Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelle...
Saved in:
Published in | The New phytologist Vol. 231; no. 2; pp. 763 - 776 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.07.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood.
We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups).
We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions.
Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. |
---|---|
AbstractList | The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. Summary The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. See also the Commentary on this article by Kivlin et al., 231: 508–511. The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. See also the Commentary on this article by Kivlin et al. , 231 : 508–511 . The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide. |
Author | Brown, Charlotte Peña-Venegas, Clara P. Andriyanova, Elena Alatalo, Juha M. Püssa, Kersti Pärtel, Meelis Dudov, Sergey Hozzein, Wael N. Oja, Jane Laanisto, Lauri Glassman, Sydney I. Batbaatar, Amgaa Adenan, Sakeenah Binte Hérault, Bruno Kõljalg, Urmas Fedosov, Vladimir E. Coelho, Ana P. Semboli, Olivia Põlme, Sergei Akhmetzhanova, Asem A. Paz, Claudia Coghill, Matthew Vahter, Tanel Mucina, Ladislav Helm, Aveliina Casper, Brenda B. Tedersoo, Leho Al-Quraishy, Saleh Kohout, Petr Fabiano, Ezequiel Chimbioputo Phosri, Cherdchai Saitta, Alessandro Seregin, Alexey Anslan, Sten Zobel, Martin Semchenko, Marina Henry, Hugh A. L. Davison, John Vasar, Martti Decocq, Guillaume Bahram, Mohammad Niinemets, Ülo Koorem, Kadri Öpik, Maarja Mander, Ülo Ronk, Argo Munyampundu, Jean-Pierre Fraser, Lauchlan Cherosov, Mikhail Ahmed, Talaat Bueno, C. Guillermo Hiiesalu, Indrek Neuenkamp, Lena Onipchenko, Vladimir Sepp, Siim Kaarel Veraart, Annelies J. Hiiesalu, Inga Sudheer, Surya Moora, Mari Chideh, Saida Cantero, Juan José Cahill, James Nyamukondiwa, Casper |
Author_xml | – sequence: 1 givenname: John surname: Davison fullname: Davison, John – sequence: 2 givenname: Mari surname: Moora fullname: Moora, Mari – sequence: 3 givenname: Marina surname: Semchenko fullname: Semchenko, Marina – sequence: 4 givenname: Sakeenah Binte surname: Adenan fullname: Adenan, Sakeenah Binte – sequence: 5 givenname: Talaat surname: Ahmed fullname: Ahmed, Talaat – sequence: 6 givenname: Asem A. surname: Akhmetzhanova fullname: Akhmetzhanova, Asem A. – sequence: 7 givenname: Juha M. surname: Alatalo fullname: Alatalo, Juha M. – sequence: 8 givenname: Saleh surname: Al-Quraishy fullname: Al-Quraishy, Saleh – sequence: 9 givenname: Elena surname: Andriyanova fullname: Andriyanova, Elena – sequence: 10 givenname: Sten surname: Anslan fullname: Anslan, Sten – sequence: 11 givenname: Mohammad surname: Bahram fullname: Bahram, Mohammad – sequence: 12 givenname: Amgaa surname: Batbaatar fullname: Batbaatar, Amgaa – sequence: 13 givenname: Charlotte surname: Brown fullname: Brown, Charlotte – sequence: 14 givenname: C. Guillermo surname: Bueno fullname: Bueno, C. Guillermo – sequence: 15 givenname: James surname: Cahill fullname: Cahill, James – sequence: 16 givenname: Juan José surname: Cantero fullname: Cantero, Juan José – sequence: 17 givenname: Brenda B. surname: Casper fullname: Casper, Brenda B. – sequence: 18 givenname: Mikhail surname: Cherosov fullname: Cherosov, Mikhail – sequence: 19 givenname: Saida surname: Chideh fullname: Chideh, Saida – sequence: 20 givenname: Ana P. surname: Coelho fullname: Coelho, Ana P. – sequence: 21 givenname: Matthew surname: Coghill fullname: Coghill, Matthew – sequence: 22 givenname: Guillaume surname: Decocq fullname: Decocq, Guillaume – sequence: 23 givenname: Sergey surname: Dudov fullname: Dudov, Sergey – sequence: 24 givenname: Ezequiel Chimbioputo surname: Fabiano fullname: Fabiano, Ezequiel Chimbioputo – sequence: 25 givenname: Vladimir E. surname: Fedosov fullname: Fedosov, Vladimir E. – sequence: 26 givenname: Lauchlan surname: Fraser fullname: Fraser, Lauchlan – sequence: 27 givenname: Sydney I. surname: Glassman fullname: Glassman, Sydney I. – sequence: 28 givenname: Aveliina surname: Helm fullname: Helm, Aveliina – sequence: 29 givenname: Hugh A. L. surname: Henry fullname: Henry, Hugh A. L. – sequence: 30 givenname: Bruno surname: Hérault fullname: Hérault, Bruno – sequence: 31 givenname: Indrek surname: Hiiesalu fullname: Hiiesalu, Indrek – sequence: 32 givenname: Inga surname: Hiiesalu fullname: Hiiesalu, Inga – sequence: 33 givenname: Wael N. surname: Hozzein fullname: Hozzein, Wael N. – sequence: 34 givenname: Petr surname: Kohout fullname: Kohout, Petr – sequence: 35 givenname: Urmas surname: Kõljalg fullname: Kõljalg, Urmas – sequence: 36 givenname: Kadri surname: Koorem fullname: Koorem, Kadri – sequence: 37 givenname: Lauri surname: Laanisto fullname: Laanisto, Lauri – sequence: 38 givenname: Ülo surname: Mander fullname: Mander, Ülo – sequence: 39 givenname: Ladislav surname: Mucina fullname: Mucina, Ladislav – sequence: 40 givenname: Jean-Pierre surname: Munyampundu fullname: Munyampundu, Jean-Pierre – sequence: 41 givenname: Lena surname: Neuenkamp fullname: Neuenkamp, Lena – sequence: 42 givenname: Ülo surname: Niinemets fullname: Niinemets, Ülo – sequence: 43 givenname: Casper surname: Nyamukondiwa fullname: Nyamukondiwa, Casper – sequence: 44 givenname: Jane surname: Oja fullname: Oja, Jane – sequence: 45 givenname: Vladimir surname: Onipchenko fullname: Onipchenko, Vladimir – sequence: 46 givenname: Meelis surname: Pärtel fullname: Pärtel, Meelis – sequence: 47 givenname: Cherdchai surname: Phosri fullname: Phosri, Cherdchai – sequence: 48 givenname: Sergei surname: Põlme fullname: Põlme, Sergei – sequence: 49 givenname: Kersti surname: Püssa fullname: Püssa, Kersti – sequence: 50 givenname: Argo surname: Ronk fullname: Ronk, Argo – sequence: 51 givenname: Alessandro surname: Saitta fullname: Saitta, Alessandro – sequence: 52 givenname: Olivia surname: Semboli fullname: Semboli, Olivia – sequence: 53 givenname: Siim Kaarel surname: Sepp fullname: Sepp, Siim Kaarel – sequence: 54 givenname: Alexey surname: Seregin fullname: Seregin, Alexey – sequence: 55 givenname: Surya surname: Sudheer fullname: Sudheer, Surya – sequence: 56 givenname: Clara P. surname: Peña-Venegas fullname: Peña-Venegas, Clara P. – sequence: 57 givenname: Claudia surname: Paz fullname: Paz, Claudia – sequence: 58 givenname: Tanel surname: Vahter fullname: Vahter, Tanel – sequence: 59 givenname: Martti surname: Vasar fullname: Vasar, Martti – sequence: 60 givenname: Annelies J. surname: Veraart fullname: Veraart, Annelies J. – sequence: 61 givenname: Leho surname: Tedersoo fullname: Tedersoo, Leho – sequence: 62 givenname: Martin surname: Zobel fullname: Zobel, Martin – sequence: 63 givenname: Maarja surname: Öpik fullname: Öpik, Maarja |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33507570$$D View this record in MEDLINE/PubMed https://u-picardie.hal.science/hal-03616517$$DView record in HAL https://res.slu.se/id/publ/111234$$DView record from Swedish Publication Index |
BookMark | eNqFkk2LFDEQhoOsuLOrB3-A0rAXPfRsvtN9XBZ1hEFFVvAW0t0VJ0N_mXRcxl9vxp4ZURRzKZI875uqSl2gs37oAaGnBC9JWtf9uFkSRTl-gBaEyzIvCFNnaIExLXLJ5edzdBHCFmNcCkkfoXPGBFZC4QX6eAfdCN5M0UNm-iYbV1kD1vWQTRvIPJjWBWiy3tVpG0ZTQzbYzPgqhjq2xmfdrh6837jvps1s7L-4x-ihNW2AJ4d4iT69fnV3u8rX79-8vb1Z57UgEuclE8A5l5RwS0rcMEipG2sNVU2DreK2sqKo0o1tQJQYyoKVDJgojLE1VOwSLWffcA9jrPToXWf8Tg_G6dDGyvh90AF06hFlPAlezoKNaX-jVzdrvT_DTBIpiPpGEvtiZkc_fI0QJt25UEPbmh6GGDSVTHLGFaP_R3lBpeK8wAm9-gPdDtH3qUuaCo5lqQq2f_v5gYpVB80p1eOvJeB6Bmo_hODB6tpNZnJDP3njWk3wvmSi01zon3Pxq_ST4mj6N_bgfu9a2P0b1O8-rI6KZ7NiG6bBnxRUYYEJVewHKS3Oxw |
CitedBy_id | crossref_primary_10_1128_msystems_01331_23 crossref_primary_10_1111_ele_14327 crossref_primary_10_5424_fs_2022311_18557 crossref_primary_10_1146_annurev_arplant_102820_124504 crossref_primary_10_1038_s41564_023_01514_8 crossref_primary_10_1094_PHYTOFR_03_24_0023_R crossref_primary_10_3389_fmicb_2025_1511979 crossref_primary_10_3389_fpls_2023_1260286 crossref_primary_10_1016_j_still_2023_105715 crossref_primary_10_1016_j_celrep_2024_114046 crossref_primary_10_1111_1365_2745_14151 crossref_primary_10_1111_geb_13704 crossref_primary_10_1111_nph_19474 crossref_primary_10_1111_ele_13886 crossref_primary_10_1016_j_ufug_2023_127916 crossref_primary_10_1111_aec_13451 crossref_primary_10_1007_s00248_024_02374_3 crossref_primary_10_3389_fpls_2022_1017847 crossref_primary_10_1016_j_ecolind_2022_108686 crossref_primary_10_1016_j_apsoil_2022_104602 crossref_primary_10_7717_peerj_14651 crossref_primary_10_1002_ece3_70597 crossref_primary_10_1016_j_actao_2024_104000 crossref_primary_10_1016_j_crmicr_2021_100062 crossref_primary_10_3390_microorganisms11112615 crossref_primary_10_3390_stresses3020030 crossref_primary_10_1111_nph_18308 crossref_primary_10_1016_j_rhisph_2024_100945 crossref_primary_10_1128_spectrum_01489_22 crossref_primary_10_3389_fmicb_2024_1470137 crossref_primary_10_1126_sciadv_adf8998 crossref_primary_10_3390_agronomy14081823 crossref_primary_10_1016_j_pedobi_2024_150934 crossref_primary_10_5194_soil_10_425_2024 crossref_primary_10_3389_fmicb_2023_1109128 crossref_primary_10_1016_j_actao_2024_104054 crossref_primary_10_1007_s42729_024_01617_z crossref_primary_10_1111_jbi_14376 crossref_primary_10_3390_f14010114 crossref_primary_10_1111_ele_14309 crossref_primary_10_1038_s41579_023_00876_4 crossref_primary_10_1007_s00572_022_01072_7 crossref_primary_10_1186_s13717_023_00417_0 crossref_primary_10_1007_s00572_023_01111_x crossref_primary_10_1111_nph_18005 crossref_primary_10_1007_s13225_024_00540_z crossref_primary_10_3390_microorganisms10112137 crossref_primary_10_1007_s00572_021_01057_y crossref_primary_10_1007_s00572_025_01182_y crossref_primary_10_1016_j_pedobi_2023_150908 crossref_primary_10_1186_s40793_024_00583_4 crossref_primary_10_3390_jof7060412 crossref_primary_10_1111_geb_13487 crossref_primary_10_1016_j_scitotenv_2022_158941 crossref_primary_10_1111_gcb_16398 crossref_primary_10_1134_S1064229322100155 crossref_primary_10_1093_aob_mcad050 crossref_primary_10_3390_agriculture11040361 crossref_primary_10_3389_fpls_2022_1068527 crossref_primary_10_1111_nph_17780 crossref_primary_10_1111_nph_17781 crossref_primary_10_3390_agronomy14081687 crossref_primary_10_1002_ecs2_4702 crossref_primary_10_3389_fpls_2022_964941 crossref_primary_10_3390_microorganisms9112193 crossref_primary_10_3832_ifor4324_016 crossref_primary_10_1186_s40793_023_00498_6 crossref_primary_10_3390_jof10100720 crossref_primary_10_1016_j_tim_2023_05_008 crossref_primary_10_1111_nph_19283 crossref_primary_10_1016_j_apsoil_2022_104759 crossref_primary_10_1007_s11557_021_01699_4 crossref_primary_10_1016_j_scitotenv_2023_168907 crossref_primary_10_3390_f15030396 crossref_primary_10_1007_s00572_021_01066_x crossref_primary_10_1080_01904167_2024_2414752 crossref_primary_10_1002_ecy_3761 crossref_primary_10_1016_j_rhisph_2023_100754 crossref_primary_10_3390_jof9101032 crossref_primary_10_1111_nph_18516 crossref_primary_10_1038_s41559_023_02149_y crossref_primary_10_3390_soilsystems8030094 crossref_primary_10_1007_s12355_024_01500_2 crossref_primary_10_1111_nph_17373 crossref_primary_10_1111_nph_18102 crossref_primary_10_1146_annurev_environ_112621_090937 crossref_primary_10_1111_nph_18342 crossref_primary_10_14720_aas_2022_118_3_2419 crossref_primary_10_3390_jof10010011 crossref_primary_10_1038_s41467_023_44172_4 crossref_primary_10_1007_s11104_023_06250_w crossref_primary_10_1016_j_apsoil_2024_105618 crossref_primary_10_1080_13416979_2024_2390273 crossref_primary_10_1016_j_scitotenv_2024_177592 crossref_primary_10_1111_nph_17372 crossref_primary_10_1093_femsec_fiad092 crossref_primary_10_1002_ldr_5268 crossref_primary_10_1007_s00248_021_01779_8 crossref_primary_10_1111_jbi_14986 crossref_primary_10_1016_j_yofte_2021_102734 crossref_primary_10_1007_s00572_024_01149_5 crossref_primary_10_1038_s41564_022_01228_3 crossref_primary_10_1007_s42832_023_0224_0 crossref_primary_10_1016_j_jenvman_2024_123933 crossref_primary_10_1016_j_scitotenv_2024_170775 crossref_primary_10_3390_d16020097 crossref_primary_10_3390_agronomy11122468 crossref_primary_10_1007_s13225_021_00493_7 crossref_primary_10_1007_s00248_024_02449_1 crossref_primary_10_1016_j_micres_2023_127371 crossref_primary_10_1016_j_soilbio_2022_108673 crossref_primary_10_1093_treephys_tpad064 crossref_primary_10_1002_ecy_70011 crossref_primary_10_1590_2179_8087_floram_2021_0013 crossref_primary_10_1111_1365_2435_14395 crossref_primary_10_1016_j_tree_2023_04_015 crossref_primary_10_1093_femsec_fiad108 crossref_primary_10_1111_gcb_15945 crossref_primary_10_1094_PBIOMES_03_22_0014_R crossref_primary_10_1016_j_geoderma_2024_116786 crossref_primary_10_3390_f16010024 crossref_primary_10_1007_s10342_024_01745_2 crossref_primary_10_3389_fevo_2023_1192267 crossref_primary_10_1111_geb_13607 crossref_primary_10_1111_nph_19493 crossref_primary_10_1111_rec_14008 crossref_primary_10_22207_JPAM_18_3_37 crossref_primary_10_3390_horticulturae10121326 crossref_primary_10_1002_sae2_12055 crossref_primary_10_1007_s00572_024_01160_w crossref_primary_10_1111_ecog_07048 crossref_primary_10_3389_fmicb_2024_1347704 crossref_primary_10_1007_s00572_025_01187_7 crossref_primary_10_1007_s13225_023_00532_5 crossref_primary_10_1126_sciadv_adj8016 crossref_primary_10_1016_j_mib_2022_102205 crossref_primary_10_1007_s00572_022_01093_2 crossref_primary_10_1038_s41559_022_01799_8 crossref_primary_10_3390_d15091006 crossref_primary_10_3390_microorganisms10122406 |
Cites_doi | 10.1890/10-1516.1 10.1111/j.1365-2699.2011.02478.x 10.1126/science.1143082 10.1111/1365-2745.13060 10.1111/j.0022-0477.2005.00990.x 10.1016/j.soilbio.2010.01.006 10.1111/j.1461-0248.2010.01515.x 10.1038/s41396-019-0350-y 10.1038/s42003-018-0120-9 10.1007/978-0-387-84858-7 10.1007/s11104-012-1531-x 10.1073/pnas.0906710107 10.1111/nph.14409 10.1139/cjb-2013-0110 10.1139/b95-221 10.1111/j.1461-0248.2007.01139.x 10.1111/j.1365-294X.2009.04359.x 10.1098/rspb.2009.1015 10.1111/nph.13236 10.1111/j.1574-6941.2008.00531.x 10.5194/bg-16-2857-2019 10.1016/j.soilbio.2011.07.012 10.1126/science.aab1161 10.1111/1365-2745.12873 10.1111/nph.15088 10.1890/06-0539 10.1016/j.funeco.2014.09.011 10.1111/j.1469-8137.1993.tb03837.x 10.1111/nph.16667 10.1093/femsec/fiw073 10.1007/BF02205572 10.1016/j.soilbio.2016.09.022 10.1111/nph.14947 10.1890/07-0986.1 10.1111/j.1469-8137.2010.03636.x 10.1038/sdata.2017.122 10.1038/ismej.2012.127 10.1038/s41467-019-13164-8 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2 10.1016/j.baae.2008.01.004 10.1111/jbi.13866 10.1126/science.aba1223 10.1111/j.1365-2745.2007.01239.x 10.1126/science.aad5495 10.1086/282505 10.1111/j.1469-8137.2010.03334.x 10.1093/molbev/mss075 10.1038/s41586-018-0386-6 10.1111/nph.12894 10.1007/s00572-018-0864-6 10.1890/15-1085 10.1007/s00253-018-8950-4 10.1007/s00572-007-0147-0 10.1111/j.1600-0587.2010.06953.x 10.1186/1471-2105-10-421 10.1111/nph.14695 10.1126/science.aad4228 10.1111/mec.14414 10.1093/bioinformatics/btr507 10.1126/sciadv.aax8787 10.1016/j.ecolmodel.2006.02.015 10.1111/nph.16377 10.1126/science.1160662 10.1016/j.csda.2012.01.026 10.1038/ismej.2017.153 10.1111/j.1469-8137.2010.03480.x 10.1016/j.mimet.2010.05.001 10.1007/978-3-319-56363-3_7 10.1007/s13225-018-0401-0 10.1093/jxb/erp144 10.1111/j.1469-8137.2007.02191.x 10.1016/j.soilbio.2016.03.003 10.1016/j.funeco.2016.07.005 10.1126/science.1256688 10.1111/1755-0998.12252 10.7717/peerj.2584 10.1111/nph.16423 10.1111/avsc.12193 10.1007/s00572-017-0791-y 10.1111/1365-2745.12919 10.1038/ismej.2009.122 10.1111/j.1365-2699.2006.01584.x 10.1038/s41396-018-0314-7 10.1046/j.0028-646X.2001.00312.x 10.1139/x00-090 10.1093/femsec/fiy179 10.1111/gcb.14131 10.1111/mec.12451 10.1111/j.1466-8238.2012.00792.x 10.1111/geb.12375 10.1038/s41396-018-0196-8 10.1111/j.1469-8137.2010.03550.x |
ContentType | Journal Article |
Copyright | 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust Copyright |
Copyright_xml | – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust – notice: Copyright |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES ADTPV AOWAS |
DOI | 10.1111/nph.17240 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SwePub Articles |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Environmental Sciences Ecology |
EISSN | 1469-8137 |
EndPage | 776 |
ExternalDocumentID | oai_slubar_slu_se_111234 oai_HAL_hal_03616517v1 33507570 10_1111_nph_17240 NPH17240 27050127 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Qatar Petroleum funderid: QUEX‐CAS‐QP‐RD‐18/19 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: Discovery Grant – fundername: Vetenskapsrådet funderid: 2017‐05019 – fundername: Russian Science Foundation funderid: 19‐14‐00038 – fundername: Lomonosov Moscow State University funderid: АААА‐А16‐116021660039‐1 – fundername: Eesti Teadusagentuur funderid: MOBERC20; MOBTP 105; PRG 1065; PRG 1170; PRG 1409; PRG352; PRG609 – fundername: European Regional Development Fund funderid: Center of Excellence EcolChange – fundername: Tartu Ülikool funderid: PLTOM20903 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2016/25197‐0 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: Discovery Grant – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2016/25197-0 – fundername: Eesti Teadusagentuur grantid: MOBTP 105 – fundername: Eesti Teadusagentuur grantid: PRG352 – fundername: Eesti Teadusagentuur grantid: PRG 1409 – fundername: Eesti Teadusagentuur grantid: MOBERC20 – fundername: Eesti Teadusagentuur grantid: PRG 1065 – fundername: Tartu Ülikool grantid: PLTOM20903 – fundername: Eesti Teadusagentuur grantid: PRG 1170 – fundername: Lomonosov Moscow State University grantid: АААА-А16-116021660039-1 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES ADTPV AOWAS |
ID | FETCH-LOGICAL-c5160-935e4446214f190d3e146affa27dd0f74fbf58b90dfde590e98393e358aafceb3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 06:24:08 EDT 2025 Fri Aug 01 06:21:22 EDT 2025 Fri Jul 11 18:33:34 EDT 2025 Thu Jul 10 20:09:43 EDT 2025 Sat Aug 23 12:47:20 EDT 2025 Mon Jul 21 05:36:57 EDT 2025 Thu Apr 24 22:59:02 EDT 2025 Tue Jul 01 02:28:37 EDT 2025 Wed Jan 22 16:28:43 EST 2025 Thu Jul 03 21:34:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | molecular taxa arbuscular mycorrhizal fungi niche optimum niche width pH temperature phylogenetic correlation ecological niche Temperature température du sol Arbuscular mycorrhizal fungi Gigasporaceae Niche width Acaulosporaceae Niche optimum Glomeraceae champignon du sol facteurs abiotiques mycorhize arbusculaire phytoécologie pH de la rhizosphère Ecological niche Niche écologique PH phylogénie Molecular taxa Phylogenetic correlation |
Language | English |
License | 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5160-935e4446214f190d3e146affa27dd0f74fbf58b90dfde590e98393e358aafceb3 |
Notes | 231 These authors contributed equally to this work. 508–511 Kivlin , See also the Commentary on this article by et al. . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1476-1567 0000-0003-3963-752X 0000-0002-2299-454X 0000-0002-7288-2271 0000-0003-1512-0956 0000-0001-6286-7484 0000-0002-4930-3112 0000-0002-0161-6195 0000-0003-2942-3640 0000-0002-5874-0138 0000-0001-5084-850X 0000-0002-4110-1516 0000-0002-3985-2310 0000-0003-2467-9719 0000-0002-1824-7453 0000-0002-4674-932X 0000-0003-0317-8886 0000-0003-3002-8672 0000-0002-0395-4980 0000-0001-9754-4087 0000-0001-6196-3562 0000-0003-2338-4564 0000-0001-6317-3767 0000-0002-5457-2376 0000-0002-3989-6401 0000-0002-8716-976X 0000-0001-9115-3026 0000-0001-8397-6292 0000-0003-2906-4609 0000-0003-1441-8283 0000-0002-4343-5288 0000-0002-3337-0310 0000-0002-1635-1249 0000-0002-8931-7041 0000-0002-4445-0500 0000-0001-8025-7460 0000-0002-3078-2192 0000-0003-3998-5540 0000-0001-8022-1855 0000-0002-4819-7506 0000-0002-6687-0274 0000-0001-7957-6704 0000-0002-5670-7780 0000-0002-6950-7286 0000-0002-5331-6346 0000-0002-9539-3307 0000-0002-5171-1668 0000-0001-9262-5873 0000-0002-9658-1166 0000-0003-2340-6989 0000-0003-2215-7298 0000-0001-6108-5720 0000-0002-3376-9372 0000-0002-1626-1171 |
OpenAccessLink | https://u-picardie.hal.science/hal-03616517 |
PMID | 33507570 |
PQID | 2540697831 |
PQPubID | 2026848 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_111234 hal_primary_oai_HAL_hal_03616517v1 proquest_miscellaneous_2636434732 proquest_miscellaneous_2482674480 proquest_journals_2540697831 pubmed_primary_33507570 crossref_citationtrail_10_1111_nph_17240 crossref_primary_10_1111_nph_17240 wiley_primary_10_1111_nph_17240_NPH17240 jstor_primary_27050127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2018; 560 1991; 18 1995; 73 2017; 4 2010; 13 2000; 135 2002; 153 2010; 107 2013; 22 2006; 33 2019; 10 2019; 13 2013; 368 2010; 188 2009; 276 2019; 16 2015; 349 2011; 190 2020; 367 2016; 103 2013; 7 1993; 124 2012; 56 2014; 23 2014; 204 2020; 6 2009; 10 2018; 1 2007; 176 1967; 101 2014; 14 2020; 47 2012; 29 2008; 65 1982 2011; 27 2010; 4 2016; 351 2009; 18 2007; 18 2010; 33 2018; 220 2018; 28 2014; 92 2016; 19 2018; 106 2017; 26 1990; 39 2010 2009; 60 2017; 27 2018; 102 2020; 226 2006; 196 2009 2016; 97 2020; 228 2020; 227 2008; 11 2016; 92 2007; 95 2008; 322 2015; 205 2019; 107 2011; 38 2017; 213 2017; 216 2010; 82 2018; 24 2016; 4 2015; 24 2010; 42 2007; 316 2006; 87 1984; 76 2011; 92 2000; 30 2016; 20 2019 2008; 89 2018; 90 2011; 43 2017 2018; 94 2005; 93 2007; 85 2018; 12 2011; 189 2016; 24 2014; 346 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 Tibbett M (e_1_2_7_84_1) 2007; 85 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 Ellenberg H (e_1_2_7_24_1) 1991; 18 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 Tilman D (e_1_2_7_85_1) 1982 Gittleman JL (e_1_2_7_32_1) 1990; 39 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 Smith SE (e_1_2_7_78_1) 2010 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 García de León D (e_1_2_7_29_1) 2016; 92 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 188 start-page: 223 year: 2010 end-page: 241 article-title: The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota) publication-title: New Phytologist – volume: 76 start-page: 115 year: 1984 end-page: 124 article-title: Effect of liming on spore germination, germ tube growth and root colonization by vesicular‐arbuscular mycorrhizal fungi publication-title: Plant and Soil – volume: 13 start-page: 1330 year: 2019 end-page: 1344 article-title: Are drivers of root‐associated fungal community structure context specific? publication-title: ISME Journal – volume: 204 start-page: 171 year: 2014 end-page: 179 article-title: Where the wild things are: looking for uncultured Glomeromycota publication-title: New Phytologist – volume: 1 start-page: 116 year: 2018 article-title: Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism publication-title: Communications Biology – volume: 4 start-page: 170122 year: 2017 article-title: Climatologies at high resolution for the earth’s land surface areas publication-title: Scientific Data – volume: 226 start-page: 1117 year: 2020 end-page: 1128 article-title: Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities publication-title: New Phytologist – volume: 189 start-page: 366 year: 2011 end-page: 370 article-title: Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis publication-title: New Phytologist – volume: 213 start-page: 996 year: 2017 end-page: 999 article-title: Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes publication-title: New Phytologist – volume: 19 start-page: 7 year: 2016 end-page: 19 article-title: Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal publication-title: Applied Vegetation Science – volume: 16 start-page: 2857 year: 2019 end-page: 2871 article-title: Global soil–climate–biome diagram: linking surface soil properties to climate and biota publication-title: Biogeosciences – volume: 10 start-page: 421 year: 2009 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics – volume: 18 start-page: 1 year: 1991 end-page: 248 article-title: Zeigerwerte von Pfanzen in Mitteleuropa publication-title: Scripta Geobotanika – volume: 24 start-page: 2649 year: 2018 end-page: 2659 article-title: Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities publication-title: Global Change Biology – volume: 101 start-page: 377 year: 1967 end-page: 385 article-title: The limiting similarity, convergence, and divergence of coexisting species publication-title: American Naturalist – volume: 220 start-page: 1262 year: 2018 end-page: 1272 article-title: Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands publication-title: New Phytologist – volume: 27 start-page: 2957 year: 2011 end-page: 2963 article-title: FLASH: fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 349 start-page: 970 year: 2015 end-page: 973 article-title: Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism publication-title: Science – volume: 90 start-page: 135 year: 2018 end-page: 159 article-title: High‐level classification of the Fungi and a tool for evolutionary ecological analyses publication-title: Fungal Diversity – volume: 189 start-page: 507 year: 2011 end-page: 514 article-title: Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins publication-title: New Phytologist – volume: 26 start-page: 6960 year: 2017 end-page: 6973 article-title: Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales publication-title: Molecular Ecology – volume: 22 start-page: 213 year: 2013 end-page: 222 article-title: Specialists leave fewer descendants within a region than generalists publication-title: Global Ecology and Biogeography – year: 2019 – volume: 92 start-page: 1292 year: 2011 end-page: 1302 article-title: Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park publication-title: Ecology – volume: 351 start-page: 826 year: 2016 article-title: Response to Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism” publication-title: Science – volume: 560 start-page: 233 year: 2018 end-page: 237 article-title: Structure and function of the global topsoil microbiome publication-title: Nature – volume: 14 start-page: 1032 year: 2014 end-page: 1048 article-title: Tissue storage and primer selection influence pyrosequencing‐based inferences of diversity and community composition of endolichenic and endophytic fungi publication-title: Molecular Ecology Resources – volume: 13 start-page: 873 year: 2019 end-page: 884 article-title: Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi publication-title: ISME Journal – volume: 23 start-page: 1584 year: 2014 end-page: 1593 article-title: Intense competition between arbuscular mycorrhizal mutualists in an root microbiome negatively affects total fungal abundance publication-title: Molecular Ecology – volume: 102 start-page: 4331 year: 2018 end-page: 4338 article-title: Drivers of microbial community structure in forest soils publication-title: Applied Microbiology and Biotechnology – volume: 27 start-page: 761 year: 2017 end-page: 773 article-title: Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi publication-title: Mycorrhiza – year: 2010 – volume: 205 start-page: 1577 year: 2015 end-page: 1586 article-title: Land‐use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants publication-title: New Phytologist – volume: 135 start-page: 147 year: 2000 end-page: 186 article-title: Predictive habitat distribution models in ecology publication-title: Ecological Modelling – volume: 42 start-page: 724 year: 2010 end-page: 738 article-title: Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities publication-title: Soil Biology and Biochemistry – volume: 30 start-page: 1543 year: 2000 end-page: 1554 article-title: Soil pH‐induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests publication-title: Canadian Journal of Forest Research – volume: 190 start-page: 794 year: 2011 end-page: 804 article-title: Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing publication-title: New Phytologist – volume: 220 start-page: 1248 year: 2018 end-page: 1261 article-title: Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root‐associated soil of a wild perennial herb publication-title: New Phytologist – volume: 33 start-page: 1677 year: 2006 end-page: 1688 article-title: Five (or so) challenges for species distribution modelling publication-title: Journal of Biogeography – volume: 82 start-page: 124 year: 2010 end-page: 130 article-title: Differential effect of sample preservation methods on plant and arbuscular mycorrhizal fungal DNA publication-title: Journal of Microbiological Methods – volume: 95 start-page: 623 year: 2007 end-page: 630 article-title: Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community publication-title: Journal of Ecology – volume: 47 start-page: 1994 year: 2020 end-page: 2001 article-title: Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits publication-title: Journal of Biogeography – volume: 92 start-page: 135 year: 2014 end-page: 147 article-title: DNA‐based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences publication-title: Botany‐Botanique – volume: 93 start-page: 231 year: 2005 end-page: 243 article-title: Darkness visible: reflections on underground ecology publication-title: Journal of Ecology – year: 2009 – volume: 227 start-page: 10 year: 2020 end-page: 13 article-title: Neighbours of arbuscular‐mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands publication-title: New Phytologist – volume: 18 start-page: 1 year: 2007 end-page: 14 article-title: The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment publication-title: Mycorrhiza – volume: 107 start-page: 2093 year: 2010 end-page: 2098 article-title: Resource limitation is a driver of local adaptation in mycorrhizal symbioses publication-title: Proceedings of the National Academy of Sciences, USA – volume: 65 start-page: 339 year: 2008 end-page: 349 article-title: Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi publication-title: FEMS Microbiology and Ecology – volume: 33 start-page: 985 year: 2010 end-page: 989 article-title: New trends in species distribution modelling publication-title: Ecography – volume: 20 start-page: 233 year: 2016 end-page: 240 article-title: Host plant quality mediates competition between arbuscular mycorrhizal fungi publication-title: Fungal Ecology – volume: 276 start-page: 4237 year: 2009 end-page: 4245 article-title: Phylogenetic trait conservatism and the evolution of functional trade‐offs in arbuscular mycorrhizal fungi publication-title: Proceedings of the Royal Society of London B – volume: 60 start-page: 2465 year: 2009 end-page: 2480 article-title: Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota) publication-title: Journal of Experimental Botany – year: 1982 – volume: 106 start-page: 480 year: 2018 end-page: 489 article-title: Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait‐based predictive framework publication-title: Journal of Ecology – volume: 92 start-page: fiw073 year: 2016 article-title: Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two continents publication-title: FEMS Microbiology Ecology – volume: 18 start-page: 4316 year: 2009 end-page: 4329 article-title: Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus suggests a recent range expansion which may have coincided with the spread of agriculture publication-title: Molecular Ecology – volume: 4 year: 2016 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ – volume: 4 start-page: 337 year: 2010 end-page: 345 article-title: Relative roles of niche and neutral processes in structuring a soil microbial community publication-title: ISME Journal – volume: 6 start-page: eaax8787 year: 2020 article-title: The global‐scale distributions of soil protists and their contributions to belowground systems publication-title: Science Advances – volume: 124 start-page: 465 year: 1993 end-page: 472 article-title: Effects of pH on arbuscular mycorrhiza I. Field observations on the long‐term liming experiments at Rothamsted and Woburn publication-title: New Phytologist – volume: 351 start-page: 826 year: 2016 article-title: Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism” publication-title: Science – volume: 368 start-page: 507 year: 2013 end-page: 518 article-title: Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families publication-title: Plant and Soil – volume: 38 start-page: 1305 year: 2011 end-page: 1317 article-title: Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental‐scale study using massively parallel 454 sequencing publication-title: Journal of Biogeography – volume: 10 start-page: 131 year: 2009 end-page: 140 article-title: Can root‐feeders alter the composition of AMF communities? Experimental evidence from the dune grass publication-title: Basic and Applied Ecology – volume: 12 start-page: 2211 year: 2018 end-page: 2224 article-title: Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root‐symbiotic fungal communities publication-title: ISME Journal – volume: 85 start-page: 51 year: 2007 end-page: 62 article-title: The cooler side of mycorrhizas: their occurrence and functioning at low temperatures publication-title: Botany‐Botanique – volume: 103 start-page: 464 year: 2016 end-page: 470 article-title: Indicator species and co‐occurrence in communities of arbuscular mycorrhizal fungi at the European scale publication-title: Soil Biology and Biochemistry – volume: 10 start-page: 5142 year: 2019 article-title: A meta‐analysis of global fungal distribution reveals climate‐driven patterns publication-title: Nature Communications – volume: 176 start-page: 22 year: 2007 end-page: 36 article-title: The mycorrhiza helper bacteria revisited publication-title: New Phytologist – volume: 43 start-page: 2294 year: 2011 end-page: 2303 article-title: Global diversity and distribution of arbuscular mycorrhizal fungi publication-title: Soil Biology and Biochemistry – volume: 24 start-page: 106 year: 2016 end-page: 113 article-title: Uniting species‐and community‐oriented approaches to understand arbuscular mycorrhizal fungal diversity publication-title: Fungal Ecology – volume: 97 start-page: 605 year: 2016 end-page: 614 article-title: Belowground interactions with aboveground consequences: invasive earthworms and arbuscular mycorrhizal fungi publication-title: Ecology – volume: 13 start-page: 1310 year: 2010 end-page: 1324 article-title: Niche conservatism as an emerging principle in ecology and conservation biology publication-title: Ecology Letters – volume: 7 start-page: 498 year: 2013 end-page: 508 article-title: The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale publication-title: ISME Journal – volume: 322 start-page: 580 year: 2008 end-page: 582 article-title: Functional traits and niche‐based tree community assembly in an Amazonian forest publication-title: Science – volume: 24 start-page: 1401 year: 2015 end-page: 1412 article-title: Disjunct populations of European vascular plant species keep the same climatic niches publication-title: Global Ecology and Biogeography – volume: 107 start-page: 684 year: 2019 end-page: 695 article-title: Biogeographical constraints in Glomeromycotinan distribution across forest habitats in China publication-title: Journal of Ecology – volume: 216 start-page: 227 year: 2017 end-page: 238 article-title: Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi publication-title: New Phytologist – start-page: 143 year: 2017 end-page: 158 – volume: 367 start-page: 6480 year: 2020 article-title: How mycorrhizal associations drive plant population and community biology publication-title: Science – volume: 346 start-page: 1256688 year: 2014 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 89 start-page: 2623 year: 2008 end-page: 2632 article-title: Forward selection of explanatory variables publication-title: Ecology – volume: 196 start-page: 483 year: 2006 end-page: 493 article-title: Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) publication-title: Ecological Modelling – volume: 39 start-page: 227 year: 1990 end-page: 241 article-title: Adaptation: statistics and a null model for estimating phylogenetic effects publication-title: Systematic Biology – volume: 11 start-page: 296 year: 2008 end-page: 310 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecology Letters – volume: 106 start-page: 254 year: 2018 end-page: 264 article-title: Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis publication-title: Journal of Ecology – volume: 87 start-page: 1399 year: 2006 end-page: 1410 article-title: Coexistence of the niche and neutral perspectives in community ecology publication-title: Ecology – volume: 29 start-page: 1969 year: 2012 end-page: 1973 article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7 publication-title: Molecular Biology and Evolution – volume: 28 start-page: 587 year: 2018 end-page: 603 article-title: Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns publication-title: Mycorrhiza – volume: 56 start-page: 2404 year: 2012 end-page: 2409 article-title: On quantile quantile plots for generalized linear models publication-title: Computational Statistics and Data Analysis – volume: 94 start-page: p.fiy179 year: 2018 article-title: Arbuscular mycorrhizal fungal communities and global change: an uncertain future publication-title: FEMS Microbiology Ecology – volume: 228 start-page: 238 year: 2020 end-page: 252 article-title: Trait‐based aerial dispersal of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 92 start-page: p.fiw097 year: 2016 article-title: Symbiont dynamics during ecosystem succession: co‐occurring plant and arbuscular mycorrhizal fungal communities. publication-title: Ecology – volume: 153 start-page: 335 year: 2002 end-page: 344 article-title: Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 73 start-page: 25 year: 1995 end-page: 32 article-title: Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes) publication-title: Canadian Journal of Botany – volume: 316 start-page: 1746 year: 2007 end-page: 1748 article-title: Influence of phylogeny on fungal community assembly and ecosystem functioning publication-title: Science – volume: 97 start-page: 63 year: 2016 end-page: 70 article-title: Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities publication-title: Soil Biology and Biochemistry – volume: 12 start-page: 17 year: 2018 end-page: 30 article-title: A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus publication-title: ISME Journal – ident: e_1_2_7_53_1 doi: 10.1890/10-1516.1 – ident: e_1_2_7_58_1 doi: 10.1111/j.1365-2699.2011.02478.x – ident: e_1_2_7_57_1 doi: 10.1126/science.1143082 – ident: e_1_2_7_93_1 doi: 10.1111/1365-2745.13060 – ident: e_1_2_7_26_1 doi: 10.1111/j.0022-0477.2005.00990.x – ident: e_1_2_7_60_1 doi: 10.1016/j.soilbio.2010.01.006 – ident: e_1_2_7_97_1 doi: 10.1111/j.1461-0248.2010.01515.x – ident: e_1_2_7_3_1 doi: 10.1038/s41396-019-0350-y – ident: e_1_2_7_42_1 doi: 10.1038/s42003-018-0120-9 – ident: e_1_2_7_37_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_2_7_92_1 doi: 10.1007/s11104-012-1531-x – ident: e_1_2_7_43_1 doi: 10.1073/pnas.0906710107 – ident: e_1_2_7_98_1 doi: 10.1111/nph.14409 – ident: e_1_2_7_66_1 doi: 10.1139/cjb-2013-0110 – volume: 39 start-page: 227 year: 1990 ident: e_1_2_7_32_1 article-title: Adaptation: statistics and a null model for estimating phylogenetic effects publication-title: Systematic Biology – ident: e_1_2_7_59_1 doi: 10.1139/b95-221 – ident: e_1_2_7_39_1 doi: 10.1111/j.1461-0248.2007.01139.x – ident: e_1_2_7_75_1 doi: 10.1111/j.1365-294X.2009.04359.x – ident: e_1_2_7_71_1 doi: 10.1098/rspb.2009.1015 – ident: e_1_2_7_89_1 doi: 10.1111/nph.13236 – ident: e_1_2_7_51_1 doi: 10.1111/j.1574-6941.2008.00531.x – volume: 92 start-page: p.fiw097 year: 2016 ident: e_1_2_7_29_1 article-title: Symbiont dynamics during ecosystem succession: co‐occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiolgy publication-title: Ecology – ident: e_1_2_7_99_1 doi: 10.5194/bg-16-2857-2019 – ident: e_1_2_7_46_1 doi: 10.1016/j.soilbio.2011.07.012 – ident: e_1_2_7_18_1 doi: 10.1126/science.aab1161 – ident: e_1_2_7_31_1 doi: 10.1111/1365-2745.12873 – ident: e_1_2_7_72_1 doi: 10.1111/nph.15088 – ident: e_1_2_7_35_1 doi: 10.1890/06-0539 – ident: e_1_2_7_49_1 doi: 10.1016/j.funeco.2014.09.011 – ident: e_1_2_7_95_1 doi: 10.1111/j.1469-8137.1993.tb03837.x – ident: e_1_2_7_13_1 doi: 10.1111/nph.16667 – ident: e_1_2_7_30_1 doi: 10.1093/femsec/fiw073 – volume: 85 start-page: 51 year: 2007 ident: e_1_2_7_84_1 article-title: The cooler side of mycorrhizas: their occurrence and functioning at low temperatures publication-title: Botany‐Botanique – ident: e_1_2_7_77_1 doi: 10.1007/BF02205572 – ident: e_1_2_7_10_1 doi: 10.1016/j.soilbio.2016.09.022 – ident: e_1_2_7_90_1 doi: 10.1111/nph.14947 – ident: e_1_2_7_9_1 doi: 10.1890/07-0986.1 – ident: e_1_2_7_22_1 doi: 10.1111/j.1469-8137.2010.03636.x – ident: e_1_2_7_44_1 doi: 10.1038/sdata.2017.122 – ident: e_1_2_7_38_1 doi: 10.1038/ismej.2012.127 – ident: e_1_2_7_94_1 doi: 10.1038/s41467-019-13164-8 – ident: e_1_2_7_52_1 doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2 – ident: e_1_2_7_73_1 doi: 10.1016/j.baae.2008.01.004 – ident: e_1_2_7_45_1 doi: 10.1111/jbi.13866 – ident: e_1_2_7_82_1 doi: 10.1126/science.aba1223 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2745.2007.01239.x – ident: e_1_2_7_65_1 doi: 10.1126/science.aad5495 – ident: e_1_2_7_55_1 doi: 10.1086/282505 – ident: e_1_2_7_67_1 doi: 10.1111/j.1469-8137.2010.03334.x – ident: e_1_2_7_21_1 doi: 10.1093/molbev/mss075 – ident: e_1_2_7_7_1 doi: 10.1038/s41586-018-0386-6 – ident: e_1_2_7_61_1 doi: 10.1111/nph.12894 – ident: e_1_2_7_79_1 doi: 10.1007/s00572-018-0864-6 – ident: e_1_2_7_70_1 doi: 10.1890/15-1085 – ident: e_1_2_7_54_1 doi: 10.1007/s00253-018-8950-4 – ident: e_1_2_7_80_1 doi: 10.1007/s00572-007-0147-0 – ident: e_1_2_7_100_1 doi: 10.1111/j.1600-0587.2010.06953.x – ident: e_1_2_7_12_1 doi: 10.1186/1471-2105-10-421 – ident: e_1_2_7_69_1 doi: 10.1111/nph.14695 – ident: e_1_2_7_11_1 doi: 10.1126/science.aad4228 – ident: e_1_2_7_33_1 doi: 10.1111/mec.14414 – ident: e_1_2_7_56_1 doi: 10.1093/bioinformatics/btr507 – ident: e_1_2_7_63_1 doi: 10.1126/sciadv.aax8787 – ident: e_1_2_7_20_1 doi: 10.1016/j.ecolmodel.2006.02.015 – ident: e_1_2_7_34_1 doi: 10.1111/nph.16377 – volume: 18 start-page: 1 year: 1991 ident: e_1_2_7_24_1 article-title: Zeigerwerte von Pfanzen in Mitteleuropa publication-title: Scripta Geobotanika – ident: e_1_2_7_50_1 doi: 10.1126/science.1160662 – ident: e_1_2_7_6_1 doi: 10.1016/j.csda.2012.01.026 – ident: e_1_2_7_76_1 doi: 10.1038/ismej.2017.153 – ident: e_1_2_7_4_1 doi: 10.1111/j.1469-8137.2010.03480.x – ident: e_1_2_7_8_1 doi: 10.1016/j.mimet.2010.05.001 – volume-title: Mycorrhizal symbiosis year: 2010 ident: e_1_2_7_78_1 – ident: e_1_2_7_47_1 doi: 10.1007/978-3-319-56363-3_7 – ident: e_1_2_7_83_1 doi: 10.1007/s13225-018-0401-0 – ident: e_1_2_7_40_1 doi: 10.1093/jxb/erp144 – ident: e_1_2_7_62_1 – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-8137.2007.02191.x – ident: e_1_2_7_17_1 doi: 10.1016/j.soilbio.2016.03.003 – ident: e_1_2_7_64_1 doi: 10.1016/j.funeco.2016.07.005 – ident: e_1_2_7_81_1 doi: 10.1126/science.1256688 – ident: e_1_2_7_88_1 doi: 10.1111/1755-0998.12252 – ident: e_1_2_7_74_1 doi: 10.7717/peerj.2584 – ident: e_1_2_7_16_1 doi: 10.1111/nph.16423 – ident: e_1_2_7_86_1 doi: 10.1111/avsc.12193 – ident: e_1_2_7_91_1 doi: 10.1007/s00572-017-0791-y – ident: e_1_2_7_87_1 doi: 10.1111/1365-2745.12919 – ident: e_1_2_7_23_1 doi: 10.1038/ismej.2009.122 – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-2699.2006.01584.x – ident: e_1_2_7_2_1 doi: 10.1038/s41396-018-0314-7 – volume-title: Resource competition and community structure year: 1982 ident: e_1_2_7_85_1 – ident: e_1_2_7_36_1 doi: 10.1046/j.0028-646X.2001.00312.x – ident: e_1_2_7_15_1 doi: 10.1139/x00-090 – ident: e_1_2_7_14_1 doi: 10.1093/femsec/fiy179 – ident: e_1_2_7_28_1 doi: 10.1111/gcb.14131 – ident: e_1_2_7_25_1 doi: 10.1111/mec.12451 – ident: e_1_2_7_68_1 doi: 10.1111/j.1466-8238.2012.00792.x – ident: e_1_2_7_96_1 doi: 10.1111/geb.12375 – ident: e_1_2_7_19_1 doi: 10.1038/s41396-018-0196-8 – ident: e_1_2_7_48_1 doi: 10.1111/j.1469-8137.2010.03550.x |
SSID | ssj0009562 |
Score | 2.6506982 |
Snippet | The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the... Summary The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the... |
SourceID | swepub hal proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 763 |
SubjectTerms | Abundance Acaulosporaceae Agricultural sciences arbuscular mycorrhizal fungi Arbuscular mycorrhizas Biodiversity and Ecology Botanics Dispersal Ecological distribution Ecological function ecological niche Ecological niches Ecology Ecology, environment Ecosystems Ekologi Environmental Sciences Fungi Gigasporaceae Glomeraceae Life Sciences Low temperature Microorganisms molecular taxa niche optimum niche width Niches pH effects phylogenetic correlation Phylogeny Relative abundance Soil Soil study Taxa temperature Vegetal Biology vesicular arbuscular mycorrhizae |
Title | Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi |
URI | https://www.jstor.org/stable/27050127 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17240 https://www.ncbi.nlm.nih.gov/pubmed/33507570 https://www.proquest.com/docview/2540697831 https://www.proquest.com/docview/2482674480 https://www.proquest.com/docview/2636434732 https://u-picardie.hal.science/hal-03616517 https://res.slu.se/id/publ/111234 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9q8cEXrR_VaJVVBH3JkexXcvhUxRJEi5QW7kEIm-yOd_SaOy53QvvXdyZf9KSK-JSQnU2yuzM7v9lMfsvYWwER7V-uQpfSahUqVZgqB6G3IKSJpLCeAsVvxyY7U18merLDPvT_wrT8EMOCG1lGM1-TgduivmHk1XI6Qu-rKF6nXC0CRCfiBuGuET0Ds1Fm0rEKURbPUHPLF92ZUiZkm5R4G9wcuES3YWzjh44esB99C9r0k_PRZl2MyqvfyB3_s4l77H6HT_lhq1AP2Y6vHrG7HxeIIS8fs5NTjzC7pWHmtnJ8mXHnAR_EEUhyBKDzWe0dryjBlONkVXq-AG5x6NqEV35xieHuajq7woegT_05e8LOjj6ffsrCbleGsNSxicKx1F5hECliBYgmnPQ42VoAKxLnIkgUFKDTAkvAeT2O_BgxmPRSp9ZCibH7PtutFpV_xnjqnTClFSAB8IaugDR1khh7QGorioC978cnLzvKcto5Y573oQv2UN70UMDeDKLLlqfjViEc5KGcmLWzw685XUNHHhsdJ7_igO03OjCIiSTS9IE-YAe9UuSdodc5xteRoeUzrPd6KEYTpe8utvKLDcoojOESjIOjv8gYidhQJVIE7GmrcMMLSImgXSdY-12rgVstqOebwq7okNeeGiykwo5r9OrPXZEff8-ak-f_LvqC3ROU0dMkKx-w3fVq418iJFsXrxrbuwZFdS-L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61BQkuvAuBAgaB4LLRxvY-cuBQKNWWphGqUim3xbu2m6hhE2UTUPqb-Cv8J2b2pQYVxKUHThutZx-2Z-xvnG8_A7zi1qX9y6WjQ1qtQqdyQqmtY5TlwncFV4YSxaO-H53IT0NvuAE_6m9hSn2IZsGNIqMYrynAaUH6QpRns1Ebp1_pVpTKQ7P6jglb_u5gD3v3Nef7HwcfIqfaU8BJvY7vOl3hGYkpEO9Ii3OhFgaHCmWt4oHWrg2kTawXJlhitfG6rukighBGeKFSNsXME--7CddoB3FS6t875hckfn1eaz770h9WOkbEG2pedW322xwR97KkQV4GcBv10nXgXMx8-7fhZ91mJeHlrL1cJO30_Dc5yf-lUe_ArQqCs90yZu7ChsnuwfX3U4TJq_twPDCYSZRK00xlms0ipo3FmjHEygwx9mScG80y4tAyHI9Tw6aWKfTOktPLvq4wo5-Pxuf4EIQNp-MHcHIl9dmGrWyamUfAQqO5nypuhbV4Q53YMNSCRIms8BRPWvC2dog4rVTZaXOQSVxnZ9gjcdEjLXjZmM5KKZJLjdCrmnISD492ezGdQ6zSQbcNvnVasF04XWPGA9cjDkILdmovjKuxLI-5R19HB6HA6140xTgK0V9LKjPTJdpITFMDTPXdv9j4AuGvDARvwcPSw5sXEALzEi_Aq9-ULr9Wg3yyTNScDnFuqMJcSGy4wpH_3BRx_3NU_Hj876bP4UY0OOrFvYP-4RO4yYnAVHCzd2BrMV-ap4hAF8mzIvAZfLnqoPgFRuyOqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BSEuvAuGAgsCwcWRvQ_bOXAohMilJaqqVsrNrL27TdTgRHECSv8Sf4UfxaxfalBBXHrglCg7fuzuzOw3zudvAV5R49n9y7mrIvu0Cp3KjbgyrpaGssBjVGpbKH4eBPEJ_zQUww340bwLU-lDtA_cbGSU-doG-EyZC0Gez0YdXH25VzMq9_XqO9Zrxbu9Hk7ua0r7H48_xG69pYCbCT_w3C4TmmMFRH1ucClUTGOmkMZIGirlmZCb1IgoxRajtOh6uosAgmkmIilNhoUnnncTrvHA69p9InpH9ILCb0AbyeeAB8NaxsjShtpbXVv8NkeWelmxIC_Dt6146TpuLhe-_m342QxZxXc56ywXaSc7_01N8j8Z0ztwqwbgZLeKmLuwofN7cP39FEHy6j4cHWusIyqdaSJzRWYxUdpgxwgiZYIIezIutCK5ZdASzMaZJlNDJPpmxeglX1dYz89H43O8CIKG0_EDOLmS_mzDVj7N9SMgkVY0yCQ1zBg8oUpNFClmJYkME5KmDrxt_CHJak12uzXIJGlqM5yRpJwRB162prNKiORSI3Sqtt1Kh8e7B4n9DZGKHwg__OY7sF36XGtGQ09YBoIDO40TJnUmKxIq7LvRYcTwuBdtM-Yg-8eSzPV0iTYci9QQC33vLzYBQ_DLQ0YdeFg5eHsDjGFVIkI8-k3l8Ws9KCbLVM7tR1Jo22HKOA5c6cd_HopkcBiXXx7_u-lzuHHY6ycHe4P9J3CTWvZSSczega3FfKmfIvxcpM_KsCfw5apj4hf-8I1X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+and+pH+define+the+realised+niche+space+of+arbuscular+mycorrhizal+fungi&rft.jtitle=The+New+phytologist&rft.au=Davison%2C+John&rft.au=Moora%2C+Mari&rft.au=Semchenko%2C+Marina&rft.au=Adenan%2C+Sakeenah+Binte&rft.date=2021-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=2&rft.spage=763&rft.epage=776&rft_id=info:doi/10.1111%2Fnph.17240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |