Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelle...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 231; no. 2; pp. 763 - 776
Main Authors Davison, John, Moora, Mari, Semchenko, Marina, Adenan, Sakeenah Binte, Ahmed, Talaat, Akhmetzhanova, Asem A., Alatalo, Juha M., Al-Quraishy, Saleh, Andriyanova, Elena, Anslan, Sten, Bahram, Mohammad, Batbaatar, Amgaa, Brown, Charlotte, Bueno, C. Guillermo, Cahill, James, Cantero, Juan José, Casper, Brenda B., Cherosov, Mikhail, Chideh, Saida, Coelho, Ana P., Coghill, Matthew, Decocq, Guillaume, Dudov, Sergey, Fabiano, Ezequiel Chimbioputo, Fedosov, Vladimir E., Fraser, Lauchlan, Glassman, Sydney I., Helm, Aveliina, Henry, Hugh A. L., Hérault, Bruno, Hiiesalu, Indrek, Hiiesalu, Inga, Hozzein, Wael N., Kohout, Petr, Kõljalg, Urmas, Koorem, Kadri, Laanisto, Lauri, Mander, Ülo, Mucina, Ladislav, Munyampundu, Jean-Pierre, Neuenkamp, Lena, Niinemets, Ülo, Nyamukondiwa, Casper, Oja, Jane, Onipchenko, Vladimir, Pärtel, Meelis, Phosri, Cherdchai, Põlme, Sergei, Püssa, Kersti, Ronk, Argo, Saitta, Alessandro, Semboli, Olivia, Sepp, Siim Kaarel, Seregin, Alexey, Sudheer, Surya, Peña-Venegas, Clara P., Paz, Claudia, Vahter, Tanel, Vasar, Martti, Veraart, Annelies J., Tedersoo, Leho, Zobel, Martin, Öpik, Maarja
Format Journal Article
LanguageEnglish
Published England Wiley 01.07.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
AbstractList The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
Summary The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. See also the Commentary on this article by Kivlin et al., 231: 508–511.
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. See also the Commentary on this article by Kivlin et al. , 231 : 508–511 .
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
Author Brown, Charlotte
Peña-Venegas, Clara P.
Andriyanova, Elena
Alatalo, Juha M.
Püssa, Kersti
Pärtel, Meelis
Dudov, Sergey
Hozzein, Wael N.
Oja, Jane
Laanisto, Lauri
Glassman, Sydney I.
Batbaatar, Amgaa
Adenan, Sakeenah Binte
Hérault, Bruno
Kõljalg, Urmas
Fedosov, Vladimir E.
Coelho, Ana P.
Semboli, Olivia
Põlme, Sergei
Akhmetzhanova, Asem A.
Paz, Claudia
Coghill, Matthew
Vahter, Tanel
Mucina, Ladislav
Helm, Aveliina
Casper, Brenda B.
Tedersoo, Leho
Al-Quraishy, Saleh
Kohout, Petr
Fabiano, Ezequiel Chimbioputo
Phosri, Cherdchai
Saitta, Alessandro
Seregin, Alexey
Anslan, Sten
Zobel, Martin
Semchenko, Marina
Henry, Hugh A. L.
Davison, John
Vasar, Martti
Decocq, Guillaume
Bahram, Mohammad
Niinemets, Ülo
Koorem, Kadri
Öpik, Maarja
Mander, Ülo
Ronk, Argo
Munyampundu, Jean-Pierre
Fraser, Lauchlan
Cherosov, Mikhail
Ahmed, Talaat
Bueno, C. Guillermo
Hiiesalu, Indrek
Neuenkamp, Lena
Onipchenko, Vladimir
Sepp, Siim Kaarel
Veraart, Annelies J.
Hiiesalu, Inga
Sudheer, Surya
Moora, Mari
Chideh, Saida
Cantero, Juan José
Cahill, James
Nyamukondiwa, Casper
Author_xml – sequence: 1
  givenname: John
  surname: Davison
  fullname: Davison, John
– sequence: 2
  givenname: Mari
  surname: Moora
  fullname: Moora, Mari
– sequence: 3
  givenname: Marina
  surname: Semchenko
  fullname: Semchenko, Marina
– sequence: 4
  givenname: Sakeenah Binte
  surname: Adenan
  fullname: Adenan, Sakeenah Binte
– sequence: 5
  givenname: Talaat
  surname: Ahmed
  fullname: Ahmed, Talaat
– sequence: 6
  givenname: Asem A.
  surname: Akhmetzhanova
  fullname: Akhmetzhanova, Asem A.
– sequence: 7
  givenname: Juha M.
  surname: Alatalo
  fullname: Alatalo, Juha M.
– sequence: 8
  givenname: Saleh
  surname: Al-Quraishy
  fullname: Al-Quraishy, Saleh
– sequence: 9
  givenname: Elena
  surname: Andriyanova
  fullname: Andriyanova, Elena
– sequence: 10
  givenname: Sten
  surname: Anslan
  fullname: Anslan, Sten
– sequence: 11
  givenname: Mohammad
  surname: Bahram
  fullname: Bahram, Mohammad
– sequence: 12
  givenname: Amgaa
  surname: Batbaatar
  fullname: Batbaatar, Amgaa
– sequence: 13
  givenname: Charlotte
  surname: Brown
  fullname: Brown, Charlotte
– sequence: 14
  givenname: C. Guillermo
  surname: Bueno
  fullname: Bueno, C. Guillermo
– sequence: 15
  givenname: James
  surname: Cahill
  fullname: Cahill, James
– sequence: 16
  givenname: Juan José
  surname: Cantero
  fullname: Cantero, Juan José
– sequence: 17
  givenname: Brenda B.
  surname: Casper
  fullname: Casper, Brenda B.
– sequence: 18
  givenname: Mikhail
  surname: Cherosov
  fullname: Cherosov, Mikhail
– sequence: 19
  givenname: Saida
  surname: Chideh
  fullname: Chideh, Saida
– sequence: 20
  givenname: Ana P.
  surname: Coelho
  fullname: Coelho, Ana P.
– sequence: 21
  givenname: Matthew
  surname: Coghill
  fullname: Coghill, Matthew
– sequence: 22
  givenname: Guillaume
  surname: Decocq
  fullname: Decocq, Guillaume
– sequence: 23
  givenname: Sergey
  surname: Dudov
  fullname: Dudov, Sergey
– sequence: 24
  givenname: Ezequiel Chimbioputo
  surname: Fabiano
  fullname: Fabiano, Ezequiel Chimbioputo
– sequence: 25
  givenname: Vladimir E.
  surname: Fedosov
  fullname: Fedosov, Vladimir E.
– sequence: 26
  givenname: Lauchlan
  surname: Fraser
  fullname: Fraser, Lauchlan
– sequence: 27
  givenname: Sydney I.
  surname: Glassman
  fullname: Glassman, Sydney I.
– sequence: 28
  givenname: Aveliina
  surname: Helm
  fullname: Helm, Aveliina
– sequence: 29
  givenname: Hugh A. L.
  surname: Henry
  fullname: Henry, Hugh A. L.
– sequence: 30
  givenname: Bruno
  surname: Hérault
  fullname: Hérault, Bruno
– sequence: 31
  givenname: Indrek
  surname: Hiiesalu
  fullname: Hiiesalu, Indrek
– sequence: 32
  givenname: Inga
  surname: Hiiesalu
  fullname: Hiiesalu, Inga
– sequence: 33
  givenname: Wael N.
  surname: Hozzein
  fullname: Hozzein, Wael N.
– sequence: 34
  givenname: Petr
  surname: Kohout
  fullname: Kohout, Petr
– sequence: 35
  givenname: Urmas
  surname: Kõljalg
  fullname: Kõljalg, Urmas
– sequence: 36
  givenname: Kadri
  surname: Koorem
  fullname: Koorem, Kadri
– sequence: 37
  givenname: Lauri
  surname: Laanisto
  fullname: Laanisto, Lauri
– sequence: 38
  givenname: Ülo
  surname: Mander
  fullname: Mander, Ülo
– sequence: 39
  givenname: Ladislav
  surname: Mucina
  fullname: Mucina, Ladislav
– sequence: 40
  givenname: Jean-Pierre
  surname: Munyampundu
  fullname: Munyampundu, Jean-Pierre
– sequence: 41
  givenname: Lena
  surname: Neuenkamp
  fullname: Neuenkamp, Lena
– sequence: 42
  givenname: Ülo
  surname: Niinemets
  fullname: Niinemets, Ülo
– sequence: 43
  givenname: Casper
  surname: Nyamukondiwa
  fullname: Nyamukondiwa, Casper
– sequence: 44
  givenname: Jane
  surname: Oja
  fullname: Oja, Jane
– sequence: 45
  givenname: Vladimir
  surname: Onipchenko
  fullname: Onipchenko, Vladimir
– sequence: 46
  givenname: Meelis
  surname: Pärtel
  fullname: Pärtel, Meelis
– sequence: 47
  givenname: Cherdchai
  surname: Phosri
  fullname: Phosri, Cherdchai
– sequence: 48
  givenname: Sergei
  surname: Põlme
  fullname: Põlme, Sergei
– sequence: 49
  givenname: Kersti
  surname: Püssa
  fullname: Püssa, Kersti
– sequence: 50
  givenname: Argo
  surname: Ronk
  fullname: Ronk, Argo
– sequence: 51
  givenname: Alessandro
  surname: Saitta
  fullname: Saitta, Alessandro
– sequence: 52
  givenname: Olivia
  surname: Semboli
  fullname: Semboli, Olivia
– sequence: 53
  givenname: Siim Kaarel
  surname: Sepp
  fullname: Sepp, Siim Kaarel
– sequence: 54
  givenname: Alexey
  surname: Seregin
  fullname: Seregin, Alexey
– sequence: 55
  givenname: Surya
  surname: Sudheer
  fullname: Sudheer, Surya
– sequence: 56
  givenname: Clara P.
  surname: Peña-Venegas
  fullname: Peña-Venegas, Clara P.
– sequence: 57
  givenname: Claudia
  surname: Paz
  fullname: Paz, Claudia
– sequence: 58
  givenname: Tanel
  surname: Vahter
  fullname: Vahter, Tanel
– sequence: 59
  givenname: Martti
  surname: Vasar
  fullname: Vasar, Martti
– sequence: 60
  givenname: Annelies J.
  surname: Veraart
  fullname: Veraart, Annelies J.
– sequence: 61
  givenname: Leho
  surname: Tedersoo
  fullname: Tedersoo, Leho
– sequence: 62
  givenname: Martin
  surname: Zobel
  fullname: Zobel, Martin
– sequence: 63
  givenname: Maarja
  surname: Öpik
  fullname: Öpik, Maarja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33507570$$D View this record in MEDLINE/PubMed
https://u-picardie.hal.science/hal-03616517$$DView record in HAL
https://res.slu.se/id/publ/111234$$DView record from Swedish Publication Index
BookMark eNqFkk2LFDEQhoOsuLOrB3-A0rAXPfRsvtN9XBZ1hEFFVvAW0t0VJ0N_mXRcxl9vxp4ZURRzKZI875uqSl2gs37oAaGnBC9JWtf9uFkSRTl-gBaEyzIvCFNnaIExLXLJ5edzdBHCFmNcCkkfoXPGBFZC4QX6eAfdCN5M0UNm-iYbV1kD1vWQTRvIPJjWBWiy3tVpG0ZTQzbYzPgqhjq2xmfdrh6837jvps1s7L-4x-ihNW2AJ4d4iT69fnV3u8rX79-8vb1Z57UgEuclE8A5l5RwS0rcMEipG2sNVU2DreK2sqKo0o1tQJQYyoKVDJgojLE1VOwSLWffcA9jrPToXWf8Tg_G6dDGyvh90AF06hFlPAlezoKNaX-jVzdrvT_DTBIpiPpGEvtiZkc_fI0QJt25UEPbmh6GGDSVTHLGFaP_R3lBpeK8wAm9-gPdDtH3qUuaCo5lqQq2f_v5gYpVB80p1eOvJeB6Bmo_hODB6tpNZnJDP3njWk3wvmSi01zon3Pxq_ST4mj6N_bgfu9a2P0b1O8-rI6KZ7NiG6bBnxRUYYEJVewHKS3Oxw
CitedBy_id crossref_primary_10_1128_msystems_01331_23
crossref_primary_10_1111_ele_14327
crossref_primary_10_5424_fs_2022311_18557
crossref_primary_10_1146_annurev_arplant_102820_124504
crossref_primary_10_1038_s41564_023_01514_8
crossref_primary_10_1094_PHYTOFR_03_24_0023_R
crossref_primary_10_3389_fmicb_2025_1511979
crossref_primary_10_3389_fpls_2023_1260286
crossref_primary_10_1016_j_still_2023_105715
crossref_primary_10_1016_j_celrep_2024_114046
crossref_primary_10_1111_1365_2745_14151
crossref_primary_10_1111_geb_13704
crossref_primary_10_1111_nph_19474
crossref_primary_10_1111_ele_13886
crossref_primary_10_1016_j_ufug_2023_127916
crossref_primary_10_1111_aec_13451
crossref_primary_10_1007_s00248_024_02374_3
crossref_primary_10_3389_fpls_2022_1017847
crossref_primary_10_1016_j_ecolind_2022_108686
crossref_primary_10_1016_j_apsoil_2022_104602
crossref_primary_10_7717_peerj_14651
crossref_primary_10_1002_ece3_70597
crossref_primary_10_1016_j_actao_2024_104000
crossref_primary_10_1016_j_crmicr_2021_100062
crossref_primary_10_3390_microorganisms11112615
crossref_primary_10_3390_stresses3020030
crossref_primary_10_1111_nph_18308
crossref_primary_10_1016_j_rhisph_2024_100945
crossref_primary_10_1128_spectrum_01489_22
crossref_primary_10_3389_fmicb_2024_1470137
crossref_primary_10_1126_sciadv_adf8998
crossref_primary_10_3390_agronomy14081823
crossref_primary_10_1016_j_pedobi_2024_150934
crossref_primary_10_5194_soil_10_425_2024
crossref_primary_10_3389_fmicb_2023_1109128
crossref_primary_10_1016_j_actao_2024_104054
crossref_primary_10_1007_s42729_024_01617_z
crossref_primary_10_1111_jbi_14376
crossref_primary_10_3390_f14010114
crossref_primary_10_1111_ele_14309
crossref_primary_10_1038_s41579_023_00876_4
crossref_primary_10_1007_s00572_022_01072_7
crossref_primary_10_1186_s13717_023_00417_0
crossref_primary_10_1007_s00572_023_01111_x
crossref_primary_10_1111_nph_18005
crossref_primary_10_1007_s13225_024_00540_z
crossref_primary_10_3390_microorganisms10112137
crossref_primary_10_1007_s00572_021_01057_y
crossref_primary_10_1007_s00572_025_01182_y
crossref_primary_10_1016_j_pedobi_2023_150908
crossref_primary_10_1186_s40793_024_00583_4
crossref_primary_10_3390_jof7060412
crossref_primary_10_1111_geb_13487
crossref_primary_10_1016_j_scitotenv_2022_158941
crossref_primary_10_1111_gcb_16398
crossref_primary_10_1134_S1064229322100155
crossref_primary_10_1093_aob_mcad050
crossref_primary_10_3390_agriculture11040361
crossref_primary_10_3389_fpls_2022_1068527
crossref_primary_10_1111_nph_17780
crossref_primary_10_1111_nph_17781
crossref_primary_10_3390_agronomy14081687
crossref_primary_10_1002_ecs2_4702
crossref_primary_10_3389_fpls_2022_964941
crossref_primary_10_3390_microorganisms9112193
crossref_primary_10_3832_ifor4324_016
crossref_primary_10_1186_s40793_023_00498_6
crossref_primary_10_3390_jof10100720
crossref_primary_10_1016_j_tim_2023_05_008
crossref_primary_10_1111_nph_19283
crossref_primary_10_1016_j_apsoil_2022_104759
crossref_primary_10_1007_s11557_021_01699_4
crossref_primary_10_1016_j_scitotenv_2023_168907
crossref_primary_10_3390_f15030396
crossref_primary_10_1007_s00572_021_01066_x
crossref_primary_10_1080_01904167_2024_2414752
crossref_primary_10_1002_ecy_3761
crossref_primary_10_1016_j_rhisph_2023_100754
crossref_primary_10_3390_jof9101032
crossref_primary_10_1111_nph_18516
crossref_primary_10_1038_s41559_023_02149_y
crossref_primary_10_3390_soilsystems8030094
crossref_primary_10_1007_s12355_024_01500_2
crossref_primary_10_1111_nph_17373
crossref_primary_10_1111_nph_18102
crossref_primary_10_1146_annurev_environ_112621_090937
crossref_primary_10_1111_nph_18342
crossref_primary_10_14720_aas_2022_118_3_2419
crossref_primary_10_3390_jof10010011
crossref_primary_10_1038_s41467_023_44172_4
crossref_primary_10_1007_s11104_023_06250_w
crossref_primary_10_1016_j_apsoil_2024_105618
crossref_primary_10_1080_13416979_2024_2390273
crossref_primary_10_1016_j_scitotenv_2024_177592
crossref_primary_10_1111_nph_17372
crossref_primary_10_1093_femsec_fiad092
crossref_primary_10_1002_ldr_5268
crossref_primary_10_1007_s00248_021_01779_8
crossref_primary_10_1111_jbi_14986
crossref_primary_10_1016_j_yofte_2021_102734
crossref_primary_10_1007_s00572_024_01149_5
crossref_primary_10_1038_s41564_022_01228_3
crossref_primary_10_1007_s42832_023_0224_0
crossref_primary_10_1016_j_jenvman_2024_123933
crossref_primary_10_1016_j_scitotenv_2024_170775
crossref_primary_10_3390_d16020097
crossref_primary_10_3390_agronomy11122468
crossref_primary_10_1007_s13225_021_00493_7
crossref_primary_10_1007_s00248_024_02449_1
crossref_primary_10_1016_j_micres_2023_127371
crossref_primary_10_1016_j_soilbio_2022_108673
crossref_primary_10_1093_treephys_tpad064
crossref_primary_10_1002_ecy_70011
crossref_primary_10_1590_2179_8087_floram_2021_0013
crossref_primary_10_1111_1365_2435_14395
crossref_primary_10_1016_j_tree_2023_04_015
crossref_primary_10_1093_femsec_fiad108
crossref_primary_10_1111_gcb_15945
crossref_primary_10_1094_PBIOMES_03_22_0014_R
crossref_primary_10_1016_j_geoderma_2024_116786
crossref_primary_10_3390_f16010024
crossref_primary_10_1007_s10342_024_01745_2
crossref_primary_10_3389_fevo_2023_1192267
crossref_primary_10_1111_geb_13607
crossref_primary_10_1111_nph_19493
crossref_primary_10_1111_rec_14008
crossref_primary_10_22207_JPAM_18_3_37
crossref_primary_10_3390_horticulturae10121326
crossref_primary_10_1002_sae2_12055
crossref_primary_10_1007_s00572_024_01160_w
crossref_primary_10_1111_ecog_07048
crossref_primary_10_3389_fmicb_2024_1347704
crossref_primary_10_1007_s00572_025_01187_7
crossref_primary_10_1007_s13225_023_00532_5
crossref_primary_10_1126_sciadv_adj8016
crossref_primary_10_1016_j_mib_2022_102205
crossref_primary_10_1007_s00572_022_01093_2
crossref_primary_10_1038_s41559_022_01799_8
crossref_primary_10_3390_d15091006
crossref_primary_10_3390_microorganisms10122406
Cites_doi 10.1890/10-1516.1
10.1111/j.1365-2699.2011.02478.x
10.1126/science.1143082
10.1111/1365-2745.13060
10.1111/j.0022-0477.2005.00990.x
10.1016/j.soilbio.2010.01.006
10.1111/j.1461-0248.2010.01515.x
10.1038/s41396-019-0350-y
10.1038/s42003-018-0120-9
10.1007/978-0-387-84858-7
10.1007/s11104-012-1531-x
10.1073/pnas.0906710107
10.1111/nph.14409
10.1139/cjb-2013-0110
10.1139/b95-221
10.1111/j.1461-0248.2007.01139.x
10.1111/j.1365-294X.2009.04359.x
10.1098/rspb.2009.1015
10.1111/nph.13236
10.1111/j.1574-6941.2008.00531.x
10.5194/bg-16-2857-2019
10.1016/j.soilbio.2011.07.012
10.1126/science.aab1161
10.1111/1365-2745.12873
10.1111/nph.15088
10.1890/06-0539
10.1016/j.funeco.2014.09.011
10.1111/j.1469-8137.1993.tb03837.x
10.1111/nph.16667
10.1093/femsec/fiw073
10.1007/BF02205572
10.1016/j.soilbio.2016.09.022
10.1111/nph.14947
10.1890/07-0986.1
10.1111/j.1469-8137.2010.03636.x
10.1038/sdata.2017.122
10.1038/ismej.2012.127
10.1038/s41467-019-13164-8
10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
10.1016/j.baae.2008.01.004
10.1111/jbi.13866
10.1126/science.aba1223
10.1111/j.1365-2745.2007.01239.x
10.1126/science.aad5495
10.1086/282505
10.1111/j.1469-8137.2010.03334.x
10.1093/molbev/mss075
10.1038/s41586-018-0386-6
10.1111/nph.12894
10.1007/s00572-018-0864-6
10.1890/15-1085
10.1007/s00253-018-8950-4
10.1007/s00572-007-0147-0
10.1111/j.1600-0587.2010.06953.x
10.1186/1471-2105-10-421
10.1111/nph.14695
10.1126/science.aad4228
10.1111/mec.14414
10.1093/bioinformatics/btr507
10.1126/sciadv.aax8787
10.1016/j.ecolmodel.2006.02.015
10.1111/nph.16377
10.1126/science.1160662
10.1016/j.csda.2012.01.026
10.1038/ismej.2017.153
10.1111/j.1469-8137.2010.03480.x
10.1016/j.mimet.2010.05.001
10.1007/978-3-319-56363-3_7
10.1007/s13225-018-0401-0
10.1093/jxb/erp144
10.1111/j.1469-8137.2007.02191.x
10.1016/j.soilbio.2016.03.003
10.1016/j.funeco.2016.07.005
10.1126/science.1256688
10.1111/1755-0998.12252
10.7717/peerj.2584
10.1111/nph.16423
10.1111/avsc.12193
10.1007/s00572-017-0791-y
10.1111/1365-2745.12919
10.1038/ismej.2009.122
10.1111/j.1365-2699.2006.01584.x
10.1038/s41396-018-0314-7
10.1046/j.0028-646X.2001.00312.x
10.1139/x00-090
10.1093/femsec/fiy179
10.1111/gcb.14131
10.1111/mec.12451
10.1111/j.1466-8238.2012.00792.x
10.1111/geb.12375
10.1038/s41396-018-0196-8
10.1111/j.1469-8137.2010.03550.x
ContentType Journal Article
Copyright 2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright
Copyright_xml – notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
– notice: Copyright
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
ADTPV
AOWAS
DOI 10.1111/nph.17240
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SwePub Articles
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


PubMed


CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
Ecology
EISSN 1469-8137
EndPage 776
ExternalDocumentID oai_slubar_slu_se_111234
oai_HAL_hal_03616517v1
33507570
10_1111_nph_17240
NPH17240
27050127
Genre article
Journal Article
GrantInformation_xml – fundername: Qatar Petroleum
  funderid: QUEX‐CAS‐QP‐RD‐18/19
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: Discovery Grant
– fundername: Vetenskapsrådet
  funderid: 2017‐05019
– fundername: Russian Science Foundation
  funderid: 19‐14‐00038
– fundername: Lomonosov Moscow State University
  funderid: АААА‐А16‐116021660039‐1
– fundername: Eesti Teadusagentuur
  funderid: MOBERC20; MOBTP 105; PRG 1065; PRG 1170; PRG 1409; PRG352; PRG609
– fundername: European Regional Development Fund
  funderid: Center of Excellence EcolChange
– fundername: Tartu Ülikool
  funderid: PLTOM20903
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2016/25197‐0
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: Discovery Grant
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2016/25197-0
– fundername: Eesti Teadusagentuur
  grantid: MOBTP 105
– fundername: Eesti Teadusagentuur
  grantid: PRG352
– fundername: Eesti Teadusagentuur
  grantid: PRG 1409
– fundername: Eesti Teadusagentuur
  grantid: MOBERC20
– fundername: Eesti Teadusagentuur
  grantid: PRG 1065
– fundername: Tartu Ülikool
  grantid: PLTOM20903
– fundername: Eesti Teadusagentuur
  grantid: PRG 1170
– fundername: Lomonosov Moscow State University
  grantid: АААА-А16-116021660039-1
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
ADTPV
AOWAS
ID FETCH-LOGICAL-c5160-935e4446214f190d3e146affa27dd0f74fbf58b90dfde590e98393e358aafceb3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 06:24:08 EDT 2025
Fri Aug 01 06:21:22 EDT 2025
Fri Jul 11 18:33:34 EDT 2025
Thu Jul 10 20:09:43 EDT 2025
Sat Aug 23 12:47:20 EDT 2025
Mon Jul 21 05:36:57 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Tue Jul 01 02:28:37 EDT 2025
Wed Jan 22 16:28:43 EST 2025
Thu Jul 03 21:34:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords molecular taxa
arbuscular mycorrhizal fungi
niche optimum
niche width
pH
temperature
phylogenetic correlation
ecological niche
Temperature
température du sol
Arbuscular mycorrhizal fungi
Gigasporaceae
Niche width
Acaulosporaceae
Niche optimum
Glomeraceae
champignon du sol
facteurs abiotiques
mycorhize arbusculaire
phytoécologie
pH de la rhizosphère
Ecological niche
Niche écologique
PH
phylogénie
Molecular taxa
Phylogenetic correlation
Language English
License 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5160-935e4446214f190d3e146affa27dd0f74fbf58b90dfde590e98393e358aafceb3
Notes 231
These authors contributed equally to this work.
508–511
Kivlin
,
See also the Commentary on this article by
et al.
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1476-1567
0000-0003-3963-752X
0000-0002-2299-454X
0000-0002-7288-2271
0000-0003-1512-0956
0000-0001-6286-7484
0000-0002-4930-3112
0000-0002-0161-6195
0000-0003-2942-3640
0000-0002-5874-0138
0000-0001-5084-850X
0000-0002-4110-1516
0000-0002-3985-2310
0000-0003-2467-9719
0000-0002-1824-7453
0000-0002-4674-932X
0000-0003-0317-8886
0000-0003-3002-8672
0000-0002-0395-4980
0000-0001-9754-4087
0000-0001-6196-3562
0000-0003-2338-4564
0000-0001-6317-3767
0000-0002-5457-2376
0000-0002-3989-6401
0000-0002-8716-976X
0000-0001-9115-3026
0000-0001-8397-6292
0000-0003-2906-4609
0000-0003-1441-8283
0000-0002-4343-5288
0000-0002-3337-0310
0000-0002-1635-1249
0000-0002-8931-7041
0000-0002-4445-0500
0000-0001-8025-7460
0000-0002-3078-2192
0000-0003-3998-5540
0000-0001-8022-1855
0000-0002-4819-7506
0000-0002-6687-0274
0000-0001-7957-6704
0000-0002-5670-7780
0000-0002-6950-7286
0000-0002-5331-6346
0000-0002-9539-3307
0000-0002-5171-1668
0000-0001-9262-5873
0000-0002-9658-1166
0000-0003-2340-6989
0000-0003-2215-7298
0000-0001-6108-5720
0000-0002-3376-9372
0000-0002-1626-1171
OpenAccessLink https://u-picardie.hal.science/hal-03616517
PMID 33507570
PQID 2540697831
PQPubID 2026848
PageCount 14
ParticipantIDs swepub_primary_oai_slubar_slu_se_111234
hal_primary_oai_HAL_hal_03616517v1
proquest_miscellaneous_2636434732
proquest_miscellaneous_2482674480
proquest_journals_2540697831
pubmed_primary_33507570
crossref_citationtrail_10_1111_nph_17240
crossref_primary_10_1111_nph_17240
wiley_primary_10_1111_nph_17240_NPH17240
jstor_primary_27050127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2018; 560
1991; 18
1995; 73
2017; 4
2010; 13
2000; 135
2002; 153
2010; 107
2013; 22
2006; 33
2019; 10
2019; 13
2013; 368
2010; 188
2009; 276
2019; 16
2015; 349
2011; 190
2020; 367
2016; 103
2013; 7
1993; 124
2012; 56
2014; 23
2014; 204
2020; 6
2009; 10
2018; 1
2007; 176
1967; 101
2014; 14
2020; 47
2012; 29
2008; 65
1982
2011; 27
2010; 4
2016; 351
2009; 18
2007; 18
2010; 33
2018; 220
2018; 28
2014; 92
2016; 19
2018; 106
2017; 26
1990; 39
2010
2009; 60
2017; 27
2018; 102
2020; 226
2006; 196
2009
2016; 97
2020; 228
2020; 227
2008; 11
2016; 92
2007; 95
2008; 322
2015; 205
2019; 107
2011; 38
2017; 213
2017; 216
2010; 82
2018; 24
2016; 4
2015; 24
2010; 42
2007; 316
2006; 87
1984; 76
2011; 92
2000; 30
2016; 20
2019
2008; 89
2018; 90
2011; 43
2017
2018; 94
2005; 93
2007; 85
2018; 12
2011; 189
2016; 24
2014; 346
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
Tibbett M (e_1_2_7_84_1) 2007; 85
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
Ellenberg H (e_1_2_7_24_1) 1991; 18
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Tilman D (e_1_2_7_85_1) 1982
Gittleman JL (e_1_2_7_32_1) 1990; 39
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
Smith SE (e_1_2_7_78_1) 2010
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
García de León D (e_1_2_7_29_1) 2016; 92
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 188
  start-page: 223
  year: 2010
  end-page: 241
  article-title: The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)
  publication-title: New Phytologist
– volume: 76
  start-page: 115
  year: 1984
  end-page: 124
  article-title: Effect of liming on spore germination, germ tube growth and root colonization by vesicular‐arbuscular mycorrhizal fungi
  publication-title: Plant and Soil
– volume: 13
  start-page: 1330
  year: 2019
  end-page: 1344
  article-title: Are drivers of root‐associated fungal community structure context specific?
  publication-title: ISME Journal
– volume: 204
  start-page: 171
  year: 2014
  end-page: 179
  article-title: Where the wild things are: looking for uncultured Glomeromycota
  publication-title: New Phytologist
– volume: 1
  start-page: 116
  year: 2018
  article-title: Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism
  publication-title: Communications Biology
– volume: 4
  start-page: 170122
  year: 2017
  article-title: Climatologies at high resolution for the earth’s land surface areas
  publication-title: Scientific Data
– volume: 226
  start-page: 1117
  year: 2020
  end-page: 1128
  article-title: Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities
  publication-title: New Phytologist
– volume: 189
  start-page: 366
  year: 2011
  end-page: 370
  article-title: Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 213
  start-page: 996
  year: 2017
  end-page: 999
  article-title: Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes
  publication-title: New Phytologist
– volume: 19
  start-page: 7
  year: 2016
  end-page: 19
  article-title: Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal
  publication-title: Applied Vegetation Science
– volume: 16
  start-page: 2857
  year: 2019
  end-page: 2871
  article-title: Global soil–climate–biome diagram: linking surface soil properties to climate and biota
  publication-title: Biogeosciences
– volume: 10
  start-page: 421
  year: 2009
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
– volume: 18
  start-page: 1
  year: 1991
  end-page: 248
  article-title: Zeigerwerte von Pfanzen in Mitteleuropa
  publication-title: Scripta Geobotanika
– volume: 24
  start-page: 2649
  year: 2018
  end-page: 2659
  article-title: Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities
  publication-title: Global Change Biology
– volume: 101
  start-page: 377
  year: 1967
  end-page: 385
  article-title: The limiting similarity, convergence, and divergence of coexisting species
  publication-title: American Naturalist
– volume: 220
  start-page: 1262
  year: 2018
  end-page: 1272
  article-title: Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands
  publication-title: New Phytologist
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 349
  start-page: 970
  year: 2015
  end-page: 973
  article-title: Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism
  publication-title: Science
– volume: 90
  start-page: 135
  year: 2018
  end-page: 159
  article-title: High‐level classification of the Fungi and a tool for evolutionary ecological analyses
  publication-title: Fungal Diversity
– volume: 189
  start-page: 507
  year: 2011
  end-page: 514
  article-title: Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins
  publication-title: New Phytologist
– volume: 26
  start-page: 6960
  year: 2017
  end-page: 6973
  article-title: Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales
  publication-title: Molecular Ecology
– volume: 22
  start-page: 213
  year: 2013
  end-page: 222
  article-title: Specialists leave fewer descendants within a region than generalists
  publication-title: Global Ecology and Biogeography
– year: 2019
– volume: 92
  start-page: 1292
  year: 2011
  end-page: 1302
  article-title: Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park
  publication-title: Ecology
– volume: 351
  start-page: 826
  year: 2016
  article-title: Response to Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”
  publication-title: Science
– volume: 560
  start-page: 233
  year: 2018
  end-page: 237
  article-title: Structure and function of the global topsoil microbiome
  publication-title: Nature
– volume: 14
  start-page: 1032
  year: 2014
  end-page: 1048
  article-title: Tissue storage and primer selection influence pyrosequencing‐based inferences of diversity and community composition of endolichenic and endophytic fungi
  publication-title: Molecular Ecology Resources
– volume: 13
  start-page: 873
  year: 2019
  end-page: 884
  article-title: Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi
  publication-title: ISME Journal
– volume: 23
  start-page: 1584
  year: 2014
  end-page: 1593
  article-title: Intense competition between arbuscular mycorrhizal mutualists in an root microbiome negatively affects total fungal abundance
  publication-title: Molecular Ecology
– volume: 102
  start-page: 4331
  year: 2018
  end-page: 4338
  article-title: Drivers of microbial community structure in forest soils
  publication-title: Applied Microbiology and Biotechnology
– volume: 27
  start-page: 761
  year: 2017
  end-page: 773
  article-title: Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi
  publication-title: Mycorrhiza
– year: 2010
– volume: 205
  start-page: 1577
  year: 2015
  end-page: 1586
  article-title: Land‐use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants
  publication-title: New Phytologist
– volume: 135
  start-page: 147
  year: 2000
  end-page: 186
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecological Modelling
– volume: 42
  start-page: 724
  year: 2010
  end-page: 738
  article-title: Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities
  publication-title: Soil Biology and Biochemistry
– volume: 30
  start-page: 1543
  year: 2000
  end-page: 1554
  article-title: Soil pH‐induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests
  publication-title: Canadian Journal of Forest Research
– volume: 190
  start-page: 794
  year: 2011
  end-page: 804
  article-title: Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing
  publication-title: New Phytologist
– volume: 220
  start-page: 1248
  year: 2018
  end-page: 1261
  article-title: Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root‐associated soil of a wild perennial herb
  publication-title: New Phytologist
– volume: 33
  start-page: 1677
  year: 2006
  end-page: 1688
  article-title: Five (or so) challenges for species distribution modelling
  publication-title: Journal of Biogeography
– volume: 82
  start-page: 124
  year: 2010
  end-page: 130
  article-title: Differential effect of sample preservation methods on plant and arbuscular mycorrhizal fungal DNA
  publication-title: Journal of Microbiological Methods
– volume: 95
  start-page: 623
  year: 2007
  end-page: 630
  article-title: Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community
  publication-title: Journal of Ecology
– volume: 47
  start-page: 1994
  year: 2020
  end-page: 2001
  article-title: Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits
  publication-title: Journal of Biogeography
– volume: 92
  start-page: 135
  year: 2014
  end-page: 147
  article-title: DNA‐based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences
  publication-title: Botany‐Botanique
– volume: 93
  start-page: 231
  year: 2005
  end-page: 243
  article-title: Darkness visible: reflections on underground ecology
  publication-title: Journal of Ecology
– year: 2009
– volume: 227
  start-page: 10
  year: 2020
  end-page: 13
  article-title: Neighbours of arbuscular‐mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands
  publication-title: New Phytologist
– volume: 18
  start-page: 1
  year: 2007
  end-page: 14
  article-title: The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment
  publication-title: Mycorrhiza
– volume: 107
  start-page: 2093
  year: 2010
  end-page: 2098
  article-title: Resource limitation is a driver of local adaptation in mycorrhizal symbioses
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 65
  start-page: 339
  year: 2008
  end-page: 349
  article-title: Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi
  publication-title: FEMS Microbiology and Ecology
– volume: 33
  start-page: 985
  year: 2010
  end-page: 989
  article-title: New trends in species distribution modelling
  publication-title: Ecography
– volume: 20
  start-page: 233
  year: 2016
  end-page: 240
  article-title: Host plant quality mediates competition between arbuscular mycorrhizal fungi
  publication-title: Fungal Ecology
– volume: 276
  start-page: 4237
  year: 2009
  end-page: 4245
  article-title: Phylogenetic trait conservatism and the evolution of functional trade‐offs in arbuscular mycorrhizal fungi
  publication-title: Proceedings of the Royal Society of London B
– volume: 60
  start-page: 2465
  year: 2009
  end-page: 2480
  article-title: Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota)
  publication-title: Journal of Experimental Botany
– year: 1982
– volume: 106
  start-page: 480
  year: 2018
  end-page: 489
  article-title: Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait‐based predictive framework
  publication-title: Journal of Ecology
– volume: 92
  start-page: fiw073
  year: 2016
  article-title: Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two continents
  publication-title: FEMS Microbiology Ecology
– volume: 18
  start-page: 4316
  year: 2009
  end-page: 4329
  article-title: Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus suggests a recent range expansion which may have coincided with the spread of agriculture
  publication-title: Molecular Ecology
– volume: 4
  year: 2016
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
– volume: 4
  start-page: 337
  year: 2010
  end-page: 345
  article-title: Relative roles of niche and neutral processes in structuring a soil microbial community
  publication-title: ISME Journal
– volume: 6
  start-page: eaax8787
  year: 2020
  article-title: The global‐scale distributions of soil protists and their contributions to belowground systems
  publication-title: Science Advances
– volume: 124
  start-page: 465
  year: 1993
  end-page: 472
  article-title: Effects of pH on arbuscular mycorrhiza I. Field observations on the long‐term liming experiments at Rothamsted and Woburn
  publication-title: New Phytologist
– volume: 351
  start-page: 826
  year: 2016
  article-title: Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”
  publication-title: Science
– volume: 368
  start-page: 507
  year: 2013
  end-page: 518
  article-title: Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families
  publication-title: Plant and Soil
– volume: 38
  start-page: 1305
  year: 2011
  end-page: 1317
  article-title: Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental‐scale study using massively parallel 454 sequencing
  publication-title: Journal of Biogeography
– volume: 10
  start-page: 131
  year: 2009
  end-page: 140
  article-title: Can root‐feeders alter the composition of AMF communities? Experimental evidence from the dune grass
  publication-title: Basic and Applied Ecology
– volume: 12
  start-page: 2211
  year: 2018
  end-page: 2224
  article-title: Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root‐symbiotic fungal communities
  publication-title: ISME Journal
– volume: 85
  start-page: 51
  year: 2007
  end-page: 62
  article-title: The cooler side of mycorrhizas: their occurrence and functioning at low temperatures
  publication-title: Botany‐Botanique
– volume: 103
  start-page: 464
  year: 2016
  end-page: 470
  article-title: Indicator species and co‐occurrence in communities of arbuscular mycorrhizal fungi at the European scale
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 5142
  year: 2019
  article-title: A meta‐analysis of global fungal distribution reveals climate‐driven patterns
  publication-title: Nature Communications
– volume: 176
  start-page: 22
  year: 2007
  end-page: 36
  article-title: The mycorrhiza helper bacteria revisited
  publication-title: New Phytologist
– volume: 43
  start-page: 2294
  year: 2011
  end-page: 2303
  article-title: Global diversity and distribution of arbuscular mycorrhizal fungi
  publication-title: Soil Biology and Biochemistry
– volume: 24
  start-page: 106
  year: 2016
  end-page: 113
  article-title: Uniting species‐and community‐oriented approaches to understand arbuscular mycorrhizal fungal diversity
  publication-title: Fungal Ecology
– volume: 97
  start-page: 605
  year: 2016
  end-page: 614
  article-title: Belowground interactions with aboveground consequences: invasive earthworms and arbuscular mycorrhizal fungi
  publication-title: Ecology
– volume: 13
  start-page: 1310
  year: 2010
  end-page: 1324
  article-title: Niche conservatism as an emerging principle in ecology and conservation biology
  publication-title: Ecology Letters
– volume: 7
  start-page: 498
  year: 2013
  end-page: 508
  article-title: The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale
  publication-title: ISME Journal
– volume: 322
  start-page: 580
  year: 2008
  end-page: 582
  article-title: Functional traits and niche‐based tree community assembly in an Amazonian forest
  publication-title: Science
– volume: 24
  start-page: 1401
  year: 2015
  end-page: 1412
  article-title: Disjunct populations of European vascular plant species keep the same climatic niches
  publication-title: Global Ecology and Biogeography
– volume: 107
  start-page: 684
  year: 2019
  end-page: 695
  article-title: Biogeographical constraints in Glomeromycotinan distribution across forest habitats in China
  publication-title: Journal of Ecology
– volume: 216
  start-page: 227
  year: 2017
  end-page: 238
  article-title: Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– start-page: 143
  year: 2017
  end-page: 158
– volume: 367
  start-page: 6480
  year: 2020
  article-title: How mycorrhizal associations drive plant population and community biology
  publication-title: Science
– volume: 346
  start-page: 1256688
  year: 2014
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
– volume: 89
  start-page: 2623
  year: 2008
  end-page: 2632
  article-title: Forward selection of explanatory variables
  publication-title: Ecology
– volume: 196
  start-page: 483
  year: 2006
  end-page: 493
  article-title: Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM)
  publication-title: Ecological Modelling
– volume: 39
  start-page: 227
  year: 1990
  end-page: 241
  article-title: Adaptation: statistics and a null model for estimating phylogenetic effects
  publication-title: Systematic Biology
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 106
  start-page: 254
  year: 2018
  end-page: 264
  article-title: Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis
  publication-title: Journal of Ecology
– volume: 87
  start-page: 1399
  year: 2006
  end-page: 1410
  article-title: Coexistence of the niche and neutral perspectives in community ecology
  publication-title: Ecology
– volume: 29
  start-page: 1969
  year: 2012
  end-page: 1973
  article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7
  publication-title: Molecular Biology and Evolution
– volume: 28
  start-page: 587
  year: 2018
  end-page: 603
  article-title: Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns
  publication-title: Mycorrhiza
– volume: 56
  start-page: 2404
  year: 2012
  end-page: 2409
  article-title: On quantile quantile plots for generalized linear models
  publication-title: Computational Statistics and Data Analysis
– volume: 94
  start-page: p.fiy179
  year: 2018
  article-title: Arbuscular mycorrhizal fungal communities and global change: an uncertain future
  publication-title: FEMS Microbiology Ecology
– volume: 228
  start-page: 238
  year: 2020
  end-page: 252
  article-title: Trait‐based aerial dispersal of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 92
  start-page: p.fiw097
  year: 2016
  article-title: Symbiont dynamics during ecosystem succession: co‐occurring plant and arbuscular mycorrhizal fungal communities.
  publication-title: Ecology
– volume: 153
  start-page: 335
  year: 2002
  end-page: 344
  article-title: Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 73
  start-page: 25
  year: 1995
  end-page: 32
  article-title: Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes)
  publication-title: Canadian Journal of Botany
– volume: 316
  start-page: 1746
  year: 2007
  end-page: 1748
  article-title: Influence of phylogeny on fungal community assembly and ecosystem functioning
  publication-title: Science
– volume: 97
  start-page: 63
  year: 2016
  end-page: 70
  article-title: Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 17
  year: 2018
  end-page: 30
  article-title: A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus
  publication-title: ISME Journal
– ident: e_1_2_7_53_1
  doi: 10.1890/10-1516.1
– ident: e_1_2_7_58_1
  doi: 10.1111/j.1365-2699.2011.02478.x
– ident: e_1_2_7_57_1
  doi: 10.1126/science.1143082
– ident: e_1_2_7_93_1
  doi: 10.1111/1365-2745.13060
– ident: e_1_2_7_26_1
  doi: 10.1111/j.0022-0477.2005.00990.x
– ident: e_1_2_7_60_1
  doi: 10.1016/j.soilbio.2010.01.006
– ident: e_1_2_7_97_1
  doi: 10.1111/j.1461-0248.2010.01515.x
– ident: e_1_2_7_3_1
  doi: 10.1038/s41396-019-0350-y
– ident: e_1_2_7_42_1
  doi: 10.1038/s42003-018-0120-9
– ident: e_1_2_7_37_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_7_92_1
  doi: 10.1007/s11104-012-1531-x
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.0906710107
– ident: e_1_2_7_98_1
  doi: 10.1111/nph.14409
– ident: e_1_2_7_66_1
  doi: 10.1139/cjb-2013-0110
– volume: 39
  start-page: 227
  year: 1990
  ident: e_1_2_7_32_1
  article-title: Adaptation: statistics and a null model for estimating phylogenetic effects
  publication-title: Systematic Biology
– ident: e_1_2_7_59_1
  doi: 10.1139/b95-221
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1365-294X.2009.04359.x
– ident: e_1_2_7_71_1
  doi: 10.1098/rspb.2009.1015
– ident: e_1_2_7_89_1
  doi: 10.1111/nph.13236
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1574-6941.2008.00531.x
– volume: 92
  start-page: p.fiw097
  year: 2016
  ident: e_1_2_7_29_1
  article-title: Symbiont dynamics during ecosystem succession: co‐occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiolgy
  publication-title: Ecology
– ident: e_1_2_7_99_1
  doi: 10.5194/bg-16-2857-2019
– ident: e_1_2_7_46_1
  doi: 10.1016/j.soilbio.2011.07.012
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aab1161
– ident: e_1_2_7_31_1
  doi: 10.1111/1365-2745.12873
– ident: e_1_2_7_72_1
  doi: 10.1111/nph.15088
– ident: e_1_2_7_35_1
  doi: 10.1890/06-0539
– ident: e_1_2_7_49_1
  doi: 10.1016/j.funeco.2014.09.011
– ident: e_1_2_7_95_1
  doi: 10.1111/j.1469-8137.1993.tb03837.x
– ident: e_1_2_7_13_1
  doi: 10.1111/nph.16667
– ident: e_1_2_7_30_1
  doi: 10.1093/femsec/fiw073
– volume: 85
  start-page: 51
  year: 2007
  ident: e_1_2_7_84_1
  article-title: The cooler side of mycorrhizas: their occurrence and functioning at low temperatures
  publication-title: Botany‐Botanique
– ident: e_1_2_7_77_1
  doi: 10.1007/BF02205572
– ident: e_1_2_7_10_1
  doi: 10.1016/j.soilbio.2016.09.022
– ident: e_1_2_7_90_1
  doi: 10.1111/nph.14947
– ident: e_1_2_7_9_1
  doi: 10.1890/07-0986.1
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1469-8137.2010.03636.x
– ident: e_1_2_7_44_1
  doi: 10.1038/sdata.2017.122
– ident: e_1_2_7_38_1
  doi: 10.1038/ismej.2012.127
– ident: e_1_2_7_94_1
  doi: 10.1038/s41467-019-13164-8
– ident: e_1_2_7_52_1
  doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
– ident: e_1_2_7_73_1
  doi: 10.1016/j.baae.2008.01.004
– ident: e_1_2_7_45_1
  doi: 10.1111/jbi.13866
– ident: e_1_2_7_82_1
  doi: 10.1126/science.aba1223
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2745.2007.01239.x
– ident: e_1_2_7_65_1
  doi: 10.1126/science.aad5495
– ident: e_1_2_7_55_1
  doi: 10.1086/282505
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1469-8137.2010.03334.x
– ident: e_1_2_7_21_1
  doi: 10.1093/molbev/mss075
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-018-0386-6
– ident: e_1_2_7_61_1
  doi: 10.1111/nph.12894
– ident: e_1_2_7_79_1
  doi: 10.1007/s00572-018-0864-6
– ident: e_1_2_7_70_1
  doi: 10.1890/15-1085
– ident: e_1_2_7_54_1
  doi: 10.1007/s00253-018-8950-4
– ident: e_1_2_7_80_1
  doi: 10.1007/s00572-007-0147-0
– ident: e_1_2_7_100_1
  doi: 10.1111/j.1600-0587.2010.06953.x
– ident: e_1_2_7_12_1
  doi: 10.1186/1471-2105-10-421
– ident: e_1_2_7_69_1
  doi: 10.1111/nph.14695
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aad4228
– ident: e_1_2_7_33_1
  doi: 10.1111/mec.14414
– ident: e_1_2_7_56_1
  doi: 10.1093/bioinformatics/btr507
– ident: e_1_2_7_63_1
  doi: 10.1126/sciadv.aax8787
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ecolmodel.2006.02.015
– ident: e_1_2_7_34_1
  doi: 10.1111/nph.16377
– volume: 18
  start-page: 1
  year: 1991
  ident: e_1_2_7_24_1
  article-title: Zeigerwerte von Pfanzen in Mitteleuropa
  publication-title: Scripta Geobotanika
– ident: e_1_2_7_50_1
  doi: 10.1126/science.1160662
– ident: e_1_2_7_6_1
  doi: 10.1016/j.csda.2012.01.026
– ident: e_1_2_7_76_1
  doi: 10.1038/ismej.2017.153
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1469-8137.2010.03480.x
– ident: e_1_2_7_8_1
  doi: 10.1016/j.mimet.2010.05.001
– volume-title: Mycorrhizal symbiosis
  year: 2010
  ident: e_1_2_7_78_1
– ident: e_1_2_7_47_1
  doi: 10.1007/978-3-319-56363-3_7
– ident: e_1_2_7_83_1
  doi: 10.1007/s13225-018-0401-0
– ident: e_1_2_7_40_1
  doi: 10.1093/jxb/erp144
– ident: e_1_2_7_62_1
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1469-8137.2007.02191.x
– ident: e_1_2_7_17_1
  doi: 10.1016/j.soilbio.2016.03.003
– ident: e_1_2_7_64_1
  doi: 10.1016/j.funeco.2016.07.005
– ident: e_1_2_7_81_1
  doi: 10.1126/science.1256688
– ident: e_1_2_7_88_1
  doi: 10.1111/1755-0998.12252
– ident: e_1_2_7_74_1
  doi: 10.7717/peerj.2584
– ident: e_1_2_7_16_1
  doi: 10.1111/nph.16423
– ident: e_1_2_7_86_1
  doi: 10.1111/avsc.12193
– ident: e_1_2_7_91_1
  doi: 10.1007/s00572-017-0791-y
– ident: e_1_2_7_87_1
  doi: 10.1111/1365-2745.12919
– ident: e_1_2_7_23_1
  doi: 10.1038/ismej.2009.122
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-2699.2006.01584.x
– ident: e_1_2_7_2_1
  doi: 10.1038/s41396-018-0314-7
– volume-title: Resource competition and community structure
  year: 1982
  ident: e_1_2_7_85_1
– ident: e_1_2_7_36_1
  doi: 10.1046/j.0028-646X.2001.00312.x
– ident: e_1_2_7_15_1
  doi: 10.1139/x00-090
– ident: e_1_2_7_14_1
  doi: 10.1093/femsec/fiy179
– ident: e_1_2_7_28_1
  doi: 10.1111/gcb.14131
– ident: e_1_2_7_25_1
  doi: 10.1111/mec.12451
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1466-8238.2012.00792.x
– ident: e_1_2_7_96_1
  doi: 10.1111/geb.12375
– ident: e_1_2_7_19_1
  doi: 10.1038/s41396-018-0196-8
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1469-8137.2010.03550.x
SSID ssj0009562
Score 2.6506982
Snippet The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the...
Summary The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the...
SourceID swepub
hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 763
SubjectTerms Abundance
Acaulosporaceae
Agricultural sciences
arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
Biodiversity and Ecology
Botanics
Dispersal
Ecological distribution
Ecological function
ecological niche
Ecological niches
Ecology
Ecology, environment
Ecosystems
Ekologi
Environmental Sciences
Fungi
Gigasporaceae
Glomeraceae
Life Sciences
Low temperature
Microorganisms
molecular taxa
niche optimum
niche width
Niches
pH effects
phylogenetic correlation
Phylogeny
Relative abundance
Soil
Soil study
Taxa
temperature
Vegetal Biology
vesicular arbuscular mycorrhizae
Title Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi
URI https://www.jstor.org/stable/27050127
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17240
https://www.ncbi.nlm.nih.gov/pubmed/33507570
https://www.proquest.com/docview/2540697831
https://www.proquest.com/docview/2482674480
https://www.proquest.com/docview/2636434732
https://u-picardie.hal.science/hal-03616517
https://res.slu.se/id/publ/111234
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9q8cEXrR_VaJVVBH3JkexXcvhUxRJEi5QW7kEIm-yOd_SaOy53QvvXdyZf9KSK-JSQnU2yuzM7v9lMfsvYWwER7V-uQpfSahUqVZgqB6G3IKSJpLCeAsVvxyY7U18merLDPvT_wrT8EMOCG1lGM1-TgduivmHk1XI6Qu-rKF6nXC0CRCfiBuGuET0Ds1Fm0rEKURbPUHPLF92ZUiZkm5R4G9wcuES3YWzjh44esB99C9r0k_PRZl2MyqvfyB3_s4l77H6HT_lhq1AP2Y6vHrG7HxeIIS8fs5NTjzC7pWHmtnJ8mXHnAR_EEUhyBKDzWe0dryjBlONkVXq-AG5x6NqEV35xieHuajq7woegT_05e8LOjj6ffsrCbleGsNSxicKx1F5hECliBYgmnPQ42VoAKxLnIkgUFKDTAkvAeT2O_BgxmPRSp9ZCibH7PtutFpV_xnjqnTClFSAB8IaugDR1khh7QGorioC978cnLzvKcto5Y573oQv2UN70UMDeDKLLlqfjViEc5KGcmLWzw685XUNHHhsdJ7_igO03OjCIiSTS9IE-YAe9UuSdodc5xteRoeUzrPd6KEYTpe8utvKLDcoojOESjIOjv8gYidhQJVIE7GmrcMMLSImgXSdY-12rgVstqOebwq7okNeeGiykwo5r9OrPXZEff8-ak-f_LvqC3ROU0dMkKx-w3fVq418iJFsXrxrbuwZFdS-L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61BQkuvAuBAgaB4LLRxvY-cuBQKNWWphGqUim3xbu2m6hhE2UTUPqb-Cv8J2b2pQYVxKUHThutZx-2Z-xvnG8_A7zi1qX9y6WjQ1qtQqdyQqmtY5TlwncFV4YSxaO-H53IT0NvuAE_6m9hSn2IZsGNIqMYrynAaUH6QpRns1Ebp1_pVpTKQ7P6jglb_u5gD3v3Nef7HwcfIqfaU8BJvY7vOl3hGYkpEO9Ii3OhFgaHCmWt4oHWrg2kTawXJlhitfG6rukighBGeKFSNsXME--7CddoB3FS6t875hckfn1eaz770h9WOkbEG2pedW322xwR97KkQV4GcBv10nXgXMx8-7fhZ91mJeHlrL1cJO30_Dc5yf-lUe_ArQqCs90yZu7ChsnuwfX3U4TJq_twPDCYSZRK00xlms0ipo3FmjHEygwx9mScG80y4tAyHI9Tw6aWKfTOktPLvq4wo5-Pxuf4EIQNp-MHcHIl9dmGrWyamUfAQqO5nypuhbV4Q53YMNSCRIms8BRPWvC2dog4rVTZaXOQSVxnZ9gjcdEjLXjZmM5KKZJLjdCrmnISD492ezGdQ6zSQbcNvnVasF04XWPGA9cjDkILdmovjKuxLI-5R19HB6HA6140xTgK0V9LKjPTJdpITFMDTPXdv9j4AuGvDARvwcPSw5sXEALzEi_Aq9-ULr9Wg3yyTNScDnFuqMJcSGy4wpH_3BRx_3NU_Hj876bP4UY0OOrFvYP-4RO4yYnAVHCzd2BrMV-ap4hAF8mzIvAZfLnqoPgFRuyOqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BSEuvAuGAgsCwcWRvQ_bOXAohMilJaqqVsrNrL27TdTgRHECSv8Sf4UfxaxfalBBXHrglCg7fuzuzOw3zudvAV5R49n9y7mrIvu0Cp3KjbgyrpaGssBjVGpbKH4eBPEJ_zQUww340bwLU-lDtA_cbGSU-doG-EyZC0Gez0YdXH25VzMq9_XqO9Zrxbu9Hk7ua0r7H48_xG69pYCbCT_w3C4TmmMFRH1ucClUTGOmkMZIGirlmZCb1IgoxRajtOh6uosAgmkmIilNhoUnnncTrvHA69p9InpH9ILCb0AbyeeAB8NaxsjShtpbXVv8NkeWelmxIC_Dt6146TpuLhe-_m342QxZxXc56ywXaSc7_01N8j8Z0ztwqwbgZLeKmLuwofN7cP39FEHy6j4cHWusIyqdaSJzRWYxUdpgxwgiZYIIezIutCK5ZdASzMaZJlNDJPpmxeglX1dYz89H43O8CIKG0_EDOLmS_mzDVj7N9SMgkVY0yCQ1zBg8oUpNFClmJYkME5KmDrxt_CHJak12uzXIJGlqM5yRpJwRB162prNKiORSI3Sqtt1Kh8e7B4n9DZGKHwg__OY7sF36XGtGQ09YBoIDO40TJnUmKxIq7LvRYcTwuBdtM-Yg-8eSzPV0iTYci9QQC33vLzYBQ_DLQ0YdeFg5eHsDjGFVIkI8-k3l8Ws9KCbLVM7tR1Jo22HKOA5c6cd_HopkcBiXXx7_u-lzuHHY6ycHe4P9J3CTWvZSSczega3FfKmfIvxcpM_KsCfw5apj4hf-8I1X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+and+pH+define+the+realised+niche+space+of+arbuscular+mycorrhizal+fungi&rft.jtitle=The+New+phytologist&rft.au=Davison%2C+John&rft.au=Moora%2C+Mari&rft.au=Semchenko%2C+Marina&rft.au=Adenan%2C+Sakeenah+Binte&rft.date=2021-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=2&rft.spage=763&rft.epage=776&rft_id=info:doi/10.1111%2Fnph.17240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon