Progress Report on Phase Separation in Polymer Solutions
Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underl...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 26; pp. e1806733 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer‐rich and polymer‐poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: “cluster‐to‐percolation” and “percolation‐to‐droplets,” which are attributed to an effect that the polymer‐rich and the solvent‐rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial‐tension‐gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation.
Polymerization‐induced phase separation is a vital mechanism to engender polymeric porous media involving not only thermodynamics but also fluid dynamics. For diffusion‐controlled evolution, an asynchronous effect of the polymer‐rich and the polymer‐lean phases toward equilibrium is discussed. For convection‐governed growth, an overview of deterministic motion of the polymeric droplets is presented. Characterization techniques of polymeric porous media are also elucidated. |
---|---|
AbstractList | Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer‐rich and polymer‐poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: “cluster‐to‐percolation” and “percolation‐to‐droplets,” which are attributed to an effect that the polymer‐rich and the solvent‐rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial‐tension‐gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation. Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium-ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer-rich and polymer-poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: "cluster-to-percolation" and "percolation-to-droplets," which are attributed to an effect that the polymer-rich and the solvent-rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial-tension-gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation.Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium-ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer-rich and polymer-poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: "cluster-to-percolation" and "percolation-to-droplets," which are attributed to an effect that the polymer-rich and the solvent-rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial-tension-gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation. Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer‐rich and polymer‐poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: “cluster‐to‐percolation” and “percolation‐to‐droplets,” which are attributed to an effect that the polymer‐rich and the solvent‐rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial‐tension‐gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation. Polymerization‐induced phase separation is a vital mechanism to engender polymeric porous media involving not only thermodynamics but also fluid dynamics. For diffusion‐controlled evolution, an asynchronous effect of the polymer‐rich and the polymer‐lean phases toward equilibrium is discussed. For convection‐governed growth, an overview of deterministic motion of the polymeric droplets is presented. Characterization techniques of polymeric porous media are also elucidated. |
Author | Altschuh, Patrick Ratke, Lorenz Nestler, Britta Wang, Fei Zhang, Haodong Selzer, Michael |
Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0003-3318-3264 surname: Wang fullname: Wang, Fei email: fei.wang@kit.edu organization: Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Patrick surname: Altschuh fullname: Altschuh, Patrick email: patrick.altschuh@kit.edu organization: Karlsruhe University of Applied Sciences – sequence: 3 givenname: Lorenz surname: Ratke fullname: Ratke, Lorenz organization: German Aerospace Center (DLR) – sequence: 4 givenname: Haodong surname: Zhang fullname: Zhang, Haodong organization: Karlsruhe Institute of Technology (KIT) – sequence: 5 givenname: Michael surname: Selzer fullname: Selzer, Michael organization: Karlsruhe University of Applied Sciences – sequence: 6 givenname: Britta surname: Nestler fullname: Nestler, Britta organization: Karlsruhe University of Applied Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30856293$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1L5DAYh4O4rKPu1aMUvHjp-OazyXHwGxTF2T2HmL7VStuMSYvMf29nZ3RBWDwFfjxPEp5dst2FDgk5oDClAOzEla2bMqAaVMH5FplQyWguwMhtMgHDZW6U0DtkN6UXADAK1E-yw0FLxQyfEH0fw1PElLIHXITYZ6HL7p9dwmyOCxddX49DPW6hWbYYs3lohtWW9smPyjUJf23OPfLn4vz36VV-c3d5fTq7yb2kiudel16WyusCoUKnnZDcecGM0aBZARqoKl0htCsqX3GAqqQSTMULwxAN8j1yvL53EcPrgKm3bZ08No3rMAzJMmpA6IIBH9GjL-hLGGI3_s4yJpQ2Qko9UocbanhssbSLWLcuLu1HkxGYrgEfQ0oRq0-Egl1Ft6vo9jP6KIgvgq_7v-X66Orm_5pZa291g8tvHrGzs9vZP_cdK9WUOw |
CitedBy_id | crossref_primary_10_1002_smll_202205501 crossref_primary_10_1021_acsami_1c07850 crossref_primary_10_1016_j_compositesa_2025_108826 crossref_primary_10_1002_adfm_202403794 crossref_primary_10_1021_acsaenm_4c00438 crossref_primary_10_1021_acs_chemrev_3c00823 crossref_primary_10_1039_D3ME00180F crossref_primary_10_1016_j_cej_2024_155356 crossref_primary_10_1021_acsami_4c03011 crossref_primary_10_1039_D1TA03352B crossref_primary_10_1021_acs_macromol_2c02154 crossref_primary_10_1039_D2RA01842J crossref_primary_10_1039_D4SM01477D crossref_primary_10_1016_j_matt_2022_07_012 crossref_primary_10_1021_acsnano_3c09692 crossref_primary_10_1002_smll_202306394 crossref_primary_10_1039_D4MH01429D crossref_primary_10_1021_acs_jpcb_4c03457 crossref_primary_10_1021_acs_langmuir_1c02050 crossref_primary_10_1021_acsami_4c15649 crossref_primary_10_1016_j_carbpol_2021_117750 crossref_primary_10_1063_5_0196794 crossref_primary_10_1021_acsomega_1c00450 crossref_primary_10_1021_acs_langmuir_1c02572 crossref_primary_10_1039_D3SM01553J crossref_primary_10_1039_D4CC06723A crossref_primary_10_1002_pi_6713 crossref_primary_10_1021_acs_langmuir_1c01769 crossref_primary_10_1016_j_fluid_2023_113935 crossref_primary_10_1016_j_eurpolymj_2025_113730 crossref_primary_10_1039_D0TA04841K crossref_primary_10_1021_acsami_9b19467 crossref_primary_10_15407_fm30_03_387 crossref_primary_10_1021_acs_macromol_4c02073 crossref_primary_10_1007_s12038_021_00204_z crossref_primary_10_1021_acsnano_3c04657 crossref_primary_10_1002_adfm_202307332 crossref_primary_10_1021_acs_macromol_2c01838 crossref_primary_10_1002_pen_26720 crossref_primary_10_1039_D4MH01618A crossref_primary_10_1002_sstr_202200314 crossref_primary_10_1002_adts_202200286 crossref_primary_10_1038_s41467_020_20498_1 crossref_primary_10_1038_s41598_024_62958_4 crossref_primary_10_1073_pnas_1917762116 crossref_primary_10_1021_acsapm_2c01630 crossref_primary_10_1002_anie_202007274 crossref_primary_10_1016_j_orgel_2023_106953 crossref_primary_10_1002_adma_202403078 crossref_primary_10_3390_mi14101968 crossref_primary_10_1002_adfm_201905399 crossref_primary_10_1007_s10971_020_05238_7 crossref_primary_10_1360_nso_20230050 crossref_primary_10_1007_s10965_021_02574_2 crossref_primary_10_1021_jacs_4c11285 crossref_primary_10_34133_research_0146 crossref_primary_10_1038_s41565_024_01661_x crossref_primary_10_1002_adfm_202200157 crossref_primary_10_1021_acsami_2c14319 crossref_primary_10_1016_j_esci_2024_100294 crossref_primary_10_1002_mame_202200358 crossref_primary_10_1002_ange_202007274 crossref_primary_10_1002_admt_202401235 crossref_primary_10_1002_adfm_202301327 crossref_primary_10_1002_adem_202201097 crossref_primary_10_1002_aelm_201901156 crossref_primary_10_1002_smsc_202200017 crossref_primary_10_1007_s12551_022_01001_0 crossref_primary_10_1016_j_mattod_2024_11_011 crossref_primary_10_1016_j_cpc_2023_108898 crossref_primary_10_1007_s42114_025_01290_5 crossref_primary_10_1016_j_colsurfa_2020_125665 crossref_primary_10_1016_j_actamat_2020_06_003 crossref_primary_10_1002_cey2_316 crossref_primary_10_1109_TDEI_2019_008214 crossref_primary_10_1021_acs_analchem_1c02700 crossref_primary_10_1021_acs_macromol_3c00132 crossref_primary_10_1021_acsbiomaterials_1c00113 crossref_primary_10_1103_PhysRevLett_133_246201 crossref_primary_10_3390_en17174412 crossref_primary_10_1016_j_jcp_2024_112907 crossref_primary_10_1016_j_polymer_2023_126291 crossref_primary_10_3389_frsus_2023_1093911 crossref_primary_10_1016_j_matchemphys_2025_130376 crossref_primary_10_1016_j_seppur_2023_125766 crossref_primary_10_1002_adfm_202407978 crossref_primary_10_1002_adem_202201314 crossref_primary_10_1002_app_55241 crossref_primary_10_1021_acs_langmuir_2c00308 crossref_primary_10_1039_D4MH00957F crossref_primary_10_1021_acsnano_4c16095 crossref_primary_10_1038_s41467_021_26126_w crossref_primary_10_1073_pnas_2215012120 crossref_primary_10_1002_adma_202409362 crossref_primary_10_1002_smtd_202201712 crossref_primary_10_1088_1361_648X_ad7660 crossref_primary_10_1016_j_actamat_2023_118922 crossref_primary_10_1021_acsami_0c19561 crossref_primary_10_1021_acsami_4c11179 crossref_primary_10_1038_s41565_024_01658_6 crossref_primary_10_1039_D3AN00662J crossref_primary_10_1016_j_jcis_2021_12_130 crossref_primary_10_1021_acs_jpclett_1c01940 crossref_primary_10_1103_PhysRevResearch_6_023186 crossref_primary_10_1021_acs_langmuir_3c02103 crossref_primary_10_1039_D1CP03229A crossref_primary_10_1039_D2SM00733A crossref_primary_10_1021_acsami_0c22028 crossref_primary_10_1063_5_0081180 crossref_primary_10_1016_j_jcis_2025_01_256 crossref_primary_10_1021_acsomega_2c01947 crossref_primary_10_1021_acsapm_3c02744 crossref_primary_10_1007_s10924_021_02096_4 crossref_primary_10_1016_j_mtcomm_2023_106004 crossref_primary_10_1038_s41586_021_04209_4 crossref_primary_10_1039_D3SM01365K crossref_primary_10_1103_PhysRevLett_132_126202 |
Cites_doi | 10.1016/j.cocis.2016.05.008 10.1021/acsami.6b09575 10.1016/j.cma.2017.08.011 10.1016/j.jpowsour.2013.06.100 10.1146/annurev-anchem-061417-125737 10.1021/ma5009258 10.1016/j.actamat.2015.09.047 10.4191/kcers.2016.53.1.50 10.1016/j.memsci.2017.06.020 10.1002/adma.200602906 10.1021/la9035858 10.1016/j.actamat.2018.07.056 10.1039/C5EW00159E 10.1021/ma051560r 10.1021/acsami.7b07982 10.1016/j.pmatsci.2018.01.005 10.1039/C7CC04147K 10.1016/j.actamat.2016.10.071 10.1103/PhysRevE.96.032501 10.1016/j.commatsci.2018.05.014 10.1088/0965-0393/14/1/004 10.1016/j.actamat.2011.06.051 10.3390/polym9100525 10.1021/la504672x 10.1039/c2jm31778h 10.1002/0471224510 10.1016/j.memsci.2015.02.005 10.1103/PhysRevLett.102.108303 10.1002/adem.201700611 10.1016/j.ces.2004.02.025 10.1021/cr200440z 10.1016/j.eurpolymj.2006.01.019 10.1016/j.polymer.2006.01.084 10.1021/ma00110a011 10.1002/aic.690050421 10.1016/j.physd.2015.06.001 10.1038/ncomms8407 10.1295/polymj.37.560 10.1007/s10915-017-0508-6 10.1016/j.actamat.2017.11.053 10.1002/adma.201700750 10.1063/1.1744102 10.1016/j.cis.2018.03.010 10.1002/adma.200600975 10.1142/S0218202511500138 10.1002/adma.201004134 10.1021/nl061765t 10.1063/1.5009568 10.4208/cicp.301110.040811a 10.1002/cctc.201301071 10.3390/membranes6040055 10.1016/0022-3697(61)90054-3 10.1098/rsta.2005.1686 10.1146/annurev-matsci-070214-020844 10.1016/j.cma.2016.06.008 10.1002/adma.200304926 10.1002/adma.200306075 10.1021/ie00037a014 10.1016/j.euromechflu.2018.08.002 10.1002/adma.201800671 10.1122/1.4975931 10.1002/adma.200400466 10.1063/1.1723621 10.1103/PhysRevE.86.066318 10.1021/am900882t 10.1016/S0268-005X(99)00062-4 10.1016/0001-6160(85)90003-3 10.1006/jcph.1999.6332 10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P 10.1007/s40192-017-0093-4 10.1021/cr60031a001 10.1016/S0167-2789(99)00109-8 10.1002/chem.200903043 10.1039/B921280A 10.1021/acsmacrolett.8b00012 10.1016/S0167-2789(00)00035-X 10.1002/adfm.201001330 10.1002/adma.201001164 10.1002/adma.201502595 10.1090/mcom/3280 10.1016/j.matdes.2016.06.041 |
ContentType | Journal Article |
Copyright | 2019 Institute for Applied Materials‐Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Institute for Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Institute for Applied Materials‐Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Institute for Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201806733 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30856293 10_1002_adma_201806733 ADMA201806733 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Helmholtz association – fundername: German Research Foundation – fundername: Gottfried‐Wilhelm Leibniz funderid: NE 822/31 – fundername: Gottfried-Wilhelm Leibniz grantid: NE 822/31 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c5163-c8dc5d6c87e0fea8a453ac42998082708016da748a7fcf300fd1509f3792ee9e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:23:06 EDT 2025 Sun Jul 13 04:22:45 EDT 2025 Wed Feb 19 02:36:03 EST 2025 Tue Jul 01 00:44:50 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Wed Jan 22 16:41:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | phase separation principal component analysis (PCA) capillarity phase-field polymer solutions |
Language | English |
License | Attribution-NonCommercial 2019 Institute for Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5163-c8dc5d6c87e0fea8a453ac42998082708016da748a7fcf300fd1509f3792ee9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3318-3264 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806733 |
PMID | 30856293 |
PQID | 2246894558 |
PQPubID | 2045203 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2190487203 proquest_journals_2246894558 pubmed_primary_30856293 crossref_primary_10_1002_adma_201806733 crossref_citationtrail_10_1002_adma_201806733 wiley_primary_10_1002_adma_201806733_ADMA201806733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2010; 16 2000; 135 2016; 107 2015; 31 1995; 34 2003; 15 1996; 30 2015; 307 2011; 59 2016; 103 2018; 87 2012; 12 2017; 9 1959; 5 2018; 7 2010; 22 2015; 45 2018; 8 2010; 26 2006; 61 2001 2000; 14 1995; 28 2018; 256 2016; 310 1999; 55 2011; 21 2018; 30 2018; 74 2011; 23 2018; 72 2005; 37 2010; 2 2005; 38 2017; 124 2014; 6 2012; 22 2006; 364 1942; 10 2017; 326 2014; 245 1961; 19 2017; 61 2007; 19 2015; 6 2010 2018; 146 2006; 14 2015; 483 2016; 53 1953 2006; 18 2014; 47 2006; 6 2002 2018; 20 2016; 6 2017; 53 2017; 96 2006; 42 2012; 112 2016; 2 2018; 151 2010; 46 1958; 28 2004; 16 2006; 47 2018; 158 2000; 141 2009; 102 1931; 8 1961; 65 2017; 540 1985; 33 2018; 11 2016; 28 2005; 17 2018; 98 2016; 9 2012; 86 2016; 24 e_1_2_10_23_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 Wagner C. (e_1_2_10_71_1) 1961; 65 e_1_2_10_20_1 e_1_2_10_41_1 Flory P. J. (e_1_2_10_46_1) 1953 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Janssens K. G. F. (e_1_2_10_65_1) 2010 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 Lambert B. J. (e_1_2_10_12_1) 2001 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 102 start-page: 108303 year: 2009 publication-title: Phys. Rev. Lett. – volume: 28 start-page: 1795 year: 1995 publication-title: Macromolecules – volume: 59 start-page: 6387 year: 2011 publication-title: Acta Mater. – volume: 158 start-page: 53 year: 2018 publication-title: Acta Mater. – volume: 28 start-page: 2287 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 55 year: 2016 publication-title: Membranes – volume: 141 start-page: 133 year: 2000 publication-title: Physica D – volume: 17 start-page: 487 year: 2005 publication-title: Adv. Mater. – volume: 19 start-page: 1567 year: 2007 publication-title: Adv. Mater. – year: 2001 – volume: 47 start-page: 4453 year: 2014 publication-title: Macromolecules – volume: 103 start-page: 192 year: 2016 publication-title: Acta Mater. – volume: 6 start-page: 1166 year: 2014 publication-title: ChemCatChem – volume: 5 start-page: 514 year: 1959 publication-title: AIChE J. – volume: 16 start-page: 553 year: 2004 publication-title: Adv. Mater. – volume: 6 start-page: 7407 year: 2015 publication-title: Nat. Commun. – volume: 18 start-page: 2274 year: 2006 publication-title: Adv. Mater. – volume: 38 start-page: 8996 year: 2005 publication-title: Macromolecules – volume: 7 start-page: 582 year: 2018 publication-title: ACS Macro Lett. – volume: 61 start-page: 363 year: 2017 publication-title: J. Rheol. – volume: 11 start-page: 219 year: 2018 publication-title: Annu. Rev. Anal. Chem. – volume: 6 start-page: 2354 year: 2006 publication-title: Nano Lett. – volume: 12 start-page: 613 year: 2012 publication-title: Commun. Comput. Phys. – volume: 2 start-page: 17 year: 2016 publication-title: Environ Sci.: Water Res. Technol. – volume: 72 start-page: 576 year: 2018 publication-title: Eur. J. Mech. B/Fluids – volume: 86 start-page: 066318 year: 2012 publication-title: Phys. Rev. E – volume: 21 start-page: 211 year: 2011 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 13 year: 2016 publication-title: Curr. Opin. Colloid Interface Sci. – volume: 14 start-page: 217 year: 2000 publication-title: Food Hydrocolloids – volume: 34 start-page: 3278 year: 1995 publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 1793 year: 1985 publication-title: Acta Metall. – volume: 37 start-page: 560 year: 2005 publication-title: Polym. J. – volume: 310 start-page: 77 year: 2016 publication-title: Comput. Methods Appl. Mech. Eng. – volume: 30 start-page: 449 year: 1996 publication-title: J. Biomed. Mater. Res. – volume: 22 start-page: 19482 year: 2012 publication-title: J. Mater. Chem. – volume: 9 start-page: 525 year: 2017 publication-title: Polymers – volume: 151 start-page: 278 year: 2018 publication-title: Comput. Mater. Sci. – volume: 8 start-page: 353 year: 1931 publication-title: Chem. Rev. – volume: 45 start-page: 171 year: 2015 publication-title: Annu. Rev. Mater. Res. – volume: 107 start-page: 322 year: 2016 publication-title: Mater. Des. – volume: 22 start-page: 4667 year: 2010 publication-title: Adv. Mater. – volume: 245 start-page: 144 year: 2014 publication-title: J. Power Sources – volume: 146 start-page: 76 year: 2018 publication-title: Acta Mater. – volume: 87 start-page: 2057 year: 2018 publication-title: Math. Comput. – volume: 16 start-page: 2350 year: 2010 publication-title: Chem. Eur. J. – volume: 15 start-page: 1198 year: 2003 publication-title: Adv. Mater. – volume: 22 start-page: 1150013 year: 2012 publication-title: Math. Models Methods Appl. Sci. – volume: 9 start-page: 19446 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 035308 year: 2018 publication-title: AIP Adv. – volume: 124 start-page: 182 year: 2017 publication-title: Acta Mater. – volume: 31 start-page: 1660 year: 2015 publication-title: Langmuir – volume: 46 start-page: 967 year: 2010 publication-title: Chem. Commun. – volume: 540 start-page: 88 year: 2017 publication-title: J. Membr. Sci. – volume: 256 start-page: 276 year: 2018 publication-title: Adv. Colloid Interface Sci. – volume: 30 start-page: 1700750 year: 2018 publication-title: Adv. Mater. – year: 2010 – volume: 98 start-page: 1 year: 2018 publication-title: Prog. Mater. Sci. – volume: 135 start-page: 175 year: 2000 publication-title: Physica D – volume: 26 start-page: 5110 year: 2010 publication-title: Langmuir – volume: 96 start-page: 032501 year: 2017 publication-title: Phys. Rev. E – volume: 47 start-page: 2217 year: 2006 publication-title: Polymer – volume: 20 start-page: 1700611 year: 2018 publication-title: Adv. Eng. Mater. – volume: 23 start-page: 3751 year: 2011 publication-title: Adv. Mater. – volume: 10 start-page: 51 year: 1942 publication-title: J. Chem. Phys. – volume: 19 start-page: 35 year: 1961 publication-title: J. Phys. Chem. Solids – year: 2002 – volume: 28 start-page: 258 year: 1958 publication-title: J. Chem. Phys. – volume: 483 start-page: 104 year: 2015 publication-title: J. Membr. Sci. – volume: 53 start-page: 8649 year: 2017 publication-title: Chem. Commun. – volume: 30 start-page: 1800671 year: 2018 publication-title: Adv. Mater. – volume: 74 start-page: 1533 year: 2018 publication-title: J. Sci. Comput. – volume: 55 start-page: 96 year: 1999 publication-title: J. Comput. Phys. – volume: 364 start-page: 5 year: 2006 publication-title: Philos. Trans. R. Soc., A – volume: 6 start-page: 147 year: 2017 publication-title: Integr. Mater. Manuf. Innov. – volume: 112 start-page: 3959 year: 2012 publication-title: Chem. Rev. – year: 1953 – volume: 65 start-page: 581 year: 1961 publication-title: Z. Elektrochem. – volume: 2 start-page: 847 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 50 year: 2016 publication-title: J. Korean Ceram. Soc – volume: 307 start-page: 82 year: 2015 publication-title: Physica D – volume: 61 start-page: 2108 year: 2006 publication-title: Chem. Eng. Sci. – volume: 14 start-page: 41 year: 2006 publication-title: Model. Simul. Mater. Sci. Eng. – volume: 42 start-page: 1499 year: 2006 publication-title: Eur. Polym. J. – volume: 9 start-page: 34783 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 326 start-page: 144 year: 2017 publication-title: Comput. Methods Appl. Mech. Eng. – ident: e_1_2_10_67_1 doi: 10.1016/j.cocis.2016.05.008 – ident: e_1_2_10_17_1 doi: 10.1021/acsami.6b09575 – ident: e_1_2_10_54_1 doi: 10.1016/j.cma.2017.08.011 – ident: e_1_2_10_82_1 doi: 10.1016/j.jpowsour.2013.06.100 – ident: e_1_2_10_13_1 doi: 10.1146/annurev-anchem-061417-125737 – ident: e_1_2_10_31_1 doi: 10.1021/ma5009258 – volume: 65 start-page: 581 year: 1961 ident: e_1_2_10_71_1 publication-title: Z. Elektrochem. – ident: e_1_2_10_78_1 doi: 10.1016/j.actamat.2015.09.047 – ident: e_1_2_10_39_1 doi: 10.4191/kcers.2016.53.1.50 – ident: e_1_2_10_84_1 doi: 10.1016/j.memsci.2017.06.020 – volume-title: Polymers in Medical Applications year: 2001 ident: e_1_2_10_12_1 – ident: e_1_2_10_23_1 doi: 10.1002/adma.200602906 – ident: e_1_2_10_27_1 doi: 10.1021/la9035858 – ident: e_1_2_10_77_1 doi: 10.1016/j.actamat.2018.07.056 – ident: e_1_2_10_10_1 doi: 10.1039/C5EW00159E – ident: e_1_2_10_38_1 doi: 10.1021/ma051560r – ident: e_1_2_10_18_1 doi: 10.1021/acsami.7b07982 – ident: e_1_2_10_76_1 doi: 10.1016/j.pmatsci.2018.01.005 – ident: e_1_2_10_37_1 doi: 10.1039/C7CC04147K – ident: e_1_2_10_79_1 doi: 10.1016/j.actamat.2016.10.071 – ident: e_1_2_10_60_1 doi: 10.1103/PhysRevE.96.032501 – ident: e_1_2_10_80_1 doi: 10.1016/j.commatsci.2018.05.014 – ident: e_1_2_10_62_1 doi: 10.1088/0965-0393/14/1/004 – ident: e_1_2_10_74_1 doi: 10.1016/j.actamat.2011.06.051 – ident: e_1_2_10_35_1 doi: 10.3390/polym9100525 – ident: e_1_2_10_73_1 doi: 10.1021/la504672x – ident: e_1_2_10_30_1 doi: 10.1039/c2jm31778h – ident: e_1_2_10_41_1 doi: 10.1002/0471224510 – ident: e_1_2_10_48_1 doi: 10.1016/j.memsci.2015.02.005 – ident: e_1_2_10_64_1 doi: 10.1103/PhysRevLett.102.108303 – ident: e_1_2_10_3_1 doi: 10.1002/adem.201700611 – ident: e_1_2_10_33_1 doi: 10.1016/j.ces.2004.02.025 – ident: e_1_2_10_1_1 doi: 10.1021/cr200440z – ident: e_1_2_10_66_1 doi: 10.1016/j.eurpolymj.2006.01.019 – ident: e_1_2_10_2_1 doi: 10.1016/j.polymer.2006.01.084 – ident: e_1_2_10_61_1 doi: 10.1021/ma00110a011 – ident: e_1_2_10_72_1 doi: 10.1002/aic.690050421 – ident: e_1_2_10_68_1 doi: 10.1016/j.physd.2015.06.001 – ident: e_1_2_10_42_1 doi: 10.1038/ncomms8407 – ident: e_1_2_10_36_1 doi: 10.1295/polymj.37.560 – ident: e_1_2_10_52_1 doi: 10.1007/s10915-017-0508-6 – ident: e_1_2_10_83_1 doi: 10.1016/j.actamat.2017.11.053 – ident: e_1_2_10_7_1 doi: 10.1002/adma.201700750 – ident: e_1_2_10_47_1 doi: 10.1063/1.1744102 – ident: e_1_2_10_5_1 doi: 10.1016/j.cis.2018.03.010 – ident: e_1_2_10_26_1 doi: 10.1002/adma.200600975 – ident: e_1_2_10_49_1 doi: 10.1142/S0218202511500138 – ident: e_1_2_10_19_1 doi: 10.1002/adma.201004134 – ident: e_1_2_10_28_1 doi: 10.1021/nl061765t – ident: e_1_2_10_8_1 doi: 10.1063/1.5009568 – ident: e_1_2_10_58_1 doi: 10.4208/cicp.301110.040811a – ident: e_1_2_10_15_1 doi: 10.1002/cctc.201301071 – ident: e_1_2_10_11_1 doi: 10.3390/membranes6040055 – ident: e_1_2_10_70_1 doi: 10.1016/0022-3697(61)90054-3 – ident: e_1_2_10_6_1 doi: 10.1098/rsta.2005.1686 – ident: e_1_2_10_81_1 doi: 10.1146/annurev-matsci-070214-020844 – ident: e_1_2_10_59_1 doi: 10.1016/j.cma.2016.06.008 – ident: e_1_2_10_20_1 doi: 10.1002/adma.200304926 – ident: e_1_2_10_16_1 doi: 10.1002/adma.200306075 – ident: e_1_2_10_69_1 doi: 10.1021/ie00037a014 – ident: e_1_2_10_51_1 doi: 10.1016/j.euromechflu.2018.08.002 – ident: e_1_2_10_63_1 doi: 10.1002/adma.201800671 – ident: e_1_2_10_34_1 doi: 10.1122/1.4975931 – ident: e_1_2_10_21_1 doi: 10.1002/adma.200400466 – ident: e_1_2_10_40_1 doi: 10.1063/1.1723621 – ident: e_1_2_10_50_1 doi: 10.1103/PhysRevE.86.066318 – volume-title: Computational Materials Engineering: An Introduction to Microstructure Evolution year: 2010 ident: e_1_2_10_65_1 – volume-title: Principles of Polymer Chemistry year: 1953 ident: e_1_2_10_46_1 – ident: e_1_2_10_9_1 doi: 10.1021/am900882t – ident: e_1_2_10_29_1 doi: 10.1016/S0268-005X(99)00062-4 – ident: e_1_2_10_85_1 doi: 10.1016/0001-6160(85)90003-3 – ident: e_1_2_10_55_1 doi: 10.1006/jcph.1999.6332 – ident: e_1_2_10_32_1 doi: 10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P – ident: e_1_2_10_75_1 doi: 10.1007/s40192-017-0093-4 – ident: e_1_2_10_45_1 doi: 10.1021/cr60031a001 – ident: e_1_2_10_57_1 doi: 10.1016/S0167-2789(99)00109-8 – ident: e_1_2_10_14_1 doi: 10.1002/chem.200903043 – ident: e_1_2_10_22_1 doi: 10.1039/B921280A – ident: e_1_2_10_43_1 doi: 10.1021/acsmacrolett.8b00012 – ident: e_1_2_10_56_1 doi: 10.1016/S0167-2789(00)00035-X – ident: e_1_2_10_4_1 doi: 10.1002/adfm.201001330 – ident: e_1_2_10_24_1 doi: 10.1002/adma.201001164 – ident: e_1_2_10_25_1 doi: 10.1002/adma.201502595 – ident: e_1_2_10_53_1 doi: 10.1090/mcom/3280 – ident: e_1_2_10_44_1 doi: 10.1016/j.matdes.2016.06.041 |
SSID | ssj0009606 |
Score | 2.6179361 |
SecondaryResourceType | review_article |
Snippet | Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters.... Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium-ion batteries, stretchable sensors, and biofilters.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1806733 |
SubjectTerms | capillarity Dependence Diffusion effects Droplets Fluid dynamics Fluid flow Hydrodynamics Lithium-ion batteries Materials science Percolation Phase separation phase‐field polymer solutions Polymers Porosity Porous media principal component analysis (PCA) |
Title | Progress Report on Phase Separation in Polymer Solutions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806733 https://www.ncbi.nlm.nih.gov/pubmed/30856293 https://www.proquest.com/docview/2246894558 https://www.proquest.com/docview/2190487203 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcP6pM-eL_MGxUEn7plTdKkj8MLQ1CGF9hbSdMExdnJ3B7003vSbJ1TRNC3XpI2TXJy_k1PfwE45jk6qczyUBBLQ-bI2gn6pTAXRBGTWKZ0GW1xHbfv2WWXdz_9xe_5ENWEm7OMcrx2Bq6y18YUGqrykhvUlG6pFYf7dAFbThXdTPlRTp6XsD3KwyRmckJtJFFjNvusV_omNWeVa-l6LlZATQrtI06e6qNhVtfvX3iO_3mqVVge69Kg5TvSGsyZYh2WPtEKN0B2XCwXjoyBV-1Bvwg6D-gFg1vjCeJ44BGP9Xtvz2YQVDNum3B_cX532g7HCy-EmqM-C7XMNc9jLYUh1iipGKdKO88lUTEIFJnNOFeCSSWstpQQiy1OEktFEhmTGLoFC0W_MDsQUEZFrnhmDEE_mDFlubCW5paqiCtGahBOKj7VYyq5Wxyjl3qecpS6GkmrGqnBSZX-xfM4fky5P2nHdGyXr6nD58mEcS5rcFSdRotyn0lUYfojTIMaCV_jIoKX2PbtX92KokKNUSHVICpb8ZcypK2zq1a1t_uXTHuwiNuJj07bh4XhYGQOUAcNs0OYj1jnsOzxHyFu_VQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL0CugAWpeU5hdIggVgFTGzHzoLFqFM0PIV4SOyC49gCARkEM6roX_VX-kVcx5PQKUJIlViwjOMkju_rXMc5F2CZ5xikMstDQSwNmWPWTjAuhbkgipjEMqXL3RYHcfuU7ZzxsyH4Xf0L4_kh6gU3Zxmlv3YG7hak159YQ1VeEgdtSFdrpapfvWsefmLWdr-53UIRr0TR1o-T7-2wX1gg1BzxR6hlrnkeaykMsUZJxThV2nlmiRFRIIjaiHMlmFTCaksJsfhGJLFUJJExiaF432H44MqIO7r-1tETY5VLCEp6P8rDJGay4okk0frgeAfj4DNwO4iVy2C3NQF_qmnye1yu1nrdbE3_-odB8l3N4yf42IfeQdPbymcYMsUkjP9FyDgF8tBtV0PnH_jEJOgUweEFBvrg2HiSdGy4xLbO9cONuQvqRcVpOH2Toc_ASNEpzBwElFGRK54ZQzDUZ0xZLqyluaUq4oqRBoSVpFPdJ1539T-uU08ZHaVOAmktgQas1v1vPeXIiz0XKsVJ-67nPnUMgTJhnMsGLNWn0Wm4L0GqMJ0e9kEYiJlqRPAWs17h6kdRBOExgsAGRKXavDKGtNnab9ZHX_7nom8w2j7Z30v3tg9252EM2xO_GW8BRrp3PfMVYV83WywNLYDzt9bIR9TGWgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfLs-Kyieitk8mvTgYXFdfLOggreabRIUtCu7iviv_IlO2m11EREEj02naTrJZL4k028AtoVBJ9VxIpTEsZB7Zu0Y_VJoJNHExo7rNI-2uIiOrvnJjbgZgffyX5iCH6LacPOWkc_X3sCfjNv7JA3VJucNqiufaqVMX31q315x0dbfP25iD-9Q2jq8OjgKB3kFwlQg_AhTZVJholRJS5zVSnPBdOonZoUOUSKGqkdGS660dKljhDj8IBI7JmNqbWwZ1jsK4_6E0QeRUd7-pPmN8mye_nQxjCOuSppIQveG2zvsBr9h22GonPu61gxMD0Bq0ChG1SyM2GwOpr5QF86DavvALpwmgwLCB90saN-hSwwubUEnjgX3WNZ9eHu0vaDafluA63_R1iKMZd3MLkPAOJNGi461BJ1ih2snpHPMOKap0JzUICyVkqQDinKfKeMhKciVaeKVmFRKrMFuJf9UkHP8KLlW6jgZGGk_8Vx6KuZCqBpsVbfRvPyZic5s9wVlEDDhmo4SrGKp6JvqVQzhaoRwqQY076xf2pA0mueN6mrlLw9twkS72UrOji9OV2ESi-Miam0Nxp57L3Yd8dFzZyMfkgHc_rcNfAAFcReC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+Report+on+Phase+Separation+in+Polymer+Solutions&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Fei&rft.au=Altschuh%2C+Patrick&rft.au=Ratke%2C+Lorenz&rft.au=Zhang%2C+Haodong&rft.date=2019-06-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=26&rft.spage=e1806733&rft_id=info:doi/10.1002%2Fadma.201806733&rft_id=info%3Apmid%2F30856293&rft.externalDocID=30856293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |