Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity

The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of cat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 28; pp. e1801171 - n/a
Main Authors Zhu, Zhengju, Yin, Huajie, He, Chun‐Ting, Al‐Mamun, Mohammad, Liu, Porun, Jiang, Lixue, Zhao, Yong, Wang, Yun, Yang, Hua‐Gui, Tang, Zhiyong, Wang, Dan, Chen, Xiao‐Ming, Zhao, Huijun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm−2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. Ultrathin 2D hybrids are designed and prepared via surface modification of monolayer MoS2 and WS2 nanosheets by metal (Ni, Co, Fe, Mn) hydroxides, which form a new class of alkaline hydrogen evolution reaction (HER) electrocatalysts. The surface introduction of metal hydroxides can effectively reduce the kinetic barrier of the prior water dissociation step of the alkaline HER reaction.
AbstractList The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS and WS ). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH) and Co(OH) hybridized ultrathin MoS and WS nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS /Co(OH) hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2 ). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS2 /Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm-2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2 ). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS2 /Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm-2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm−2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. Ultrathin 2D hybrids are designed and prepared via surface modification of monolayer MoS2 and WS2 nanosheets by metal (Ni, Co, Fe, Mn) hydroxides, which form a new class of alkaline hydrogen evolution reaction (HER) electrocatalysts. The surface introduction of metal hydroxides can effectively reduce the kinetic barrier of the prior water dissociation step of the alkaline HER reaction.
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm−2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS 2 and WS 2 ). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH) 2 and Co(OH) 2 hybridized ultrathin MoS 2 and WS 2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS 2 /Co(OH) 2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm −2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.
Author Tang, Zhiyong
Zhu, Zhengju
Zhao, Huijun
Yang, Hua‐Gui
Wang, Dan
Chen, Xiao‐Ming
Al‐Mamun, Mohammad
Liu, Porun
Jiang, Lixue
He, Chun‐Ting
Zhao, Yong
Yin, Huajie
Wang, Yun
Author_xml – sequence: 1
  givenname: Zhengju
  surname: Zhu
  fullname: Zhu, Zhengju
  organization: Griffith University
– sequence: 2
  givenname: Huajie
  orcidid: 0000-0002-9036-9084
  surname: Yin
  fullname: Yin, Huajie
  email: h.yin@griffith.edu.au
  organization: Griffith University
– sequence: 3
  givenname: Chun‐Ting
  surname: He
  fullname: He, Chun‐Ting
  organization: Sun Yat‐Sen University
– sequence: 4
  givenname: Mohammad
  orcidid: 0000-0001-8201-4278
  surname: Al‐Mamun
  fullname: Al‐Mamun, Mohammad
  organization: Griffith University
– sequence: 5
  givenname: Porun
  orcidid: 0000-0002-0046-701X
  surname: Liu
  fullname: Liu, Porun
  organization: Griffith University
– sequence: 6
  givenname: Lixue
  surname: Jiang
  fullname: Jiang, Lixue
  organization: Griffith University
– sequence: 7
  givenname: Yong
  surname: Zhao
  fullname: Zhao, Yong
  organization: University of Wollongong
– sequence: 8
  givenname: Yun
  orcidid: 0000-0001-8619-0455
  surname: Wang
  fullname: Wang, Yun
  organization: Griffith University
– sequence: 9
  givenname: Hua‐Gui
  orcidid: 0000-0003-0436-8622
  surname: Yang
  fullname: Yang, Hua‐Gui
  organization: Griffith University
– sequence: 10
  givenname: Zhiyong
  orcidid: 0000-0003-0610-0064
  surname: Tang
  fullname: Tang, Zhiyong
  organization: Griffith University
– sequence: 11
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Griffith University
– sequence: 12
  givenname: Xiao‐Ming
  surname: Chen
  fullname: Chen, Xiao‐Ming
  organization: Sun Yat‐Sen University
– sequence: 13
  givenname: Huijun
  orcidid: 0000-0002-3028-0459
  surname: Zhao
  fullname: Zhao, Huijun
  email: h.zhao@griffith.edu.au
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29782677$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi3Uim5brhxRJC5csh3nw4mPq3ahSP24tOdoMvayrrJ2sZ2W8OvxskuRKiFOtkbPMx7Pe8wOrLOasfcc5hygOEO1wXkBvAXOG_6GzXhd8LwCWR-wGciyzqWo2iN2HMIDAEgB4i07KmTTFqJpZmy6H6LHuDY2u_Nog4nG2exaRxyyC0NrHMh909YofVaqff1yUt79SKV0671R5qdW2Q1aF9Zax5BFly3tGi3pHZr8bPnkhvF37wVF82TidMoOVzgE_W5_nrD7z8u788v86vbL1_PFVU41Fzwn3WpoNZYKe2rLRpDQ6UccgXipgAgJGqIVgsAWsaZKSOor2QsByVXlCfu06_vo3fdRh9htTCA9DGi1G0NXQFU0dVlDldCPr9AHN3qbpktUI2RZCrmlPuypsd9o1T16s0E_dX-WmoD5DiDvQvB69YJw6LapddvUupfUklC9EshE3G4rZWOGf2typz2bQU__eaRbXFwv_rq_ALEoreM
CitedBy_id crossref_primary_10_1016_j_mseb_2022_116255
crossref_primary_10_1016_j_commatsci_2024_113245
crossref_primary_10_1039_D4DT00710G
crossref_primary_10_3390_nano10081547
crossref_primary_10_1039_C8TA11171E
crossref_primary_10_1021_acscatal_9b03184
crossref_primary_10_1039_C9QM00064J
crossref_primary_10_1002_aenm_201902535
crossref_primary_10_1002_adma_201807134
crossref_primary_10_1039_C9QM00052F
crossref_primary_10_1142_S1793292020501350
crossref_primary_10_26599_NR_2025_94907102
crossref_primary_10_1016_j_jallcom_2019_05_071
crossref_primary_10_1039_D3CC04527G
crossref_primary_10_1002_adma_202307395
crossref_primary_10_1039_D4CP01838A
crossref_primary_10_1016_j_surfin_2023_103197
crossref_primary_10_1002_ange_201901010
crossref_primary_10_1016_j_xcrp_2020_100026
crossref_primary_10_1021_acssuschemeng_8b06745
crossref_primary_10_1016_j_coelec_2022_101016
crossref_primary_10_1002_aenm_202102257
crossref_primary_10_1002_smll_201805511
crossref_primary_10_1039_C9TA03220G
crossref_primary_10_1039_C9TA07210A
crossref_primary_10_1007_s12274_019_2582_6
crossref_primary_10_1016_j_xcrp_2020_100275
crossref_primary_10_1016_j_jcis_2022_08_116
crossref_primary_10_1007_s12274_020_3249_z
crossref_primary_10_1016_j_apcata_2023_119304
crossref_primary_10_1016_j_checat_2023_100586
crossref_primary_10_1039_D1DT04359E
crossref_primary_10_1002_chem_201804658
crossref_primary_10_1002_cssc_202300214
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1021_acsenergylett_0c01858
crossref_primary_10_1038_s41467_022_31660_2
crossref_primary_10_1002_anie_201907826
crossref_primary_10_1002_smll_201802132
crossref_primary_10_1039_D2EN00629D
crossref_primary_10_1039_C8TA06918B
crossref_primary_10_1016_j_apsusc_2022_153408
crossref_primary_10_1016_j_jechem_2022_03_038
crossref_primary_10_1007_s40843_020_1461_2
crossref_primary_10_1002_cssc_201902599
crossref_primary_10_1039_D1TA01560E
crossref_primary_10_1002_cctc_202000177
crossref_primary_10_1021_acsami_0c04302
crossref_primary_10_1021_acsnano_3c09020
crossref_primary_10_1039_D0NR08097G
crossref_primary_10_1002_ange_202015738
crossref_primary_10_1002_ange_202202671
crossref_primary_10_1016_j_ijhydene_2024_05_233
crossref_primary_10_1016_j_apsusc_2019_144912
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1039_D0TA00897D
crossref_primary_10_1002_smtd_202301782
crossref_primary_10_1039_D2QI00269H
crossref_primary_10_1002_chem_201903508
crossref_primary_10_1039_D0TA01680B
crossref_primary_10_1007_s40820_018_0229_x
crossref_primary_10_1016_j_ijhydene_2023_03_236
crossref_primary_10_1016_j_apcatb_2019_04_089
crossref_primary_10_1039_C9TA13476J
crossref_primary_10_1021_acscentsci_9b01110
crossref_primary_10_1016_j_jcat_2019_06_026
crossref_primary_10_1016_j_jcis_2019_09_090
crossref_primary_10_1039_C8TA09454C
crossref_primary_10_1016_j_checat_2023_100810
crossref_primary_10_1016_j_apsusc_2023_157940
crossref_primary_10_1016_j_electacta_2023_143342
crossref_primary_10_1039_D1QM00051A
crossref_primary_10_1016_j_jallcom_2021_163259
crossref_primary_10_1016_j_ijhydene_2020_03_045
crossref_primary_10_1002_adfm_202101578
crossref_primary_10_1016_j_apsusc_2020_146847
crossref_primary_10_1016_j_cej_2021_134073
crossref_primary_10_1016_S1003_6326_24_66589_1
crossref_primary_10_1016_j_apcatb_2023_122445
crossref_primary_10_1002_smll_202208270
crossref_primary_10_1021_acssuschemeng_4c06997
crossref_primary_10_1016_j_mtener_2018_10_010
crossref_primary_10_1016_j_ijhydene_2020_10_046
crossref_primary_10_1002_adfm_202101586
crossref_primary_10_1002_smll_202402357
crossref_primary_10_1002_cctc_201901759
crossref_primary_10_1039_D3RA00205E
crossref_primary_10_1016_j_jallcom_2024_177618
crossref_primary_10_1039_D3QM00516J
crossref_primary_10_1002_smll_202105694
crossref_primary_10_1039_D4QI01853B
crossref_primary_10_1016_j_nanoen_2020_105699
crossref_primary_10_1002_smtd_202000043
crossref_primary_10_1007_s10854_020_03691_2
crossref_primary_10_1002_er_7800
crossref_primary_10_1016_j_fuel_2023_130203
crossref_primary_10_1016_j_matt_2020_07_004
crossref_primary_10_1016_j_jallcom_2021_161696
crossref_primary_10_1039_D3DT01477K
crossref_primary_10_1002_adfm_201807976
crossref_primary_10_1039_D2EE01510B
crossref_primary_10_1021_acsaem_2c02102
crossref_primary_10_1002_aenm_202000177
crossref_primary_10_1002_anie_202015738
crossref_primary_10_1002_smll_202305220
crossref_primary_10_1016_S1872_5805_20_60507_8
crossref_primary_10_1039_C9TA02451D
crossref_primary_10_1039_C9SE00391F
crossref_primary_10_1002_aenm_201902703
crossref_primary_10_1039_C9TA00545E
crossref_primary_10_1039_C9NR09112B
crossref_primary_10_1039_D1NA00486G
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1021_acsanm_0c01331
crossref_primary_10_1021_acsanm_1c01644
crossref_primary_10_1021_acs_inorgchem_3c04240
crossref_primary_10_1002_admi_202102154
crossref_primary_10_1002_adma_202210550
crossref_primary_10_1021_acs_nanolett_9b01329
crossref_primary_10_1016_j_checat_2022_02_007
crossref_primary_10_1002_cctc_201901785
crossref_primary_10_1039_D2TA03934F
crossref_primary_10_1016_j_ijhydene_2022_08_300
crossref_primary_10_1021_acs_inorgchem_3c03802
crossref_primary_10_1002_smll_202108072
crossref_primary_10_1002_adfm_202105579
crossref_primary_10_1021_acsnano_8b08670
crossref_primary_10_1016_j_enchem_2021_100053
crossref_primary_10_1021_jacs_4c00948
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1016_j_jallcom_2019_06_047
crossref_primary_10_1007_s12274_023_6011_5
crossref_primary_10_1002_aenm_202002214
crossref_primary_10_1016_j_cej_2021_129645
crossref_primary_10_1021_acssuschemeng_2c05636
crossref_primary_10_1002_pssr_202300169
crossref_primary_10_1007_s10934_022_01205_5
crossref_primary_10_1021_acssuschemeng_2c03215
crossref_primary_10_1002_anie_202202671
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1016_j_apsusc_2020_148019
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1016_j_electacta_2021_139027
crossref_primary_10_1002_ange_202110653
crossref_primary_10_1016_j_nanoen_2022_107753
crossref_primary_10_1002_smll_202106904
crossref_primary_10_1186_s12951_019_0465_3
crossref_primary_10_1016_j_mtchem_2022_101052
crossref_primary_10_1021_acscatal_8b04817
crossref_primary_10_1016_j_cej_2023_144657
crossref_primary_10_1002_adma_202000385
crossref_primary_10_1016_j_isci_2023_106510
crossref_primary_10_1039_D1NJ02984C
crossref_primary_10_1016_j_jcis_2024_06_054
crossref_primary_10_1002_aenm_201801764
crossref_primary_10_1039_C9TA07142C
crossref_primary_10_1002_chem_201901168
crossref_primary_10_1039_C9CC09589F
crossref_primary_10_1016_j_electacta_2019_135075
crossref_primary_10_1021_jacs_2c01094
crossref_primary_10_1039_C9NR10230B
crossref_primary_10_1016_j_cej_2020_126530
crossref_primary_10_1002_anie_202110653
crossref_primary_10_1016_j_carbon_2021_08_019
crossref_primary_10_1002_zaac_202200066
crossref_primary_10_1002_adma_201805541
crossref_primary_10_1002_ange_201907826
crossref_primary_10_1021_acsnano_9b05714
crossref_primary_10_1021_acsanm_1c01163
crossref_primary_10_1039_C8TA11525G
crossref_primary_10_1038_s41467_020_16554_5
crossref_primary_10_1039_D0TA10723A
crossref_primary_10_1002_anie_201901010
crossref_primary_10_1016_j_jssc_2023_124445
crossref_primary_10_1021_jacs_9b11614
crossref_primary_10_1039_D2QM00931E
crossref_primary_10_1016_j_ccr_2020_213616
crossref_primary_10_1002_adfm_202000551
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1039_D0EE00666A
crossref_primary_10_1016_j_ijhydene_2021_04_092
crossref_primary_10_1039_D1RA01924D
crossref_primary_10_1016_j_cej_2023_143898
crossref_primary_10_1016_j_jcis_2020_03_068
crossref_primary_10_1002_chem_202002503
crossref_primary_10_1021_acscatal_2c06382
crossref_primary_10_1002_adfm_201904782
crossref_primary_10_1016_j_jcis_2024_07_209
crossref_primary_10_1002_aenm_202101789
crossref_primary_10_1016_j_saa_2021_120013
crossref_primary_10_1016_j_jallcom_2020_154635
crossref_primary_10_1002_smll_202006730
crossref_primary_10_1021_acsmaterialslett_1c00048
Cites_doi 10.1021/ja0504690
10.1038/nmat3439
10.1016/j.nanoen.2016.04.017
10.1021/ja404523s
10.1038/nchem.1589
10.1007/s12274-014-0677-7
10.1002/adfm.201200994
10.1002/adma.201404622
10.1002/advs.201700644
10.1038/nmat3700
10.1002/adma.201601188
10.1021/cm8028593
10.1038/nmat4778
10.1039/C4CS00470A
10.1126/science.1141483
10.1038/nmat4481
10.1002/ange.201606290
10.1002/anie.201106004
10.1002/anie.201407031
10.1126/science.1211934
10.1002/anie.201607651
10.1038/ncomms2932
10.1038/ncomms8873
10.1039/C6EE01786J
10.1038/nmat4738
10.1016/j.nanoen.2017.05.011
10.1038/nmat4660
10.1039/C4CS00182F
10.1016/j.nanoen.2016.11.048
10.1039/C6CS00343E
10.1002/anie.201204842
10.1002/anie.201408876
10.1039/C5EE00751H
10.1038/nenergy.2017.31
10.1002/adma.201302685
10.1002/adma.201503270
10.1038/nnano.2016.304
10.1038/ncomms7430
10.1021/nl403661s
10.1038/nmat3313
10.1021/acs.chemmater.7b03627
10.1038/nenergy.2017.70
10.1016/j.pecs.2009.11.002
10.1126/science.aad4998
10.1021/cs501835c
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201801171
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29782677
10_1002_adma_201801171
ADMA201801171
Genre article
Journal Article
GrantInformation_xml – fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX201600195
– fundername: Griffith University Postdoctoral Fellowship
– fundername: Australian Research Council (ARC) Discovery Project
  funderid: DP170104834
– fundername: National Natural Science Foundation of China
  funderid: 51372248; 51432009
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c5161-ce8e08ea3dabc8376c6e6481a0c13d0ccac07ccfa06a8aa5c469cb49b660ce8d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:12:12 EDT 2025
Fri Jul 25 05:00:58 EDT 2025
Wed Feb 19 02:41:49 EST 2025
Tue Jul 01 00:44:42 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Wed Jan 22 16:31:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords metal hydroxides
transition metal dichalcogenides
electrocatalysis
2D materials
hydrogen evolution reaction
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5161-ce8e08ea3dabc8376c6e6481a0c13d0ccac07ccfa06a8aa5c469cb49b660ce8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0436-8622
0000-0002-9036-9084
0000-0002-3028-0459
0000-0001-8619-0455
0000-0001-8201-4278
0000-0002-0046-701X
0000-0003-0610-0064
OpenAccessLink http://hdl.handle.net/10072/381429
PMID 29782677
PQID 2076933694
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2042753504
proquest_journals_2076933694
pubmed_primary_29782677
crossref_primary_10_1002_adma_201801171
crossref_citationtrail_10_1002_adma_201801171
wiley_primary_10_1002_adma_201801171_ADMA201801171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 12, 2018
PublicationDateYYYYMMDD 2018-07-12
PublicationDate_xml – month: 07
  year: 2018
  text: July 12, 2018
  day: 12
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015 2015 2016 2016 2017 2018; 8 8 9 28 37 5
2015; 27
2013; 4
2013; 25
2009; 21
2011; 50
2012 2017; 22
2010 2011 2015 2015 2017 2017 2017 2017 2017; 36 334 54 44 16 16 355 12
2016; 29
2013 2013 2013 2014 2016 2015 2017; 135 13 12 53 15 44 29
2016; 15
2005 2007 2012 2015 2013 2015 2016; 127 317 11 5 6 28
2012 2012 2017 2017; 51 11 2 2
2015 2015 2017 2016 2016; 6 5 31 128 45
2016; 55
Li H. (e_1_2_4_5_4) 2015
Yin H. (e_1_2_4_12_2) 2017
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_1_5
e_1_2_4_2_4
e_1_2_4_4_2
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_2_3
e_1_2_4_4_1
e_1_2_4_1_7
e_1_2_4_4_4
e_1_2_4_5_3
e_1_2_4_6_2
e_1_2_4_7_1
e_1_2_4_1_6
e_1_2_4_4_3
e_1_2_4_5_2
e_1_2_4_6_1
e_1_2_4_1_9
e_1_2_4_5_5
e_1_2_4_6_4
e_1_2_4_7_3
e_1_2_4_9_1
e_1_2_4_4_5
e_1_2_4_6_3
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_5_7
e_1_2_4_6_6
e_1_2_4_7_5
e_1_2_4_5_6
e_1_2_4_6_5
e_1_2_4_7_4
e_1_2_4_7_7
e_1_2_4_7_6
e_1_2_4_10_1
e_1_2_4_11_1
Zheng Y. (e_1_2_4_1_8) 2017
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
References_xml – volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 15
  start-page: 197
  year: 2016
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1894
  year: 2013
  publication-title: Nat. Commun.
– volume: 36 334 54 44 16 16 355 12
  start-page: 307 1256 52 2060 57 70 eaad4998 441
  year: 2010 2011 2015 2015 2017 2017 2017 2017 2017
  publication-title: Prog. Energy Combust. Sci. Science Angew. Chem. Chem. Soc. Rev. Nat. Mater. Nat. Mater. Science Angew. Chem. Nat. Nanotechnol.
– volume: 27
  start-page: 1117
  year: 2015
  publication-title: Adv. Mater.
– volume: 50
  start-page: 11093
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 21
  start-page: 871
  year: 2009
  publication-title: Chem. Mater.
– volume: 6 5 31 128 45
  start-page: 6430 3801 456 13051 4873
  year: 2015 2015 2017 2016 2016
  publication-title: Nat. Commun. ACS Catal. Nano Energy Angew. Chem. Chem. Soc. Rev.
– volume: 127 317 11 5 6 28
  start-page: 5308 100 963 263 7873 1917
  year: 2005 2007 2012 2015 2013 2015 2016
  publication-title: J. Am. Chem. Soc. Science Nat. Mater. Nat. Mater. Nat. Chem. Nat. Comm. Adv. Mater.
– volume: 135 13 12 53 15 44 29
  start-page: 10274 6222 850 12594 1003 2713 8539
  year: 2013 2013 2013 2014 2016 2015 2017
  publication-title: J. Am. Chem. Soc. Nano Lett. Nat. Mater. Angew. Chem., Int. Ed. Nat. Mater. Chem. Soc. Rev. Chem. Mater.
– volume: 51 11 2 2
  start-page: 12495 550 17031 17070
  year: 2012 2012 2017 2017
  publication-title: Angew. Chem., Int. Ed. Nat. Mater. Nat. Energy Nat. Energy
– volume: 29
  start-page: 29
  year: 2016
  publication-title: Nano Energy
– volume: 8 8 9 28 37 5
  start-page: 566 1594 2789 9006 74 1700644
  year: 2015 2015 2016 2016 2017 2018
  publication-title: Nano Res. Energy Environ. Sci. Energy Environ. Sci. Adv. Mater. Nano Energy Adv. Sci.
– volume: 55
  start-page: 15240
  year: 2016
  publication-title: Angew. Chem.
– volume: 22
  start-page: 4592
  year: 2012 2017
  publication-title: Adv. Funct. Mater. Nano Res.
– ident: e_1_2_4_5_1
  doi: 10.1021/ja0504690
– ident: e_1_2_4_5_3
  doi: 10.1038/nmat3439
– ident: e_1_2_4_3_1
  doi: 10.1016/j.nanoen.2016.04.017
– ident: e_1_2_4_7_1
  doi: 10.1021/ja404523s
– ident: e_1_2_4_5_5
  doi: 10.1038/nchem.1589
– ident: e_1_2_4_6_1
  doi: 10.1007/s12274-014-0677-7
– ident: e_1_2_4_12_1
  doi: 10.1002/adfm.201200994
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201404622
– ident: e_1_2_4_6_6
  doi: 10.1002/advs.201700644
– ident: e_1_2_4_7_3
  doi: 10.1038/nmat3700
– ident: e_1_2_4_6_4
  doi: 10.1002/adma.201601188
– ident: e_1_2_4_13_1
  doi: 10.1021/cm8028593
– ident: e_1_2_4_1_6
  doi: 10.1038/nmat4778
– ident: e_1_2_4_1_4
  doi: 10.1039/C4CS00470A
– ident: e_1_2_4_5_2
  doi: 10.1126/science.1141483
– ident: e_1_2_4_15_1
  doi: 10.1038/nmat4481
– ident: e_1_2_4_4_4
  doi: 10.1002/ange.201606290
– ident: e_1_2_4_8_1
  doi: 10.1002/anie.201106004
– ident: e_1_2_4_1_3
  doi: 10.1002/anie.201407031
– ident: e_1_2_4_1_2
  doi: 10.1126/science.1211934
– ident: e_1_2_4_10_1
  doi: 10.1002/anie.201607651
– ident: e_1_2_4_11_1
  doi: 10.1038/ncomms2932
– ident: e_1_2_4_5_6
  doi: 10.1038/ncomms8873
– ident: e_1_2_4_6_3
  doi: 10.1039/C6EE01786J
– ident: e_1_2_4_1_5
  doi: 10.1038/nmat4738
– ident: e_1_2_4_6_5
  doi: 10.1016/j.nanoen.2017.05.011
– ident: e_1_2_4_7_5
  doi: 10.1038/nmat4660
– ident: e_1_2_4_7_6
  doi: 10.1039/C4CS00182F
– ident: e_1_2_4_4_3
  doi: 10.1016/j.nanoen.2016.11.048
– ident: e_1_2_4_4_5
  doi: 10.1039/C6CS00343E
– ident: e_1_2_4_2_1
  doi: 10.1002/anie.201204842
– ident: e_1_2_4_7_4
  doi: 10.1002/anie.201408876
– year: 2017
  ident: e_1_2_4_12_2
  publication-title: Nano Res.
– year: 2015
  ident: e_1_2_4_5_4
  publication-title: Nat. Mater.
– ident: e_1_2_4_6_2
  doi: 10.1039/C5EE00751H
– ident: e_1_2_4_2_3
  doi: 10.1038/nenergy.2017.31
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201302685
– ident: e_1_2_4_5_7
  doi: 10.1002/adma.201503270
– ident: e_1_2_4_1_9
  doi: 10.1038/nnano.2016.304
– ident: e_1_2_4_4_1
  doi: 10.1038/ncomms7430
– ident: e_1_2_4_7_2
  doi: 10.1021/nl403661s
– year: 2017
  ident: e_1_2_4_1_8
  publication-title: Angew. Chem.
– ident: e_1_2_4_2_2
  doi: 10.1038/nmat3313
– ident: e_1_2_4_7_7
  doi: 10.1021/acs.chemmater.7b03627
– ident: e_1_2_4_2_4
  doi: 10.1038/nenergy.2017.70
– ident: e_1_2_4_1_1
  doi: 10.1016/j.pecs.2009.11.002
– ident: e_1_2_4_1_7
  doi: 10.1126/science.aad4998
– ident: e_1_2_4_4_2
  doi: 10.1021/cs501835c
SSID ssj0009606
Score 2.626791
Snippet The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1801171
SubjectTerms 2D materials
Catalysis
Catalysts
Chalcogenides
electrocatalysis
Electrocatalysts
Energy of dissociation
hydrogen evolution reaction
Hydrogen evolution reactions
Hydroxides
Iron
Kinetic energy
Manganese
Materials science
Metal hydroxides
Molybdenum disulfide
Nanosheets
Nickel
Reaction kinetics
transition metal dichalcogenides
Title Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201801171
https://www.ncbi.nlm.nih.gov/pubmed/29782677
https://www.proquest.com/docview/2076933694
https://www.proquest.com/docview/2042753504
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejT93DPrqvdG3RYLAnN7Iky_ZjaFNCIX0YC_TNSCeFhAV7LE6h_et3ZztuszIK65st3WFZ_p10J0u_Y-zr3Eqlg5eRV0SqDUmIrDBZlCkvcpu7NJ7TOuT0ykxm-vI6uX5wir_lh-gX3MgymvGaDNy69fCeNNT6hjcozojVjOIf2rBFXtH3e_4ocs8bsj2VRLnR2Za1UcjhrvrurPTI1dz1XJup5-I1s9tGtztOfp5uancKd3_xOT7nrd6wV51fykctkN6yF6E8YC8fsBW-Y7ezFVHZLpYlb2a4ZrMXnwZ03_k57b5fQYVwXPowVL4rn9x6bDUW4RWdDVveBc9xRK_WixDqNa8rPi4XhLxWFPX5-KYzBz6CNrfFeza7GP84m0Rd5oYIEnQhIwhZEFmwylsHGAIbMAG7P7YCYgQBogZECjBHWNjM2gQwSAenc2eMQF2vPrC9sirDJ8ZVBnOdJlInFrT1ce5BCOeNiz3Oq7kbsGj75QroaM0pu8aqaAmZZUFdWvRdOmDfevlfLaHHPyWPtkAoOsNeYy0lj1Qm1wP2pa9Gk6T_LLYM1YZktMQoMBEo87EFUP8oiVG7NGk6YLKBwRNtKEbn01F_d_g_Sp_ZPl3TenQsj9he_XsTjtGRqt1JYyx_AHp7FjQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOvB-FBYyExClbx3Gc5FixXRXY7gFtJW6RPXbVaqsE0RRp99cz4zyWghAS3BJ7rDjON_aMM_6GsbdLIxPlnYxcQqTakPrICJ1HeeJEYQqbxUvah5yf6dlCffyS9tGEdBam5YcYNtxIM8J8TQpOG9Lja9ZQ4wJxUJwTrRk6QDcprXfwqj5fM0iRgR7o9pI0KrTKe95GIcf77ffXpd-MzX3bNSw-J_eY7bvdxpxcHO0aewRXvzA6_td73Wd3O9OUT1osPWA3fPWQ3fmJsPARu1xsiM12ta54WORCvBefe7Tg-TEF4G-gRkSunR8nriufXTrsNhbhFR0PW195x3FSr7cr75stb2o-rVYEvlYU2_Pp904j-ATa9BaP2eJkev5-FnXJGyJI0YqMwOde5N4kzlhAL1iD9jj-sREQIw4QOCAygCUiw-TGpIB-OlhVWK0FtnXJE3ZQ1ZV_xniSw1JlqVSpAWVcXDgQwjptY4dLa2FHLOo_XQkdszkl2NiULSezLGlIy2FIR-zdIP-15fT4o-Rhj4Sy0-0t1lL-yEQXasTeDNWolfSrxVS-3pGMkugIpgJlnrYIGh4l0XGXOstGTAYc_KUP5eR4Phnunv9Lo9fs1ux8flqefjj79ILdpnLano7lITtovu38S7SrGvsqaM4P0McaTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQkBA88M0oG2AkJJ6yOrbjOI8VbVU-OiFEpb1F_opaUSUTTZG2v353SZqtIIQEb4l9pzjO7-w7x_4dIW8Lw4UMnkdeIKm2S0JkmNKRFp5lJrNpXOA65PxUzRby41lyduMUf8sP0S-4oWU04zUa-LkvhtekocY3vEGxRlYziH9uS8U04nr89ZpACv3zhm1PJFGmpN7RNjI-3Nffn5Z-8zX3Xddm7pk-IGbX6nbLyfeTbW1P3OUvhI7_81oPyf3OMaWjFkmPyK1QPib3btAVPiEXizVy2S5XJW2muGa3F50H8N_pGLffr10FeFz5MBS-K59deGg1FMEVHg5bXQZPYUivNssQ6g2tKzoplwi9VhT06eRnZw905NrkFk_JYjr59n4WdakbIpeADxm5oAPTwQhvrIMYWDkVoPtjw1wMKADYOJY6VwAujDYmcRClOyszqxQDXS-ekYOyKsNzQoV2hUwTLhPjpPFx5h1j1isbe5hYMzsg0e7L5a7jNcf0Guu8ZWTmOXZp3nfpgLzr5c9bRo8_Sh7vgJB3lr2BWsweKVQmB-RNXw02iT9aTBmqLcpIDmFgwkDmsAVQ_ygOYTtXaTogvIHBX9qQj8bzUX_34l-UXpM7X8bT_POH009H5C4W49p0zI_JQf1jG16CU1XbV43dXAGH7xkH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Transition+Metal+Dichalcogenide%2F3d+Metal+Hydroxide+Hybridized+Nanosheets+to+Enhance+Hydrogen+Evolution+Activity&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Zhengju&rft.au=Yin%2C+Huajie&rft.au=He%2C+Chun-Ting&rft.au=Al-Mamun%2C+Mohammad&rft.date=2018-07-12&rft.eissn=1521-4095&rft.spage=e1801171&rft_id=info:doi/10.1002%2Fadma.201801171&rft_id=info%3Apmid%2F29782677&rft.externalDocID=29782677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon