Recent Progress in Metal‐Free Covalent Organic Frameworks as Heterogeneous Catalysts

Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 24; pp. e2001070 - n/a
Main Authors Zhi, Yongfeng, Wang, Zongrui, Zhang, Hao‐Li, Zhang, Qichun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented. Covalent organic frameworks (COFs) as a new type of organic porous materials have aroused great interest in the field of heterogeneous catalysis. Herein, the applications of metal‐free COFs in organic catalysis, photocatalysis, energy conversion, and pollutant degradation are systematically summarized. In addition, the main challenges in this area and the potential prospects for future work are also discussed.
AbstractList Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented. Covalent organic frameworks (COFs) as a new type of organic porous materials have aroused great interest in the field of heterogeneous catalysis. Herein, the applications of metal‐free COFs in organic catalysis, photocatalysis, energy conversion, and pollutant degradation are systematically summarized. In addition, the main challenges in this area and the potential prospects for future work are also discussed.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.
Author Zhang, Qichun
Zhang, Hao‐Li
Wang, Zongrui
Zhi, Yongfeng
Author_xml – sequence: 1
  givenname: Yongfeng
  surname: Zhi
  fullname: Zhi, Yongfeng
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue
– sequence: 2
  givenname: Zongrui
  surname: Wang
  fullname: Wang, Zongrui
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue
– sequence: 3
  givenname: Hao‐Li
  surname: Zhang
  fullname: Zhang, Hao‐Li
  email: Haoli.zhang@lzu.edu.cn
  organization: Lanzhou University
– sequence: 4
  givenname: Qichun
  orcidid: 0000-0003-1854-8659
  surname: Zhang
  fullname: Zhang, Qichun
  email: qczhang@ntu.edu.sg, qiczhang@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32419332$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhi1ExVd75Vit1AuXpDO2s7s-oqiBSkFUQHtdzXonaKl3DfamKLf-hP7G_pI6DQ0SEurJPjyP_c68h2K39z0LcYwwRgD5MXbOjSVIAIQCdsQB5qhGeSnN7vaOsC8OY7wDUCh1sSf2ldRolJIH4tsVW-6H7Evwt4FjzNo-u-CB3O-fv2aBOZv6H-TWxGW4pb612SxQx48-fI8ZxeycB04q9-yXMZtSMldxiG_FmwW5yO-eziPxdfbpZno-ml-efZ6ezkd2gjmMFFLDFrCsy9qCNo0kNMY0Kpd1oyzShCZlAVSnGcqcF41BZWqCnCwYWWh1JE42794H_7DkOFRdGy07R38DVVKDVkVZakzohxfonV-GPqVLFGqJKi9Vot4_Ucu646a6D21HYVX921gCxhvABh9j4MUWQajWlVTrSqptJUnQLwTbDjS0vh8Cte51zWy0x9bx6j-fVNcX8_mz-wchoaBY
CitedBy_id crossref_primary_10_1039_D3SE00020F
crossref_primary_10_3390_nano12091535
crossref_primary_10_1002_chir_23697
crossref_primary_10_1007_s10562_022_04034_y
crossref_primary_10_1002_smll_202101017
crossref_primary_10_1016_j_colsurfa_2022_128348
crossref_primary_10_1002_anie_202316858
crossref_primary_10_1002_advs_202207507
crossref_primary_10_1007_s40843_024_3255_y
crossref_primary_10_1021_acsomega_1c06838
crossref_primary_10_1039_D3RA08354C
crossref_primary_10_1111_php_13504
crossref_primary_10_1002_smll_202305759
crossref_primary_10_1039_D4YA00082J
crossref_primary_10_1021_acsami_2c14882
crossref_primary_10_1039_D1CE00957E
crossref_primary_10_1002_cctc_202300244
crossref_primary_10_1039_D2GC04771C
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1016_j_talanta_2023_124613
crossref_primary_10_1021_acsaenm_4c00329
crossref_primary_10_1002_anie_202419867
crossref_primary_10_1021_acsapm_1c01020
crossref_primary_10_1007_s10853_021_06069_9
crossref_primary_10_1039_D4QM00439F
crossref_primary_10_1007_s40843_021_1771_5
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_cptc_202100229
crossref_primary_10_1016_j_chempr_2023_03_026
crossref_primary_10_1021_acs_chemrev_1c00905
crossref_primary_10_1002_sstr_202300495
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1002_marc_202100590
crossref_primary_10_1016_j_envres_2022_113977
crossref_primary_10_1016_j_micromeso_2022_112107
crossref_primary_10_1016_j_apsusc_2022_155966
crossref_primary_10_1002_aesr_202200129
crossref_primary_10_1039_D2NJ06101E
crossref_primary_10_1021_acsapm_1c01493
crossref_primary_10_1021_acsanm_4c03284
crossref_primary_10_1039_D2CE01614A
crossref_primary_10_1016_j_mcat_2022_112634
crossref_primary_10_1039_D1TA05428G
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1016_j_polymer_2024_127873
crossref_primary_10_1021_acsanm_4c04370
crossref_primary_10_1021_acssuschemeng_1c04787
crossref_primary_10_1016_j_ica_2022_121287
crossref_primary_10_1021_acsmaterialslett_4c01665
crossref_primary_10_1021_acsami_3c17662
crossref_primary_10_1016_j_enchem_2023_100108
crossref_primary_10_1016_j_trac_2023_117234
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1039_D4TA02594F
crossref_primary_10_1016_j_jphotochem_2022_114502
crossref_primary_10_1021_acs_orglett_1c00175
crossref_primary_10_1039_D0NR05337F
crossref_primary_10_1002_marc_202200393
crossref_primary_10_1016_j_cej_2024_148922
crossref_primary_10_1021_acs_inorgchem_2c01243
crossref_primary_10_1021_acsnano_4c06783
crossref_primary_10_1039_D1MH00809A
crossref_primary_10_1016_j_cej_2024_152293
crossref_primary_10_1002_ejoc_202100173
crossref_primary_10_1002_cssc_202402395
crossref_primary_10_1016_j_cej_2022_138802
crossref_primary_10_1039_D0QO00637H
crossref_primary_10_1002_adfm_202304604
crossref_primary_10_1002_adma_202101175
crossref_primary_10_1039_D1QM00015B
crossref_primary_10_1063_5_0203954
crossref_primary_10_1002_smll_202005686
crossref_primary_10_1038_s41467_022_30035_x
crossref_primary_10_1039_D1OB00137J
crossref_primary_10_2174_0118756298299464240402045438
crossref_primary_10_1246_cl_200834
crossref_primary_10_1002_cssc_202301916
crossref_primary_10_1007_s12200_022_00032_5
crossref_primary_10_1016_j_ccr_2021_214259
crossref_primary_10_1021_acs_chemmater_2c01358
crossref_primary_10_1021_accountsmr_2c00108
crossref_primary_10_1002_ange_202303129
crossref_primary_10_1002_smll_202405396
crossref_primary_10_1016_j_colsurfa_2024_133210
crossref_primary_10_1039_D2DT02056D
crossref_primary_10_1016_j_apcata_2023_119320
crossref_primary_10_1039_D0TA11648C
crossref_primary_10_1002_smll_202005254
crossref_primary_10_1002_smll_202100918
crossref_primary_10_1002_marc_202200778
crossref_primary_10_1039_D3RA05664C
crossref_primary_10_1016_j_mcat_2022_112164
crossref_primary_10_1038_s41467_023_36710_x
crossref_primary_10_1039_D4QO01382D
crossref_primary_10_1038_s41545_024_00311_y
crossref_primary_10_1002_adsc_202001086
crossref_primary_10_2174_0115734137274085231214100609
crossref_primary_10_3390_membranes13080696
crossref_primary_10_1002_adfm_202010306
crossref_primary_10_1039_D1GC02118D
crossref_primary_10_1002_adfm_202006168
crossref_primary_10_1021_acsabm_2c00855
crossref_primary_10_1002_adtp_202100177
crossref_primary_10_1016_j_dyepig_2022_110099
crossref_primary_10_1021_acs_chemmater_1c02697
crossref_primary_10_1039_D4TA00087K
crossref_primary_10_1021_acsapm_4c02792
crossref_primary_10_1021_acscatal_3c05454
crossref_primary_10_1021_acscatal_4c03149
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1007_s40242_020_0163_6
crossref_primary_10_1016_j_jclepro_2021_125822
crossref_primary_10_1021_acs_chemrev_3c00926
crossref_primary_10_1021_acs_jafc_4c06755
crossref_primary_10_1021_acsami_2c02439
crossref_primary_10_1039_D2TA02622H
crossref_primary_10_1016_j_micromeso_2023_112916
crossref_primary_10_1016_j_chemphys_2021_111278
crossref_primary_10_1002_cctc_202401849
crossref_primary_10_1002_inf2_12277
crossref_primary_10_1039_D3TA02293E
crossref_primary_10_1039_D4NA00650J
crossref_primary_10_1039_D3TA05416K
crossref_primary_10_1002_admi_202200874
crossref_primary_10_1002_smm2_1057
crossref_primary_10_1002_aoc_6480
crossref_primary_10_1002_slct_202202468
crossref_primary_10_1021_acsaem_2c03897
crossref_primary_10_1039_D0NR06110G
crossref_primary_10_1039_D0TC04175K
crossref_primary_10_20517_cs_2023_51
crossref_primary_10_3390_catal11091064
crossref_primary_10_1002_anie_202204938
crossref_primary_10_1002_smtd_202300687
crossref_primary_10_1039_D2CE01645A
crossref_primary_10_1039_D2TA08333G
crossref_primary_10_1007_s11426_021_1016_6
crossref_primary_10_1016_j_jcat_2021_08_005
crossref_primary_10_1021_acsami_0c18105
crossref_primary_10_1021_acssuschemeng_2c01071
crossref_primary_10_1016_j_ica_2022_121251
crossref_primary_10_1016_j_foodchem_2024_138357
crossref_primary_10_1016_j_jiec_2025_01_054
crossref_primary_10_1007_s11426_021_1088_2
crossref_primary_10_1016_j_microc_2023_109524
crossref_primary_10_1039_D4SC04358H
crossref_primary_10_1002_adma_202415135
crossref_primary_10_1016_j_fuel_2025_135130
crossref_primary_10_3390_ijms23094949
crossref_primary_10_1039_D3NJ00197K
crossref_primary_10_1016_j_fuel_2024_131154
crossref_primary_10_20517_cs_2023_61
crossref_primary_10_1088_2515_7647_ad5777
crossref_primary_10_1002_ange_202204938
crossref_primary_10_1039_D0CY02061C
crossref_primary_10_1016_j_rser_2021_111298
crossref_primary_10_1039_D2DT01895K
crossref_primary_10_1007_s00604_024_06289_1
crossref_primary_10_1021_acsmaterialslett_0c00148
crossref_primary_10_6023_cjoc202107030
crossref_primary_10_1016_j_cej_2024_149742
crossref_primary_10_1016_j_chemosphere_2021_132795
crossref_primary_10_1007_s40242_022_2001_5
crossref_primary_10_1039_D4CC04977B
crossref_primary_10_1021_acs_iecr_3c03776
crossref_primary_10_1063_5_0207807
crossref_primary_10_1016_j_memsci_2021_120118
crossref_primary_10_1007_s40843_024_3039_8
crossref_primary_10_1002_asia_202200358
crossref_primary_10_1039_D3DT01684F
crossref_primary_10_1002_cjoc_202200046
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1021_acs_analchem_2c01692
crossref_primary_10_1002_anie_202303129
crossref_primary_10_1016_j_jcis_2023_04_017
crossref_primary_10_1039_D2TA07177K
crossref_primary_10_1166_jbmb_2023_2297
crossref_primary_10_1002_cptc_202400274
crossref_primary_10_1016_j_apcatb_2022_122135
crossref_primary_10_1016_j_snb_2021_130288
crossref_primary_10_1016_j_matt_2020_10_014
crossref_primary_10_1002_smll_202205767
crossref_primary_10_1002_ange_202419867
crossref_primary_10_1021_jacs_5c00686
crossref_primary_10_1002_cssc_202401903
crossref_primary_10_1039_D0QM00384K
crossref_primary_10_1021_acsnano_5c00165
crossref_primary_10_1016_j_arabjc_2024_105987
crossref_primary_10_1007_s40242_022_1490_6
crossref_primary_10_1021_acs_chemmater_3c01867
crossref_primary_10_1016_j_chroma_2022_463555
crossref_primary_10_1016_j_polymer_2020_123307
crossref_primary_10_1021_acs_iecr_1c02366
crossref_primary_10_1021_acsapm_2c00543
crossref_primary_10_1016_j_cclet_2025_111028
crossref_primary_10_1039_D1CY00293G
crossref_primary_10_1021_acssuschemeng_2c04428
crossref_primary_10_1016_j_mcat_2025_114868
crossref_primary_10_1016_j_mtener_2020_100635
crossref_primary_10_1021_acs_macromol_3c02490
crossref_primary_10_1002_adfm_202505453
crossref_primary_10_1016_j_cej_2020_127845
crossref_primary_10_1016_j_jiec_2024_08_002
crossref_primary_10_1016_j_jssc_2023_124352
crossref_primary_10_1039_D3LP00162H
crossref_primary_10_1016_j_mssp_2025_109379
crossref_primary_10_1021_jacs_3c10090
crossref_primary_10_1016_j_jallcom_2020_157944
crossref_primary_10_1039_D2CE00605G
crossref_primary_10_1021_acsnano_2c09838
crossref_primary_10_1002_marc_202200787
crossref_primary_10_1016_j_mtchem_2021_100632
crossref_primary_10_1007_s40242_022_2010_4
crossref_primary_10_1002_cplu_202200281
crossref_primary_10_1002_slct_202303943
crossref_primary_10_1016_j_ccr_2023_215349
crossref_primary_10_1016_j_progpolymsci_2023_101691
crossref_primary_10_1002_cssc_202101625
crossref_primary_10_1002_tcr_202000074
crossref_primary_10_1002_smll_202408395
crossref_primary_10_1007_s40242_022_1448_8
crossref_primary_10_1038_s44160_024_00528_2
crossref_primary_10_1002_adom_202203054
crossref_primary_10_1016_j_jssc_2022_123614
crossref_primary_10_1007_s12598_021_01884_0
crossref_primary_10_1021_acs_inorgchem_3c04158
crossref_primary_10_1016_j_micromeso_2022_112419
crossref_primary_10_1039_D1DT03143K
crossref_primary_10_1360_SSC_2024_0258
crossref_primary_10_1002_slct_202302060
crossref_primary_10_1007_s11356_023_27234_4
crossref_primary_10_1039_D2TC02170F
crossref_primary_10_1039_D3DT02345A
crossref_primary_10_1016_j_jcis_2023_03_195
crossref_primary_10_1002_cjoc_202300244
crossref_primary_10_1039_D2CE01324J
crossref_primary_10_1002_asia_202100815
crossref_primary_10_1007_s11426_023_1644_x
crossref_primary_10_3390_molecules27228002
crossref_primary_10_1016_j_apcatb_2021_120846
crossref_primary_10_1039_D4PY01057D
crossref_primary_10_1016_j_ccr_2022_214889
crossref_primary_10_1039_D4NR03796K
crossref_primary_10_1016_j_jtice_2024_105680
crossref_primary_10_1002_smll_202502867
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1016_j_ica_2023_121494
crossref_primary_10_1016_j_mcat_2023_113716
crossref_primary_10_1016_S1872_2067_21_63812_3
crossref_primary_10_1002_slct_202202059
crossref_primary_10_1007_s11164_023_05093_5
crossref_primary_10_1002_marc_202100032
crossref_primary_10_1007_s40843_023_2625_7
crossref_primary_10_1016_j_apcatb_2022_121487
crossref_primary_10_1016_j_ijhydene_2024_12_300
crossref_primary_10_1007_s12274_021_3980_0
crossref_primary_10_1021_jacs_3c06764
crossref_primary_10_1002_cnl2_100
crossref_primary_10_1021_jacs_2c01186
crossref_primary_10_3390_molecules30020336
crossref_primary_10_3390_molecules26144181
crossref_primary_10_1002_asia_202401423
crossref_primary_10_1039_D1NR07614K
crossref_primary_10_1002_adma_202209475
crossref_primary_10_1016_j_cclet_2023_108148
crossref_primary_10_1002_smll_202303757
crossref_primary_10_3390_su16062334
crossref_primary_10_1002_sstr_202200233
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_3390_w16111588
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_1039_D1QM00416F
crossref_primary_10_1039_D2TA09375H
crossref_primary_10_1021_acssuschemeng_3c06108
crossref_primary_10_1002_ange_202316858
crossref_primary_10_1002_adma_202413118
crossref_primary_10_1002_smll_202409495
crossref_primary_10_1016_j_ccr_2025_216465
crossref_primary_10_1002_solr_202100848
crossref_primary_10_1039_D2NJ00641C
crossref_primary_10_1002_cctc_202400100
crossref_primary_10_1039_D1NJ02152D
crossref_primary_10_1039_D3QM00188A
crossref_primary_10_1016_j_colsurfa_2024_135100
crossref_primary_10_1021_acs_langmuir_2c00203
crossref_primary_10_1039_D2TA09582C
crossref_primary_10_1039_D4CY00575A
crossref_primary_10_1039_D1TC01938D
crossref_primary_10_1002_slct_202200576
Cites_doi 10.1021/ma951431i
10.1039/c4nj00053f
10.1039/C4CS00103F
10.1039/C9CC06479F
10.1038/s41557-018-0141-5
10.1016/j.chempr.2019.04.015
10.1002/smll.201602996
10.1039/C7CS00033B
10.1021/jacs.9b01226
10.1039/C4CC07104B
10.1002/chem.201903523
10.1007/s11244-009-9226-0
10.1016/S1872-2067(18)63057-8
10.1002/anie.201310500
10.1038/238037a0
10.1039/C7TA02105D
10.1021/jacs.5b04147
10.1021/jacs.5b03553
10.1126/science.1120411
10.1002/anie.201801998
10.1016/j.molcata.2006.01.008
10.1038/s41467-018-08208-4
10.1021/jacs.8b10334
10.1002/adfm.201705553
10.1021/cr300503r
10.1039/C6CS00528D
10.1039/C8TA10046B
10.1126/science.aan0202
10.1002/ange.201900029
10.1002/cctc.201901061
10.1039/C9GC02126D
10.1039/C3CC48813F
10.1021/jacs.8b01320
10.1002/asia.201901527
10.1038/nchem.2352
10.1021/acsami.9b10958
10.1021/ja5100417
10.1021/jacs.6b09563
10.1126/science.1139915
10.1021/acsenergylett.7b00494
10.1002/anie.201902543
10.1038/ncomms9508
10.1038/natrevmats.2017.45
10.1021/jacs.8b08380
10.1021/jacs.8b08374
10.1021/ja4103293
10.1021/jacs.7b11255
10.1021/jacs.8b00571
10.1039/C5CS00859J
10.1039/B715660J
10.1039/C9CC07500C
10.1002/adma.200801971
10.1021/acs.cgd.6b00093
10.1002/adma.201606635
10.1002/anie.201507145
10.1021/jacs.9b01891
10.1039/C2CS35072F
10.1002/adma.201400087
10.1002/anie.201106203
10.1038/s41467-019-10504-6
10.1038/s41557-019-0238-5
10.1038/srep08225
10.1039/C5CS00023H
10.1016/j.apcatb.2018.08.004
10.1021/ja803247y
10.1126/science.aac8343
10.1002/anie.201903534
10.1039/C5CS00109A
10.1039/C9SC02601K
10.1039/C9CS00258H
10.1039/C9CC01317B
10.1038/natrevmats.2016.68
10.1038/nchem.548
10.1039/C6CC03058K
10.1039/C7TA08629F
10.1002/chem.201702418
10.1038/nmat4611
10.1002/chem.201601199
10.1021/jacs.9b02448
10.1039/c2cs35157a
10.1021/ja308278w
10.1007/s11426-017-9070-1
10.1021/acscatal.5b01274
10.1021/cm061177g
10.1126/science.aat7679
10.1002/cssc.201200255
10.1002/cptc.201900089
10.1039/C4SC00016A
10.1039/C5CS00878F
10.1002/aenm.201703278
10.1021/acscatal.5b02490
10.1002/adma.201505004
10.1021/jacs.6b07516
10.1021/acs.accounts.6b00251
10.1039/C4CC05665E
10.1002/anie.201901194
10.1039/C5CS00626K
10.1039/c3cs60160a
10.1039/C7QI00651A
10.1021/ja206846p
10.1002/anie.201005919
10.1039/C8NR05756G
10.1021/acs.chemmater.6b01370
10.1038/s41570-017-0056
10.1126/science.aal1585
10.1016/j.apcatb.2020.118799
10.1016/j.apcatb.2018.12.065
10.1038/s41467-018-02889-7
10.1039/b802430h
10.1021/jacs.9b06219
10.1002/adma.201707582
10.1002/smll.201906005
10.1021/cm201140r
10.1002/aenm.201904199
10.1021/ja409421d
10.1002/anie.201909613
10.1021/jacs.7b03352
10.1021/acsenergylett.9b01691
10.1021/acs.accounts.5b00369
10.1021/acs.accounts.6b00270
10.1039/C8QI00543E
10.1016/j.ccr.2015.12.010
10.1039/C8CS00376A
10.1021/jacs.9b09956
10.1039/C9GC00022D
10.1021/jacs.8b06291
10.1002/advs.201801410
10.1021/acscatal.6b01422
10.1039/b600349d
10.1039/C6CY00362A
10.1021/ja502212v
10.1021/ja204728y
10.1126/science.aar7883
10.1016/j.apcatb.2018.08.005
10.1021/cs200131g
10.1021/jacs.7b07918
10.1039/C7TA07290B
10.1002/cssc.201500755
10.1002/adma.201900008
10.1016/j.ccr.2019.04.002
10.1002/adma.201200804
10.1002/asia.201301023
10.1021/acscatal.8b00407
10.1021/acs.chemrev.6b00439
10.1039/C6PY00561F
10.1002/chem.201501206
10.1021/acs.chemmater.9b02718
10.1002/cssc.201601702
10.1039/C7TA07691F
10.1002/anie.200803826
10.1021/acs.chemrev.5b00125
10.1021/jacs.9b03463
10.1039/C9CS00299E
10.1002/adma.201706330
10.1021/jacs.5b13490
10.1002/cssc.201900570
10.1021/jacs.7b02648
10.1002/anie.201501706
10.1016/j.jssc.2010.09.013
10.1016/j.nanoen.2017.08.038
10.1002/anie.201813331
10.1021/acsami.8b14671
10.1016/j.apcatb.2018.11.032
10.1039/C6CC00853D
10.1002/chem.201601151
10.1021/jacs.5b10754
10.1016/j.jhazmat.2019.02.046
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202001070
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 32419332
10_1002_smll_202001070
SMLL202001070
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: AcRF Tier 1
  funderid: RG 111/17; RG 2/17; RG 114/16; RG 113/18
– fundername: NSFC
  funderid: 51733004; 51525303
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0204903
– fundername: National Natural Science Foundation of China
– fundername: Tier 2
  funderid: MOE 2017‐T2‐1‐021; MOE 2018‐T2‐1‐070
– fundername: 111 Project
– fundername: AcRF Tier 1
  grantid: RG 113/18
– fundername: NSFC
  grantid: 51733004
– fundername: Tier 2
  grantid: MOE 2018-T2-1-070
– fundername: AcRF Tier 1
  grantid: RG 2/17
– fundername: AcRF Tier 1
  grantid: RG 114/16
– fundername: NSFC
  grantid: 51525303
– fundername: Tier 2
  grantid: MOE 2017-T2-1-021
– fundername: AcRF Tier 1
  grantid: RG 111/17
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0204903
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c5160-31adec018b8bc049d2a1999d362bd3c1a5a5870ab81086efd9139ba06ac092743
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 17:02:58 EDT 2025
Fri Jul 25 12:16:50 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Tue Jul 01 02:10:53 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:33:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords covalent organic frameworks
photocatalytic reactions
heterogeneous catalysis
organic conversion
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5160-31adec018b8bc049d2a1999d362bd3c1a5a5870ab81086efd9139ba06ac092743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1854-8659
OpenAccessLink http://ir.lzu.edu.cn/handle/262010/406097
PMID 32419332
PQID 2414213683
PQPubID 1046358
PageCount 21
ParticipantIDs proquest_miscellaneous_2404378841
proquest_journals_2414213683
pubmed_primary_32419332
crossref_primary_10_1002_smll_202001070
crossref_citationtrail_10_1002_smll_202001070
wiley_primary_10_1002_smll_202001070_SMLL202001070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 35
2019; 11
2019; 10
2019; 12
2020; 16
2014; 26
2020; 15
2020 2017 2020 2017 2016; 10 5 41 7
2014; 136
2018; 6
2018; 9
2018; 8
2018; 39
2012; 134
2015; 137
2019; 21
2016; 311
2013; 113
2018; 30
2012; 24
2010; 2
2016; 49
2016; 45
2019; 7
2018; 28
2019; 4
2019; 3
2017; 60
2019; 6
2011; 1
2019; 5
2019; 31
2015; 51
2015; 54
2020; 269
2016; 15
2011; 133
2017; 139
2014; 43
2016; 6
2007; 316
2016; 1
2018; 239
2019; 48
2014; 38
2008; 47
2020; 26
2016; 28
2018; 10
2008; 130
2012; 41
2016; 22
2017; 5
2018; 361
2017; 1
2017; 2
2019; 55
2016 2015 2015; 45 44 44
2017; 46
2019; 58
2019; 369
2019; 245
2020; 56
2015; 349
2017; 355
2017; 357
2019; 244
2017; 117
2012; 51
2015 2019 2018 2017 2016; 115 391 5 13 16
2015; 48
1996; 29
2014; 5
2017 2019 2014 2017 2010; 4 10 9 23 183
2011; 23
2014; 50
2006; 249
2014; 53
2015; 6
2015; 5
2009; 21
2018; 140
2005; 310
2008; 18
2013; 42
2015 2009 2016; 44 52 45
2006; 18
2016; 52
2017; 29
2019; 141
2015; 8
2015; 7
1972; 238
2016; 55
2020
2017; 10
2015; 21
2011; 50
2013; 135
2016; 138
2012; 5
2009; 38
2019; 131
2018; 57
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_2_3
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_2_2
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
Lei K. (e_1_2_10_151_1) 2020
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
Geng K. (e_1_2_10_28_1) 2020
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_3_2
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_3_4
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_3_3
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_3_5
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
Yao C. (e_1_2_10_31_3) 2020
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_1_2
e_1_2_10_73_1
Wang L. (e_1_2_10_152_1) 2020
e_1_2_10_1_3
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_5_2
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_5_4
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_5_3
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_31_5
e_1_2_10_35_1
e_1_2_10_5_5
e_1_2_10_9_1
e_1_2_10_31_4
e_1_2_10_59_1
e_1_2_10_31_2
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 136
  start-page: 6570
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 664
  year: 2017
  publication-title: ChemSusChem
– volume: 51
  start-page: 2618
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 4735
  year: 2018
  publication-title: ACS Catal.
– volume: 52
  start-page: 7082
  year: 2016
  publication-title: Chem. Commun.
– volume: 311
  start-page: 85
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 369
  start-page: 494
  year: 2019
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 819
  year: 2011
  publication-title: ACS Catal.
– volume: 131
  start-page: 8762
  year: 2019
  publication-title: Angew. Chem.
– volume: 45
  start-page: 5635
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 361
  start-page: 48
  year: 2018
  publication-title: Science
– volume: 58
  start-page: 5376
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 244
  start-page: 36
  year: 2019
  publication-title: Appl. Catal., B
– volume: 22
  start-page: 6768
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 137
  start-page: 8352
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 1292
  year: 2014
  publication-title: Chem. Commun.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 338
  year: 2020
  publication-title: Chem. Asian J.
– volume: 5
  start-page: 2789
  year: 2014
  publication-title: Chem. Sci.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 3390
  year: 2012
  publication-title: Adv. Mater.
– volume: 48
  start-page: 5266
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 22
  start-page: 9919
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 38
  start-page: 1460
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 140
  start-page: 1423
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2251
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 23
  start-page: 4094
  year: 2011
  publication-title: Chem. Mater.
– volume: 45 44 44
  start-page: 584 8877 7406
  year: 2016 2015 2015
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 10
  start-page: 1180
  year: 2018
  publication-title: Nat. Chem.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 141
  start-page: 6152
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3134
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 117
  start-page: 1515
  year: 2017
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4989
  year: 2015
  publication-title: ACS Catal.
– volume: 48
  start-page: 3053
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 6430
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 1946
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 2
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 998
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 141
  start-page: 6623
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 6152
  year: 2016
  publication-title: Catal. Sci. Technol.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 357
  start-page: 673
  year: 2017
  publication-title: Science
– volume: 49
  start-page: 2295
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 6010
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 4607
  year: 2014
  publication-title: Adv. Mater.
– volume: 115 391 5 13 16
  start-page: 30 2693 2309
  year: 2015 2019 2018 2017 2016
  publication-title: Chem. Rev. Coord. Chem. Rev. Inorg. Chem. Front. Small Cryst. Growth Des.
– volume: 6
  start-page: 4871
  year: 2016
  publication-title: ACS Catal.
– volume: 113
  start-page: 5322
  year: 2013
  publication-title: Chem. Rev.
– volume: 269
  year: 2020
  publication-title: Appl. Catal., B
– volume: 361
  start-page: 52
  year: 2018
  publication-title: Science
– volume: 51
  start-page: 310
  year: 2015
  publication-title: Chem. Commun.
– volume: 137
  start-page: 7817
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 4375
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  start-page: 973
  year: 2019
  publication-title: ChemPhotoChem
– volume: 349
  start-page: 1208
  year: 2015
  publication-title: Science
– volume: 5
  start-page: 8225
  year: 2015
  publication-title: Sci. Rep.
– volume: 140
  start-page: 4494
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5897
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 8277
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 249
  start-page: 143
  year: 2006
  publication-title: J. Mol. Catal. A: Chem.
– volume: 48
  start-page: 4375
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2905
  year: 2019
  publication-title: Green Chem.
– volume: 6
  start-page: 8508
  year: 2015
  publication-title: Nat. Commun.
– volume: 50
  start-page: 1289
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 8007
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  start-page: 4258
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 8100
  year: 2019
  publication-title: Chem. Mater.
– volume: 138
  start-page: 3031
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 464
  year: 2017
  publication-title: Chem. Soc. Rev.
– year: 2020
  publication-title: ChemSusChem
– volume: 11
  start-page: 4916
  year: 2019
  publication-title: ChemCatChem
– volume: 239
  start-page: 147
  year: 2018
  publication-title: Appl. Catal., B
– volume: 141
  start-page: 1807
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 2308
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 21
  start-page: 1291
  year: 2009
  publication-title: Adv. Mater.
– volume: 54
  start-page: 6814
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1985
  year: 2017
  publication-title: ACS Energy Lett.
– year: 2020
  publication-title: Chem. Rev.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 2878
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 0056
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 5
  start-page: 1632
  year: 2019
  publication-title: Chem
– volume: 7
  start-page: 905
  year: 2015
  publication-title: Nat. Chem.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 26
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 675
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 10 5 41 7
  start-page: 117 4176
  year: 2020 2017 2020 2017 2016
  publication-title: Adv. Energy Mater. J. Mater. Chem. A ChemSusChem Nano Energy Polym. Chem.
– volume: 55
  start-page: 5423
  year: 2019
  publication-title: Chem. Commun.
– volume: 10
  start-page: 2467
  year: 2019
  publication-title: Nat. Commun.
– volume: 141
  start-page: 7518
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1113
  year: 2016
  publication-title: ACS Catal.
– volume: 38
  start-page: 2292
  year: 2014
  publication-title: New J. Chem.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 2421
  year: 2019
  publication-title: ChemSusChem
– volume: 56
  start-page: 1267
  year: 2020
  publication-title: Chem. Commun.
– volume: 2
  start-page: 235
  year: 2010
  publication-title: Nat. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 369
  year: 2020
  publication-title: Chem‐ Eur. J.
– volume: 42
  start-page: 8012
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 587
  year: 2019
  publication-title: Nat. Chem.
– volume: 58
  start-page: 9443
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 3208
  year: 2015
  publication-title: ChemSusChem
– volume: 52
  start-page: 4128
  year: 2016
  publication-title: Chem. Commun.
– volume: 10
  start-page: 8316
  year: 2019
  publication-title: Chem. Sci.
– volume: 21
  start-page: 4792
  year: 2019
  publication-title: Green Chem.
– volume: 18
  start-page: 5296
  year: 2006
  publication-title: Chem. Mater.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 6
  start-page: 374
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 2783
  year: 1996
  publication-title: Macromolecules
– volume: 4 10 9 23 183
  start-page: 1953 370 131 2644
  year: 2017 2019 2014 2017 2010
  publication-title: Inorg. Chem. Front. Nat. Commun. Chem. ‐ Asian J. Chem. ‐ Eur. J. J. Solid State Chem.
– volume: 140
  start-page: 4623
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 316
  start-page: 268
  year: 2007
  publication-title: Science
– volume: 15
  start-page: 722
  year: 2016
  publication-title: Nat. Mater.
– volume: 9
  start-page: 576
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 48
  start-page: 488
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 2855
  year: 2016
  publication-title: Adv. Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 245
  start-page: 334
  year: 2019
  publication-title: Appl. Catal., B
– volume: 47
  start-page: 8826
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 44 52 45
  start-page: 7112 888 584
  year: 2015 2009 2016
  publication-title: Chem. Soc. Rev. Top. Catal. Chem. Soc. Rev.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 573
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 2032
  year: 2012
  publication-title: ChemSusChem
– volume: 39
  start-page: 1167
  year: 2018
  publication-title: Chin. J. Catal.
– volume: 60
  start-page: 1015
  year: 2017
  publication-title: Sci. China: Chem.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 239
  start-page: 46
  year: 2018
  publication-title: Appl. Catal., B
– volume: 43
  start-page: 5982
  year: 2014
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_10_133_1
  doi: 10.1021/ma951431i
– ident: e_1_2_10_12_1
  doi: 10.1039/c4nj00053f
– ident: e_1_2_10_119_1
  doi: 10.1039/C4CS00103F
– ident: e_1_2_10_88_1
  doi: 10.1039/C9CC06479F
– ident: e_1_2_10_141_1
  doi: 10.1038/s41557-018-0141-5
– ident: e_1_2_10_143_1
  doi: 10.1016/j.chempr.2019.04.015
– ident: e_1_2_10_5_4
  doi: 10.1002/smll.201602996
– ident: e_1_2_10_20_1
  doi: 10.1039/C7CS00033B
– ident: e_1_2_10_85_1
  doi: 10.1021/jacs.9b01226
– ident: e_1_2_10_92_1
  doi: 10.1039/C4CC07104B
– ident: e_1_2_10_136_1
  doi: 10.1002/chem.201903523
– ident: e_1_2_10_1_2
  doi: 10.1007/s11244-009-9226-0
– ident: e_1_2_10_77_1
  doi: 10.1016/S1872-2067(18)63057-8
– ident: e_1_2_10_96_1
  doi: 10.1002/anie.201310500
– ident: e_1_2_10_137_1
  doi: 10.1038/238037a0
– ident: e_1_2_10_31_2
  doi: 10.1039/C7TA02105D
– ident: e_1_2_10_74_1
  doi: 10.1021/jacs.5b04147
– ident: e_1_2_10_123_1
  doi: 10.1021/jacs.5b03553
– ident: e_1_2_10_29_1
  doi: 10.1126/science.1120411
– ident: e_1_2_10_72_1
  doi: 10.1002/anie.201801998
– ident: e_1_2_10_4_1
  doi: 10.1016/j.molcata.2006.01.008
– ident: e_1_2_10_3_2
  doi: 10.1038/s41467-018-08208-4
– ident: e_1_2_10_43_1
  doi: 10.1021/jacs.8b10334
– ident: e_1_2_10_40_1
  doi: 10.1002/adfm.201705553
– ident: e_1_2_10_116_1
  doi: 10.1021/cr300503r
– ident: e_1_2_10_63_1
  doi: 10.1039/C6CS00528D
– ident: e_1_2_10_156_1
  doi: 10.1039/C8TA10046B
– ident: e_1_2_10_32_1
  doi: 10.1126/science.aan0202
– ident: e_1_2_10_108_1
  doi: 10.1002/ange.201900029
– ident: e_1_2_10_131_1
  doi: 10.1002/cctc.201901061
– ident: e_1_2_10_105_1
  doi: 10.1039/C9GC02126D
– ident: e_1_2_10_112_1
  doi: 10.1039/C3CC48813F
– ident: e_1_2_10_107_1
  doi: 10.1021/jacs.8b01320
– ident: e_1_2_10_81_1
  doi: 10.1002/asia.201901527
– ident: e_1_2_10_106_1
  doi: 10.1038/nchem.2352
– ident: e_1_2_10_17_1
  doi: 10.1021/acsami.9b10958
– ident: e_1_2_10_73_1
  doi: 10.1021/ja5100417
– ident: e_1_2_10_97_1
  doi: 10.1021/jacs.6b09563
– ident: e_1_2_10_36_1
  doi: 10.1126/science.1139915
– ident: e_1_2_10_67_1
  doi: 10.1021/acsenergylett.7b00494
– ident: e_1_2_10_129_1
  doi: 10.1002/anie.201902543
– ident: e_1_2_10_139_1
  doi: 10.1038/ncomms9508
– ident: e_1_2_10_148_1
  doi: 10.1038/natrevmats.2017.45
– ident: e_1_2_10_56_1
  doi: 10.1021/jacs.8b08380
– ident: e_1_2_10_33_1
  doi: 10.1021/jacs.8b08374
– ident: e_1_2_10_47_1
  doi: 10.1021/ja4103293
– ident: e_1_2_10_142_1
  doi: 10.1021/jacs.7b11255
– ident: e_1_2_10_127_1
  doi: 10.1021/jacs.8b00571
– ident: e_1_2_10_1_3
  doi: 10.1039/C5CS00859J
– ident: e_1_2_10_10_1
  doi: 10.1039/B715660J
– ident: e_1_2_10_111_1
  doi: 10.1039/C9CC07500C
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.200801971
– ident: e_1_2_10_5_5
  doi: 10.1021/acs.cgd.6b00093
– ident: e_1_2_10_84_1
  doi: 10.1002/adma.201606635
– ident: e_1_2_10_104_1
  doi: 10.1002/anie.201507145
– ident: e_1_2_10_130_1
  doi: 10.1021/jacs.9b01891
– ident: e_1_2_10_22_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_10_146_1
  doi: 10.1002/adma.201400087
– ident: e_1_2_10_122_1
  doi: 10.1002/anie.201106203
– ident: e_1_2_10_144_1
  doi: 10.1038/s41467-019-10504-6
– ident: e_1_2_10_35_1
  doi: 10.1038/s41557-019-0238-5
– ident: e_1_2_10_64_1
  doi: 10.1038/srep08225
– ident: e_1_2_10_1_1
  doi: 10.1039/C5CS00023H
– ident: e_1_2_10_150_1
  doi: 10.1016/j.apcatb.2018.08.004
– year: 2020
  ident: e_1_2_10_31_3
  publication-title: ChemSusChem
– ident: e_1_2_10_50_1
  doi: 10.1021/ja803247y
– ident: e_1_2_10_82_1
  doi: 10.1126/science.aac8343
– ident: e_1_2_10_115_1
  doi: 10.1002/anie.201903534
– ident: e_1_2_10_2_3
  doi: 10.1039/C5CS00109A
– ident: e_1_2_10_134_1
  doi: 10.1039/C9SC02601K
– ident: e_1_2_10_34_1
  doi: 10.1039/C9CS00258H
– ident: e_1_2_10_110_1
  doi: 10.1039/C9CC01317B
– ident: e_1_2_10_24_1
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_10_52_1
  doi: 10.1038/nchem.548
– ident: e_1_2_10_100_1
  doi: 10.1039/C6CC03058K
– ident: e_1_2_10_98_1
  doi: 10.1039/C7TA08629F
– ident: e_1_2_10_3_4
  doi: 10.1002/chem.201702418
– ident: e_1_2_10_61_1
  doi: 10.1038/nmat4611
– ident: e_1_2_10_75_1
  doi: 10.1002/chem.201601199
– ident: e_1_2_10_69_1
  doi: 10.1021/jacs.9b02448
– ident: e_1_2_10_21_1
  doi: 10.1039/c2cs35157a
– ident: e_1_2_10_46_1
  doi: 10.1021/ja308278w
– ident: e_1_2_10_79_1
  doi: 10.1007/s11426-017-9070-1
– ident: e_1_2_10_103_1
  doi: 10.1021/acscatal.5b01274
– ident: e_1_2_10_44_1
  doi: 10.1021/cm061177g
– ident: e_1_2_10_48_1
  doi: 10.1126/science.aat7679
– ident: e_1_2_10_94_1
  doi: 10.1002/cssc.201200255
– ident: e_1_2_10_78_1
  doi: 10.1002/cptc.201900089
– ident: e_1_2_10_138_1
  doi: 10.1039/C4SC00016A
– ident: e_1_2_10_25_1
  doi: 10.1039/C5CS00878F
– ident: e_1_2_10_140_1
  doi: 10.1002/aenm.201703278
– ident: e_1_2_10_8_1
  doi: 10.1021/acscatal.5b02490
– ident: e_1_2_10_53_1
  doi: 10.1002/adma.201505004
– ident: e_1_2_10_113_1
  doi: 10.1021/jacs.6b07516
– ident: e_1_2_10_118_1
  doi: 10.1021/acs.accounts.6b00251
– ident: e_1_2_10_149_1
  doi: 10.1039/C4CC05665E
– ident: e_1_2_10_128_1
  doi: 10.1002/anie.201901194
– ident: e_1_2_10_2_2
  doi: 10.1039/C5CS00626K
– ident: e_1_2_10_14_1
  doi: 10.1039/c3cs60160a
– ident: e_1_2_10_3_1
  doi: 10.1039/C7QI00651A
– ident: e_1_2_10_19_1
  doi: 10.1021/ja206846p
– ident: e_1_2_10_121_1
  doi: 10.1002/anie.201005919
– ident: e_1_2_10_90_1
  doi: 10.1039/C8NR05756G
– ident: e_1_2_10_83_1
  doi: 10.1021/acs.chemmater.6b01370
– ident: e_1_2_10_39_1
  doi: 10.1038/s41570-017-0056
– ident: e_1_2_10_37_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_10_154_1
  doi: 10.1016/j.apcatb.2020.118799
– ident: e_1_2_10_126_1
  doi: 10.1016/j.apcatb.2018.12.065
– ident: e_1_2_10_68_1
  doi: 10.1038/s41467-018-02889-7
– ident: e_1_2_10_51_1
  doi: 10.1039/b802430h
– ident: e_1_2_10_145_1
  doi: 10.1021/jacs.9b06219
– ident: e_1_2_10_6_1
  doi: 10.1002/adma.201707582
– year: 2020
  ident: e_1_2_10_28_1
  publication-title: Chem. Rev.
– ident: e_1_2_10_91_1
  doi: 10.1002/smll.201906005
– ident: e_1_2_10_120_1
  doi: 10.1021/cm201140r
– ident: e_1_2_10_31_1
  doi: 10.1002/aenm.201904199
– ident: e_1_2_10_70_1
  doi: 10.1021/ja409421d
– ident: e_1_2_10_57_1
  doi: 10.1002/anie.201909613
– ident: e_1_2_10_114_1
  doi: 10.1021/jacs.7b03352
– ident: e_1_2_10_87_1
  doi: 10.1021/acsenergylett.9b01691
– ident: e_1_2_10_23_1
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_10_117_1
  doi: 10.1021/acs.accounts.6b00270
– ident: e_1_2_10_5_3
  doi: 10.1039/C8QI00543E
– ident: e_1_2_10_26_1
  doi: 10.1016/j.ccr.2015.12.010
– ident: e_1_2_10_27_1
  doi: 10.1039/C8CS00376A
– ident: e_1_2_10_59_1
  doi: 10.1021/jacs.9b09956
– ident: e_1_2_10_135_1
  doi: 10.1039/C9GC00022D
– ident: e_1_2_10_65_1
  doi: 10.1021/jacs.8b06291
– ident: e_1_2_10_80_1
  doi: 10.1002/advs.201801410
– ident: e_1_2_10_93_1
  doi: 10.1021/acscatal.6b01422
– ident: e_1_2_10_11_1
  doi: 10.1039/b600349d
– ident: e_1_2_10_2_1
  doi: 10.1039/C5CS00859J
– ident: e_1_2_10_95_1
  doi: 10.1039/C6CY00362A
– ident: e_1_2_10_60_1
  doi: 10.1021/ja502212v
– ident: e_1_2_10_45_1
  doi: 10.1021/ja204728y
– ident: e_1_2_10_49_1
  doi: 10.1126/science.aar7883
– ident: e_1_2_10_153_1
  doi: 10.1016/j.apcatb.2018.08.005
– ident: e_1_2_10_18_1
  doi: 10.1021/cs200131g
– ident: e_1_2_10_89_1
  doi: 10.1021/jacs.7b07918
– ident: e_1_2_10_147_1
  doi: 10.1039/C7TA07290B
– ident: e_1_2_10_99_1
  doi: 10.1002/cssc.201500755
– ident: e_1_2_10_109_1
  doi: 10.1002/adma.201900008
– ident: e_1_2_10_5_2
  doi: 10.1016/j.ccr.2019.04.002
– ident: e_1_2_10_7_1
  doi: 10.1002/adma.201200804
– year: 2020
  ident: e_1_2_10_151_1
  publication-title: ChemSusChem
– ident: e_1_2_10_3_3
  doi: 10.1002/asia.201301023
– ident: e_1_2_10_15_1
  doi: 10.1021/acscatal.8b00407
– ident: e_1_2_10_38_1
  doi: 10.1021/acs.chemrev.6b00439
– ident: e_1_2_10_31_5
  doi: 10.1039/C6PY00561F
– ident: e_1_2_10_54_1
  doi: 10.1002/chem.201501206
– ident: e_1_2_10_132_1
  doi: 10.1021/acs.chemmater.9b02718
– ident: e_1_2_10_125_1
  doi: 10.1002/cssc.201601702
– ident: e_1_2_10_124_1
  doi: 10.1039/C7TA07691F
– ident: e_1_2_10_30_1
  doi: 10.1002/anie.200803826
– ident: e_1_2_10_5_1
  doi: 10.1021/acs.chemrev.5b00125
– ident: e_1_2_10_41_1
  doi: 10.1021/jacs.9b03463
– ident: e_1_2_10_58_1
  doi: 10.1039/C9CS00299E
– ident: e_1_2_10_86_1
  doi: 10.1002/adma.201706330
– ident: e_1_2_10_62_1
  doi: 10.1021/jacs.5b13490
– ident: e_1_2_10_102_1
  doi: 10.1002/cssc.201900570
– year: 2020
  ident: e_1_2_10_152_1
  publication-title: ChemSusChem
– ident: e_1_2_10_66_1
  doi: 10.1021/jacs.7b02648
– ident: e_1_2_10_71_1
  doi: 10.1002/anie.201501706
– ident: e_1_2_10_3_5
  doi: 10.1016/j.jssc.2010.09.013
– ident: e_1_2_10_31_4
  doi: 10.1016/j.nanoen.2017.08.038
– ident: e_1_2_10_42_1
  doi: 10.1002/anie.201813331
– ident: e_1_2_10_101_1
  doi: 10.1021/acsami.8b14671
– ident: e_1_2_10_16_1
  doi: 10.1016/j.apcatb.2018.11.032
– ident: e_1_2_10_76_1
  doi: 10.1039/C6CC00853D
– ident: e_1_2_10_9_1
  doi: 10.1002/chem.201601151
– ident: e_1_2_10_55_1
  doi: 10.1021/jacs.5b10754
– ident: e_1_2_10_155_1
  doi: 10.1016/j.jhazmat.2019.02.046
SSID ssj0031247
Score 2.681557
SecondaryResourceType review_article
Snippet Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2001070
SubjectTerms Activated carbon
Carbon dioxide
Catalysis
Catalysts
Chemical reactions
Covalence
Covalent bonds
covalent organic frameworks
Drug delivery systems
Energy conversion
Energy storage
Gas separation
heterogeneous catalysis
Magnetic properties
Nanotechnology
organic conversion
Photocatalysis
photocatalytic reactions
Photodegradation
Photoluminescence
Pollutants
Porosity
Porous materials
Proton conduction
Surface stability
Water splitting
Zeolites
Title Recent Progress in Metal‐Free Covalent Organic Frameworks as Heterogeneous Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202001070
https://www.ncbi.nlm.nih.gov/pubmed/32419332
https://www.proquest.com/docview/2414213683
https://www.proquest.com/docview/2404378841
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kJz34fkSrrCB4Sk0276MUSxErolZ6C7ubDYi1laY96Mmf4G_0lziTNLFVRNBbQmZJsjuPb3dnvwE4sgM7xUCgzdSXgelKPzIj6WmTIzoPuJIBNqNsi0u_3XXPe15v5hR_wQ9RLbiRZeT-mgxcyOzkkzQ0e-zT1gHlBKHaohOmhC1CRdcVf5SDwSuvroIxyyTirZK10eIn883no9I3qDmPXPPQ01oBUX50kXHy0JiMZUO9fOFz_M9frcLyFJey00KR1mBBD9ZhaYatcAPuEGJiiGJXlNKFDpLdD1hHI3h_f31rjbRmzSGqLUkUBzwVa5WZXxkTGWtT5s0QFVYPJxlr0rrRczbONqHbOrttts1pWQZTebZPXlskWll2KEOpcIKRcEFcBgmGQpk4yhae8NALCBlSFSedJsQ8KoXlC2VFOAl2tqA2GA70DjBtp4lOA2zmSleGHs6WueNI1w2kFYWRZ4BZDkusppzlVDqjHxdsyzym_oqr_jLguJJ_Ktg6fpSsl6McT602ixHNuBzVKHQMOKweo73RJorIewdliA0qDF3bgO1CO6pXIThFPOxwA3g-xr98Q3zTubio7nb_0mgPFum6yF2rQ208muh9REljeZBbwgf6rwjh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2isGi7KPRJeLSu1KqrQGLn4SxYVAOjocygqoWKXbAdR6qAGURmVMGKT-BX-BU-gS_pvXm106qqVIlFl0nsxLHv49i-PhfgjR_7OToC6-aRjt1AR4mb6NC6HNF5zI2OsRpFW-xGvf3gw0F4MAPXzVmYih-iXXAjzSjtNSk4LUiv_2ANLU6Oae-AgoJQbuu4yh17_g1nbcXG9iYO8VvOu1t7nZ5bJxZwTehHZHdUZo3nSy21QYiccUWn8TM05joTxlehClGOlZaUh8jmGXFnauVFyngJTuMEvvcezFEacaLr3_zUMlYJdJdlPhf0ki5RfTU8kR5fn27vtB_8DdxOY-XS2XXn4abppirG5WhtMtZr5uIXBsn_qh8X4FENvdn7Slcew4wdPoGHPxEyPoUviKLRC7OPFLWGPoB9HbKBxfnJ7eVV98xa1hmhZlKJ6gyrYd0muK1gqmA9Ci4aoU7a0aRgHVoaOy_GxTPYv5Mfew6zw9HQLgKzfp7ZPMZqgQ60DKWIuRA6CGLtJTIJHXAbOUhNTctO2UGO04pQmqc0Pmk7Pg68a8ufVoQkfyy50ohVWhumIkXAFnBfRFI48Lp9jCaF9olU2TtYhgivpAx8B15U4th-CvE3Qn7BHeClUP2lDennQb_fXi39S6VXcL-3N-in_e3dnWV4QPerUL0VmB2fTewqgsKxflmqIYPDu5bX79egZdk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4lH8IFDASiFPaxHYS59AD2iXa0m1VAUW9BdtxpKplt2p2VZUTj8Cj8Cq8Qp-EmfzBghASUg8ck9iJY8_PZ3v8DcCzMAlLdATOL2OT-NLEqZ-ayPkc0XnCrUmwGkVb7MSjPfl6P9pfgq_dWZiGH6JfcCPNqO01KfhxUa7_IA2tPh7R1gHFBKHYtmGVW-7sFCdt1cbmEEf4OefZq3eDkd_mFfBtFMZkdnThbBAqo4xFhFxwTYfxC7TlphA21JGOUIy1UZSGyJUFUWcaHcTaBinO4gS-9xJclnGQUrKI4ZuesEqgt6zTuaCT9Inpq6OJDPj6YnsX3eBv2HYRKte-LrsO37peakJcDtfmM7NmP_1CIPk_deMNWGmBN3vZaMpNWHKTW3DtJzrG2_AeMTT6YLZLMWvoAdjBhG07nJ2cf_6SnTjHBlPUSyrRnGC1LOtC2yqmKzai0KIpaqSbzis2oIWxs2pW3YG9C_mxu7A8mU7cfWAuLAtXJlhNGmlUpETChTBSJiZIVRp54HdikNuWlJ1ygxzlDZ00z2l88n58PHjRlz9u6Ej-WHK1k6q8NUtVjnBN8lDESnjwtH-MBoV2iXTdO1iG6K6UkqEH9xpp7D-F6BsBv-Ae8Fqm_tKG_O32eNxfPfiXSk_gyu4wy8ebO1sP4SrdbuL0VmF5djJ3jxARzszjWgkZfLhocf0OHTRkiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Metal%E2%80%90Free+Covalent+Organic+Frameworks+as+Heterogeneous+Catalysts&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhi%2C+Yongfeng&rft.au=Wang%2C+Zongrui&rft.au=Zhang%2C+Hao%E2%80%90Li&rft.au=Zhang%2C+Qichun&rft.date=2020-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202001070&rft.externalDBID=10.1002%252Fsmll.202001070&rft.externalDocID=SMLL202001070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon