Pathway Control in Cooperative vs. Anti‐Cooperative Supramolecular Polymers

Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic PtII complex 1 that shows unique self‐assembly behavior in nonpolar media, providing two competing anti‐co...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 33; pp. 11344 - 11349
Main Authors Herkert, Lorena, Droste, Jörn, Kartha, Kalathil K., Korevaar, Peter A., de Greef, Tom F. A., Hansen, Michael Ryan, Fernández, Gustavo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.08.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic PtII complex 1 that shows unique self‐assembly behavior in nonpolar media, providing two competing anti‐cooperative and cooperative pathways with distinct molecular arrangement (long‐ vs. medium‐slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti‐cooperative and cooperative pathways: buffering of monomers into small‐sized, anti‐cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self‐assembly. Our findings reveal that side‐chain immiscibility is an efficient method to control anti‐cooperative assemblies and pathway complexity in general. Side‐chain immiscibility allows full control over the formation of a highly stable, discrete anti‐cooperative assembly that is in competition with the formation of cooperative supramolecular polymers, which may open up new strategies for pathway control in self‐assembly.
AbstractList Abstract Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic Pt II complex  1 that shows unique self‐assembly behavior in nonpolar media, providing two competing anti‐cooperative and cooperative pathways with distinct molecular arrangement (long‐ vs. medium‐slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti‐cooperative and cooperative pathways: buffering of monomers into small‐sized, anti‐cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self‐assembly. Our findings reveal that side‐chain immiscibility is an efficient method to control anti‐cooperative assemblies and pathway complexity in general.
Controlling the nanoscale morphology in assemblies of π-conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic Pt complex 1 that shows unique self-assembly behavior in nonpolar media, providing two competing anti-cooperative and cooperative pathways with distinct molecular arrangement (long- vs. medium-slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti-cooperative and cooperative pathways: buffering of monomers into small-sized, anti-cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self-assembly. Our findings reveal that side-chain immiscibility is an efficient method to control anti-cooperative assemblies and pathway complexity in general.
Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic PtII complex 1 that shows unique self‐assembly behavior in nonpolar media, providing two competing anti‐cooperative and cooperative pathways with distinct molecular arrangement (long‐ vs. medium‐slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti‐cooperative and cooperative pathways: buffering of monomers into small‐sized, anti‐cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self‐assembly. Our findings reveal that side‐chain immiscibility is an efficient method to control anti‐cooperative assemblies and pathway complexity in general. Side‐chain immiscibility allows full control over the formation of a highly stable, discrete anti‐cooperative assembly that is in competition with the formation of cooperative supramolecular polymers, which may open up new strategies for pathway control in self‐assembly.
Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic PtII complex 1 that shows unique self‐assembly behavior in nonpolar media, providing two competing anti‐cooperative and cooperative pathways with distinct molecular arrangement (long‐ vs. medium‐slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti‐cooperative and cooperative pathways: buffering of monomers into small‐sized, anti‐cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self‐assembly. Our findings reveal that side‐chain immiscibility is an efficient method to control anti‐cooperative assemblies and pathway complexity in general.
Author Korevaar, Peter A.
Kartha, Kalathil K.
Herkert, Lorena
Fernández, Gustavo
Droste, Jörn
Hansen, Michael Ryan
de Greef, Tom F. A.
Author_xml – sequence: 1
  givenname: Lorena
  surname: Herkert
  fullname: Herkert, Lorena
  organization: Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster
– sequence: 2
  givenname: Jörn
  surname: Droste
  fullname: Droste, Jörn
  organization: Westfälische-Wilhelms Universität Münster
– sequence: 3
  givenname: Kalathil K.
  surname: Kartha
  fullname: Kartha, Kalathil K.
  organization: Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster
– sequence: 4
  givenname: Peter A.
  surname: Korevaar
  fullname: Korevaar, Peter A.
  organization: Radboud University
– sequence: 5
  givenname: Tom F. A.
  surname: de Greef
  fullname: de Greef, Tom F. A.
  organization: Eindhoven University of Technology
– sequence: 6
  givenname: Michael Ryan
  surname: Hansen
  fullname: Hansen, Michael Ryan
  organization: Westfälische-Wilhelms Universität Münster
– sequence: 7
  givenname: Gustavo
  orcidid: 0000-0001-6155-8671
  surname: Fernández
  fullname: Fernández, Gustavo
  email: fernandg@uni-muenster.de
  organization: Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31119831$$D View this record in MEDLINE/PubMed
BookMark eNqF0LtOwzAUBmALFUFbWBlRJBaWFB_bcZKxqrhU4lIJmCPjnIigJA52UtSNR-AZeRJclZtYmHxkfefX0T8ig8Y0SMgB0AlQyk5UU-KEUUhpRKXYIkOIGIQ8jvnAz4LzME4i2CUj5568TxIqd8guB4A04TAkVwvVPb6oVTAzTWdNFZSNH02LVnXlEoOlmwTTpivfX99-f9_2rVW1qVD3lbLBwlSrGq3bI9uFqhzuf75jcn92eje7CC9vzuez6WWoI5AizCMa4QOKvNBI46QApXlMVSEFKgCdCgWCSkqlToQWCpHzmIHUEgBTxJyPyfEmt7XmuUfXZXXpNFaVatD0LmOMM6CSpamnR3_ok-lt46_zSiYsToUQXk02SlvjnMUia21ZK7vKgGbrorN10dl30X7h8DO2f6gx_-ZfzXqQbsBLWeHqn7hsej0__Qn_ADBFjH0
CitedBy_id crossref_primary_10_1039_C9SC03280K
crossref_primary_10_1021_acs_chemmater_3c01168
crossref_primary_10_1038_s41578_020_00232_5
crossref_primary_10_1002_chem_202001566
crossref_primary_10_1021_acs_chemmater_2c01353
crossref_primary_10_1021_jacs_2c12894
crossref_primary_10_1039_D0PY00049C
crossref_primary_10_1002_chem_202002056
crossref_primary_10_1002_ange_202300972
crossref_primary_10_1002_anie_202103125
crossref_primary_10_1039_D0CC02787A
crossref_primary_10_1021_acs_macromol_0c02774
crossref_primary_10_1002_anie_202200390
crossref_primary_10_1021_acsmaterialslett_4c00279
crossref_primary_10_1002_chem_202400899
crossref_primary_10_1039_D1TB00683E
crossref_primary_10_1021_acsami_0c08137
crossref_primary_10_1021_acs_inorgchem_0c00887
crossref_primary_10_1021_jacs_3c04598
crossref_primary_10_1038_s41467_020_19189_8
crossref_primary_10_1002_ange_201908002
crossref_primary_10_1039_D3QO00148B
crossref_primary_10_1002_anie_202208635
crossref_primary_10_1002_anie_202316863
crossref_primary_10_1039_C9SC05910E
crossref_primary_10_1039_D1TC04518K
crossref_primary_10_1002_anie_202213345
crossref_primary_10_1002_chem_202101492
crossref_primary_10_1039_D1QO01074C
crossref_primary_10_1039_D1SC04883J
crossref_primary_10_1002_anie_202218555
crossref_primary_10_1002_anie_202300972
crossref_primary_10_1039_D4NR00991F
crossref_primary_10_1016_j_dyepig_2020_108815
crossref_primary_10_1039_D1SC03388C
crossref_primary_10_1002_anie_201908002
crossref_primary_10_1039_D1SC00416F
crossref_primary_10_1002_chem_202300359
crossref_primary_10_1016_j_ccr_2020_213300
crossref_primary_10_1039_C9SC04958D
crossref_primary_10_1039_C9PY01299K
crossref_primary_10_1002_ejic_202100499
crossref_primary_10_1002_ange_202208635
crossref_primary_10_1039_D0SC02115F
crossref_primary_10_1002_ange_202316863
crossref_primary_10_1021_prechem_3c00058
crossref_primary_10_1002_ange_202213345
crossref_primary_10_1002_cplu_202000210
crossref_primary_10_1002_ange_201916261
crossref_primary_10_1002_ange_202218555
crossref_primary_10_1039_D1SC03813C
crossref_primary_10_1039_C9QM00595A
crossref_primary_10_1039_D1SC01913A
crossref_primary_10_1002_asia_202200494
crossref_primary_10_1007_s11426_020_9911_4
crossref_primary_10_1002_ange_202103125
crossref_primary_10_1002_anie_201916261
crossref_primary_10_1002_ange_202200390
crossref_primary_10_1002_smll_202006133
Cites_doi 10.1002/chem.201600176
10.1021/cr900181u
10.1021/jo010918o
10.1002/chem.201503616
10.1126/science.283.5401.523
10.1021/ja072536r
10.1021/acsnano.7b04069
10.1038/ncomms1517
10.1021/cm4021172
10.1021/cr300005u
10.1039/C7CS00121E
10.1039/C4CC06152G
10.1039/C4CP03791J
10.1038/nature10720
10.1039/c3cc41636d
10.2307/3571331
10.1038/nchem.1849
10.1038/nchem.2383
10.1002/anie.201106767
10.1002/ange.201709307
10.1039/C8SC03875A
10.1038/nmat4837
10.1002/ange.201307806
10.1038/nchem.2684
10.1039/C8CC02832J
10.1021/jacs.8b02388
10.1021/jp300622m
10.1021/jacs.7b08189
10.1039/c4sm01068j
10.1002/smll.201702437
10.1002/ange.201106767
10.1002/anie.201709307
10.1002/anie.200353434
10.1039/C7QM00494J
10.1002/anie.201307806
10.1073/pnas.1712827114
10.1021/ja034358h
10.1021/ja409597x
10.1126/science.aaa4249
10.1126/science.aac7422
10.1038/nmat4538
10.1039/C5SC03759J
10.1002/ange.200353434
10.1021/jacs.8b01463
10.1021/acs.chemrev.5b00369
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.201905064
DatabaseName PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 11349
ExternalDocumentID 10_1002_anie_201905064
31119831
ANIE201905064
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  funderid: ERC Starting Grant SUPRACOP 715923
– fundername: Deutsche Forschungsgemeinschaft
  funderid: SFB858 From additivity towards cooperativity
– fundername: Deutsche Forschungsgemeinschaft
  grantid: SFB858 From additivity towards cooperativity
– fundername: H2020 European Research Council
  grantid: ERC Starting Grant SUPRACOP 715923
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c5164-d505ebe4dfce078f1ac370af64ea11c94a1406006c84c4aee337216c611e9eed3
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Aug 16 03:51:58 EDT 2024
Fri Sep 13 08:13:32 EDT 2024
Fri Aug 23 00:48:43 EDT 2024
Sat Sep 28 08:28:45 EDT 2024
Sat Aug 24 01:11:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords self-assembly
pathway complexity
cooperativity
π-conjugated systems
supramolecular polymerization
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5164-d505ebe4dfce078f1ac370af64ea11c94a1406006c84c4aee337216c611e9eed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6155-8671
OpenAccessLink https://repository.ubn.ru.nl//bitstream/handle/2066/206104/206104.pdf
PMID 31119831
PQID 2268279444
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2232106299
proquest_journals_2268279444
crossref_primary_10_1002_anie_201905064
pubmed_primary_31119831
wiley_primary_10_1002_anie_201905064_ANIE201905064
PublicationCentury 2000
PublicationDate August 12, 2019
PublicationDateYYYYMMDD 2019-08-12
PublicationDate_xml – month: 08
  year: 2019
  text: August 12, 2019
  day: 12
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2012; 481
2004 2004; 43 116
2007; 129
1963; 20
2018; 140
2011; 2
2013; 49
2015; 347
2019; 10
2017; 46
2014; 26
1999; 283
2015; 349
2017 2017; 56 129
2017; 114
2016; 15
2017; 9
2016; 7
2018; 2
2017; 16
2012 2012; 51 124
2017; 11
2002; 67
2015; 21
2014; 16
2013; 113
2013; 135
2016; 116
2003; 125
2018; 54
2009; 109
2012; 116
2014; 50
2014; 6
2016; 8
2018; 14
2014; 10
2016; 22
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_4_3
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_45_3
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_3
e_1_2_2_30_3
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 140
  start-page: 534
  year: 2018
  end-page: 537
  publication-title: J. Am. Chem. Soc.
– volume: 283
  start-page: 523
  year: 1999
  end-page: 526
  publication-title: Science
– volume: 14
  start-page: 1702437
  year: 2018
  publication-title: Small
– volume: 15
  start-page: 469
  year: 2016
  end-page: 476
  publication-title: Nat. Mater.
– volume: 140
  start-page: 5764
  year: 2018
  end-page: 5773
  publication-title: J. Am. Chem. Soc.
– volume: 481
  start-page: 492
  year: 2012
  end-page: 496
  publication-title: Nature
– volume: 2
  start-page: 509
  year: 2011
  publication-title: Nat. Commun.
– volume: 22
  start-page: 7810
  year: 2016
  end-page: 7816
  publication-title: Chem. Eur. J.
– volume: 114
  start-page: 11844
  year: 2017
  end-page: 11849
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 9162
  year: 2017
  end-page: 9175
  publication-title: ACS Nano
– volume: 10
  start-page: 5231
  year: 2014
  end-page: 5242
  publication-title: Soft Matter
– volume: 10
  start-page: 752
  year: 2019
  end-page: 760
  publication-title: Chem. Sci.
– volume: 26
  start-page: 576
  year: 2014
  end-page: 586
  publication-title: Chem. Mater.
– volume: 21
  start-page: 19257
  year: 2015
  end-page: 19264
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 493
  year: 2017
  end-page: 499
  publication-title: Nat. Chem.
– volume: 349
  start-page: 241
  year: 2015
  end-page: 242
  publication-title: Science
– volume: 347
  start-page: 646
  year: 2015
  end-page: 651
  publication-title: Science
– volume: 6
  start-page: 188
  year: 2014
  end-page: 195
  publication-title: Nat. Chem.
– volume: 43 116
  start-page: 1718 1750
  year: 2004 2004
  end-page: 1721 1753
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 5291
  year: 2012
  end-page: 5301
  publication-title: J. Phys. Chem. B
– volume: 49
  start-page: 5532
  year: 2013
  end-page: 5534
  publication-title: Chem. Commun.
– volume: 20
  start-page: 55
  year: 1963
  end-page: 70
  publication-title: Radiat. Res.
– volume: 54
  start-page: 5720
  year: 2018
  end-page: 5723
  publication-title: Chem. Commun.
– volume: 125
  start-page: 9372
  year: 2003
  end-page: 9376
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 481
  year: 2017
  end-page: 488
  publication-title: Nat. Mater.
– volume: 56 129
  start-page: 16008 16224
  year: 2017 2017
  end-page: 16012 16228
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 7810
  year: 2018
  end-page: 7819
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 5687
  year: 2009
  end-page: 5754
  publication-title: Chem. Rev.
– volume: 129
  start-page: 12468
  year: 2007
  end-page: 12472
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 13366
  year: 2014
  end-page: 13369
  publication-title: Chem. Commun.
– volume: 7
  start-page: 1729
  year: 2016
  end-page: 1737
  publication-title: Chem. Sci.
– volume: 67
  start-page: 3548
  year: 2002
  end-page: 3554
  publication-title: J. Org. Chem.
– volume: 53 126
  start-page: 700 716
  year: 2014 2014
  end-page: 705 722
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 113
  start-page: 3734
  year: 2013
  end-page: 3765
  publication-title: Chem. Rev.
– volume: 16
  start-page: 26672
  year: 2014
  end-page: 26683
  publication-title: Phys. Chem. Chem. Phys.
– volume: 51 124
  start-page: 1766 1800
  year: 2012 2012
  end-page: 1776 1810
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 2414
  year: 2016
  end-page: 2477
  publication-title: Chem. Rev.
– volume: 46
  start-page: 5476
  year: 2017
  end-page: 5490
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 18722
  year: 2013
  end-page: 18725
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 10
  year: 2016
  end-page: 15
  publication-title: Nat. Chem.
– volume: 2
  start-page: 171
  year: 2018
  end-page: 179
  publication-title: Mater. Chem. Front.
– ident: e_1_2_2_46_2
  doi: 10.1002/chem.201600176
– ident: e_1_2_2_23_1
  doi: 10.1021/cr900181u
– ident: e_1_2_2_36_2
  doi: 10.1021/jo010918o
– ident: e_1_2_2_32_2
  doi: 10.1002/chem.201503616
– ident: e_1_2_2_37_2
  doi: 10.1126/science.283.5401.523
– ident: e_1_2_2_34_2
  doi: 10.1021/ja072536r
– ident: e_1_2_2_31_1
– ident: e_1_2_2_14_2
  doi: 10.1021/acsnano.7b04069
– ident: e_1_2_2_26_2
  doi: 10.1038/ncomms1517
– ident: e_1_2_2_2_2
  doi: 10.1021/cm4021172
– ident: e_1_2_2_3_2
  doi: 10.1021/cr300005u
– ident: e_1_2_2_15_2
  doi: 10.1039/C7CS00121E
– ident: e_1_2_2_47_2
  doi: 10.1039/C4CC06152G
– ident: e_1_2_2_41_2
  doi: 10.1039/C4CP03791J
– ident: e_1_2_2_5_1
  doi: 10.1038/nature10720
– ident: e_1_2_2_29_2
  doi: 10.1039/c3cc41636d
– ident: e_1_2_2_43_1
  doi: 10.2307/3571331
– ident: e_1_2_2_22_2
  doi: 10.1038/nchem.1849
– ident: e_1_2_2_44_1
– ident: e_1_2_2_6_1
– ident: e_1_2_2_18_2
  doi: 10.1038/nchem.2383
– ident: e_1_2_2_4_2
  doi: 10.1002/anie.201106767
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201709307
– ident: e_1_2_2_48_1
  doi: 10.1039/C8SC03875A
– ident: e_1_2_2_13_2
  doi: 10.1038/nmat4837
– ident: e_1_2_2_39_1
– ident: e_1_2_2_45_3
  doi: 10.1002/ange.201307806
– ident: e_1_2_2_16_2
  doi: 10.1038/nchem.2684
– ident: e_1_2_2_7_2
  doi: 10.1039/C8CC02832J
– ident: e_1_2_2_1_1
– ident: e_1_2_2_11_2
  doi: 10.1021/jacs.8b02388
– ident: e_1_2_2_25_2
  doi: 10.1021/jp300622m
– ident: e_1_2_2_9_2
  doi: 10.1021/jacs.7b08189
– ident: e_1_2_2_27_1
– ident: e_1_2_2_42_2
  doi: 10.1039/c4sm01068j
– ident: e_1_2_2_8_2
  doi: 10.1002/smll.201702437
– ident: e_1_2_2_4_3
  doi: 10.1002/ange.201106767
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201709307
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.200353434
– ident: e_1_2_2_10_2
  doi: 10.1039/C7QM00494J
– ident: e_1_2_2_45_2
  doi: 10.1002/anie.201307806
– ident: e_1_2_2_12_2
  doi: 10.1073/pnas.1712827114
– ident: e_1_2_2_35_2
  doi: 10.1021/ja034358h
– ident: e_1_2_2_33_2
  doi: 10.1021/ja409597x
– ident: e_1_2_2_20_2
  doi: 10.1126/science.aaa4249
– ident: e_1_2_2_21_2
  doi: 10.1126/science.aac7422
– ident: e_1_2_2_19_2
  doi: 10.1038/nmat4538
– ident: e_1_2_2_28_2
  doi: 10.1039/C5SC03759J
– ident: e_1_2_2_24_1
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.200353434
– ident: e_1_2_2_38_1
  doi: 10.1021/jacs.8b01463
– ident: e_1_2_2_40_2
  doi: 10.1021/acs.chemrev.5b00369
SSID ssj0028806
Score 2.540427
Snippet Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report an...
Controlling the nanoscale morphology in assemblies of π-conjugated molecules is key to developing supramolecular functional materials. Here, we report an...
Abstract Controlling the nanoscale morphology in assemblies of π‐conjugated molecules is key to developing supramolecular functional materials. Here, we report...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 11344
SubjectTerms Assemblies
Assembly
Complexity
Cooperative control
cooperativity
Fibers
Functional materials
Immiscibility
Miscibility
Monomers
Morphology
pathway complexity
Polymers
self-assembly
supramolecular polymerization
Supramolecular polymers
Thermodynamic models
π-conjugated systems
Title Pathway Control in Cooperative vs. Anti‐Cooperative Supramolecular Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905064
https://www.ncbi.nlm.nih.gov/pubmed/31119831
https://www.proquest.com/docview/2268279444/abstract/
https://search.proquest.com/docview/2232106299
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhXwIFBQmJU9o6dt3kWFWtChJVBVTqLXIcR6qAtOoCKic-gW_kS5iJm9DCAQluSRwnjseeeXZm3hByEfs8Cqs8dqhUkcMF1U6ofNcJQxEJWHCEUqUOsh3R7vHrfrW_FMVv-CHyDTecGam-xgkuw0n5izQUI7DRNcuvIOcaKGFk00NUdJvzR7kwOE14EWMOZqHPWBsrbnm1-qpV-gE1V5FranpaW0RmjTYeJw-l2TQsqddvfI7_-aptsrnApXbdDKQdsqaTXbLeyNLB7ZGbLmDFFzm3G8a53R4kcDgcaUMdbj9PSnY9mQ4-3t6XL9_NRmP5lOXgtbvDxznulO-TXqt532g7i1wMjqrCisqJACmBvHkUKw2oIgbRslpFxoJrSanyuYSVGoAnoTyuuNSaMaQFUoJS7YMdZgekkAwTfURseJ7WHiArLWpcSia5YtKXVHkYWcW0RS4zWQQjQ7kRGHJlN8DuCfLusUgxE1WwmHqTAPCk54KW4VB8nhdDZ-GfEJno4QzvwdAlAabYIodGxPmrGGh_32PUIm4qqF_aENQ7V8387PgvlU7IBh7jTjV1i6QwHc_0KUCdaXiWDudP-5v2eQ
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvpQ1SEicUurYdZNjVYHKViEWiVvkOI5UAWkFLaic-AS-kS9hJm4ChQMS3JI4ThyPx_PszLwB2E0CEUdVkbhM6dgVkhk30oHnRpGMJS44IqUzB9mWbF6L45tq7k1IsTCWH6LYcCPNyOZrUnDakN7_ZA2lEGzyzQoqRLo2DpOo89VsVXVRMEh5ODxtgBHnLuWhz3kbK97-aP1Ru_QDbI5i18z4HM5ClDfb-pzclvu9qKxfvjE6_uu75mBmCE2duh1L8zBm0gWYauQZ4Rbh7Bzh4rMaOA3r3-60UzzsdI1lD3eeHstOPe2131_fvl6-7Hcf1H2ehtc579wNaLN8Ca4PD64aTXeYjsHVVVxUuTGCJRS5iBNtEFgkKF1eq6hECqMY04FQuFhD_CS1L7RQxnBOzEBaMmYCNMV8GSbSTmpWwcHnGeMjuDKyJpTiSmiuAsW0T8FV3JRgLxdG2LWsG6HlV_ZC6p6w6J4SbOSyCofa9xgipPQ9nGgEFu8UxdhZ9DNEpabTp3soekmiNS7BipVx8SqOBiDwOSuBl0nqlzaE9dbRQXG29pdK2zDVvDo7DU-PWifrME3XaeOaeRsw0Xvom01EPr1oKxvbH3ws-ps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-1LWICFxSlvHrpscq5aKtapYJG6R4zhSBSQVtKBy4hP4Rr6EcdwECgckuCVxnDiesefZmXkDsB95LAyqLLKJkKHNOFF2ID3HDgIeclxwBEKmDrJtfnTNTm6qN1-i-A0_RL7hpkdGOl_rAd4Lo_InaaiOwNauWV5Fc65NwhTj1NF63bzICaQc1E4TX0SprdPQZ7SNFac8Xn_cLP3AmuPQNbU9rXkQWauNy8ltadAPSvLlG6Hjfz5rAeZGwNSqG01ahAkVL8FMI8sHtwznHQSLz2JoNYx3u9WN8TDpKcMdbj09lqx63O--v759vXw56D2I-ywJr9VJ7oZ6q3wFrluHV40je5SMwZZVXFLZIUIlFDgLI6kQVkQoW1qriIgzJQiRHhO4VEP0xKXLJBNKUap5gSQnRHloiOkqFOIkVutg4fOUchFaKV5jQlDBJBWeINLVoVVUFeEgk4XfM5wbvmFXdnzdPX7ePUXYykTlj8beo4-A0nVwmmFYvJcXY2fpXyEiVslA36Njlzja4iKsGRHnr6I4_XsuJUVwUkH90ga_3j4-zM82_lJpF6Y7zZZ_dtw-3YRZfVnvWhNnCwr9h4HaRtjTD3ZSzf4Aji_5Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathway+Control+in+Cooperative+vs.+Anti%E2%80%90Cooperative+Supramolecular+Polymers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Herkert%2C+Lorena&rft.au=Droste%2C+J%C3%B6rn&rft.au=Kartha%2C+Kalathil+K.&rft.au=Korevaar%2C+Peter+A.&rft.date=2019-08-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=33&rft.spage=11344&rft.epage=11349&rft_id=info:doi/10.1002%2Fanie.201905064&rft.externalDBID=10.1002%252Fanie.201905064&rft.externalDocID=ANIE201905064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon