Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of cat...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 28; pp. e1801171 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm−2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.
Ultrathin 2D hybrids are designed and prepared via surface modification of monolayer MoS2 and WS2 nanosheets by metal (Ni, Co, Fe, Mn) hydroxides, which form a new class of alkaline hydrogen evolution reaction (HER) electrocatalysts. The surface introduction of metal hydroxides can effectively reduce the kinetic barrier of the prior water dissociation step of the alkaline HER reaction. |
---|---|
AbstractList | The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS
and WS
). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH)
and Co(OH)
hybridized ultrathin MoS
and WS
nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS
/Co(OH)
hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm
in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2 ). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS2 /Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm-2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2 ). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS2 /Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm-2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm−2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. Ultrathin 2D hybrids are designed and prepared via surface modification of monolayer MoS2 and WS2 nanosheets by metal (Ni, Co, Fe, Mn) hydroxides, which form a new class of alkaline hydrogen evolution reaction (HER) electrocatalysts. The surface introduction of metal hydroxides can effectively reduce the kinetic barrier of the prior water dissociation step of the alkaline HER reaction. The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm−2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS 2 and WS 2 ). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH) 2 and Co(OH) 2 hybridized ultrathin MoS 2 and WS 2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS 2 /Co(OH) 2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm −2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides. |
Author | Tang, Zhiyong Zhu, Zhengju Zhao, Huijun Yang, Hua‐Gui Wang, Dan Chen, Xiao‐Ming Al‐Mamun, Mohammad Liu, Porun Jiang, Lixue He, Chun‐Ting Zhao, Yong Yin, Huajie Wang, Yun |
Author_xml | – sequence: 1 givenname: Zhengju surname: Zhu fullname: Zhu, Zhengju organization: Griffith University – sequence: 2 givenname: Huajie orcidid: 0000-0002-9036-9084 surname: Yin fullname: Yin, Huajie email: h.yin@griffith.edu.au organization: Griffith University – sequence: 3 givenname: Chun‐Ting surname: He fullname: He, Chun‐Ting organization: Sun Yat‐Sen University – sequence: 4 givenname: Mohammad orcidid: 0000-0001-8201-4278 surname: Al‐Mamun fullname: Al‐Mamun, Mohammad organization: Griffith University – sequence: 5 givenname: Porun orcidid: 0000-0002-0046-701X surname: Liu fullname: Liu, Porun organization: Griffith University – sequence: 6 givenname: Lixue surname: Jiang fullname: Jiang, Lixue organization: Griffith University – sequence: 7 givenname: Yong surname: Zhao fullname: Zhao, Yong organization: University of Wollongong – sequence: 8 givenname: Yun orcidid: 0000-0001-8619-0455 surname: Wang fullname: Wang, Yun organization: Griffith University – sequence: 9 givenname: Hua‐Gui orcidid: 0000-0003-0436-8622 surname: Yang fullname: Yang, Hua‐Gui organization: Griffith University – sequence: 10 givenname: Zhiyong orcidid: 0000-0003-0610-0064 surname: Tang fullname: Tang, Zhiyong organization: Griffith University – sequence: 11 givenname: Dan surname: Wang fullname: Wang, Dan organization: Griffith University – sequence: 12 givenname: Xiao‐Ming surname: Chen fullname: Chen, Xiao‐Ming organization: Sun Yat‐Sen University – sequence: 13 givenname: Huijun orcidid: 0000-0002-3028-0459 surname: Zhao fullname: Zhao, Huijun email: h.zhao@griffith.edu.au organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29782677$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi3Uim5brhxRJC5csh3nw4mPq3ahSP24tOdoMvayrrJ2sZ2W8OvxskuRKiFOtkbPMx7Pe8wOrLOasfcc5hygOEO1wXkBvAXOG_6GzXhd8LwCWR-wGciyzqWo2iN2HMIDAEgB4i07KmTTFqJpZmy6H6LHuDY2u_Nog4nG2exaRxyyC0NrHMh909YofVaqff1yUt79SKV0671R5qdW2Q1aF9Zax5BFly3tGi3pHZr8bPnkhvF37wVF82TidMoOVzgE_W5_nrD7z8u788v86vbL1_PFVU41Fzwn3WpoNZYKe2rLRpDQ6UccgXipgAgJGqIVgsAWsaZKSOor2QsByVXlCfu06_vo3fdRh9htTCA9DGi1G0NXQFU0dVlDldCPr9AHN3qbpktUI2RZCrmlPuypsd9o1T16s0E_dX-WmoD5DiDvQvB69YJw6LapddvUupfUklC9EshE3G4rZWOGf2typz2bQU__eaRbXFwv_rq_ALEoreM |
CitedBy_id | crossref_primary_10_1016_j_mseb_2022_116255 crossref_primary_10_1016_j_commatsci_2024_113245 crossref_primary_10_1039_D4DT00710G crossref_primary_10_3390_nano10081547 crossref_primary_10_1039_C8TA11171E crossref_primary_10_1021_acscatal_9b03184 crossref_primary_10_1039_C9QM00064J crossref_primary_10_1002_aenm_201902535 crossref_primary_10_1002_adma_201807134 crossref_primary_10_1039_C9QM00052F crossref_primary_10_1142_S1793292020501350 crossref_primary_10_26599_NR_2025_94907102 crossref_primary_10_1016_j_jallcom_2019_05_071 crossref_primary_10_1039_D3CC04527G crossref_primary_10_1002_adma_202307395 crossref_primary_10_1039_D4CP01838A crossref_primary_10_1016_j_surfin_2023_103197 crossref_primary_10_1002_ange_201901010 crossref_primary_10_1016_j_xcrp_2020_100026 crossref_primary_10_1021_acssuschemeng_8b06745 crossref_primary_10_1016_j_coelec_2022_101016 crossref_primary_10_1002_aenm_202102257 crossref_primary_10_1002_smll_201805511 crossref_primary_10_1039_C9TA03220G crossref_primary_10_1039_C9TA07210A crossref_primary_10_1007_s12274_019_2582_6 crossref_primary_10_1016_j_xcrp_2020_100275 crossref_primary_10_1016_j_jcis_2022_08_116 crossref_primary_10_1007_s12274_020_3249_z crossref_primary_10_1016_j_apcata_2023_119304 crossref_primary_10_1016_j_checat_2023_100586 crossref_primary_10_1039_D1DT04359E crossref_primary_10_1002_chem_201804658 crossref_primary_10_1002_cssc_202300214 crossref_primary_10_1002_inf2_12357 crossref_primary_10_1021_acsenergylett_0c01858 crossref_primary_10_1038_s41467_022_31660_2 crossref_primary_10_1002_anie_201907826 crossref_primary_10_1002_smll_201802132 crossref_primary_10_1039_D2EN00629D crossref_primary_10_1039_C8TA06918B crossref_primary_10_1016_j_apsusc_2022_153408 crossref_primary_10_1016_j_jechem_2022_03_038 crossref_primary_10_1007_s40843_020_1461_2 crossref_primary_10_1002_cssc_201902599 crossref_primary_10_1039_D1TA01560E crossref_primary_10_1002_cctc_202000177 crossref_primary_10_1021_acsami_0c04302 crossref_primary_10_1021_acsnano_3c09020 crossref_primary_10_1039_D0NR08097G crossref_primary_10_1002_ange_202015738 crossref_primary_10_1002_ange_202202671 crossref_primary_10_1016_j_ijhydene_2024_05_233 crossref_primary_10_1016_j_apsusc_2019_144912 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1039_D0TA00897D crossref_primary_10_1002_smtd_202301782 crossref_primary_10_1039_D2QI00269H crossref_primary_10_1002_chem_201903508 crossref_primary_10_1039_D0TA01680B crossref_primary_10_1007_s40820_018_0229_x crossref_primary_10_1016_j_ijhydene_2023_03_236 crossref_primary_10_1016_j_apcatb_2019_04_089 crossref_primary_10_1039_C9TA13476J crossref_primary_10_1021_acscentsci_9b01110 crossref_primary_10_1016_j_jcat_2019_06_026 crossref_primary_10_1016_j_jcis_2019_09_090 crossref_primary_10_1039_C8TA09454C crossref_primary_10_1016_j_checat_2023_100810 crossref_primary_10_1016_j_apsusc_2023_157940 crossref_primary_10_1016_j_electacta_2023_143342 crossref_primary_10_1039_D1QM00051A crossref_primary_10_1016_j_jallcom_2021_163259 crossref_primary_10_1016_j_ijhydene_2020_03_045 crossref_primary_10_1002_adfm_202101578 crossref_primary_10_1016_j_apsusc_2020_146847 crossref_primary_10_1016_j_cej_2021_134073 crossref_primary_10_1016_S1003_6326_24_66589_1 crossref_primary_10_1016_j_apcatb_2023_122445 crossref_primary_10_1002_smll_202208270 crossref_primary_10_1021_acssuschemeng_4c06997 crossref_primary_10_1016_j_mtener_2018_10_010 crossref_primary_10_1016_j_ijhydene_2020_10_046 crossref_primary_10_1002_adfm_202101586 crossref_primary_10_1002_smll_202402357 crossref_primary_10_1002_cctc_201901759 crossref_primary_10_1039_D3RA00205E crossref_primary_10_1016_j_jallcom_2024_177618 crossref_primary_10_1039_D3QM00516J crossref_primary_10_1002_smll_202105694 crossref_primary_10_1039_D4QI01853B crossref_primary_10_1016_j_nanoen_2020_105699 crossref_primary_10_1002_smtd_202000043 crossref_primary_10_1007_s10854_020_03691_2 crossref_primary_10_1002_er_7800 crossref_primary_10_1016_j_fuel_2023_130203 crossref_primary_10_1016_j_matt_2020_07_004 crossref_primary_10_1016_j_jallcom_2021_161696 crossref_primary_10_1039_D3DT01477K crossref_primary_10_1002_adfm_201807976 crossref_primary_10_1039_D2EE01510B crossref_primary_10_1021_acsaem_2c02102 crossref_primary_10_1002_aenm_202000177 crossref_primary_10_1002_anie_202015738 crossref_primary_10_1002_smll_202305220 crossref_primary_10_1016_S1872_5805_20_60507_8 crossref_primary_10_1039_C9TA02451D crossref_primary_10_1039_C9SE00391F crossref_primary_10_1002_aenm_201902703 crossref_primary_10_1039_C9TA00545E crossref_primary_10_1039_C9NR09112B crossref_primary_10_1039_D1NA00486G crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1021_acsanm_0c01331 crossref_primary_10_1021_acsanm_1c01644 crossref_primary_10_1021_acs_inorgchem_3c04240 crossref_primary_10_1002_admi_202102154 crossref_primary_10_1002_adma_202210550 crossref_primary_10_1021_acs_nanolett_9b01329 crossref_primary_10_1016_j_checat_2022_02_007 crossref_primary_10_1002_cctc_201901785 crossref_primary_10_1039_D2TA03934F crossref_primary_10_1016_j_ijhydene_2022_08_300 crossref_primary_10_1021_acs_inorgchem_3c03802 crossref_primary_10_1002_smll_202108072 crossref_primary_10_1002_adfm_202105579 crossref_primary_10_1021_acsnano_8b08670 crossref_primary_10_1016_j_enchem_2021_100053 crossref_primary_10_1021_jacs_4c00948 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1016_j_jallcom_2019_06_047 crossref_primary_10_1007_s12274_023_6011_5 crossref_primary_10_1002_aenm_202002214 crossref_primary_10_1016_j_cej_2021_129645 crossref_primary_10_1021_acssuschemeng_2c05636 crossref_primary_10_1002_pssr_202300169 crossref_primary_10_1007_s10934_022_01205_5 crossref_primary_10_1021_acssuschemeng_2c03215 crossref_primary_10_1002_anie_202202671 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1016_j_apsusc_2020_148019 crossref_primary_10_1002_adma_202417516 crossref_primary_10_1016_j_electacta_2021_139027 crossref_primary_10_1002_ange_202110653 crossref_primary_10_1016_j_nanoen_2022_107753 crossref_primary_10_1002_smll_202106904 crossref_primary_10_1186_s12951_019_0465_3 crossref_primary_10_1016_j_mtchem_2022_101052 crossref_primary_10_1021_acscatal_8b04817 crossref_primary_10_1016_j_cej_2023_144657 crossref_primary_10_1002_adma_202000385 crossref_primary_10_1016_j_isci_2023_106510 crossref_primary_10_1039_D1NJ02984C crossref_primary_10_1016_j_jcis_2024_06_054 crossref_primary_10_1002_aenm_201801764 crossref_primary_10_1039_C9TA07142C crossref_primary_10_1002_chem_201901168 crossref_primary_10_1039_C9CC09589F crossref_primary_10_1016_j_electacta_2019_135075 crossref_primary_10_1021_jacs_2c01094 crossref_primary_10_1039_C9NR10230B crossref_primary_10_1016_j_cej_2020_126530 crossref_primary_10_1002_anie_202110653 crossref_primary_10_1016_j_carbon_2021_08_019 crossref_primary_10_1002_zaac_202200066 crossref_primary_10_1002_adma_201805541 crossref_primary_10_1002_ange_201907826 crossref_primary_10_1021_acsnano_9b05714 crossref_primary_10_1021_acsanm_1c01163 crossref_primary_10_1039_C8TA11525G crossref_primary_10_1038_s41467_020_16554_5 crossref_primary_10_1039_D0TA10723A crossref_primary_10_1002_anie_201901010 crossref_primary_10_1016_j_jssc_2023_124445 crossref_primary_10_1021_jacs_9b11614 crossref_primary_10_1039_D2QM00931E crossref_primary_10_1016_j_ccr_2020_213616 crossref_primary_10_1002_adfm_202000551 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1039_D0EE00666A crossref_primary_10_1016_j_ijhydene_2021_04_092 crossref_primary_10_1039_D1RA01924D crossref_primary_10_1016_j_cej_2023_143898 crossref_primary_10_1016_j_jcis_2020_03_068 crossref_primary_10_1002_chem_202002503 crossref_primary_10_1021_acscatal_2c06382 crossref_primary_10_1002_adfm_201904782 crossref_primary_10_1016_j_jcis_2024_07_209 crossref_primary_10_1002_aenm_202101789 crossref_primary_10_1016_j_saa_2021_120013 crossref_primary_10_1016_j_jallcom_2020_154635 crossref_primary_10_1002_smll_202006730 crossref_primary_10_1021_acsmaterialslett_1c00048 |
Cites_doi | 10.1021/ja0504690 10.1038/nmat3439 10.1016/j.nanoen.2016.04.017 10.1021/ja404523s 10.1038/nchem.1589 10.1007/s12274-014-0677-7 10.1002/adfm.201200994 10.1002/adma.201404622 10.1002/advs.201700644 10.1038/nmat3700 10.1002/adma.201601188 10.1021/cm8028593 10.1038/nmat4778 10.1039/C4CS00470A 10.1126/science.1141483 10.1038/nmat4481 10.1002/ange.201606290 10.1002/anie.201106004 10.1002/anie.201407031 10.1126/science.1211934 10.1002/anie.201607651 10.1038/ncomms2932 10.1038/ncomms8873 10.1039/C6EE01786J 10.1038/nmat4738 10.1016/j.nanoen.2017.05.011 10.1038/nmat4660 10.1039/C4CS00182F 10.1016/j.nanoen.2016.11.048 10.1039/C6CS00343E 10.1002/anie.201204842 10.1002/anie.201408876 10.1039/C5EE00751H 10.1038/nenergy.2017.31 10.1002/adma.201302685 10.1002/adma.201503270 10.1038/nnano.2016.304 10.1038/ncomms7430 10.1021/nl403661s 10.1038/nmat3313 10.1021/acs.chemmater.7b03627 10.1038/nenergy.2017.70 10.1016/j.pecs.2009.11.002 10.1126/science.aad4998 10.1021/cs501835c |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201801171 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29782677 10_1002_adma_201801171 ADMA201801171 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Postdoctoral Program for Innovative Talents funderid: BX201600195 – fundername: Griffith University Postdoctoral Fellowship – fundername: Australian Research Council (ARC) Discovery Project funderid: DP170104834 – fundername: National Natural Science Foundation of China funderid: 51372248; 51432009 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c5161-ce8e08ea3dabc8376c6e6481a0c13d0ccac07ccfa06a8aa5c469cb49b660ce8d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:12:12 EDT 2025 Fri Jul 25 05:00:58 EDT 2025 Wed Feb 19 02:41:49 EST 2025 Tue Jul 01 00:44:42 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Wed Jan 22 16:31:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | metal hydroxides transition metal dichalcogenides electrocatalysis 2D materials hydrogen evolution reaction |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5161-ce8e08ea3dabc8376c6e6481a0c13d0ccac07ccfa06a8aa5c469cb49b660ce8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0436-8622 0000-0002-9036-9084 0000-0002-3028-0459 0000-0001-8619-0455 0000-0001-8201-4278 0000-0002-0046-701X 0000-0003-0610-0064 |
OpenAccessLink | http://hdl.handle.net/10072/381429 |
PMID | 29782677 |
PQID | 2076933694 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2042753504 proquest_journals_2076933694 pubmed_primary_29782677 crossref_primary_10_1002_adma_201801171 crossref_citationtrail_10_1002_adma_201801171 wiley_primary_10_1002_adma_201801171_ADMA201801171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 12, 2018 |
PublicationDateYYYYMMDD | 2018-07-12 |
PublicationDate_xml | – month: 07 year: 2018 text: July 12, 2018 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015 2015 2016 2016 2017 2018; 8 8 9 28 37 5 2015; 27 2013; 4 2013; 25 2009; 21 2011; 50 2012 2017; 22 2010 2011 2015 2015 2017 2017 2017 2017 2017; 36 334 54 44 16 16 355 12 2016; 29 2013 2013 2013 2014 2016 2015 2017; 135 13 12 53 15 44 29 2016; 15 2005 2007 2012 2015 2013 2015 2016; 127 317 11 5 6 28 2012 2012 2017 2017; 51 11 2 2 2015 2015 2017 2016 2016; 6 5 31 128 45 2016; 55 Li H. (e_1_2_4_5_4) 2015 Yin H. (e_1_2_4_12_2) 2017 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_1_5 e_1_2_4_2_4 e_1_2_4_4_2 e_1_2_4_5_1 e_1_2_4_1_4 e_1_2_4_2_3 e_1_2_4_4_1 e_1_2_4_1_7 e_1_2_4_4_4 e_1_2_4_5_3 e_1_2_4_6_2 e_1_2_4_7_1 e_1_2_4_1_6 e_1_2_4_4_3 e_1_2_4_5_2 e_1_2_4_6_1 e_1_2_4_1_9 e_1_2_4_5_5 e_1_2_4_6_4 e_1_2_4_7_3 e_1_2_4_9_1 e_1_2_4_4_5 e_1_2_4_6_3 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_5_7 e_1_2_4_6_6 e_1_2_4_7_5 e_1_2_4_5_6 e_1_2_4_6_5 e_1_2_4_7_4 e_1_2_4_7_7 e_1_2_4_7_6 e_1_2_4_10_1 e_1_2_4_11_1 Zheng Y. (e_1_2_4_1_8) 2017 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_15_1 |
References_xml | – volume: 25 start-page: 5807 year: 2013 publication-title: Adv. Mater. – volume: 15 start-page: 197 year: 2016 publication-title: Nat. Mater. – volume: 4 start-page: 1894 year: 2013 publication-title: Nat. Commun. – volume: 36 334 54 44 16 16 355 12 start-page: 307 1256 52 2060 57 70 eaad4998 441 year: 2010 2011 2015 2015 2017 2017 2017 2017 2017 publication-title: Prog. Energy Combust. Sci. Science Angew. Chem. Chem. Soc. Rev. Nat. Mater. Nat. Mater. Science Angew. Chem. Nat. Nanotechnol. – volume: 27 start-page: 1117 year: 2015 publication-title: Adv. Mater. – volume: 50 start-page: 11093 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 21 start-page: 871 year: 2009 publication-title: Chem. Mater. – volume: 6 5 31 128 45 start-page: 6430 3801 456 13051 4873 year: 2015 2015 2017 2016 2016 publication-title: Nat. Commun. ACS Catal. Nano Energy Angew. Chem. Chem. Soc. Rev. – volume: 127 317 11 5 6 28 start-page: 5308 100 963 263 7873 1917 year: 2005 2007 2012 2015 2013 2015 2016 publication-title: J. Am. Chem. Soc. Science Nat. Mater. Nat. Mater. Nat. Chem. Nat. Comm. Adv. Mater. – volume: 135 13 12 53 15 44 29 start-page: 10274 6222 850 12594 1003 2713 8539 year: 2013 2013 2013 2014 2016 2015 2017 publication-title: J. Am. Chem. Soc. Nano Lett. Nat. Mater. Angew. Chem., Int. Ed. Nat. Mater. Chem. Soc. Rev. Chem. Mater. – volume: 51 11 2 2 start-page: 12495 550 17031 17070 year: 2012 2012 2017 2017 publication-title: Angew. Chem., Int. Ed. Nat. Mater. Nat. Energy Nat. Energy – volume: 29 start-page: 29 year: 2016 publication-title: Nano Energy – volume: 8 8 9 28 37 5 start-page: 566 1594 2789 9006 74 1700644 year: 2015 2015 2016 2016 2017 2018 publication-title: Nano Res. Energy Environ. Sci. Energy Environ. Sci. Adv. Mater. Nano Energy Adv. Sci. – volume: 55 start-page: 15240 year: 2016 publication-title: Angew. Chem. – volume: 22 start-page: 4592 year: 2012 2017 publication-title: Adv. Funct. Mater. Nano Res. – ident: e_1_2_4_5_1 doi: 10.1021/ja0504690 – ident: e_1_2_4_5_3 doi: 10.1038/nmat3439 – ident: e_1_2_4_3_1 doi: 10.1016/j.nanoen.2016.04.017 – ident: e_1_2_4_7_1 doi: 10.1021/ja404523s – ident: e_1_2_4_5_5 doi: 10.1038/nchem.1589 – ident: e_1_2_4_6_1 doi: 10.1007/s12274-014-0677-7 – ident: e_1_2_4_12_1 doi: 10.1002/adfm.201200994 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201404622 – ident: e_1_2_4_6_6 doi: 10.1002/advs.201700644 – ident: e_1_2_4_7_3 doi: 10.1038/nmat3700 – ident: e_1_2_4_6_4 doi: 10.1002/adma.201601188 – ident: e_1_2_4_13_1 doi: 10.1021/cm8028593 – ident: e_1_2_4_1_6 doi: 10.1038/nmat4778 – ident: e_1_2_4_1_4 doi: 10.1039/C4CS00470A – ident: e_1_2_4_5_2 doi: 10.1126/science.1141483 – ident: e_1_2_4_15_1 doi: 10.1038/nmat4481 – ident: e_1_2_4_4_4 doi: 10.1002/ange.201606290 – ident: e_1_2_4_8_1 doi: 10.1002/anie.201106004 – ident: e_1_2_4_1_3 doi: 10.1002/anie.201407031 – ident: e_1_2_4_1_2 doi: 10.1126/science.1211934 – ident: e_1_2_4_10_1 doi: 10.1002/anie.201607651 – ident: e_1_2_4_11_1 doi: 10.1038/ncomms2932 – ident: e_1_2_4_5_6 doi: 10.1038/ncomms8873 – ident: e_1_2_4_6_3 doi: 10.1039/C6EE01786J – ident: e_1_2_4_1_5 doi: 10.1038/nmat4738 – ident: e_1_2_4_6_5 doi: 10.1016/j.nanoen.2017.05.011 – ident: e_1_2_4_7_5 doi: 10.1038/nmat4660 – ident: e_1_2_4_7_6 doi: 10.1039/C4CS00182F – ident: e_1_2_4_4_3 doi: 10.1016/j.nanoen.2016.11.048 – ident: e_1_2_4_4_5 doi: 10.1039/C6CS00343E – ident: e_1_2_4_2_1 doi: 10.1002/anie.201204842 – ident: e_1_2_4_7_4 doi: 10.1002/anie.201408876 – year: 2017 ident: e_1_2_4_12_2 publication-title: Nano Res. – year: 2015 ident: e_1_2_4_5_4 publication-title: Nat. Mater. – ident: e_1_2_4_6_2 doi: 10.1039/C5EE00751H – ident: e_1_2_4_2_3 doi: 10.1038/nenergy.2017.31 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201302685 – ident: e_1_2_4_5_7 doi: 10.1002/adma.201503270 – ident: e_1_2_4_1_9 doi: 10.1038/nnano.2016.304 – ident: e_1_2_4_4_1 doi: 10.1038/ncomms7430 – ident: e_1_2_4_7_2 doi: 10.1021/nl403661s – year: 2017 ident: e_1_2_4_1_8 publication-title: Angew. Chem. – ident: e_1_2_4_2_2 doi: 10.1038/nmat3313 – ident: e_1_2_4_7_7 doi: 10.1021/acs.chemmater.7b03627 – ident: e_1_2_4_2_4 doi: 10.1038/nenergy.2017.70 – ident: e_1_2_4_1_1 doi: 10.1016/j.pecs.2009.11.002 – ident: e_1_2_4_1_7 doi: 10.1126/science.aad4998 – ident: e_1_2_4_4_2 doi: 10.1021/cs501835c |
SSID | ssj0009606 |
Score | 2.626791 |
Snippet | The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1801171 |
SubjectTerms | 2D materials Catalysis Catalysts Chalcogenides electrocatalysis Electrocatalysts Energy of dissociation hydrogen evolution reaction Hydrogen evolution reactions Hydroxides Iron Kinetic energy Manganese Materials science Metal hydroxides Molybdenum disulfide Nanosheets Nickel Reaction kinetics transition metal dichalcogenides |
Title | Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201801171 https://www.ncbi.nlm.nih.gov/pubmed/29782677 https://www.proquest.com/docview/2076933694 https://www.proquest.com/docview/2042753504 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejT93DPrqvdG3RYLAnN7Iky_ZjaFNCIX0YC_TNSCeFhAV7LE6h_et3ZztuszIK65st3WFZ_p10J0u_Y-zr3Eqlg5eRV0SqDUmIrDBZlCkvcpu7NJ7TOuT0ykxm-vI6uX5wir_lh-gX3MgymvGaDNy69fCeNNT6hjcozojVjOIf2rBFXtH3e_4ocs8bsj2VRLnR2Za1UcjhrvrurPTI1dz1XJup5-I1s9tGtztOfp5uancKd3_xOT7nrd6wV51fykctkN6yF6E8YC8fsBW-Y7ezFVHZLpYlb2a4ZrMXnwZ03_k57b5fQYVwXPowVL4rn9x6bDUW4RWdDVveBc9xRK_WixDqNa8rPi4XhLxWFPX5-KYzBz6CNrfFeza7GP84m0Rd5oYIEnQhIwhZEFmwylsHGAIbMAG7P7YCYgQBogZECjBHWNjM2gQwSAenc2eMQF2vPrC9sirDJ8ZVBnOdJlInFrT1ce5BCOeNiz3Oq7kbsGj75QroaM0pu8aqaAmZZUFdWvRdOmDfevlfLaHHPyWPtkAoOsNeYy0lj1Qm1wP2pa9Gk6T_LLYM1YZktMQoMBEo87EFUP8oiVG7NGk6YLKBwRNtKEbn01F_d_g_Sp_ZPl3TenQsj9he_XsTjtGRqt1JYyx_AHp7FjQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOvB-FBYyExClbx3Gc5FixXRXY7gFtJW6RPXbVaqsE0RRp99cz4zyWghAS3BJ7rDjON_aMM_6GsbdLIxPlnYxcQqTakPrICJ1HeeJEYQqbxUvah5yf6dlCffyS9tGEdBam5YcYNtxIM8J8TQpOG9Lja9ZQ4wJxUJwTrRk6QDcprXfwqj5fM0iRgR7o9pI0KrTKe95GIcf77ffXpd-MzX3bNSw-J_eY7bvdxpxcHO0aewRXvzA6_td73Wd3O9OUT1osPWA3fPWQ3fmJsPARu1xsiM12ta54WORCvBefe7Tg-TEF4G-gRkSunR8nriufXTrsNhbhFR0PW195x3FSr7cr75stb2o-rVYEvlYU2_Pp904j-ATa9BaP2eJkev5-FnXJGyJI0YqMwOde5N4kzlhAL1iD9jj-sREQIw4QOCAygCUiw-TGpIB-OlhVWK0FtnXJE3ZQ1ZV_xniSw1JlqVSpAWVcXDgQwjptY4dLa2FHLOo_XQkdszkl2NiULSezLGlIy2FIR-zdIP-15fT4o-Rhj4Sy0-0t1lL-yEQXasTeDNWolfSrxVS-3pGMkugIpgJlnrYIGh4l0XGXOstGTAYc_KUP5eR4Phnunv9Lo9fs1ux8flqefjj79ILdpnLano7lITtovu38S7SrGvsqaM4P0McaTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQkBA88M0oG2AkJJ6yOrbjOI8VbVU-OiFEpb1F_opaUSUTTZG2v353SZqtIIQEb4l9pzjO7-w7x_4dIW8Lw4UMnkdeIKm2S0JkmNKRFp5lJrNpXOA65PxUzRby41lyduMUf8sP0S-4oWU04zUa-LkvhtekocY3vEGxRlYziH9uS8U04nr89ZpACv3zhm1PJFGmpN7RNjI-3Nffn5Z-8zX3Xddm7pk-IGbX6nbLyfeTbW1P3OUvhI7_81oPyf3OMaWjFkmPyK1QPib3btAVPiEXizVy2S5XJW2muGa3F50H8N_pGLffr10FeFz5MBS-K59deGg1FMEVHg5bXQZPYUivNssQ6g2tKzoplwi9VhT06eRnZw905NrkFk_JYjr59n4WdakbIpeADxm5oAPTwQhvrIMYWDkVoPtjw1wMKADYOJY6VwAujDYmcRClOyszqxQDXS-ekYOyKsNzQoV2hUwTLhPjpPFx5h1j1isbe5hYMzsg0e7L5a7jNcf0Guu8ZWTmOXZp3nfpgLzr5c9bRo8_Sh7vgJB3lr2BWsweKVQmB-RNXw02iT9aTBmqLcpIDmFgwkDmsAVQ_ygOYTtXaTogvIHBX9qQj8bzUX_34l-UXpM7X8bT_POH009H5C4W49p0zI_JQf1jG16CU1XbV43dXAGH7xkH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Transition+Metal+Dichalcogenide%2F3d+Metal+Hydroxide+Hybridized+Nanosheets+to+Enhance+Hydrogen+Evolution+Activity&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Zhengju&rft.au=Yin%2C+Huajie&rft.au=He%2C+Chun-Ting&rft.au=Al-Mamun%2C+Mohammad&rft.date=2018-07-12&rft.eissn=1521-4095&rft.spage=e1801171&rft_id=info:doi/10.1002%2Fadma.201801171&rft_id=info%3Apmid%2F29782677&rft.externalDocID=29782677 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |