020; 6 2018; 9 2018; 8 1979; 29 2018; 3 2019; 60 1989; 34 2018; 4 2019; 21 2018 2018; 57 130 2013; 117 2003; 160 2017; 164 2014; 7 2015; 162 1979; 126 2019; 4 2015; 6 2004; 104 2019; 3 2020; 142 2019; 2 2017; 27 2020; 39 1997; 27 2017; 29 2020; 32 2015; 7 2014; 114 2017; 139 2015; 350 2016; 1 2015; 27 2004; 151 2015; 112 2018; 115 2013; 135 2013; 81 2016 2014; 30 2016; 28 2018; 10 2016; 9 2019; 572 2018; 13 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Gorobets M. I. (e_1_2_6_46_1) 2016 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_2 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_69_1 |
References_xml | – volume: 34 start-page: 141 year: 1989 end-page: 156 publication-title: Electrochim. Acta – volume: 12 start-page: 8316 year: 2020 end-page: 8323 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 10 start-page: 6125 year: 2018 end-page: 6138 publication-title: Nanoscale – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 414 year: 1997 end-page: 421 publication-title: J. Appl. Electrochem. – volume: 4 start-page: 882 year: 2019 end-page: 890 publication-title: Nat. Energy – volume: 4 start-page: 796 year: 2019 end-page: 805 publication-title: Nat. Energy – volume: 2 start-page: 1321 year: 2017 end-page: 1326 publication-title: ACS Energy Lett. – volume: 104 start-page: 4303 year: 2004 end-page: 4417 publication-title: Chem. Rev. – volume: 3 start-page: 1564 year: 2018 end-page: 1570 publication-title: ACS Energy Lett. – volume: 350 start-page: 938 year: 2015 end-page: 943 publication-title: Science – volume: 9 start-page: 4509 year: 2018 publication-title: Nat. Commun. – volume: 57 130 start-page: 14055 14251 year: 2018 2018 end-page: 14059 14255 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 715 year: 2018 end-page: 722 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 21 year: 2012 end-page: 24 publication-title: Electrochem. Commun. – volume: 160 start-page: 301 year: 2003 end-page: 307 publication-title: Solid State Ionics – volume: 7 start-page: 6557 year: 2015 end-page: 6566 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 7414 year: 2014 end-page: 7424 publication-title: Langmuir – volume: 57 130 start-page: 15002 15220 year: 2018 2018 end-page: 15027 15246 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 28 start-page: 8149 year: 2016 end-page: 8159 publication-title: Chem. Mater. – volume: 59 132 start-page: 14935 15045 year: 2020 2020 end-page: 14941 15051 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2016 publication-title: J. Spectrosc. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 21 start-page: 180 year: 2019 end-page: 189 publication-title: Energy Storage Mater. – volume: 112 start-page: 9293 year: 2015 end-page: 9298 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1296 year: 2017 end-page: 1302 publication-title: ACS Energy Lett. – volume: 164 start-page: A1703 year: 2017 end-page: A1719 publication-title: J. Electrochem. Soc. – volume: 115 start-page: 5676 year: 2018 end-page: 5680 publication-title: Proc. Natl. Acad. Sci. USA – volume: 572 start-page: 511 year: 2019 end-page: 515 publication-title: Nature – volume: 122 start-page: 8829 year: 2018 end-page: 8835 publication-title: J. Phys. Chem. C – volume: 57 130 start-page: 5301 5399 year: 2018 2018 end-page: 5305 5403 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 307 start-page: 98 year: 2016 end-page: 104 publication-title: J. Power Sources – volume: 59 132 start-page: 3505 3533 year: 2020 2020 end-page: 3510 3538 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 3656 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 14 year: 2018 end-page: 19 publication-title: ACS Energy Lett. – volume: 200 start-page: 77 year: 2012 end-page: 82 publication-title: J. Power Sources – volume: 3 start-page: 1094 year: 2019 end-page: 1105 publication-title: Joule – volume: 29 start-page: 379 year: 1979 end-page: 392 publication-title: J. Solid State Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 813 year: 2017 end-page: 820 publication-title: Nat. Energy – volume: 9 start-page: 2603 year: 2016 end-page: 2608 publication-title: Energy Environ. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 142 start-page: 2438 year: 2020 end-page: 2447 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 39 start-page: 118 year: 2020 end-page: 126 publication-title: Mater. Today – volume: 4 start-page: 174 year: 2018 end-page: 185 publication-title: Chem – volume: 139 start-page: 11550 year: 2017 end-page: 11558 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 162 start-page: A1683 year: 2015 end-page: A1692 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 4925 year: 2019 end-page: 4935 publication-title: ACS Appl. Energy Mater. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 15 year: 2018 publication-title: npj Comput. Mater. – volume: 27 start-page: 7990 year: 2015 end-page: 8000 publication-title: Chem. Mater. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 664 year: 2017 end-page: 672 publication-title: ACS Energy Lett. – volume: 60 start-page: 257 year: 2019 end-page: 266 publication-title: Nano Energy – volume: 7 start-page: 513 year: 2014 end-page: 537 publication-title: Energy Environ. Sci. – volume: 126 start-page: 2047 year: 1979 end-page: 2051 publication-title: J. Electrochem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 81 start-page: 817 year: 2013 end-page: 819 publication-title: Electrochemistry – volume: 117 start-page: 5568 year: 2013 end-page: 5577 publication-title: J. Phys. Chem. C – volume: 151 start-page: A1778 year: 2004 end-page: A1788 publication-title: J. Electrochem. Soc. – volume: 569 start-page: 245 year: 2019 end-page: 250 publication-title: Nature – volume: 156 start-page: A694 year: 2009 publication-title: J. Electrochem. Soc. – volume: 117 start-page: 8579 year: 2013 end-page: 8593 publication-title: J. Phys. Chem. C – ident: e_1_2_6_3_1 doi: 10.1021/acsenergylett.8b00526 – ident: e_1_2_6_63_1 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_6_55_1 doi: 10.1016/j.jpowsour.2011.10.076 – ident: e_1_2_6_29_1 doi: 10.1021/acsenergylett.7b00982 – ident: e_1_2_6_54_1 doi: 10.1016/j.jpowsour.2015.12.123 – ident: e_1_2_6_48_1 doi: 10.1126/science.aab1595 – ident: e_1_2_6_36_2 doi: 10.1002/ange.201807034 – ident: e_1_2_6_47_1 doi: 10.1038/s41560-017-0005-z – ident: e_1_2_6_52_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_6_27_1 doi: 10.1002/anie.201801513 – ident: e_1_2_6_30_1 doi: 10.1038/s41467-018-06877-9 – ident: e_1_2_6_37_1 doi: 10.1002/anie.201914250 – ident: e_1_2_6_39_1 doi: 10.1002/anie.202004853 – ident: e_1_2_6_65_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_6_66_1 doi: 10.1021/acs.chemmater.6b02282 – ident: e_1_2_6_18_1 doi: 10.1002/adma.201603755 – ident: e_1_2_6_60_1 doi: 10.1002/aenm.201702097 – ident: e_1_2_6_11_1 doi: 10.1021/cr030203g – ident: e_1_2_6_14_1 doi: 10.1126/sciadv.abb1122 – ident: e_1_2_6_38_1 doi: 10.1002/adma.202001740 – ident: e_1_2_6_61_1 doi: 10.1021/acsaem.9b00607 – ident: e_1_2_6_9_1 doi: 10.1021/acsenergylett.7b00273 – ident: e_1_2_6_36_1 doi: 10.1002/anie.201807034 – ident: e_1_2_6_1_1 doi: 10.1002/anie.201712702 – ident: e_1_2_6_2_1 doi: 10.1021/ja3091438 – ident: e_1_2_6_5_1 doi: 10.1039/C3EE40795K – ident: e_1_2_6_22_1 doi: 10.1016/j.mattod.2020.04.004 – start-page: 6978560 year: 2016 ident: e_1_2_6_46_1 publication-title: J. Spectrosc. – ident: e_1_2_6_50_1 doi: 10.1038/ncomms7362 – ident: e_1_2_6_24_1 doi: 10.1021/jacs.9b11750 – ident: e_1_2_6_8_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_6_53_1 doi: 10.1021/la501368y – ident: e_1_2_6_57_1 doi: 10.1023/A:1018409620079 – ident: e_1_2_6_10_1 doi: 10.1016/j.ensm.2018.12.007 – ident: e_1_2_6_68_1 doi: 10.1021/acs.chemmater.5b03358 – ident: e_1_2_6_37_2 doi: 10.1002/ange.201914250 – ident: e_1_2_6_39_2 doi: 10.1002/ange.202004853 – ident: e_1_2_6_31_1 doi: 10.1038/s41467-018-06077-5 – ident: e_1_2_6_45_1 doi: 10.1073/pnas.1505728112 – ident: e_1_2_6_28_1 doi: 10.1149/1.1798411 – ident: e_1_2_6_58_1 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_6_44_1 doi: 10.5796/electrochemistry.81.817 – ident: e_1_2_6_33_1 doi: 10.1016/j.elecom.2011.10.020 – ident: e_1_2_6_40_1 doi: 10.1016/j.chempr.2017.10.017 – ident: e_1_2_6_56_1 doi: 10.1016/0013-4686(89)87079-3 – ident: e_1_2_6_7_1 doi: 10.1021/acsenergylett.6b00650 – ident: e_1_2_6_64_1 doi: 10.1021/acsami.9b21679 – ident: e_1_2_6_21_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_6_69_1 doi: 10.1021/jp310591u – ident: e_1_2_6_1_2 doi: 10.1002/ange.201712702 – ident: e_1_2_6_43_1 doi: 10.1016/S0167-2738(03)00167-X – ident: e_1_2_6_59_1 doi: 10.1021/am508593s – ident: e_1_2_6_23_1 doi: 10.1126/sciadv.aau9245 – ident: e_1_2_6_17_1 doi: 10.1038/s41524-018-0064-0 – ident: e_1_2_6_32_1 doi: 10.1149/2.0071509jes – ident: e_1_2_6_67_1 doi: 10.1016/0022-4596(79)90195-6 – ident: e_1_2_6_4_1 doi: 10.1016/j.nanoen.2019.03.057 – ident: e_1_2_6_62_1 doi: 10.1039/C6EE00789A – ident: e_1_2_6_51_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_6_70_1 doi: 10.1021/jp3107809 – ident: e_1_2_6_42_1 doi: 10.1038/s41560-019-0464-5 – ident: e_1_2_6_15_1 doi: 10.1002/aenm.201903645 – ident: e_1_2_6_25_1 doi: 10.1021/acs.jpcc.8b01873 – ident: e_1_2_6_49_1 doi: 10.1038/s41586-019-1175-6 – ident: e_1_2_6_16_1 doi: 10.1149/2.1441707jes – ident: e_1_2_6_19_1 doi: 10.1039/C7NR09058G – ident: e_1_2_6_6_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_6_26_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_6_20_1 doi: 10.1038/ncomms2513 – ident: e_1_2_6_13_1 doi: 10.1149/1.2128859 – ident: e_1_2_6_27_2 doi: 10.1002/ange.201801513 – ident: e_1_2_6_35_1 doi: 10.1073/pnas.1803634115 – ident: e_1_2_6_34_1 doi: 10.1149/1.3148721 – ident: e_1_2_6_12_1 doi: 10.1021/cr500003w – ident: e_1_2_6_41_1 doi: 10.1038/s41560-019-0474-3 |
SSID | ssj0028806 |
Score | 2.7132654 |
Snippet | In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and... In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3661 |
SubjectTerms | Anodes Batteries Bonding strength carbonate electrolytes dendrite-free structures Dendritic structure Dimethyl sulfoxide electrode interphases Electrolytes Interphase Ions Lithium Lithium fluoride lithium nitrate Lithium oxides lithium-metal batteries Metal surfaces Metals Molten salt electrolytes Plating Sheaths Solid electrolytes Solvation Stripping |
Title | An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012005 https://www.ncbi.nlm.nih.gov/pubmed/33166432 https://www.proquest.com/docview/2487170471 https://www.proquest.com/docview/2459357574 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCLOnSJn06j4IBCnSSY5KibI-G4cAuGg-pA3gT-ISNOnISy0My5SfkN-aX5E6U1DhFUaAdBZHSiUfyvqPuviPkixTKecbbETcMHBRjZKTBjoCr4rWE-WWtKtg-x8nwIv42ldNnWfyBH6I-cMOVUezXuMCVXp38Ig3FDGzw7zhmfxYkphiwhajovOaP4jA5Q3qREBFWoa9YG1v8ZLP7plX6DWpuItfC9Jy-IaoSOkSc_Gyuc900dy_4HP_nq3bJ6xKX0l6YSHtky2VvyU6_Kgf3jlz3MjrKQhEo83j_gBn59MdyMbd0EErpLG5zR0MQ4wxsIwU4THtliAH9Ps9n8_UldDxzgPdp4PUEN53OM9pXNxpP8d3zR63ek8npYNIfRmW9hshIlsjIGoBjsYm1BxjDhNfCeimthj0j7ihpWdcnnhkluAWv1QplukwY1ulguQ_LxAeynS0z94lQUGVXIEepkUnseaKsAxyqPXNtPKfiDRJV6kpNyWWOJTUWaWBh5imOY1qPY4N8rdtfBRaPP7Y8rLSflqt5lYL44PW2wI43yHF9G8Yff66ozC3X2EaCyG3ZjhvkY5g19auEYAkgPxCbF7r_iwxpbzwa1Ff7_9LpgLziGHyDlWvkIdnOb9buCNBTrj8XK-QJHgwRDg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2hcmgvQGmB0FK2UiVObru7Xic5RlGqBNIcIJV6s7xfatTgQOsc2lN_Ar-RX8KM1zZNEaoExyi7yXi_5s165j2AAyUz57loR8JwDFCMUZFGP4KhitcK15e1Wcn2OUmGZ_HHc1VnE1ItTOCHaC7caGeU5zVtcLqQPvrNGkol2BjgCSr_JBbTpyTrXUZVnxsGKYHLMxQYSRmRDn3N23gsjlb7r_qlP8DmKnYtnc_Jc9C12SHn5PJwWehDc_uA0fG_nusFPKugKeuFtbQJT1z-Etb7tSLcFnzv5WyUBx0o8_PuBxXlsy-L-cyyQVDTmd8UjoU8xgt0jwwRMetVWQZsPCsuZsuv2PHUIeRngdoTI3U2y1k_u9J0ke_u_9T1NkxPBtP-MKokGyKjeKIiaxCRxSbWHpEMl15L65WyGo-NuJMpy7s-8dxkUlgMXK3MTJdLwzsdUvywXL6CtXyRuzfAuEy6kmhKjUpiL5LMOoSi2nPXpqsq0YKonq_UVHTmpKoxTwMRs0hpHNNmHFvwoWn_LRB5_LXlbj39abWhr1M0HwPfY3TlLdhvvsbxp_crWe4WS2qj0OS2ascteB2WTfNXUvIEwR-aLcrJf8SGtDcZDZpPb_-l03tYH05Px-l4NPm0AxuCcnFIyEbtwlpxtXTvEEwVeq_cLr8AKXsVKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIgGX8qaBAouExMltdtfrJMcoTdRAiRAUqTdrn2pE6vThHODET-A39pd0xmubBoSQ4Gh51x7vzux8s975BuC1ktoHLnqJsBwDFGtVYtCPYKgSjEL9ck5XbJ-zbP9z-vZIHV3L4o_8EO2GG1lGtV6TgZ-6sPuTNJQysDG-E5T9SSSmN9Os2ye93vvYEkgJ1M6YXyRlQmXoG9rGrthd77_uln7DmuvQtfI9k7ugG6njkZMvO6vS7NhvvxA6_s9n3YPNGpiyYdSk-3DDFw_g9qipB_cQzoYFmxaxCpS9_P6DUvLZp-Vi7tg41tJZfC09i6cYj9E5MsTDbFifMWAH8_J4vjrBju89An4WiT0xTmfzgo30uaFtfH_9UReP4HAyPhztJ3XBhsQqnqnEWcRjqU1NQBzDZTDSBaWcwUUj7Wvl-CBkgVsthcOw1UltB1xa3u9TvQ_H5WPYKJaF3wLGZTaQRFJqVZYGkWnnEYiawH2PNqpEB5JmunJbk5lTTY1FHmmYRU7jmLfj2IE3bfvTSOPxx5bbzezntTlf5Cg-hr1ddOQdeNXexvGnvyu68MsVtVEock_10g48iVrTvkpKniH0Q7FFNfd_kSEfzqbj9urpv3R6Cbc-7E3yg-ns3TO4I-ggDlWxUduwUZ6v_HNEUqV5URnLFfAVE-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Inorganic%E2%80%90Rich+Solid+Electrolyte+Interphase+for+Advanced+Lithium%E2%80%90Metal+Batteries+in+Carbonate+Electrolytes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Sufu&rft.au=Ji%2C+Xiao&rft.au=Piao%2C+Nan&rft.au=Chen%2C+Ji&rft.date=2021-02-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=7&rft.spage=3661&rft.epage=3671&rft_id=info:doi/10.1002%2Fanie.202012005&rft.externalDBID=10.1002%252Fanie.202012005&rft.externalDocID=ANIE202012005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |