Progress Report on Phase Separation in Polymer Solutions

Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 26; pp. e1806733 - n/a
Main Authors Wang, Fei, Altschuh, Patrick, Ratke, Lorenz, Zhang, Haodong, Selzer, Michael, Nestler, Britta
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer‐rich and polymer‐poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: “cluster‐to‐percolation” and “percolation‐to‐droplets,” which are attributed to an effect that the polymer‐rich and the solvent‐rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial‐tension‐gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation. Polymerization‐induced phase separation is a vital mechanism to engender polymeric porous media involving not only thermodynamics but also fluid dynamics. For diffusion‐controlled evolution, an asynchronous effect of the polymer‐rich and the polymer‐lean phases toward equilibrium is discussed. For convection‐governed growth, an overview of deterministic motion of the polymeric droplets is presented. Characterization techniques of polymeric porous media are also elucidated.
AbstractList Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer‐rich and polymer‐poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: “cluster‐to‐percolation” and “percolation‐to‐droplets,” which are attributed to an effect that the polymer‐rich and the solvent‐rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial‐tension‐gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation.
Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium-ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer-rich and polymer-poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: "cluster-to-percolation" and "percolation-to-droplets," which are attributed to an effect that the polymer-rich and the solvent-rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial-tension-gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation.Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium-ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer-rich and polymer-poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: "cluster-to-percolation" and "percolation-to-droplets," which are attributed to an effect that the polymer-rich and the solvent-rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial-tension-gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation.
Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters. The functionality, reliability, and durability of these materials have a strong dependence on the microstructural patterns of PPM. One underlying mechanism for the formation of porosity in PPM is phase separation, which engenders polymer‐rich and polymer‐poor (pore) phases. Herein, the phase separation in polymer solutions is discussed from two different aspects: diffusion and hydrodynamic effects. For phase separation governed by diffusion, two novel morphological transitions are reviewed: “cluster‐to‐percolation” and “percolation‐to‐droplets,” which are attributed to an effect that the polymer‐rich and the solvent‐rich phases reach the equilibrium states asynchronously. In the case dictated by hydrodynamics, a deterministic nature for the microstructural evolution during phase separation is scrutinized. The deterministic nature is caused by an interfacial‐tension‐gradient (solutal Marangoni force), which can lead to directional movement of droplets as well as hydrodynamic instabilities during phase separation. Polymerization‐induced phase separation is a vital mechanism to engender polymeric porous media involving not only thermodynamics but also fluid dynamics. For diffusion‐controlled evolution, an asynchronous effect of the polymer‐rich and the polymer‐lean phases toward equilibrium is discussed. For convection‐governed growth, an overview of deterministic motion of the polymeric droplets is presented. Characterization techniques of polymeric porous media are also elucidated.
Author Altschuh, Patrick
Ratke, Lorenz
Nestler, Britta
Wang, Fei
Zhang, Haodong
Selzer, Michael
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0003-3318-3264
  surname: Wang
  fullname: Wang, Fei
  email: fei.wang@kit.edu
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Patrick
  surname: Altschuh
  fullname: Altschuh, Patrick
  email: patrick.altschuh@kit.edu
  organization: Karlsruhe University of Applied Sciences
– sequence: 3
  givenname: Lorenz
  surname: Ratke
  fullname: Ratke, Lorenz
  organization: German Aerospace Center (DLR)
– sequence: 4
  givenname: Haodong
  surname: Zhang
  fullname: Zhang, Haodong
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 5
  givenname: Michael
  surname: Selzer
  fullname: Selzer, Michael
  organization: Karlsruhe University of Applied Sciences
– sequence: 6
  givenname: Britta
  surname: Nestler
  fullname: Nestler, Britta
  organization: Karlsruhe University of Applied Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30856293$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1L5DAYh4O4rKPu1aMUvHjp-OazyXHwGxTF2T2HmL7VStuMSYvMf29nZ3RBWDwFfjxPEp5dst2FDgk5oDClAOzEla2bMqAaVMH5FplQyWguwMhtMgHDZW6U0DtkN6UXADAK1E-yw0FLxQyfEH0fw1PElLIHXITYZ6HL7p9dwmyOCxddX49DPW6hWbYYs3lohtWW9smPyjUJf23OPfLn4vz36VV-c3d5fTq7yb2kiudel16WyusCoUKnnZDcecGM0aBZARqoKl0htCsqX3GAqqQSTMULwxAN8j1yvL53EcPrgKm3bZ08No3rMAzJMmpA6IIBH9GjL-hLGGI3_s4yJpQ2Qko9UocbanhssbSLWLcuLu1HkxGYrgEfQ0oRq0-Egl1Ft6vo9jP6KIgvgq_7v-X66Orm_5pZa291g8tvHrGzs9vZP_cdK9WUOw
CitedBy_id crossref_primary_10_1002_smll_202205501
crossref_primary_10_1021_acsami_1c07850
crossref_primary_10_1016_j_compositesa_2025_108826
crossref_primary_10_1002_adfm_202403794
crossref_primary_10_1021_acsaenm_4c00438
crossref_primary_10_1021_acs_chemrev_3c00823
crossref_primary_10_1039_D3ME00180F
crossref_primary_10_1016_j_cej_2024_155356
crossref_primary_10_1021_acsami_4c03011
crossref_primary_10_1039_D1TA03352B
crossref_primary_10_1021_acs_macromol_2c02154
crossref_primary_10_1039_D2RA01842J
crossref_primary_10_1039_D4SM01477D
crossref_primary_10_1016_j_matt_2022_07_012
crossref_primary_10_1021_acsnano_3c09692
crossref_primary_10_1002_smll_202306394
crossref_primary_10_1039_D4MH01429D
crossref_primary_10_1021_acs_jpcb_4c03457
crossref_primary_10_1021_acs_langmuir_1c02050
crossref_primary_10_1021_acsami_4c15649
crossref_primary_10_1016_j_carbpol_2021_117750
crossref_primary_10_1063_5_0196794
crossref_primary_10_1021_acsomega_1c00450
crossref_primary_10_1021_acs_langmuir_1c02572
crossref_primary_10_1039_D3SM01553J
crossref_primary_10_1039_D4CC06723A
crossref_primary_10_1002_pi_6713
crossref_primary_10_1021_acs_langmuir_1c01769
crossref_primary_10_1016_j_fluid_2023_113935
crossref_primary_10_1016_j_eurpolymj_2025_113730
crossref_primary_10_1039_D0TA04841K
crossref_primary_10_1021_acsami_9b19467
crossref_primary_10_15407_fm30_03_387
crossref_primary_10_1021_acs_macromol_4c02073
crossref_primary_10_1007_s12038_021_00204_z
crossref_primary_10_1021_acsnano_3c04657
crossref_primary_10_1002_adfm_202307332
crossref_primary_10_1021_acs_macromol_2c01838
crossref_primary_10_1002_pen_26720
crossref_primary_10_1039_D4MH01618A
crossref_primary_10_1002_sstr_202200314
crossref_primary_10_1002_adts_202200286
crossref_primary_10_1038_s41467_020_20498_1
crossref_primary_10_1038_s41598_024_62958_4
crossref_primary_10_1073_pnas_1917762116
crossref_primary_10_1021_acsapm_2c01630
crossref_primary_10_1002_anie_202007274
crossref_primary_10_1016_j_orgel_2023_106953
crossref_primary_10_1002_adma_202403078
crossref_primary_10_3390_mi14101968
crossref_primary_10_1002_adfm_201905399
crossref_primary_10_1007_s10971_020_05238_7
crossref_primary_10_1360_nso_20230050
crossref_primary_10_1007_s10965_021_02574_2
crossref_primary_10_1021_jacs_4c11285
crossref_primary_10_34133_research_0146
crossref_primary_10_1038_s41565_024_01661_x
crossref_primary_10_1002_adfm_202200157
crossref_primary_10_1021_acsami_2c14319
crossref_primary_10_1016_j_esci_2024_100294
crossref_primary_10_1002_mame_202200358
crossref_primary_10_1002_ange_202007274
crossref_primary_10_1002_admt_202401235
crossref_primary_10_1002_adfm_202301327
crossref_primary_10_1002_adem_202201097
crossref_primary_10_1002_aelm_201901156
crossref_primary_10_1002_smsc_202200017
crossref_primary_10_1007_s12551_022_01001_0
crossref_primary_10_1016_j_mattod_2024_11_011
crossref_primary_10_1016_j_cpc_2023_108898
crossref_primary_10_1007_s42114_025_01290_5
crossref_primary_10_1016_j_colsurfa_2020_125665
crossref_primary_10_1016_j_actamat_2020_06_003
crossref_primary_10_1002_cey2_316
crossref_primary_10_1109_TDEI_2019_008214
crossref_primary_10_1021_acs_analchem_1c02700
crossref_primary_10_1021_acs_macromol_3c00132
crossref_primary_10_1021_acsbiomaterials_1c00113
crossref_primary_10_1103_PhysRevLett_133_246201
crossref_primary_10_3390_en17174412
crossref_primary_10_1016_j_jcp_2024_112907
crossref_primary_10_1016_j_polymer_2023_126291
crossref_primary_10_3389_frsus_2023_1093911
crossref_primary_10_1016_j_matchemphys_2025_130376
crossref_primary_10_1016_j_seppur_2023_125766
crossref_primary_10_1002_adfm_202407978
crossref_primary_10_1002_adem_202201314
crossref_primary_10_1002_app_55241
crossref_primary_10_1021_acs_langmuir_2c00308
crossref_primary_10_1039_D4MH00957F
crossref_primary_10_1021_acsnano_4c16095
crossref_primary_10_1038_s41467_021_26126_w
crossref_primary_10_1073_pnas_2215012120
crossref_primary_10_1002_adma_202409362
crossref_primary_10_1002_smtd_202201712
crossref_primary_10_1088_1361_648X_ad7660
crossref_primary_10_1016_j_actamat_2023_118922
crossref_primary_10_1021_acsami_0c19561
crossref_primary_10_1021_acsami_4c11179
crossref_primary_10_1038_s41565_024_01658_6
crossref_primary_10_1039_D3AN00662J
crossref_primary_10_1016_j_jcis_2021_12_130
crossref_primary_10_1021_acs_jpclett_1c01940
crossref_primary_10_1103_PhysRevResearch_6_023186
crossref_primary_10_1021_acs_langmuir_3c02103
crossref_primary_10_1039_D1CP03229A
crossref_primary_10_1039_D2SM00733A
crossref_primary_10_1021_acsami_0c22028
crossref_primary_10_1063_5_0081180
crossref_primary_10_1016_j_jcis_2025_01_256
crossref_primary_10_1021_acsomega_2c01947
crossref_primary_10_1021_acsapm_3c02744
crossref_primary_10_1007_s10924_021_02096_4
crossref_primary_10_1016_j_mtcomm_2023_106004
crossref_primary_10_1038_s41586_021_04209_4
crossref_primary_10_1039_D3SM01365K
crossref_primary_10_1103_PhysRevLett_132_126202
Cites_doi 10.1016/j.cocis.2016.05.008
10.1021/acsami.6b09575
10.1016/j.cma.2017.08.011
10.1016/j.jpowsour.2013.06.100
10.1146/annurev-anchem-061417-125737
10.1021/ma5009258
10.1016/j.actamat.2015.09.047
10.4191/kcers.2016.53.1.50
10.1016/j.memsci.2017.06.020
10.1002/adma.200602906
10.1021/la9035858
10.1016/j.actamat.2018.07.056
10.1039/C5EW00159E
10.1021/ma051560r
10.1021/acsami.7b07982
10.1016/j.pmatsci.2018.01.005
10.1039/C7CC04147K
10.1016/j.actamat.2016.10.071
10.1103/PhysRevE.96.032501
10.1016/j.commatsci.2018.05.014
10.1088/0965-0393/14/1/004
10.1016/j.actamat.2011.06.051
10.3390/polym9100525
10.1021/la504672x
10.1039/c2jm31778h
10.1002/0471224510
10.1016/j.memsci.2015.02.005
10.1103/PhysRevLett.102.108303
10.1002/adem.201700611
10.1016/j.ces.2004.02.025
10.1021/cr200440z
10.1016/j.eurpolymj.2006.01.019
10.1016/j.polymer.2006.01.084
10.1021/ma00110a011
10.1002/aic.690050421
10.1016/j.physd.2015.06.001
10.1038/ncomms8407
10.1295/polymj.37.560
10.1007/s10915-017-0508-6
10.1016/j.actamat.2017.11.053
10.1002/adma.201700750
10.1063/1.1744102
10.1016/j.cis.2018.03.010
10.1002/adma.200600975
10.1142/S0218202511500138
10.1002/adma.201004134
10.1021/nl061765t
10.1063/1.5009568
10.4208/cicp.301110.040811a
10.1002/cctc.201301071
10.3390/membranes6040055
10.1016/0022-3697(61)90054-3
10.1098/rsta.2005.1686
10.1146/annurev-matsci-070214-020844
10.1016/j.cma.2016.06.008
10.1002/adma.200304926
10.1002/adma.200306075
10.1021/ie00037a014
10.1016/j.euromechflu.2018.08.002
10.1002/adma.201800671
10.1122/1.4975931
10.1002/adma.200400466
10.1063/1.1723621
10.1103/PhysRevE.86.066318
10.1021/am900882t
10.1016/S0268-005X(99)00062-4
10.1016/0001-6160(85)90003-3
10.1006/jcph.1999.6332
10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P
10.1007/s40192-017-0093-4
10.1021/cr60031a001
10.1016/S0167-2789(99)00109-8
10.1002/chem.200903043
10.1039/B921280A
10.1021/acsmacrolett.8b00012
10.1016/S0167-2789(00)00035-X
10.1002/adfm.201001330
10.1002/adma.201001164
10.1002/adma.201502595
10.1090/mcom/3280
10.1016/j.matdes.2016.06.041
ContentType Journal Article
Copyright 2019 Institute for Applied Materials‐Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Institute for Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Institute for Applied Materials‐Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Institute for Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201806733
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30856293
10_1002_adma_201806733
ADMA201806733
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Helmholtz association
– fundername: German Research Foundation
– fundername: Gottfried‐Wilhelm Leibniz
  funderid: NE 822/31
– fundername: Gottfried-Wilhelm Leibniz
  grantid: NE 822/31
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c5163-c8dc5d6c87e0fea8a453ac42998082708016da748a7fcf300fd1509f3792ee9e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:23:06 EDT 2025
Sun Jul 13 04:22:45 EDT 2025
Wed Feb 19 02:36:03 EST 2025
Tue Jul 01 00:44:50 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Wed Jan 22 16:41:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords phase separation
principal component analysis (PCA)
capillarity
phase-field
polymer solutions
Language English
License Attribution-NonCommercial
2019 Institute for Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5163-c8dc5d6c87e0fea8a453ac42998082708016da748a7fcf300fd1509f3792ee9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3318-3264
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806733
PMID 30856293
PQID 2246894558
PQPubID 2045203
PageCount 14
ParticipantIDs proquest_miscellaneous_2190487203
proquest_journals_2246894558
pubmed_primary_30856293
crossref_primary_10_1002_adma_201806733
crossref_citationtrail_10_1002_adma_201806733
wiley_primary_10_1002_adma_201806733_ADMA201806733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2010; 16
2000; 135
2016; 107
2015; 31
1995; 34
2003; 15
1996; 30
2015; 307
2011; 59
2016; 103
2018; 87
2012; 12
2017; 9
1959; 5
2018; 7
2010; 22
2015; 45
2018; 8
2010; 26
2006; 61
2001
2000; 14
1995; 28
2018; 256
2016; 310
1999; 55
2011; 21
2018; 30
2018; 74
2011; 23
2018; 72
2005; 37
2010; 2
2005; 38
2017; 124
2014; 6
2012; 22
2006; 364
1942; 10
2017; 326
2014; 245
1961; 19
2017; 61
2007; 19
2015; 6
2010
2018; 146
2006; 14
2015; 483
2016; 53
1953
2006; 18
2014; 47
2006; 6
2002
2018; 20
2016; 6
2017; 53
2017; 96
2006; 42
2012; 112
2016; 2
2018; 151
2010; 46
1958; 28
2004; 16
2006; 47
2018; 158
2000; 141
2009; 102
1931; 8
1961; 65
2017; 540
1985; 33
2018; 11
2016; 28
2005; 17
2018; 98
2016; 9
2012; 86
2016; 24
e_1_2_10_23_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
Wagner C. (e_1_2_10_71_1) 1961; 65
e_1_2_10_20_1
e_1_2_10_41_1
Flory P. J. (e_1_2_10_46_1) 1953
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Janssens K. G. F. (e_1_2_10_65_1) 2010
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
Lambert B. J. (e_1_2_10_12_1) 2001
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 102
  start-page: 108303
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 1795
  year: 1995
  publication-title: Macromolecules
– volume: 59
  start-page: 6387
  year: 2011
  publication-title: Acta Mater.
– volume: 158
  start-page: 53
  year: 2018
  publication-title: Acta Mater.
– volume: 28
  start-page: 2287
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 55
  year: 2016
  publication-title: Membranes
– volume: 141
  start-page: 133
  year: 2000
  publication-title: Physica D
– volume: 17
  start-page: 487
  year: 2005
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1567
  year: 2007
  publication-title: Adv. Mater.
– year: 2001
– volume: 47
  start-page: 4453
  year: 2014
  publication-title: Macromolecules
– volume: 103
  start-page: 192
  year: 2016
  publication-title: Acta Mater.
– volume: 6
  start-page: 1166
  year: 2014
  publication-title: ChemCatChem
– volume: 5
  start-page: 514
  year: 1959
  publication-title: AIChE J.
– volume: 16
  start-page: 553
  year: 2004
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7407
  year: 2015
  publication-title: Nat. Commun.
– volume: 18
  start-page: 2274
  year: 2006
  publication-title: Adv. Mater.
– volume: 38
  start-page: 8996
  year: 2005
  publication-title: Macromolecules
– volume: 7
  start-page: 582
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 61
  start-page: 363
  year: 2017
  publication-title: J. Rheol.
– volume: 11
  start-page: 219
  year: 2018
  publication-title: Annu. Rev. Anal. Chem.
– volume: 6
  start-page: 2354
  year: 2006
  publication-title: Nano Lett.
– volume: 12
  start-page: 613
  year: 2012
  publication-title: Commun. Comput. Phys.
– volume: 2
  start-page: 17
  year: 2016
  publication-title: Environ Sci.: Water Res. Technol.
– volume: 72
  start-page: 576
  year: 2018
  publication-title: Eur. J. Mech. B/Fluids
– volume: 86
  start-page: 066318
  year: 2012
  publication-title: Phys. Rev. E
– volume: 21
  start-page: 211
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 13
  year: 2016
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 14
  start-page: 217
  year: 2000
  publication-title: Food Hydrocolloids
– volume: 34
  start-page: 3278
  year: 1995
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1793
  year: 1985
  publication-title: Acta Metall.
– volume: 37
  start-page: 560
  year: 2005
  publication-title: Polym. J.
– volume: 310
  start-page: 77
  year: 2016
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 30
  start-page: 449
  year: 1996
  publication-title: J. Biomed. Mater. Res.
– volume: 22
  start-page: 19482
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 525
  year: 2017
  publication-title: Polymers
– volume: 151
  start-page: 278
  year: 2018
  publication-title: Comput. Mater. Sci.
– volume: 8
  start-page: 353
  year: 1931
  publication-title: Chem. Rev.
– volume: 45
  start-page: 171
  year: 2015
  publication-title: Annu. Rev. Mater. Res.
– volume: 107
  start-page: 322
  year: 2016
  publication-title: Mater. Des.
– volume: 22
  start-page: 4667
  year: 2010
  publication-title: Adv. Mater.
– volume: 245
  start-page: 144
  year: 2014
  publication-title: J. Power Sources
– volume: 146
  start-page: 76
  year: 2018
  publication-title: Acta Mater.
– volume: 87
  start-page: 2057
  year: 2018
  publication-title: Math. Comput.
– volume: 16
  start-page: 2350
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 15
  start-page: 1198
  year: 2003
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1150013
  year: 2012
  publication-title: Math. Models Methods Appl. Sci.
– volume: 9
  start-page: 19446
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 035308
  year: 2018
  publication-title: AIP Adv.
– volume: 124
  start-page: 182
  year: 2017
  publication-title: Acta Mater.
– volume: 31
  start-page: 1660
  year: 2015
  publication-title: Langmuir
– volume: 46
  start-page: 967
  year: 2010
  publication-title: Chem. Commun.
– volume: 540
  start-page: 88
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 256
  start-page: 276
  year: 2018
  publication-title: Adv. Colloid Interface Sci.
– volume: 30
  start-page: 1700750
  year: 2018
  publication-title: Adv. Mater.
– year: 2010
– volume: 98
  start-page: 1
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 135
  start-page: 175
  year: 2000
  publication-title: Physica D
– volume: 26
  start-page: 5110
  year: 2010
  publication-title: Langmuir
– volume: 96
  start-page: 032501
  year: 2017
  publication-title: Phys. Rev. E
– volume: 47
  start-page: 2217
  year: 2006
  publication-title: Polymer
– volume: 20
  start-page: 1700611
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 23
  start-page: 3751
  year: 2011
  publication-title: Adv. Mater.
– volume: 10
  start-page: 51
  year: 1942
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 35
  year: 1961
  publication-title: J. Phys. Chem. Solids
– year: 2002
– volume: 28
  start-page: 258
  year: 1958
  publication-title: J. Chem. Phys.
– volume: 483
  start-page: 104
  year: 2015
  publication-title: J. Membr. Sci.
– volume: 53
  start-page: 8649
  year: 2017
  publication-title: Chem. Commun.
– volume: 30
  start-page: 1800671
  year: 2018
  publication-title: Adv. Mater.
– volume: 74
  start-page: 1533
  year: 2018
  publication-title: J. Sci. Comput.
– volume: 55
  start-page: 96
  year: 1999
  publication-title: J. Comput. Phys.
– volume: 364
  start-page: 5
  year: 2006
  publication-title: Philos. Trans. R. Soc., A
– volume: 6
  start-page: 147
  year: 2017
  publication-title: Integr. Mater. Manuf. Innov.
– volume: 112
  start-page: 3959
  year: 2012
  publication-title: Chem. Rev.
– year: 1953
– volume: 65
  start-page: 581
  year: 1961
  publication-title: Z. Elektrochem.
– volume: 2
  start-page: 847
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 50
  year: 2016
  publication-title: J. Korean Ceram. Soc
– volume: 307
  start-page: 82
  year: 2015
  publication-title: Physica D
– volume: 61
  start-page: 2108
  year: 2006
  publication-title: Chem. Eng. Sci.
– volume: 14
  start-page: 41
  year: 2006
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 42
  start-page: 1499
  year: 2006
  publication-title: Eur. Polym. J.
– volume: 9
  start-page: 34783
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 326
  start-page: 144
  year: 2017
  publication-title: Comput. Methods Appl. Mech. Eng.
– ident: e_1_2_10_67_1
  doi: 10.1016/j.cocis.2016.05.008
– ident: e_1_2_10_17_1
  doi: 10.1021/acsami.6b09575
– ident: e_1_2_10_54_1
  doi: 10.1016/j.cma.2017.08.011
– ident: e_1_2_10_82_1
  doi: 10.1016/j.jpowsour.2013.06.100
– ident: e_1_2_10_13_1
  doi: 10.1146/annurev-anchem-061417-125737
– ident: e_1_2_10_31_1
  doi: 10.1021/ma5009258
– volume: 65
  start-page: 581
  year: 1961
  ident: e_1_2_10_71_1
  publication-title: Z. Elektrochem.
– ident: e_1_2_10_78_1
  doi: 10.1016/j.actamat.2015.09.047
– ident: e_1_2_10_39_1
  doi: 10.4191/kcers.2016.53.1.50
– ident: e_1_2_10_84_1
  doi: 10.1016/j.memsci.2017.06.020
– volume-title: Polymers in Medical Applications
  year: 2001
  ident: e_1_2_10_12_1
– ident: e_1_2_10_23_1
  doi: 10.1002/adma.200602906
– ident: e_1_2_10_27_1
  doi: 10.1021/la9035858
– ident: e_1_2_10_77_1
  doi: 10.1016/j.actamat.2018.07.056
– ident: e_1_2_10_10_1
  doi: 10.1039/C5EW00159E
– ident: e_1_2_10_38_1
  doi: 10.1021/ma051560r
– ident: e_1_2_10_18_1
  doi: 10.1021/acsami.7b07982
– ident: e_1_2_10_76_1
  doi: 10.1016/j.pmatsci.2018.01.005
– ident: e_1_2_10_37_1
  doi: 10.1039/C7CC04147K
– ident: e_1_2_10_79_1
  doi: 10.1016/j.actamat.2016.10.071
– ident: e_1_2_10_60_1
  doi: 10.1103/PhysRevE.96.032501
– ident: e_1_2_10_80_1
  doi: 10.1016/j.commatsci.2018.05.014
– ident: e_1_2_10_62_1
  doi: 10.1088/0965-0393/14/1/004
– ident: e_1_2_10_74_1
  doi: 10.1016/j.actamat.2011.06.051
– ident: e_1_2_10_35_1
  doi: 10.3390/polym9100525
– ident: e_1_2_10_73_1
  doi: 10.1021/la504672x
– ident: e_1_2_10_30_1
  doi: 10.1039/c2jm31778h
– ident: e_1_2_10_41_1
  doi: 10.1002/0471224510
– ident: e_1_2_10_48_1
  doi: 10.1016/j.memsci.2015.02.005
– ident: e_1_2_10_64_1
  doi: 10.1103/PhysRevLett.102.108303
– ident: e_1_2_10_3_1
  doi: 10.1002/adem.201700611
– ident: e_1_2_10_33_1
  doi: 10.1016/j.ces.2004.02.025
– ident: e_1_2_10_1_1
  doi: 10.1021/cr200440z
– ident: e_1_2_10_66_1
  doi: 10.1016/j.eurpolymj.2006.01.019
– ident: e_1_2_10_2_1
  doi: 10.1016/j.polymer.2006.01.084
– ident: e_1_2_10_61_1
  doi: 10.1021/ma00110a011
– ident: e_1_2_10_72_1
  doi: 10.1002/aic.690050421
– ident: e_1_2_10_68_1
  doi: 10.1016/j.physd.2015.06.001
– ident: e_1_2_10_42_1
  doi: 10.1038/ncomms8407
– ident: e_1_2_10_36_1
  doi: 10.1295/polymj.37.560
– ident: e_1_2_10_52_1
  doi: 10.1007/s10915-017-0508-6
– ident: e_1_2_10_83_1
  doi: 10.1016/j.actamat.2017.11.053
– ident: e_1_2_10_7_1
  doi: 10.1002/adma.201700750
– ident: e_1_2_10_47_1
  doi: 10.1063/1.1744102
– ident: e_1_2_10_5_1
  doi: 10.1016/j.cis.2018.03.010
– ident: e_1_2_10_26_1
  doi: 10.1002/adma.200600975
– ident: e_1_2_10_49_1
  doi: 10.1142/S0218202511500138
– ident: e_1_2_10_19_1
  doi: 10.1002/adma.201004134
– ident: e_1_2_10_28_1
  doi: 10.1021/nl061765t
– ident: e_1_2_10_8_1
  doi: 10.1063/1.5009568
– ident: e_1_2_10_58_1
  doi: 10.4208/cicp.301110.040811a
– ident: e_1_2_10_15_1
  doi: 10.1002/cctc.201301071
– ident: e_1_2_10_11_1
  doi: 10.3390/membranes6040055
– ident: e_1_2_10_70_1
  doi: 10.1016/0022-3697(61)90054-3
– ident: e_1_2_10_6_1
  doi: 10.1098/rsta.2005.1686
– ident: e_1_2_10_81_1
  doi: 10.1146/annurev-matsci-070214-020844
– ident: e_1_2_10_59_1
  doi: 10.1016/j.cma.2016.06.008
– ident: e_1_2_10_20_1
  doi: 10.1002/adma.200304926
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.200306075
– ident: e_1_2_10_69_1
  doi: 10.1021/ie00037a014
– ident: e_1_2_10_51_1
  doi: 10.1016/j.euromechflu.2018.08.002
– ident: e_1_2_10_63_1
  doi: 10.1002/adma.201800671
– ident: e_1_2_10_34_1
  doi: 10.1122/1.4975931
– ident: e_1_2_10_21_1
  doi: 10.1002/adma.200400466
– ident: e_1_2_10_40_1
  doi: 10.1063/1.1723621
– ident: e_1_2_10_50_1
  doi: 10.1103/PhysRevE.86.066318
– volume-title: Computational Materials Engineering: An Introduction to Microstructure Evolution
  year: 2010
  ident: e_1_2_10_65_1
– volume-title: Principles of Polymer Chemistry
  year: 1953
  ident: e_1_2_10_46_1
– ident: e_1_2_10_9_1
  doi: 10.1021/am900882t
– ident: e_1_2_10_29_1
  doi: 10.1016/S0268-005X(99)00062-4
– ident: e_1_2_10_85_1
  doi: 10.1016/0001-6160(85)90003-3
– ident: e_1_2_10_55_1
  doi: 10.1006/jcph.1999.6332
– ident: e_1_2_10_32_1
  doi: 10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P
– ident: e_1_2_10_75_1
  doi: 10.1007/s40192-017-0093-4
– ident: e_1_2_10_45_1
  doi: 10.1021/cr60031a001
– ident: e_1_2_10_57_1
  doi: 10.1016/S0167-2789(99)00109-8
– ident: e_1_2_10_14_1
  doi: 10.1002/chem.200903043
– ident: e_1_2_10_22_1
  doi: 10.1039/B921280A
– ident: e_1_2_10_43_1
  doi: 10.1021/acsmacrolett.8b00012
– ident: e_1_2_10_56_1
  doi: 10.1016/S0167-2789(00)00035-X
– ident: e_1_2_10_4_1
  doi: 10.1002/adfm.201001330
– ident: e_1_2_10_24_1
  doi: 10.1002/adma.201001164
– ident: e_1_2_10_25_1
  doi: 10.1002/adma.201502595
– ident: e_1_2_10_53_1
  doi: 10.1090/mcom/3280
– ident: e_1_2_10_44_1
  doi: 10.1016/j.matdes.2016.06.041
SSID ssj0009606
Score 2.6179361
SecondaryResourceType review_article
Snippet Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium‐ion batteries, stretchable sensors, and biofilters....
Polymeric porous media (PPM) are widely used as advanced materials, such as sound dampening foams, lithium-ion batteries, stretchable sensors, and biofilters....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1806733
SubjectTerms capillarity
Dependence
Diffusion effects
Droplets
Fluid dynamics
Fluid flow
Hydrodynamics
Lithium-ion batteries
Materials science
Percolation
Phase separation
phase‐field
polymer solutions
Polymers
Porosity
Porous media
principal component analysis (PCA)
Title Progress Report on Phase Separation in Polymer Solutions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806733
https://www.ncbi.nlm.nih.gov/pubmed/30856293
https://www.proquest.com/docview/2246894558
https://www.proquest.com/docview/2190487203
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcP6pM-eL_MGxUEn7plTdKkj8MLQ1CGF9hbSdMExdnJ3B7003vSbJ1TRNC3XpI2TXJy_k1PfwE45jk6qczyUBBLQ-bI2gn6pTAXRBGTWKZ0GW1xHbfv2WWXdz_9xe_5ENWEm7OMcrx2Bq6y18YUGqrykhvUlG6pFYf7dAFbThXdTPlRTp6XsD3KwyRmckJtJFFjNvusV_omNWeVa-l6LlZATQrtI06e6qNhVtfvX3iO_3mqVVge69Kg5TvSGsyZYh2WPtEKN0B2XCwXjoyBV-1Bvwg6D-gFg1vjCeJ44BGP9Xtvz2YQVDNum3B_cX532g7HCy-EmqM-C7XMNc9jLYUh1iipGKdKO88lUTEIFJnNOFeCSSWstpQQiy1OEktFEhmTGLoFC0W_MDsQUEZFrnhmDEE_mDFlubCW5paqiCtGahBOKj7VYyq5Wxyjl3qecpS6GkmrGqnBSZX-xfM4fky5P2nHdGyXr6nD58mEcS5rcFSdRotyn0lUYfojTIMaCV_jIoKX2PbtX92KokKNUSHVICpb8ZcypK2zq1a1t_uXTHuwiNuJj07bh4XhYGQOUAcNs0OYj1jnsOzxHyFu_VQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL0CugAWpeU5hdIggVgFTGzHzoLFqFM0PIV4SOyC49gCARkEM6roX_VX-kVcx5PQKUJIlViwjOMkju_rXMc5F2CZ5xikMstDQSwNmWPWTjAuhbkgipjEMqXL3RYHcfuU7ZzxsyH4Xf0L4_kh6gU3Zxmlv3YG7hak159YQ1VeEgdtSFdrpapfvWsefmLWdr-53UIRr0TR1o-T7-2wX1gg1BzxR6hlrnkeaykMsUZJxThV2nlmiRFRIIjaiHMlmFTCaksJsfhGJLFUJJExiaF432H44MqIO7r-1tETY5VLCEp6P8rDJGay4okk0frgeAfj4DNwO4iVy2C3NQF_qmnye1yu1nrdbE3_-odB8l3N4yf42IfeQdPbymcYMsUkjP9FyDgF8tBtV0PnH_jEJOgUweEFBvrg2HiSdGy4xLbO9cONuQvqRcVpOH2Toc_ASNEpzBwElFGRK54ZQzDUZ0xZLqyluaUq4oqRBoSVpFPdJ1539T-uU08ZHaVOAmktgQas1v1vPeXIiz0XKsVJ-67nPnUMgTJhnMsGLNWn0Wm4L0GqMJ0e9kEYiJlqRPAWs17h6kdRBOExgsAGRKXavDKGtNnab9ZHX_7nom8w2j7Z30v3tg9252EM2xO_GW8BRrp3PfMVYV83WywNLYDzt9bIR9TGWgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfLs-Kyieitk8mvTgYXFdfLOggreabRIUtCu7iviv_IlO2m11EREEj02naTrJZL4k028AtoVBJ9VxIpTEsZB7Zu0Y_VJoJNHExo7rNI-2uIiOrvnJjbgZgffyX5iCH6LacPOWkc_X3sCfjNv7JA3VJucNqiufaqVMX31q315x0dbfP25iD-9Q2jq8OjgKB3kFwlQg_AhTZVJholRJS5zVSnPBdOonZoUOUSKGqkdGS660dKljhDj8IBI7JmNqbWwZ1jsK4_6E0QeRUd7-pPmN8mye_nQxjCOuSppIQveG2zvsBr9h22GonPu61gxMD0Bq0ChG1SyM2GwOpr5QF86DavvALpwmgwLCB90saN-hSwwubUEnjgX3WNZ9eHu0vaDafluA63_R1iKMZd3MLkPAOJNGi461BJ1ih2snpHPMOKap0JzUICyVkqQDinKfKeMhKciVaeKVmFRKrMFuJf9UkHP8KLlW6jgZGGk_8Vx6KuZCqBpsVbfRvPyZic5s9wVlEDDhmo4SrGKp6JvqVQzhaoRwqQY076xf2pA0mueN6mrlLw9twkS72UrOji9OV2ESi-Miam0Nxp57L3Yd8dFzZyMfkgHc_rcNfAAFcReC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+Report+on+Phase+Separation+in+Polymer+Solutions&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Fei&rft.au=Altschuh%2C+Patrick&rft.au=Ratke%2C+Lorenz&rft.au=Zhang%2C+Haodong&rft.date=2019-06-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=26&rft.spage=e1806733&rft_id=info:doi/10.1002%2Fadma.201806733&rft_id=info%3Apmid%2F30856293&rft.externalDocID=30856293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon