Excited‐State Symmetry Breaking in an Aza‐Nanographene Dye
The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer charact...
Saved in:
Published in | Chemistry : a European journal Vol. 25; no. 61; pp. 13930 - 13938 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions.
The emission solvatochromism of a centrosymmetric double helical π‐expanded pyrrolo[3,2‐b]pyrrole is related to symmetry breaking of the first excited state. Strong emission from the charge‐transfer state is interpreted as borrowing intensity from the close‐lying localized transitions, thus explaining the high and stable fluorescence quantum yield. |
---|---|
AbstractList | The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions. Abstract The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions. The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge‐transfer character, in spite of the absence of any peripheral electron‐withdrawing groups. The exceptionally electron‐rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions. The emission solvatochromism of a centrosymmetric double helical π‐expanded pyrrolo[3,2‐b]pyrrole is related to symmetry breaking of the first excited state. Strong emission from the charge‐transfer state is interpreted as borrowing intensity from the close‐lying localized transitions, thus explaining the high and stable fluorescence quantum yield. |
Author | Bardi, Brunella Gryko, Daniel T. Painelli, Anna Krzeszewski, Maciej Terenziani, Francesca |
Author_xml | – sequence: 1 givenname: Brunella surname: Bardi fullname: Bardi, Brunella organization: University of Parma – sequence: 2 givenname: Maciej orcidid: 0000-0002-0940-7443 surname: Krzeszewski fullname: Krzeszewski, Maciej organization: Polish Academy of Sciences – sequence: 3 givenname: Daniel T. orcidid: 0000-0002-2146-1282 surname: Gryko fullname: Gryko, Daniel T. email: dtgryko@icho.edu.pl organization: Polish Academy of Sciences – sequence: 4 givenname: Anna orcidid: 0000-0002-3500-3848 surname: Painelli fullname: Painelli, Anna organization: University of Parma – sequence: 5 givenname: Francesca orcidid: 0000-0001-5162-9210 surname: Terenziani fullname: Terenziani, Francesca email: francesca.terenziani@unipr.it organization: University of Parma |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31373409$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUQC0EgrawMqJILCwp18_ECxKUQpF4DMBsOY7TBhqnOIkgTHwC38iXkKo8JBYmS1fnHl2fPlp3pbMI7WIYYgByaGa2GBLAEgjnbA31MCc4pJHg66gHkkWh4FRuoX5VPQCAFJRuoi2KaUQZyB46Gr-YvLbpx9v7ba1rG9y2RWFr3wYn3urH3E2D3AXaBcevumOutSunXi9m1tngtLXbaCPT88rufL0DdH82vhtNwsub84vR8WVoOBYslJInjNBUJCC4iQESFmWgRTeMQJsMU2k40TGNWSqkMDKLBIt4JGKWcJ4kdIAOVt6FL58aW9WqyCtj53PtbNlUihARUwxx978B2v-DPpSNd911ilBMMMUxYx01XFHGl1XlbaYWPi-0bxUGtSyrlmXVT9luYe9L2ySFTX_w75QdIFfAcz637T86NZqMr37ln2WUhZw |
CitedBy_id | crossref_primary_10_1002_ange_202014138 crossref_primary_10_1039_D1SC05007A crossref_primary_10_1002_ijch_202000097 crossref_primary_10_1002_anie_202014138 crossref_primary_10_1021_jacs_2c07188 crossref_primary_10_1002_ange_202104092 crossref_primary_10_1002_anie_202104092 crossref_primary_10_1021_acs_jpclett_4c00213 crossref_primary_10_1590_1980_5373_mr_2021_0008 crossref_primary_10_1039_D3SC03812B crossref_primary_10_1021_acs_joc_0c03042 crossref_primary_10_1039_D3CP02810K crossref_primary_10_1039_D1CP01888D |
Cites_doi | 10.1021/ja039556n 10.1016/j.cplett.2004.06.011 10.1021/acs.analchem.5b03374 10.1039/C2CS35394F 10.1007/978-3-540-74211-1_3 10.1007/BF01336768 10.1038/ncomms9215 10.1021/acs.jpcc.8b05363 10.1038/42190 10.1016/j.dyepig.2013.10.029 10.1002/cphc.200390041 10.1016/j.orgel.2018.11.007 10.1063/1.1501131 10.1021/ja01299a050 10.1063/1.464913 10.1021/acs.jpclett.7b02944 10.1063/1.1867373 10.1021/acs.jpclett.7b02754 10.1016/S0009-2614(99)00960-4 10.1039/C7CP01943B 10.1002/chem.201603282 10.1021/acs.jpcc.7b04647 10.1021/acs.accounts.7b00275 10.1021/jp0673361 10.1007/BF00549096 10.1002/cplu.201700158 10.1021/jz100430x 10.1021/acs.jpcc.6b07290 10.1007/978-0-387-46312-4 10.1021/ja064521j 10.1021/acs.jpcc.7b12397 10.1016/0009-2614(96)00440-X 10.1039/C8DT01784K 10.1103/PhysRevB.68.165405 10.1039/C7SC03076B 10.1039/C8CP03755H 10.1002/3527600248 10.1021/acs.jpclett.7b01821 10.1021/jp020031b 10.1016/j.cplett.2016.10.020 10.1002/ange.201208547 10.1021/acs.jpcc.5b11509 10.1016/S0009-2614(98)00070-0 10.1002/asia.201700159 10.1002/anie.201608567 10.1002/ajoc.201200201 10.1021/acs.jpclett.6b01248 10.1021/jo5002643 10.1021/jp909475d 10.1016/j.jphotochem.2018.09.043 10.1002/chem.201502762 10.1021/cr9904009 10.1016/j.jphotochem.2018.12.035 10.1063/1.475855 10.1126/science.281.5383.1653 10.1103/PhysRevLett.52.997 10.1063/1.2757168 10.1021/jp710241g 10.1039/c003563g 10.1021/jacs.8b06079 10.1063/1.2173258 10.1002/chem.201402273 10.1002/anie.201208547 10.1002/ange.201608567 10.1002/chem.201803688 10.1021/jp0016075 10.1039/C6CP05153G 10.1002/adma.200800402 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201902554 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 13938 |
ExternalDocumentID | 10_1002_chem_201902554 31373409 CHEM201902554 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Horizon 2020 funderid: 812872 (TADFlife) – fundername: Fundacja na rzecz Nauki Polskiej funderid: FNP TEAM POIR.04.04.00-00-4232/17-00 – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca funderid: DM 11/05/2017 n. 262 (Dipartimenti di Eccellenza) – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca grantid: DM 11/05/2017 n. 262 (Dipartimenti di Eccellenza) – fundername: Fundacja na rzecz Nauki Polskiej grantid: TEAM/2016-3/22 – fundername: Fundacja na rzecz Nauki Polskiej grantid: FNP TEAM POIR.04.04.00-00-4232/17-00 – fundername: Horizon 2020 grantid: 812872 (TADFlife) |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5164-995b423d6b065c800b47f0a6b4270acf139c52a8384d696c9f764757684b55bb3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Fri Aug 16 10:59:44 EDT 2024 Thu Oct 10 15:51:17 EDT 2024 Fri Aug 23 02:24:53 EDT 2024 Sat Sep 28 08:32:45 EDT 2024 Sat Aug 24 01:12:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 61 |
Keywords | polarized spectroscopy fused-ring systems computational chemistry solvatochromism charge transfer |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5164-995b423d6b065c800b47f0a6b4270acf139c52a8384d696c9f764757684b55bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0940-7443 0000-0002-3500-3848 0000-0001-5162-9210 0000-0002-2146-1282 |
OpenAccessLink | https://zenodo.org/records/4117581/files/CEJ-gryko.pdf |
PMID | 31373409 |
PQID | 2312131844 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2268310896 proquest_journals_2312131844 crossref_primary_10_1002_chem_201902554 pubmed_primary_31373409 wiley_primary_10_1002_chem_201902554_CHEM201902554 |
PublicationCentury | 2000 |
PublicationDate | November 4, 2019 |
PublicationDateYYYYMMDD | 2019-11-04 |
PublicationDate_xml | – month: 11 year: 2019 text: November 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 1998; 281 2018; 122 2017; 8 2004; 126 2017; 82 2013; 2 2019; 368 2002; 117 2016; 664 2018; 47 2013 2013; 52 125 2014; 20 1997; 388 1984; 52 2010; 1 2001 2019; 65 2010; 114 2005; 105 2002; 106 2003; 4 2008; 20 2017; 121 2008; 112 1996; 256 2006; 128 1998; 285 2016; 88 2006; 124 2015; 6 2018; 140 2007; 127 1936; 58 2013; 42 2007 2006; 110 2006 1977; 44 2016; 18 2018; 20 2016; 120 2018; 24 2017; 50 2016; 7 1930; 63 2016 2016; 55 128 2005; 122 2000; 104 1993; 98 2004; 393 2017; 12 2015; 21 1998; 108 2003; 68 2014; 79 2017; 19 1999; 312 2019; 373 2016; 22 2014; 102 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_38_1 |
References_xml | – volume: 24 start-page: 18032 year: 2018 end-page: 18042 publication-title: Chem. Eur. J. – volume: 104 start-page: 11041 year: 2000 end-page: 11048 publication-title: J. Phys. Chem. A – volume: 388 start-page: 845 year: 1997 end-page: 851 publication-title: Nature – volume: 20 start-page: 22260 year: 2018 end-page: 22271 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 8215 year: 2015 end-page: 8223 publication-title: Nat. Commun. – volume: 98 start-page: 5648 year: 1993 publication-title: J. Chem. Phys. – volume: 42 start-page: 845 year: 2013 end-page: 856 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 13618 year: 2014 end-page: 13635 publication-title: Chem. Eur. J. – volume: 4 start-page: 249 year: 2003 end-page: 259 publication-title: ChemPhysChem – year: 2001 – volume: 106 start-page: 6286 year: 2002 end-page: 6294 publication-title: J. Phys. Chem. A – volume: 8 start-page: 7258 year: 2017 end-page: 7267 publication-title: Chem. Sci. – volume: 47 start-page: 10080 year: 2018 end-page: 10092 publication-title: Dalton Trans. – volume: 63 start-page: 54 year: 1930 end-page: 73 publication-title: Zeitschr. Phys. – volume: 373 start-page: 45 year: 2019 end-page: 58 publication-title: J. Photochem. Photobiol. A – volume: 127 start-page: 074504 year: 2007 publication-title: J. Chem. Phys. – volume: 393 start-page: 51 year: 2004 end-page: 57 publication-title: Chem. Phys. Lett. – volume: 312 start-page: 211 year: 1999 end-page: 220 publication-title: Chem. Phys. Lett. – volume: 281 start-page: 1653 year: 1998 end-page: 1656 publication-title: Science – volume: 140 start-page: 10430 year: 2018 end-page: 10434 publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 3119 year: 2014 end-page: 3128 publication-title: J. Org. Chem. – volume: 22 start-page: 16478 year: 2016 end-page: 16488 publication-title: Chem. Eur. J. – volume: 108 start-page: 4439 year: 1998 end-page: 4449 publication-title: J. Chem. Phys. – volume: 105 start-page: 2999 year: 2005 end-page: 3094 publication-title: Chem. Rev. – volume: 68 start-page: 165405 year: 2003 publication-title: Phys. Rev. B – volume: 368 start-page: 190 year: 2019 end-page: 199 publication-title: J. Photochem. Photobiol. A – volume: 44 start-page: 129 year: 1977 end-page: 138 publication-title: Theor. Chem. Acc. – volume: 1 start-page: 1800 year: 2010 end-page: 1804 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 3060 year: 2016 end-page: 3066 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 6029 year: 2017 end-page: 6034 publication-title: J. Phys. Chem. Lett. – volume: 117 start-page: 5543 year: 2002 end-page: 5549 publication-title: J. Chem. Phys. – volume: 102 start-page: 71 year: 2014 end-page: 78 publication-title: Dye. Pigment. – volume: 82 start-page: 1096 year: 2017 publication-title: ChemPlusChem – volume: 664 start-page: 56 year: 2016 end-page: 62 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 5878 year: 2017 end-page: 5883 publication-title: J. Phys. Chem. Lett. – volume: 112 start-page: 5079 year: 2008 end-page: 5087 publication-title: J. Phys. Chem. B – volume: 21 start-page: 18364 year: 2015 end-page: 18374 publication-title: Chem. Eur. J. – volume: 20 start-page: 4641 year: 2008 end-page: 4678 publication-title: Adv. Mater. – volume: 52 125 start-page: 1713 1757 year: 2013 2013 end-page: 1717 1761 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 15624 15853 year: 2016 2016 end-page: 15628 15857 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 65 start-page: 110 year: 2019 end-page: 115 publication-title: Org. Electron. – volume: 114 start-page: 882 year: 2010 end-page: 893 publication-title: J. Phys. Chem. B – volume: 58 start-page: 1486 year: 1936 end-page: 1493 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 2334 year: 2017 end-page: 2345 publication-title: Acc. Chem. Res. – volume: 120 start-page: 11313 year: 2016 end-page: 11323 publication-title: J. Phys. Chem. C – volume: 12 start-page: 1736 year: 2017 end-page: 1748 publication-title: Chem. Asian J. – volume: 121 start-page: 17466 year: 2017 end-page: 17478 publication-title: J. Phys. Chem. C – volume: 124 start-page: 094107 year: 2006 publication-title: J. Chem. Phys. – volume: 8 start-page: 3927 year: 2017 end-page: 3932 publication-title: J. Phys. Chem. Lett. – volume: 126 start-page: 4007 year: 2004 end-page: 4016 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 5664 year: 2018 end-page: 5672 publication-title: J. Phys. Chem. C – volume: 285 start-page: 352 year: 1998 end-page: 358 publication-title: Chem. Phys. Lett. – volume: 2 start-page: 411 year: 2013 end-page: 415 publication-title: Asian J. Org. Chem. – volume: 128 start-page: 15742 year: 2006 end-page: 15755 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 997 year: 1984 end-page: 1000 publication-title: Phys. Rev. Lett. – volume: 88 start-page: 1195 year: 2016 end-page: 1201 publication-title: Anal. Chem. – start-page: 51 year: 2007 end-page: 91 – volume: 256 start-page: 454 year: 1996 end-page: 464 publication-title: Chem. Phys. Lett. – volume: 110 start-page: 25590 year: 2006 end-page: 25592 publication-title: J. Phys. Chem. B – year: 2006 – volume: 120 start-page: 23726 year: 2016 end-page: 23739 publication-title: J. Phys. Chem. C – volume: 122 start-page: 104513 year: 2005 publication-title: J. Chem. Phys. – volume: 18 start-page: 28198 year: 2016 end-page: 28208 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 11715 year: 2010 end-page: 11727 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 13970 year: 2017 end-page: 13977 publication-title: Phys. Chem. Chem. Phys. – volume: 122 start-page: 19409 year: 2018 end-page: 19415 publication-title: J. Phys. Chem. C – ident: e_1_2_7_51_1 doi: 10.1021/ja039556n – ident: e_1_2_7_52_1 doi: 10.1016/j.cplett.2004.06.011 – ident: e_1_2_7_7_1 doi: 10.1021/acs.analchem.5b03374 – ident: e_1_2_7_44_1 doi: 10.1039/C2CS35394F – ident: e_1_2_7_38_1 doi: 10.1007/978-3-540-74211-1_3 – ident: e_1_2_7_37_1 doi: 10.1007/BF01336768 – ident: e_1_2_7_35_1 doi: 10.1038/ncomms9215 – ident: e_1_2_7_27_1 doi: 10.1021/acs.jpcc.8b05363 – ident: e_1_2_7_10_1 doi: 10.1038/42190 – ident: e_1_2_7_15_1 doi: 10.1016/j.dyepig.2013.10.029 – ident: e_1_2_7_13_1 doi: 10.1002/cphc.200390041 – ident: e_1_2_7_3_1 doi: 10.1016/j.orgel.2018.11.007 – ident: e_1_2_7_50_1 doi: 10.1063/1.1501131 – ident: e_1_2_7_65_1 doi: 10.1021/ja01299a050 – ident: e_1_2_7_48_1 doi: 10.1063/1.464913 – ident: e_1_2_7_23_1 doi: 10.1021/acs.jpclett.7b02944 – ident: e_1_2_7_46_1 doi: 10.1063/1.1867373 – ident: e_1_2_7_22_1 doi: 10.1021/acs.jpclett.7b02754 – ident: e_1_2_7_66_1 doi: 10.1016/S0009-2614(99)00960-4 – ident: e_1_2_7_26_1 doi: 10.1039/C7CP01943B – ident: e_1_2_7_2_1 doi: 10.1002/chem.201603282 – ident: e_1_2_7_61_1 doi: 10.1021/acs.jpcc.7b04647 – ident: e_1_2_7_1_1 doi: 10.1021/acs.accounts.7b00275 – ident: e_1_2_7_58_1 doi: 10.1021/jp0673361 – ident: e_1_2_7_53_1 doi: 10.1007/BF00549096 – ident: e_1_2_7_5_1 doi: 10.1002/cplu.201700158 – ident: e_1_2_7_63_1 doi: 10.1021/jz100430x – ident: e_1_2_7_16_1 doi: 10.1021/acs.jpcc.6b07290 – ident: e_1_2_7_39_1 doi: 10.1007/978-0-387-46312-4 – ident: e_1_2_7_28_1 doi: 10.1021/ja064521j – ident: e_1_2_7_17_1 doi: 10.1021/acs.jpcc.7b12397 – ident: e_1_2_7_42_1 doi: 10.1016/0009-2614(96)00440-X – ident: e_1_2_7_8_1 doi: 10.1039/C8DT01784K – ident: e_1_2_7_57_1 doi: 10.1103/PhysRevB.68.165405 – ident: e_1_2_7_6_1 doi: 10.1039/C7SC03076B – ident: e_1_2_7_33_1 doi: 10.1039/C8CP03755H – ident: e_1_2_7_40_1 doi: 10.1002/3527600248 – ident: e_1_2_7_21_1 doi: 10.1021/acs.jpclett.7b01821 – ident: e_1_2_7_55_1 doi: 10.1021/jp020031b – ident: e_1_2_7_20_1 doi: 10.1016/j.cplett.2016.10.020 – ident: e_1_2_7_36_2 doi: 10.1002/ange.201208547 – ident: e_1_2_7_67_1 – ident: e_1_2_7_4_1 doi: 10.1021/acs.jpcc.5b11509 – ident: e_1_2_7_64_1 doi: 10.1016/S0009-2614(98)00070-0 – ident: e_1_2_7_31_1 doi: 10.1002/asia.201700159 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201608567 – ident: e_1_2_7_29_1 doi: 10.1002/ajoc.201200201 – ident: e_1_2_7_25_1 doi: 10.1021/acs.jpclett.6b01248 – ident: e_1_2_7_30_1 doi: 10.1021/jo5002643 – ident: e_1_2_7_59_1 doi: 10.1021/jp909475d – ident: e_1_2_7_19_1 doi: 10.1016/j.jphotochem.2018.09.043 – ident: e_1_2_7_32_1 doi: 10.1002/chem.201502762 – ident: e_1_2_7_45_1 doi: 10.1021/cr9904009 – ident: e_1_2_7_18_1 doi: 10.1016/j.jphotochem.2018.12.035 – ident: e_1_2_7_43_1 doi: 10.1063/1.475855 – ident: e_1_2_7_11_1 doi: 10.1126/science.281.5383.1653 – ident: e_1_2_7_41_1 doi: 10.1103/PhysRevLett.52.997 – ident: e_1_2_7_49_1 doi: 10.1063/1.2757168 – ident: e_1_2_7_62_1 doi: 10.1021/jp710241g – ident: e_1_2_7_56_1 doi: 10.1039/c003563g – ident: e_1_2_7_34_1 doi: 10.1021/jacs.8b06079 – ident: e_1_2_7_47_1 doi: 10.1063/1.2173258 – ident: e_1_2_7_14_1 doi: 10.1002/chem.201402273 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201208547 – ident: e_1_2_7_24_2 doi: 10.1002/ange.201608567 – ident: e_1_2_7_9_1 doi: 10.1002/chem.201803688 – ident: e_1_2_7_54_1 doi: 10.1021/jp0016075 – ident: e_1_2_7_60_1 doi: 10.1039/C6CP05153G – ident: e_1_2_7_12_1 doi: 10.1002/adma.200800402 |
SSID | ssj0009633 |
Score | 2.4254136 |
Snippet | The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was... The photophysics of a structurally unique aza-analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was... Abstract The photophysics of a structurally unique aza‐analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13930 |
SubjectTerms | Anisotropy Broken symmetry Charge transfer Chemistry computational chemistry Computer applications Dipole moments Dyes Excitation Fluorescence fused-ring systems polarized spectroscopy Polycyclic aromatic hydrocarbons solvatochromism |
Title | Excited‐State Symmetry Breaking in an Aza‐Nanographene Dye |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902554 https://www.ncbi.nlm.nih.gov/pubmed/31373409 https://www.proquest.com/docview/2312131844 https://search.proquest.com/docview/2268310896 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhXwoFBQmJk7s4XpILUumiCgkOQKXeIttxJISaItpKtCc-gW_kSxjHTaBwQIJbkrEVezwePy_zjNCZUAExoZJYghxTqhOsmE9xbGB8IsYwY2yA8_UN7_Xp1YANvkTxO36IYsHN9ozMX9sOLtW49kkaCnWykeQNu0_GLCFowxf2TFf79pM_CqzL3SVPBbYcrDlrY53UlrMvj0o_oOYycs2Gnu4Gknmh3YmTx-p0oqp6_o3P8T-12kTrC1zqNZ0hbaEVk26j1VZ-HdwOuui8aAtP31_fMoDq3c2GQwMi7xJwp11w9x5ST6Zecy4hDXhtR4YNvtRrz8wu6nc7960eXly-gDWDKRQOQ6YAasVcAUjRACsVFUldcvgo6lIngBw1IzLwAxrzkOswEZwKO3uhijGl_D1USkepOUCe4TEADc10IiUVOgm4JCpWShqhY-KrMjrPlR89OY6NyLEpk8jqIyr0UUaVvG2iRV8bR4BQSQNcEwXxaSEG7ditD5ma0RTSEG5vVAtCXkb7rk2LX_lgOD5Mc8uIZC3zSxkiy1VRvB3-JdMRWrPPWUgjraDS5HlqjgHbTNRJZr8fCFXxfw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFfSlrkJA4BVrHS3JBYlVZDywSt8h2HAmhBgStBD3xCXwjX8JM0gQVDkhwjBfFHnvGz8u8AdhQJmQuMtrXmO9zblPfiID7icP1iTknnCMH5_ML2brhJ7eifE1IvjAFP0R14EaakdtrUnA6kN7-Yg3FTpEreZMuygQfhhHU-YCiNxxcfjFI4fwqoslz5RMLa8nb2GDbg_UH16UfYHMQu-aLz9EEmLLZxZuT-61ux2zZ3jdGx3_1axLG-9DU2y3m0hQMuWwaRvfLiHAzsHP4Ygmhfry95xjVu3pttx1meXsIPenM3bvLPJ15uz2NZdBwF3zYaE69g1c3CzdHh9f7Lb8ff8G3AndRfhQJg2grkQZxikVkabhKG1piompomyJ4tILpMAh5IiNpo1RJrmgDw40QxgRzUMseMrcAnpMJYg0rbKo1VzYNpWYmMUY7ZRMWmDpsltKPHwuajbggVGYxySOu5FGH5XJw4r66PccIUlkTrRPH7PUqG6VDtx86cw9dLMMkBVULI1mH-WJQq18FzUAFuNOtA8uH5pc2xERXUX0t_qXSGoy2rs_P4rPji9MlGKP03MORL0Ot89R1Kwh1OmY1n8yfICH1lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-xLWICFxCrSOl-SCVJaKXQio1FtkO46EEAFBK9Ge-AS-kS9hnDSBwgEJjvHYij22x8_LvAHYFCogJlTSkyj3KNWJp5hPvdjg-kSMYcZYB-fzC37UpCct1vrixZ_zQ5QHbnZmZPbaTvDHONn5JA3FNllP8pq9J2N0GEYoR_hrYdHVJ4EUDq88mDwVniVhLWgbq2RnsPzgsvQDaw5C12ztaUyCLGqdPzm52-601bbufSN0_E-zpmCiD0zdej6SpmHIpDMwtl_Eg5uF3cMXbfHp--tbhlDd6-79vUGRu4fA0564u7epK1O33pOYB812zoaNxtQ96Jo5aDYOb_aPvH70BU8z3EN5YcgUYq2YK0QpGnGloiKpSo6Joip1gtBRMyIDP6AxD7kOE8GpsNsXqhhTyp-HSvqQmkVwDY8RaWimEymp0EnAJVGxUtIIHRNfObBVKD96zEk2opxOmURWH1GpDwdWir6J-pPtOUKISmpomyiKN0oxasfefcjUPHQwD-E2pFoQcgcW8j4tf-XXfOHjPtcBkvXML3WILFlF-bX0l0LrMHp50IjOji9Ol2HcJmfujXQFKu2njllFnNNWa9lQ_gBEn_RG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited%E2%80%90State+Symmetry+Breaking+in+an+Aza%E2%80%90Nanographene+Dye&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Bardi%2C+Brunella&rft.au=Krzeszewski%2C+Maciej&rft.au=Gryko%2C+Daniel+T.&rft.au=Painelli%2C+Anna&rft.date=2019-11-04&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=61&rft.spage=13930&rft.epage=13938&rft_id=info:doi/10.1002%2Fchem.201902554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201902554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |