Excited‐State Symmetry Breaking in an Aza‐Nanographene Dye

The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer charact...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 25; no. 61; pp. 13930 - 13938
Main Authors Bardi, Brunella, Krzeszewski, Maciej, Gryko, Daniel T., Painelli, Anna, Terenziani, Francesca
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions. The emission solvatochromism of a centrosymmetric double helical π‐expanded pyrrolo[3,2‐b]pyrrole is related to symmetry breaking of the first excited state. Strong emission from the charge‐transfer state is interpreted as borrowing intensity from the close‐lying localized transitions, thus explaining the high and stable fluorescence quantum yield.
AbstractList The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions.
Abstract The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions.
The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions. The emission solvatochromism of a centrosymmetric double helical π‐expanded pyrrolo[3,2‐b]pyrrole is related to symmetry breaking of the first excited state. Strong emission from the charge‐transfer state is interpreted as borrowing intensity from the close‐lying localized transitions, thus explaining the high and stable fluorescence quantum yield.
Author Bardi, Brunella
Gryko, Daniel T.
Painelli, Anna
Krzeszewski, Maciej
Terenziani, Francesca
Author_xml – sequence: 1
  givenname: Brunella
  surname: Bardi
  fullname: Bardi, Brunella
  organization: University of Parma
– sequence: 2
  givenname: Maciej
  orcidid: 0000-0002-0940-7443
  surname: Krzeszewski
  fullname: Krzeszewski, Maciej
  organization: Polish Academy of Sciences
– sequence: 3
  givenname: Daniel T.
  orcidid: 0000-0002-2146-1282
  surname: Gryko
  fullname: Gryko, Daniel T.
  email: dtgryko@icho.edu.pl
  organization: Polish Academy of Sciences
– sequence: 4
  givenname: Anna
  orcidid: 0000-0002-3500-3848
  surname: Painelli
  fullname: Painelli, Anna
  organization: University of Parma
– sequence: 5
  givenname: Francesca
  orcidid: 0000-0001-5162-9210
  surname: Terenziani
  fullname: Terenziani, Francesca
  email: francesca.terenziani@unipr.it
  organization: University of Parma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31373409$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUQC0EgrawMqJILCwp18_ECxKUQpF4DMBsOY7TBhqnOIkgTHwC38iXkKo8JBYmS1fnHl2fPlp3pbMI7WIYYgByaGa2GBLAEgjnbA31MCc4pJHg66gHkkWh4FRuoX5VPQCAFJRuoi2KaUQZyB46Gr-YvLbpx9v7ba1rG9y2RWFr3wYn3urH3E2D3AXaBcevumOutSunXi9m1tngtLXbaCPT88rufL0DdH82vhtNwsub84vR8WVoOBYslJInjNBUJCC4iQESFmWgRTeMQJsMU2k40TGNWSqkMDKLBIt4JGKWcJ4kdIAOVt6FL58aW9WqyCtj53PtbNlUihARUwxx978B2v-DPpSNd911ilBMMMUxYx01XFHGl1XlbaYWPi-0bxUGtSyrlmXVT9luYe9L2ySFTX_w75QdIFfAcz637T86NZqMr37ln2WUhZw
CitedBy_id crossref_primary_10_1002_ange_202014138
crossref_primary_10_1039_D1SC05007A
crossref_primary_10_1002_ijch_202000097
crossref_primary_10_1002_anie_202014138
crossref_primary_10_1021_jacs_2c07188
crossref_primary_10_1002_ange_202104092
crossref_primary_10_1002_anie_202104092
crossref_primary_10_1021_acs_jpclett_4c00213
crossref_primary_10_1590_1980_5373_mr_2021_0008
crossref_primary_10_1039_D3SC03812B
crossref_primary_10_1021_acs_joc_0c03042
crossref_primary_10_1039_D3CP02810K
crossref_primary_10_1039_D1CP01888D
Cites_doi 10.1021/ja039556n
10.1016/j.cplett.2004.06.011
10.1021/acs.analchem.5b03374
10.1039/C2CS35394F
10.1007/978-3-540-74211-1_3
10.1007/BF01336768
10.1038/ncomms9215
10.1021/acs.jpcc.8b05363
10.1038/42190
10.1016/j.dyepig.2013.10.029
10.1002/cphc.200390041
10.1016/j.orgel.2018.11.007
10.1063/1.1501131
10.1021/ja01299a050
10.1063/1.464913
10.1021/acs.jpclett.7b02944
10.1063/1.1867373
10.1021/acs.jpclett.7b02754
10.1016/S0009-2614(99)00960-4
10.1039/C7CP01943B
10.1002/chem.201603282
10.1021/acs.jpcc.7b04647
10.1021/acs.accounts.7b00275
10.1021/jp0673361
10.1007/BF00549096
10.1002/cplu.201700158
10.1021/jz100430x
10.1021/acs.jpcc.6b07290
10.1007/978-0-387-46312-4
10.1021/ja064521j
10.1021/acs.jpcc.7b12397
10.1016/0009-2614(96)00440-X
10.1039/C8DT01784K
10.1103/PhysRevB.68.165405
10.1039/C7SC03076B
10.1039/C8CP03755H
10.1002/3527600248
10.1021/acs.jpclett.7b01821
10.1021/jp020031b
10.1016/j.cplett.2016.10.020
10.1002/ange.201208547
10.1021/acs.jpcc.5b11509
10.1016/S0009-2614(98)00070-0
10.1002/asia.201700159
10.1002/anie.201608567
10.1002/ajoc.201200201
10.1021/acs.jpclett.6b01248
10.1021/jo5002643
10.1021/jp909475d
10.1016/j.jphotochem.2018.09.043
10.1002/chem.201502762
10.1021/cr9904009
10.1016/j.jphotochem.2018.12.035
10.1063/1.475855
10.1126/science.281.5383.1653
10.1103/PhysRevLett.52.997
10.1063/1.2757168
10.1021/jp710241g
10.1039/c003563g
10.1021/jacs.8b06079
10.1063/1.2173258
10.1002/chem.201402273
10.1002/anie.201208547
10.1002/ange.201608567
10.1002/chem.201803688
10.1021/jp0016075
10.1039/C6CP05153G
10.1002/adma.200800402
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201902554
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 13938
ExternalDocumentID 10_1002_chem_201902554
31373409
CHEM201902554
Genre article
Journal Article
GrantInformation_xml – fundername: Horizon 2020
  funderid: 812872 (TADFlife)
– fundername: Fundacja na rzecz Nauki Polskiej
  funderid: FNP TEAM POIR.04.04.00-00-4232/17-00
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca
  funderid: DM 11/05/2017 n. 262 (Dipartimenti di Eccellenza)
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca
  grantid: DM 11/05/2017 n. 262 (Dipartimenti di Eccellenza)
– fundername: Fundacja na rzecz Nauki Polskiej
  grantid: TEAM/2016-3/22
– fundername: Fundacja na rzecz Nauki Polskiej
  grantid: FNP TEAM POIR.04.04.00-00-4232/17-00
– fundername: Horizon 2020
  grantid: 812872 (TADFlife)
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5164-995b423d6b065c800b47f0a6b4270acf139c52a8384d696c9f764757684b55bb3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 10:59:44 EDT 2024
Thu Oct 10 15:51:17 EDT 2024
Fri Aug 23 02:24:53 EDT 2024
Sat Sep 28 08:32:45 EDT 2024
Sat Aug 24 01:12:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 61
Keywords polarized spectroscopy
fused-ring systems
computational chemistry
solvatochromism
charge transfer
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5164-995b423d6b065c800b47f0a6b4270acf139c52a8384d696c9f764757684b55bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0940-7443
0000-0002-3500-3848
0000-0001-5162-9210
0000-0002-2146-1282
OpenAccessLink https://zenodo.org/records/4117581/files/CEJ-gryko.pdf
PMID 31373409
PQID 2312131844
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_2268310896
proquest_journals_2312131844
crossref_primary_10_1002_chem_201902554
pubmed_primary_31373409
wiley_primary_10_1002_chem_201902554_CHEM201902554
PublicationCentury 2000
PublicationDate November 4, 2019
PublicationDateYYYYMMDD 2019-11-04
PublicationDate_xml – month: 11
  year: 2019
  text: November 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
1998; 281
2018; 122
2017; 8
2004; 126
2017; 82
2013; 2
2019; 368
2002; 117
2016; 664
2018; 47
2013 2013; 52 125
2014; 20
1997; 388
1984; 52
2010; 1
2001
2019; 65
2010; 114
2005; 105
2002; 106
2003; 4
2008; 20
2017; 121
2008; 112
1996; 256
2006; 128
1998; 285
2016; 88
2006; 124
2015; 6
2018; 140
2007; 127
1936; 58
2013; 42
2007
2006; 110
2006
1977; 44
2016; 18
2018; 20
2016; 120
2018; 24
2017; 50
2016; 7
1930; 63
2016 2016; 55 128
2005; 122
2000; 104
1993; 98
2004; 393
2017; 12
2015; 21
1998; 108
2003; 68
2014; 79
2017; 19
1999; 312
2019; 373
2016; 22
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 24
  start-page: 18032
  year: 2018
  end-page: 18042
  publication-title: Chem. Eur. J.
– volume: 104
  start-page: 11041
  year: 2000
  end-page: 11048
  publication-title: J. Phys. Chem. A
– volume: 388
  start-page: 845
  year: 1997
  end-page: 851
  publication-title: Nature
– volume: 20
  start-page: 22260
  year: 2018
  end-page: 22271
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 8215
  year: 2015
  end-page: 8223
  publication-title: Nat. Commun.
– volume: 98
  start-page: 5648
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 845
  year: 2013
  end-page: 856
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 13618
  year: 2014
  end-page: 13635
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 249
  year: 2003
  end-page: 259
  publication-title: ChemPhysChem
– year: 2001
– volume: 106
  start-page: 6286
  year: 2002
  end-page: 6294
  publication-title: J. Phys. Chem. A
– volume: 8
  start-page: 7258
  year: 2017
  end-page: 7267
  publication-title: Chem. Sci.
– volume: 47
  start-page: 10080
  year: 2018
  end-page: 10092
  publication-title: Dalton Trans.
– volume: 63
  start-page: 54
  year: 1930
  end-page: 73
  publication-title: Zeitschr. Phys.
– volume: 373
  start-page: 45
  year: 2019
  end-page: 58
  publication-title: J. Photochem. Photobiol. A
– volume: 127
  start-page: 074504
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 393
  start-page: 51
  year: 2004
  end-page: 57
  publication-title: Chem. Phys. Lett.
– volume: 312
  start-page: 211
  year: 1999
  end-page: 220
  publication-title: Chem. Phys. Lett.
– volume: 281
  start-page: 1653
  year: 1998
  end-page: 1656
  publication-title: Science
– volume: 140
  start-page: 10430
  year: 2018
  end-page: 10434
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 3119
  year: 2014
  end-page: 3128
  publication-title: J. Org. Chem.
– volume: 22
  start-page: 16478
  year: 2016
  end-page: 16488
  publication-title: Chem. Eur. J.
– volume: 108
  start-page: 4439
  year: 1998
  end-page: 4449
  publication-title: J. Chem. Phys.
– volume: 105
  start-page: 2999
  year: 2005
  end-page: 3094
  publication-title: Chem. Rev.
– volume: 68
  start-page: 165405
  year: 2003
  publication-title: Phys. Rev. B
– volume: 368
  start-page: 190
  year: 2019
  end-page: 199
  publication-title: J. Photochem. Photobiol. A
– volume: 44
  start-page: 129
  year: 1977
  end-page: 138
  publication-title: Theor. Chem. Acc.
– volume: 1
  start-page: 1800
  year: 2010
  end-page: 1804
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 3060
  year: 2016
  end-page: 3066
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 6029
  year: 2017
  end-page: 6034
  publication-title: J. Phys. Chem. Lett.
– volume: 117
  start-page: 5543
  year: 2002
  end-page: 5549
  publication-title: J. Chem. Phys.
– volume: 102
  start-page: 71
  year: 2014
  end-page: 78
  publication-title: Dye. Pigment.
– volume: 82
  start-page: 1096
  year: 2017
  publication-title: ChemPlusChem
– volume: 664
  start-page: 56
  year: 2016
  end-page: 62
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 5878
  year: 2017
  end-page: 5883
  publication-title: J. Phys. Chem. Lett.
– volume: 112
  start-page: 5079
  year: 2008
  end-page: 5087
  publication-title: J. Phys. Chem. B
– volume: 21
  start-page: 18364
  year: 2015
  end-page: 18374
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 4641
  year: 2008
  end-page: 4678
  publication-title: Adv. Mater.
– volume: 52 125
  start-page: 1713 1757
  year: 2013 2013
  end-page: 1717 1761
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 15624 15853
  year: 2016 2016
  end-page: 15628 15857
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 65
  start-page: 110
  year: 2019
  end-page: 115
  publication-title: Org. Electron.
– volume: 114
  start-page: 882
  year: 2010
  end-page: 893
  publication-title: J. Phys. Chem. B
– volume: 58
  start-page: 1486
  year: 1936
  end-page: 1493
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 2334
  year: 2017
  end-page: 2345
  publication-title: Acc. Chem. Res.
– volume: 120
  start-page: 11313
  year: 2016
  end-page: 11323
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 1736
  year: 2017
  end-page: 1748
  publication-title: Chem. Asian J.
– volume: 121
  start-page: 17466
  year: 2017
  end-page: 17478
  publication-title: J. Phys. Chem. C
– volume: 124
  start-page: 094107
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 3927
  year: 2017
  end-page: 3932
  publication-title: J. Phys. Chem. Lett.
– volume: 126
  start-page: 4007
  year: 2004
  end-page: 4016
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 5664
  year: 2018
  end-page: 5672
  publication-title: J. Phys. Chem. C
– volume: 285
  start-page: 352
  year: 1998
  end-page: 358
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: 411
  year: 2013
  end-page: 415
  publication-title: Asian J. Org. Chem.
– volume: 128
  start-page: 15742
  year: 2006
  end-page: 15755
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 997
  year: 1984
  end-page: 1000
  publication-title: Phys. Rev. Lett.
– volume: 88
  start-page: 1195
  year: 2016
  end-page: 1201
  publication-title: Anal. Chem.
– start-page: 51
  year: 2007
  end-page: 91
– volume: 256
  start-page: 454
  year: 1996
  end-page: 464
  publication-title: Chem. Phys. Lett.
– volume: 110
  start-page: 25590
  year: 2006
  end-page: 25592
  publication-title: J. Phys. Chem. B
– year: 2006
– volume: 120
  start-page: 23726
  year: 2016
  end-page: 23739
  publication-title: J. Phys. Chem. C
– volume: 122
  start-page: 104513
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 28198
  year: 2016
  end-page: 28208
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 11715
  year: 2010
  end-page: 11727
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 13970
  year: 2017
  end-page: 13977
  publication-title: Phys. Chem. Chem. Phys.
– volume: 122
  start-page: 19409
  year: 2018
  end-page: 19415
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_51_1
  doi: 10.1021/ja039556n
– ident: e_1_2_7_52_1
  doi: 10.1016/j.cplett.2004.06.011
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.analchem.5b03374
– ident: e_1_2_7_44_1
  doi: 10.1039/C2CS35394F
– ident: e_1_2_7_38_1
  doi: 10.1007/978-3-540-74211-1_3
– ident: e_1_2_7_37_1
  doi: 10.1007/BF01336768
– ident: e_1_2_7_35_1
  doi: 10.1038/ncomms9215
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.jpcc.8b05363
– ident: e_1_2_7_10_1
  doi: 10.1038/42190
– ident: e_1_2_7_15_1
  doi: 10.1016/j.dyepig.2013.10.029
– ident: e_1_2_7_13_1
  doi: 10.1002/cphc.200390041
– ident: e_1_2_7_3_1
  doi: 10.1016/j.orgel.2018.11.007
– ident: e_1_2_7_50_1
  doi: 10.1063/1.1501131
– ident: e_1_2_7_65_1
  doi: 10.1021/ja01299a050
– ident: e_1_2_7_48_1
  doi: 10.1063/1.464913
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.jpclett.7b02944
– ident: e_1_2_7_46_1
  doi: 10.1063/1.1867373
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.jpclett.7b02754
– ident: e_1_2_7_66_1
  doi: 10.1016/S0009-2614(99)00960-4
– ident: e_1_2_7_26_1
  doi: 10.1039/C7CP01943B
– ident: e_1_2_7_2_1
  doi: 10.1002/chem.201603282
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.jpcc.7b04647
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.accounts.7b00275
– ident: e_1_2_7_58_1
  doi: 10.1021/jp0673361
– ident: e_1_2_7_53_1
  doi: 10.1007/BF00549096
– ident: e_1_2_7_5_1
  doi: 10.1002/cplu.201700158
– ident: e_1_2_7_63_1
  doi: 10.1021/jz100430x
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.jpcc.6b07290
– ident: e_1_2_7_39_1
  doi: 10.1007/978-0-387-46312-4
– ident: e_1_2_7_28_1
  doi: 10.1021/ja064521j
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.jpcc.7b12397
– ident: e_1_2_7_42_1
  doi: 10.1016/0009-2614(96)00440-X
– ident: e_1_2_7_8_1
  doi: 10.1039/C8DT01784K
– ident: e_1_2_7_57_1
  doi: 10.1103/PhysRevB.68.165405
– ident: e_1_2_7_6_1
  doi: 10.1039/C7SC03076B
– ident: e_1_2_7_33_1
  doi: 10.1039/C8CP03755H
– ident: e_1_2_7_40_1
  doi: 10.1002/3527600248
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.jpclett.7b01821
– ident: e_1_2_7_55_1
  doi: 10.1021/jp020031b
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cplett.2016.10.020
– ident: e_1_2_7_36_2
  doi: 10.1002/ange.201208547
– ident: e_1_2_7_67_1
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.jpcc.5b11509
– ident: e_1_2_7_64_1
  doi: 10.1016/S0009-2614(98)00070-0
– ident: e_1_2_7_31_1
  doi: 10.1002/asia.201700159
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201608567
– ident: e_1_2_7_29_1
  doi: 10.1002/ajoc.201200201
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.jpclett.6b01248
– ident: e_1_2_7_30_1
  doi: 10.1021/jo5002643
– ident: e_1_2_7_59_1
  doi: 10.1021/jp909475d
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jphotochem.2018.09.043
– ident: e_1_2_7_32_1
  doi: 10.1002/chem.201502762
– ident: e_1_2_7_45_1
  doi: 10.1021/cr9904009
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jphotochem.2018.12.035
– ident: e_1_2_7_43_1
  doi: 10.1063/1.475855
– ident: e_1_2_7_11_1
  doi: 10.1126/science.281.5383.1653
– ident: e_1_2_7_41_1
  doi: 10.1103/PhysRevLett.52.997
– ident: e_1_2_7_49_1
  doi: 10.1063/1.2757168
– ident: e_1_2_7_62_1
  doi: 10.1021/jp710241g
– ident: e_1_2_7_56_1
  doi: 10.1039/c003563g
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.8b06079
– ident: e_1_2_7_47_1
  doi: 10.1063/1.2173258
– ident: e_1_2_7_14_1
  doi: 10.1002/chem.201402273
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201208547
– ident: e_1_2_7_24_2
  doi: 10.1002/ange.201608567
– ident: e_1_2_7_9_1
  doi: 10.1002/chem.201803688
– ident: e_1_2_7_54_1
  doi: 10.1021/jp0016075
– ident: e_1_2_7_60_1
  doi: 10.1039/C6CP05153G
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.200800402
SSID ssj0009633
Score 2.4254136
Snippet The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was...
The photophysics of a structurally unique aza-analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was...
Abstract The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 13930
SubjectTerms Anisotropy
Broken symmetry
Charge transfer
Chemistry
computational chemistry
Computer applications
Dipole moments
Dyes
Excitation
Fluorescence
fused-ring systems
polarized spectroscopy
Polycyclic aromatic hydrocarbons
solvatochromism
Title Excited‐State Symmetry Breaking in an Aza‐Nanographene Dye
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902554
https://www.ncbi.nlm.nih.gov/pubmed/31373409
https://www.proquest.com/docview/2312131844
https://search.proquest.com/docview/2268310896
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhXwoFBQmJk7s4XpILUumiCgkOQKXeIttxJISaItpKtCc-gW_kSxjHTaBwQIJbkrEVezwePy_zjNCZUAExoZJYghxTqhOsmE9xbGB8IsYwY2yA8_UN7_Xp1YANvkTxO36IYsHN9ozMX9sOLtW49kkaCnWykeQNu0_GLCFowxf2TFf79pM_CqzL3SVPBbYcrDlrY53UlrMvj0o_oOYycs2Gnu4Gknmh3YmTx-p0oqp6_o3P8T-12kTrC1zqNZ0hbaEVk26j1VZ-HdwOuui8aAtP31_fMoDq3c2GQwMi7xJwp11w9x5ST6Zecy4hDXhtR4YNvtRrz8wu6nc7960eXly-gDWDKRQOQ6YAasVcAUjRACsVFUldcvgo6lIngBw1IzLwAxrzkOswEZwKO3uhijGl_D1USkepOUCe4TEADc10IiUVOgm4JCpWShqhY-KrMjrPlR89OY6NyLEpk8jqIyr0UUaVvG2iRV8bR4BQSQNcEwXxaSEG7ditD5ma0RTSEG5vVAtCXkb7rk2LX_lgOD5Mc8uIZC3zSxkiy1VRvB3-JdMRWrPPWUgjraDS5HlqjgHbTNRJZr8fCFXxfw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFfSlrkJA4BVrHS3JBYlVZDywSt8h2HAmhBgStBD3xCXwjX8JM0gQVDkhwjBfFHnvGz8u8AdhQJmQuMtrXmO9zblPfiID7icP1iTknnCMH5_ML2brhJ7eifE1IvjAFP0R14EaakdtrUnA6kN7-Yg3FTpEreZMuygQfhhHU-YCiNxxcfjFI4fwqoslz5RMLa8nb2GDbg_UH16UfYHMQu-aLz9EEmLLZxZuT-61ux2zZ3jdGx3_1axLG-9DU2y3m0hQMuWwaRvfLiHAzsHP4Ygmhfry95xjVu3pttx1meXsIPenM3bvLPJ15uz2NZdBwF3zYaE69g1c3CzdHh9f7Lb8ff8G3AndRfhQJg2grkQZxikVkabhKG1piompomyJ4tILpMAh5IiNpo1RJrmgDw40QxgRzUMseMrcAnpMJYg0rbKo1VzYNpWYmMUY7ZRMWmDpsltKPHwuajbggVGYxySOu5FGH5XJw4r66PccIUlkTrRPH7PUqG6VDtx86cw9dLMMkBVULI1mH-WJQq18FzUAFuNOtA8uH5pc2xERXUX0t_qXSGoy2rs_P4rPji9MlGKP03MORL0Ot89R1Kwh1OmY1n8yfICH1lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-xLWICFxCrSOl-SCVJaKXQio1FtkO46EEAFBK9Ge-AS-kS9hnDSBwgEJjvHYij22x8_LvAHYFCogJlTSkyj3KNWJp5hPvdjg-kSMYcZYB-fzC37UpCct1vrixZ_zQ5QHbnZmZPbaTvDHONn5JA3FNllP8pq9J2N0GEYoR_hrYdHVJ4EUDq88mDwVniVhLWgbq2RnsPzgsvQDaw5C12ztaUyCLGqdPzm52-601bbufSN0_E-zpmCiD0zdej6SpmHIpDMwtl_Eg5uF3cMXbfHp--tbhlDd6-79vUGRu4fA0564u7epK1O33pOYB812zoaNxtQ96Jo5aDYOb_aPvH70BU8z3EN5YcgUYq2YK0QpGnGloiKpSo6Joip1gtBRMyIDP6AxD7kOE8GpsNsXqhhTyp-HSvqQmkVwDY8RaWimEymp0EnAJVGxUtIIHRNfObBVKD96zEk2opxOmURWH1GpDwdWir6J-pPtOUKISmpomyiKN0oxasfefcjUPHQwD-E2pFoQcgcW8j4tf-XXfOHjPtcBkvXML3WILFlF-bX0l0LrMHp50IjOji9Ol2HcJmfujXQFKu2njllFnNNWa9lQ_gBEn_RG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited%E2%80%90State+Symmetry+Breaking+in+an+Aza%E2%80%90Nanographene+Dye&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Bardi%2C+Brunella&rft.au=Krzeszewski%2C+Maciej&rft.au=Gryko%2C+Daniel+T.&rft.au=Painelli%2C+Anna&rft.date=2019-11-04&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=61&rft.spage=13930&rft.epage=13938&rft_id=info:doi/10.1002%2Fchem.201902554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201902554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon