Towards a standardized human proteome database: Quantitative proteome profiling of living cells
Comparative proteome profiling, performed by two‐dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually relies on the relative comparison of samples of interest with respect to a reference. Currently, no standardized quantitative protein express...
Saved in:
Published in | Proteomics (Weinheim) Vol. 4; no. 5; pp. 1314 - 1323 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.05.2004
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comparative proteome profiling, performed by two‐dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually relies on the relative comparison of samples of interest with respect to a reference. Currently, no standardized quantitative protein expression database of human cells, facilitating data comparisons between different laboratories, exists. Recently, we have published two‐dimensional polyacrylamide gel electrophoresis‐based techniques to assess absolute protein data comprising protein amounts, synthesis rates and biological half‐lives (Mol. Cell. Proteomics 2002, 1, 528–537). Determination of protein amounts by fluorography of two‐dimensional gels was followed by the exact quantification of the amount of incorporated 35S radiolabel. Here we demonstrate an application of this highly standardized method to quiescent human T cells, phythaemagglutinin‐stimulated T cells and Jurkat cells, a human T lymphoblast cell line. While the protein composition of quiescent T cells differed significantly compared to that of Jurkat cells, it was only slightly different compared to the activated T cells. Synthesis profile analyses demonstrated that activated T cells clearly differed from the quiescent cells, performing apparently almost like lymphoblast cells. The great sensitivity of this approach was further demonstrated with human umbilical vein endothelial cells treated for six hours with vascular endothelial growth factor. While no significant alteration of protein amounts was detected at all upon activation, the synthesis rate of several proteins was found to be more than doubled. |
---|---|
AbstractList | Comparative proteome profiling, performed by two‐dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually relies on the relative comparison of samples of interest with respect to a reference. Currently, no standardized quantitative protein expression database of human cells, facilitating data comparisons between different laboratories, exists. Recently, we have published two‐dimensional polyacrylamide gel electrophoresis‐based techniques to assess absolute protein data comprising protein amounts, synthesis rates and biological half‐lives (Mol. Cell. Proteomics 2002, 1, 528–537). Determination of protein amounts by fluorography of two‐dimensional gels was followed by the exact quantification of the amount of incorporated 35S radiolabel. Here we demonstrate an application of this highly standardized method to quiescent human T cells, phythaemagglutinin‐stimulated T cells and Jurkat cells, a human T lymphoblast cell line. While the protein composition of quiescent T cells differed significantly compared to that of Jurkat cells, it was only slightly different compared to the activated T cells. Synthesis profile analyses demonstrated that activated T cells clearly differed from the quiescent cells, performing apparently almost like lymphoblast cells. The great sensitivity of this approach was further demonstrated with human umbilical vein endothelial cells treated for six hours with vascular endothelial growth factor. While no significant alteration of protein amounts was detected at all upon activation, the synthesis rate of several proteins was found to be more than doubled. Comparative proteome profiling, performed by two-dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually relies on the relative comparison of samples of interest with respect to a reference. Currently, no standardized quantitative protein expression database of human cells, facilitating data comparisons between different laboratories, exists. Recently, we have published two-dimensional polyacrylamide gel electrophoresis-based techniques to assess absolute protein data comprising protein amounts, synthesis rates and biological half-lives (Mol. Cell. Proteomics 2002, 1, 528-537). Determination of protein amounts by fluorography of two-dimensional gels was followed by the exact quantification of the amount of incorporated super(35)S radiolabel. Here we demonstrate an application of this highly standardized method to quiescent human T cells, phythaemagglutinin-stimulated T cells and Jurkat cells, a human T lymphoblast cell line. While the protein composition of quiescent T cells differed significantly compared to that of Jurkat cells, it was only slightly different compared to the activated T cells. Synthesis profile analyses demonstrated that activated T cells clearly differed from the quiescent cells, performing apparently almost like lymphoblast cells. The great sensitivity of this approach was further demonstrated with human umbilical vein endothelial cells treated for six hours with vascular endothelial growth factor. While no significant alteration of protein amounts was detected at all upon activation, the synthesis rate of several proteins was found to be more than doubled. Comparative proteome profiling, performed by two-dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually relies on the relative comparison of samples of interest with respect to a reference. Currently, no standardized quantitative protein expression database of human cells, facilitating data comparisons between different laboratories, exists. Recently, we have published two-dimensional polyacrylamide gel electrophoresis-based techniques to assess absolute protein data comprising protein amounts, synthesis rates and biological half-lives (Mol. Cell. Proteomics 2002, 1, 528-537). Determination of protein amounts by fluorography of two-dimensional gels was followed by the exact quantification of the amount of incorporated (35)S radiolabel. Here we demonstrate an application of this highly standardized method to quiescent human T cells, phythaemagglutinin-stimulated T cells and Jurkat cells, a human T lymphoblast cell line. While the protein composition of quiescent T cells differed significantly compared to that of Jurkat cells, it was only slightly different compared to the activated T cells. Synthesis profile analyses demonstrated that activated T cells clearly differed from the quiescent cells, performing apparently almost like lymphoblast cells. The great sensitivity of this approach was further demonstrated with human umbilical vein endothelial cells treated for six hours with vascular endothelial growth factor. While no significant alteration of protein amounts was detected at all upon activation, the synthesis rate of several proteins was found to be more than doubled. Comparative proteome profiling, performed by two‐dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually relies on the relative comparison of samples of interest with respect to a reference. Currently, no standardized quantitative protein expression database of human cells, facilitating data comparisons between different laboratories, exists. Recently, we have published two‐dimensional polyacrylamide gel electrophoresis‐based techniques to assess absolute protein data comprising protein amounts, synthesis rates and biological half‐lives ( Mol. Cell. Proteomics 2002, 1 , 528–537). Determination of protein amounts by fluorography of two‐dimensional gels was followed by the exact quantification of the amount of incorporated 35 S radiolabel. Here we demonstrate an application of this highly standardized method to quiescent human T cells, phythaemagglutinin‐stimulated T cells and Jurkat cells, a human T lymphoblast cell line. While the protein composition of quiescent T cells differed significantly compared to that of Jurkat cells, it was only slightly different compared to the activated T cells. Synthesis profile analyses demonstrated that activated T cells clearly differed from the quiescent cells, performing apparently almost like lymphoblast cells. The great sensitivity of this approach was further demonstrated with human umbilical vein endothelial cells treated for six hours with vascular endothelial growth factor. While no significant alteration of protein amounts was detected at all upon activation, the synthesis rate of several proteins was found to be more than doubled. |
Author | Lenz, Christof Traxler, Elisabeth Bayer, Editha Gerner, Christopher Mohr, Thomas Stöckl, Johannes |
Author_xml | – sequence: 1 givenname: Elisabeth surname: Traxler fullname: Traxler, Elisabeth organization: Institute of Cancer Research – sequence: 2 givenname: Editha surname: Bayer fullname: Bayer, Editha organization: Institute of Cancer Research – sequence: 3 givenname: Johannes surname: Stöckl fullname: Stöckl, Johannes organization: Institute of Immunology, University of Vienna, Vienna, Austria – sequence: 4 givenname: Thomas surname: Mohr fullname: Mohr, Thomas organization: Institute of Cancer Research – sequence: 5 givenname: Christof surname: Lenz fullname: Lenz, Christof organization: Mass Spectrometry Laboratories, Applied Biosystems, Darmstadt, Germany – sequence: 6 givenname: Christopher surname: Gerner fullname: Gerner, Christopher email: christopher.gerner@meduniwien.ac.at organization: Institute of Cancer Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15188398$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1P3DAQxa2Kiu9rj1VO3LL1xHZsc0Mr2FJRWhCIozWJZ4shH0ucQOlfT1a7WnrjNE-a33uaeXtsq2kbYuwL8Alwnn1b1KGcZJwLzrWWn9gu5KBSa3LY2mgldthejA-cgzZWb7MdUGCMsGaXuZv2BTsfE0xij40fdfhHPrkfamySRdf21NaUeOyxwEjHydWATR967MMzve9HMQ9VaP4k7TypwvNSlVRV8YB9nmMV6XA999nt2enN9Ht68Wt2Pj25SEsFuUyNlb5EAm9UpgorwRBKNNxKO77pQZakyBdSFoJLgNxmJXkBoFVuUFgU--xolTte8jRQ7F0d4vICbKgdotMZBy5k9iEI2mqZSTOCkxVYdm2MHc3dogs1dq8OuFt275bdu033o-HrOnkoavLv-LrsEbAr4CVU9PpBnPv983z6f3i68obY09-NF7tHl2uhlbu7nLn8Ul9nsx9nTog3wEah8g |
CitedBy_id | crossref_primary_10_1371_journal_pone_0035915 crossref_primary_10_1002_cfg_357 crossref_primary_10_1002_pmic_200500135 crossref_primary_10_1371_journal_pone_0114158 crossref_primary_10_1002_elps_201300581 crossref_primary_10_1021_pr801085g crossref_primary_10_1002_pmic_200600097 crossref_primary_10_1002_prca_200800173 crossref_primary_10_1002_elps_200900072 crossref_primary_10_1021_pr800438f crossref_primary_10_1002_pmic_200600323 crossref_primary_10_1007_s00420_010_0513_7 crossref_primary_10_1002_pmic_201000507 crossref_primary_10_1016_j_jprot_2012_07_012 crossref_primary_10_1002_prca_200780100 |
Cites_doi | 10.1002/(SICI)1097-4644(19990315)72:4<470::AID-JCB3>3.0.CO;2-V 10.1172/JCI107470 10.1002/1615-9861(200104)1:5<699::AID-PROT699>3.0.CO;2-C 10.1016/S1359-6446(02)02396-6 10.1074/mcp.M200074-MCP200 10.1016/0003-2697(88)90209-6 10.1002/rcm.379 10.1074/mcp.E300003-MCP200 10.1016/S1044-0305(01)00316-6 10.1074/jbc.M006495200 10.1021/ac9810516 10.1074/mcp.M200026-MCP200 10.1038/sj.cdd.4401010 10.1038/35057062 10.1038/85686 |
ContentType | Journal Article |
Copyright | Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/pmic.200300774 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1615-9861 |
EndPage | 1323 |
ExternalDocumentID | 10_1002_pmic_200300774 15188398 PMIC200300774 ark_67375_WNG_6N7R2GJF_3 |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-1 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 Y6R ZGI ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c5164-894dcae1d8525b9418ea4a80949100d14ce5edb44b30411692ced3117568a39a3 |
IEDL.DBID | DR2 |
ISSN | 1615-9853 |
IngestDate | Wed Dec 04 06:09:26 EST 2024 Wed Dec 04 09:14:12 EST 2024 Fri Dec 06 03:15:40 EST 2024 Sat Sep 28 07:42:23 EDT 2024 Sat Aug 24 00:53:31 EDT 2024 Wed Oct 30 09:56:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5164-894dcae1d8525b9418ea4a80949100d14ce5edb44b30411692ced3117568a39a3 |
Notes | istex:D057C09A810C4003E8D01E3708226DA8994DD2BC ark:/67375/WNG-6N7R2GJF-3 ArticleID:PMIC200300774 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pmic.200300774 |
PMID | 15188398 |
PQID | 17974248 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_72010342 proquest_miscellaneous_17974248 crossref_primary_10_1002_pmic_200300774 pubmed_primary_15188398 wiley_primary_10_1002_pmic_200300774_PMIC200300774 istex_primary_ark_67375_WNG_6N7R2GJF_3 |
PublicationCentury | 2000 |
PublicationDate | May 2004 |
PublicationDateYYYYMMDD | 2004-05-01 |
PublicationDate_xml | – month: 05 year: 2004 text: May 2004 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Proteomics (Weinheim) |
PublicationTitleAlternate | Proteomics |
PublicationYear | 2004 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | Hanash, S., Drug Discov. Today 2002, 7, 797-801. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921. Kislinger, T., Rahman, K., Radulovic, D., Cox, B. et al., Mol. Cell. Proteomics 2003, 2, 96-106. Washburn, M. P., Wolters, D., Yates, J. R., 3rd, Nat. Biotechnol. 2001, 19, 242-247. Gerner, C., Vejda, S., Gelbmann, D., Bayer, E. et al., Mol. Cell. Proteomics 2002, 1, 528-537. Jaffe, E. A., Nachman, R. L., Becker, C. G., Minick, C. R., J. Clin. Invest. 1973, 52, 2745-2756. Rabilloud, T., Strub, J. M., Luche, S., van Dorsselaer, A., Lunardi, J., Proteomics 2001, 1, 699-704. Gerner, C., Frohwein, U., Gotzmann, J., Bayer, E. et al., J. Biol. Chem. 2000, 275, 39018-39026. Clauser, K. R., Baker, P., Burlingame, A. L., Anal. Chem. 1999, 71, 2871-2882. Gerner, C., Gotzmann, J., Frohwein, U., Schamberger, C. et al., Cell Death Differ. 2002, 9, 671-681. Katayama, H., Nagasu, T., Oda, Y., Rapid Commun. Mass Spectrom. 2001, 15, 1416-1421. Mire-Sluis, A. R., Wickremasinghe, R. G., Hoffbrand, A. V., Timms, A. M., Francis, G. E., Immunology 1987, 60, 7-12. Gerner, C., Sauermann, G., J. Cell Biochem. 1999, 72, 470-482. Hochstrasser, D. F., Harrington, M. G., Hochstrasser, A. C., Miller, M. J., Merril, C. R., Anal. Biochem. 1988, 173, 424-435. Bradshaw, R. A., Burlingame, A. L., Celis, J. E., Mol. Cell. Proteomics 2003, 2, 1. Griffin, T. J., Han, D. K., Gygi, S. P., Rist, B. et al., J. Am. Soc. Mass Spectrom. 2001, 12, 1238-1246. 1973; 52 1987; 60 2002; 9 2002; 7 2003; 2 2001; 19 2002; 1 2001; 409 2001; 15 2000; 275 2001; 1 1999; 72 1988; 173 1999; 71 2001; 12 Mire‐Sluis A. R. (e_1_2_1_16_2) 1987; 60 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 |
References_xml | – volume: 1 start-page: 528 year: 2002 end-page: 537 publication-title: Mol. Cell. Proteomics – volume: 1 start-page: 699 year: 2001 end-page: 704 publication-title: Proteomics – volume: 19 start-page: 242 year: 2001 end-page: 247 publication-title: Nat. Biotechnol. – volume: 72 start-page: 470 year: 1999 end-page: 482 publication-title: J. Cell Biochem. – volume: 2 start-page: 96 year: 2003 end-page: 106 publication-title: Mol. Cell. Proteomics – volume: 9 start-page: 671 year: 2002 end-page: 681 publication-title: Cell Death Differ. – volume: 2 start-page: 1 year: 2003 publication-title: Mol. Cell. Proteomics – volume: 173 start-page: 424 year: 1988 end-page: 435 publication-title: Anal. Biochem. – volume: 71 start-page: 2871 year: 1999 end-page: 2882 publication-title: Anal. Chem. – volume: 52 start-page: 2745 year: 1973 end-page: 2756 publication-title: J. Clin. Invest. – volume: 12 start-page: 1238 year: 2001 end-page: 1246 publication-title: J. Am. Soc. Mass Spectrom. – volume: 409 start-page: 860 year: 2001 end-page: 921 publication-title: Nature – volume: 275 start-page: 39018 year: 2000 end-page: 39026 publication-title: J. Biol. Chem. – volume: 7 start-page: 797 year: 2002 end-page: 801 publication-title: Drug Discov. Today – volume: 15 start-page: 1416 year: 2001 end-page: 1421 publication-title: Rapid Commun. Mass Spectrom. – volume: 60 start-page: 7 year: 1987 end-page: 12 publication-title: Immunology – ident: e_1_2_1_9_2 doi: 10.1002/(SICI)1097-4644(19990315)72:4<470::AID-JCB3>3.0.CO;2-V – ident: e_1_2_1_10_2 doi: 10.1172/JCI107470 – ident: e_1_2_1_13_2 doi: 10.1002/1615-9861(200104)1:5<699::AID-PROT699>3.0.CO;2-C – ident: e_1_2_1_4_2 doi: 10.1016/S1359-6446(02)02396-6 – ident: e_1_2_1_7_2 doi: 10.1074/mcp.M200074-MCP200 – ident: e_1_2_1_12_2 doi: 10.1016/0003-2697(88)90209-6 – volume: 60 start-page: 7 year: 1987 ident: e_1_2_1_16_2 publication-title: Immunology contributor: fullname: Mire‐Sluis A. R. – ident: e_1_2_1_14_2 doi: 10.1002/rcm.379 – ident: e_1_2_1_3_2 doi: 10.1074/mcp.E300003-MCP200 – ident: e_1_2_1_6_2 doi: 10.1016/S1044-0305(01)00316-6 – ident: e_1_2_1_11_2 doi: 10.1074/jbc.M006495200 – ident: e_1_2_1_15_2 doi: 10.1021/ac9810516 – ident: e_1_2_1_8_2 doi: 10.1074/mcp.M200026-MCP200 – ident: e_1_2_1_17_2 doi: 10.1038/sj.cdd.4401010 – ident: e_1_2_1_2_2 doi: 10.1038/35057062 – ident: e_1_2_1_5_2 doi: 10.1038/85686 |
SSID | ssj0017897 |
Score | 1.8799555 |
Snippet | Comparative proteome profiling, performed by two‐dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually... Comparative proteome profiling, performed by two-dimensional polyacrylamide gel electrophoresis or multidimensional protein identification technology, usually... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1314 |
SubjectTerms | Autoradiography Cells, Cultured Databases, Factual - standards Electrophoresis, Gel, Two-Dimensional Endothelial cells Endothelium, Vascular - chemistry Endothelium, Vascular - drug effects Fluorescence Fluorescence detection Humans Jurkat Cells Kinetics Leukaemia Lymphocyte Activation Peptide Fragments - analysis Phytohemagglutinins - pharmacology Proteins - chemistry Proteins - metabolism Proteome - analysis Proteome - chemistry Proteome - metabolism Sensitivity and Specificity Subcellular Fractions Sulfur Radioisotopes - metabolism T-Lymphocytes - chemistry T-Lymphocytes - drug effects Trypsin Two-dimensional gel electrophoresis Umbilical Veins - cytology Vascular Endothelial Growth Factor A - drug effects |
Title | Towards a standardized human proteome database: Quantitative proteome profiling of living cells |
URI | https://api.istex.fr/ark:/67375/WNG-6N7R2GJF-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.200300774 https://www.ncbi.nlm.nih.gov/pubmed/15188398 https://search.proquest.com/docview/17974248 https://search.proquest.com/docview/72010342 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4heqA9QLu0ZekDHyp6CsSPJHZviHZBSF21CFRull-RVnSziN2VgF9fP0iWrVpVKscodmSPZzzjyedvAD44YbS3Gn_Iqa3NGLYs0zZXmRHKEuGw0THf8XVYHp-zk4vi4sEt_sQP0SXcgmXE_ToYuNLT_QVp6NV4FCkIaWCkCYSgmFYB0_f5tOOPwhVP1VW8286Ed0wta2NO9pe7L3mlJ0HAN38KOZcj2OiCBhug2sEn5Mnl3nym98zdb7yOj5ndc1i_j0_RQVKoF7Dimh5sHjT-bD6-RbsoIkZjKr4Ha4dttbgePHtAbLgJ8iyicadIoTZXMbpzFsWKgChyQ0zGDgV4anCjn9D3uWridTe_-S7ep4Li_otoUqOfo5D7QOFPw_QlnA--nB0eZ_elHDJT-ANZxgWzRjlseUEKLRjmTjHF_dnShyu5xcy4wlnNmKY5w7gUxDhLA41oyRUVir6C1WbSuC1AJa-1qPOaYh87Fczx2uS6qBQ3QmNe2j58bJdSXiXGDpm4mYkMUpWdVPuwG1e6a6auLwPOrSrkj-GRLIfVKTk6GUjah51WFaQXa5ioatxkPpV-O6sYYfzvLaoAN6CM9OF10qHFoAIXHhW-L4ma8I_Rym_eLrun7f_p9AaeJuBRwGu-hdXZ9dy98zHVTL-PdvMLfx4Zdg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B9jB4YNAxVjaYH9B4yhY7TmLzNm10ZWwVTJ3gzfJXpGprOq2tBPvr8ceSUgRCgscodmSf73zny8-_A3hjuVbOatwhpzImodjQRJlUJppLQ7jFWoV8x_mg6F_S0695gyb0d2EiP0SbcPOWEfZrb-A-IX2wYA29GY8CB2HmKWnoQ1h1No89quv4omWQwiWL9VWc4064c00Nb2NKDpb7L_mlVS_ib78LOpdj2OCEeuugmuFH7MnV_nym9vXdL8yO_zW_p_DkPkRFh1GnnsEDW3dg47B2x_Pxd7SHAmg0ZOM7sHbUFIzrwOOfuA03QAwDIHeKJGrSFaM7a1AoCogCPcRkbJFHqHpP-g59nss63Hhz--_ifawp7r6IJhW6Hvn0B_I_G6bP4bL3fnjUT-6rOSQ6d2eyhHFqtLTYsJzkilPMrKSSueOli1hSg6m2uTWKUpWlFOOCE21N5plECyYzLrNNWKkntd0CVLBK8SqtMuzCp5xaVulU5aVkmivMCtOFt81aiptI2iEiPTMRXqqilWoX9sJSt83k7ZWHupW5-DI4EcWgvCAnpz2RdWG30QXhxOonKms7mU-F29FKSij7c4vSIw4ySrrwIirRYlCeDi_jri8JqvCX0YpPzjTbp5f_0mkX1vrD8zNx9mHwcRseRRySh2_uwMrsdm5fuRBrpl4HI_oBIEQdlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8oJH48oB6IJyh9MPi0sP3Y3ZY3Ah6IekECkbemX5tc4PYu3F2i_PW2XXaPMxoTfdxsu2mnM53p7K-_AXjnhNHeavwhp7Q2YdiyRNtUJUYoS4TDRsd8x5d-fnzBTi6zy3u3-Gt-iDbhFiwj7tfBwMe23J2Tho6Hg0hBSAMjDXsIyywnIrDnH561BFK44HV5Fe-3E-E9U0PbmJLdxf4Lbmk5SPj772LOxRA2-qDeM1DN6GvoydXObKp3zO0vxI7_M73nsHIXoKL9WqNewANXdWB1v_KH8-EPtI0iZDTm4jvw-KApF9eBp_eYDVdBnkc47gQp1CQrBrfOolgSEEVyiNHQoYBPDX50D32dqSred_O77_x9XVHcfxGNSnQ9CMkPFH41TNbgovfh_OA4uavlkJjMn8gSLpg1ymHLM5JpwTB3iinuD5c-XkktZsZlzmrGNE0ZxrkgxlkaeERzrqhQ9CUsVaPKvQKU81KLMi0p9sFTxhwvTaqzQnEjNOa57cL7ZinluKbskDU5M5FBqrKVahe240q3zdTNVQC6FZn81j-Seb84I0cnPUm7sNWogvRiDRNVlRvNJtLvZwUjjP-5RRHwBpSRLqzXOjQfVCDDo8L3JVET_jJaeeoNs316_S-dtuDR6WFPfv7Y_7QBT2oQUsBubsLS9Gbm3vj4aqrfRhP6CasiHEY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+standardized+human+proteome+database%3A+quantitative+proteome+profiling+of+living+cells&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Traxler%2C+Elisabeth&rft.au=Bayer%2C+Editha&rft.au=St%C3%B6ckl%2C+Johannes&rft.au=Mohr%2C+Thomas&rft.date=2004-05-01&rft.issn=1615-9853&rft.volume=4&rft.issue=5&rft.spage=1314&rft_id=info:doi/10.1002%2Fpmic.200300774&rft_id=info%3Apmid%2F15188398&rft.externalDocID=15188398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon |