Recent Progress in Metal‐Free Covalent Organic Frameworks as Heterogeneous Catalysts
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 24; pp. e2001070 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.
Covalent organic frameworks (COFs) as a new type of organic porous materials have aroused great interest in the field of heterogeneous catalysis. Herein, the applications of metal‐free COFs in organic catalysis, photocatalysis, energy conversion, and pollutant degradation are systematically summarized. In addition, the main challenges in this area and the potential prospects for future work are also discussed. |
---|---|
AbstractList | Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented. Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented. Covalent organic frameworks (COFs) as a new type of organic porous materials have aroused great interest in the field of heterogeneous catalysis. Herein, the applications of metal‐free COFs in organic catalysis, photocatalysis, energy conversion, and pollutant degradation are systematically summarized. In addition, the main challenges in this area and the potential prospects for future work are also discussed. Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented. |
Author | Zhang, Qichun Zhang, Hao‐Li Wang, Zongrui Zhi, Yongfeng |
Author_xml | – sequence: 1 givenname: Yongfeng surname: Zhi fullname: Zhi, Yongfeng organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue – sequence: 2 givenname: Zongrui surname: Wang fullname: Wang, Zongrui organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue – sequence: 3 givenname: Hao‐Li surname: Zhang fullname: Zhang, Hao‐Li email: Haoli.zhang@lzu.edu.cn organization: Lanzhou University – sequence: 4 givenname: Qichun orcidid: 0000-0003-1854-8659 surname: Zhang fullname: Zhang, Qichun email: qczhang@ntu.edu.sg, qiczhang@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32419332$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PGzEQhi1ExVd75Vit1AuXpDO2s7s-oqiBSkFUQHtdzXonaKl3DfamKLf-hP7G_pI6DQ0SEurJPjyP_c68h2K39z0LcYwwRgD5MXbOjSVIAIQCdsQB5qhGeSnN7vaOsC8OY7wDUCh1sSf2ldRolJIH4tsVW-6H7Evwt4FjzNo-u-CB3O-fv2aBOZv6H-TWxGW4pb612SxQx48-fI8ZxeycB04q9-yXMZtSMldxiG_FmwW5yO-eziPxdfbpZno-ml-efZ6ezkd2gjmMFFLDFrCsy9qCNo0kNMY0Kpd1oyzShCZlAVSnGcqcF41BZWqCnCwYWWh1JE42794H_7DkOFRdGy07R38DVVKDVkVZakzohxfonV-GPqVLFGqJKi9Vot4_Ucu646a6D21HYVX921gCxhvABh9j4MUWQajWlVTrSqptJUnQLwTbDjS0vh8Cte51zWy0x9bx6j-fVNcX8_mz-wchoaBY |
CitedBy_id | crossref_primary_10_1039_D3SE00020F crossref_primary_10_3390_nano12091535 crossref_primary_10_1002_chir_23697 crossref_primary_10_1007_s10562_022_04034_y crossref_primary_10_1002_smll_202101017 crossref_primary_10_1016_j_colsurfa_2022_128348 crossref_primary_10_1002_anie_202316858 crossref_primary_10_1002_advs_202207507 crossref_primary_10_1007_s40843_024_3255_y crossref_primary_10_1021_acsomega_1c06838 crossref_primary_10_1039_D3RA08354C crossref_primary_10_1111_php_13504 crossref_primary_10_1002_smll_202305759 crossref_primary_10_1039_D4YA00082J crossref_primary_10_1021_acsami_2c14882 crossref_primary_10_1039_D1CE00957E crossref_primary_10_1002_cctc_202300244 crossref_primary_10_1039_D2GC04771C crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1016_j_talanta_2023_124613 crossref_primary_10_1021_acsaenm_4c00329 crossref_primary_10_1002_anie_202419867 crossref_primary_10_1021_acsapm_1c01020 crossref_primary_10_1007_s10853_021_06069_9 crossref_primary_10_1039_D4QM00439F crossref_primary_10_1007_s40843_021_1771_5 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_cptc_202100229 crossref_primary_10_1016_j_chempr_2023_03_026 crossref_primary_10_1021_acs_chemrev_1c00905 crossref_primary_10_1002_sstr_202300495 crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1002_marc_202100590 crossref_primary_10_1016_j_envres_2022_113977 crossref_primary_10_1016_j_micromeso_2022_112107 crossref_primary_10_1016_j_apsusc_2022_155966 crossref_primary_10_1002_aesr_202200129 crossref_primary_10_1039_D2NJ06101E crossref_primary_10_1021_acsapm_1c01493 crossref_primary_10_1021_acsanm_4c03284 crossref_primary_10_1039_D2CE01614A crossref_primary_10_1016_j_mcat_2022_112634 crossref_primary_10_1039_D1TA05428G crossref_primary_10_1002_ange_202314763 crossref_primary_10_1016_j_polymer_2024_127873 crossref_primary_10_1021_acsanm_4c04370 crossref_primary_10_1021_acssuschemeng_1c04787 crossref_primary_10_1016_j_ica_2022_121287 crossref_primary_10_1021_acsmaterialslett_4c01665 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1016_j_enchem_2023_100108 crossref_primary_10_1016_j_trac_2023_117234 crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1039_D4TA02594F crossref_primary_10_1016_j_jphotochem_2022_114502 crossref_primary_10_1021_acs_orglett_1c00175 crossref_primary_10_1039_D0NR05337F crossref_primary_10_1002_marc_202200393 crossref_primary_10_1016_j_cej_2024_148922 crossref_primary_10_1021_acs_inorgchem_2c01243 crossref_primary_10_1021_acsnano_4c06783 crossref_primary_10_1039_D1MH00809A crossref_primary_10_1016_j_cej_2024_152293 crossref_primary_10_1002_ejoc_202100173 crossref_primary_10_1002_cssc_202402395 crossref_primary_10_1016_j_cej_2022_138802 crossref_primary_10_1039_D0QO00637H crossref_primary_10_1002_adfm_202304604 crossref_primary_10_1002_adma_202101175 crossref_primary_10_1039_D1QM00015B crossref_primary_10_1063_5_0203954 crossref_primary_10_1002_smll_202005686 crossref_primary_10_1038_s41467_022_30035_x crossref_primary_10_1039_D1OB00137J crossref_primary_10_2174_0118756298299464240402045438 crossref_primary_10_1246_cl_200834 crossref_primary_10_1002_cssc_202301916 crossref_primary_10_1007_s12200_022_00032_5 crossref_primary_10_1016_j_ccr_2021_214259 crossref_primary_10_1021_acs_chemmater_2c01358 crossref_primary_10_1021_accountsmr_2c00108 crossref_primary_10_1002_ange_202303129 crossref_primary_10_1002_smll_202405396 crossref_primary_10_1016_j_colsurfa_2024_133210 crossref_primary_10_1039_D2DT02056D crossref_primary_10_1016_j_apcata_2023_119320 crossref_primary_10_1039_D0TA11648C crossref_primary_10_1002_smll_202005254 crossref_primary_10_1002_smll_202100918 crossref_primary_10_1002_marc_202200778 crossref_primary_10_1039_D3RA05664C crossref_primary_10_1016_j_mcat_2022_112164 crossref_primary_10_1038_s41467_023_36710_x crossref_primary_10_1039_D4QO01382D crossref_primary_10_1038_s41545_024_00311_y crossref_primary_10_1002_adsc_202001086 crossref_primary_10_2174_0115734137274085231214100609 crossref_primary_10_3390_membranes13080696 crossref_primary_10_1002_adfm_202010306 crossref_primary_10_1039_D1GC02118D crossref_primary_10_1002_adfm_202006168 crossref_primary_10_1021_acsabm_2c00855 crossref_primary_10_1002_adtp_202100177 crossref_primary_10_1016_j_dyepig_2022_110099 crossref_primary_10_1021_acs_chemmater_1c02697 crossref_primary_10_1039_D4TA00087K crossref_primary_10_1021_acsapm_4c02792 crossref_primary_10_1021_acscatal_3c05454 crossref_primary_10_1021_acscatal_4c03149 crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1007_s40242_020_0163_6 crossref_primary_10_1016_j_jclepro_2021_125822 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1021_acs_jafc_4c06755 crossref_primary_10_1021_acsami_2c02439 crossref_primary_10_1039_D2TA02622H crossref_primary_10_1016_j_micromeso_2023_112916 crossref_primary_10_1016_j_chemphys_2021_111278 crossref_primary_10_1002_cctc_202401849 crossref_primary_10_1002_inf2_12277 crossref_primary_10_1039_D3TA02293E crossref_primary_10_1039_D4NA00650J crossref_primary_10_1039_D3TA05416K crossref_primary_10_1002_admi_202200874 crossref_primary_10_1002_smm2_1057 crossref_primary_10_1002_aoc_6480 crossref_primary_10_1002_slct_202202468 crossref_primary_10_1021_acsaem_2c03897 crossref_primary_10_1039_D0NR06110G crossref_primary_10_1039_D0TC04175K crossref_primary_10_20517_cs_2023_51 crossref_primary_10_3390_catal11091064 crossref_primary_10_1002_anie_202204938 crossref_primary_10_1002_smtd_202300687 crossref_primary_10_1039_D2CE01645A crossref_primary_10_1039_D2TA08333G crossref_primary_10_1007_s11426_021_1016_6 crossref_primary_10_1016_j_jcat_2021_08_005 crossref_primary_10_1021_acsami_0c18105 crossref_primary_10_1021_acssuschemeng_2c01071 crossref_primary_10_1016_j_ica_2022_121251 crossref_primary_10_1016_j_foodchem_2024_138357 crossref_primary_10_1016_j_jiec_2025_01_054 crossref_primary_10_1007_s11426_021_1088_2 crossref_primary_10_1016_j_microc_2023_109524 crossref_primary_10_1039_D4SC04358H crossref_primary_10_1002_adma_202415135 crossref_primary_10_1016_j_fuel_2025_135130 crossref_primary_10_3390_ijms23094949 crossref_primary_10_1039_D3NJ00197K crossref_primary_10_1016_j_fuel_2024_131154 crossref_primary_10_20517_cs_2023_61 crossref_primary_10_1088_2515_7647_ad5777 crossref_primary_10_1002_ange_202204938 crossref_primary_10_1039_D0CY02061C crossref_primary_10_1016_j_rser_2021_111298 crossref_primary_10_1039_D2DT01895K crossref_primary_10_1007_s00604_024_06289_1 crossref_primary_10_1021_acsmaterialslett_0c00148 crossref_primary_10_6023_cjoc202107030 crossref_primary_10_1016_j_cej_2024_149742 crossref_primary_10_1016_j_chemosphere_2021_132795 crossref_primary_10_1007_s40242_022_2001_5 crossref_primary_10_1039_D4CC04977B crossref_primary_10_1021_acs_iecr_3c03776 crossref_primary_10_1063_5_0207807 crossref_primary_10_1016_j_memsci_2021_120118 crossref_primary_10_1007_s40843_024_3039_8 crossref_primary_10_1002_asia_202200358 crossref_primary_10_1039_D3DT01684F crossref_primary_10_1002_cjoc_202200046 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1021_acs_analchem_2c01692 crossref_primary_10_1002_anie_202303129 crossref_primary_10_1016_j_jcis_2023_04_017 crossref_primary_10_1039_D2TA07177K crossref_primary_10_1166_jbmb_2023_2297 crossref_primary_10_1002_cptc_202400274 crossref_primary_10_1016_j_apcatb_2022_122135 crossref_primary_10_1016_j_snb_2021_130288 crossref_primary_10_1016_j_matt_2020_10_014 crossref_primary_10_1002_smll_202205767 crossref_primary_10_1002_ange_202419867 crossref_primary_10_1021_jacs_5c00686 crossref_primary_10_1002_cssc_202401903 crossref_primary_10_1039_D0QM00384K crossref_primary_10_1021_acsnano_5c00165 crossref_primary_10_1016_j_arabjc_2024_105987 crossref_primary_10_1007_s40242_022_1490_6 crossref_primary_10_1021_acs_chemmater_3c01867 crossref_primary_10_1016_j_chroma_2022_463555 crossref_primary_10_1016_j_polymer_2020_123307 crossref_primary_10_1021_acs_iecr_1c02366 crossref_primary_10_1021_acsapm_2c00543 crossref_primary_10_1016_j_cclet_2025_111028 crossref_primary_10_1039_D1CY00293G crossref_primary_10_1021_acssuschemeng_2c04428 crossref_primary_10_1016_j_mcat_2025_114868 crossref_primary_10_1016_j_mtener_2020_100635 crossref_primary_10_1021_acs_macromol_3c02490 crossref_primary_10_1002_adfm_202505453 crossref_primary_10_1016_j_cej_2020_127845 crossref_primary_10_1016_j_jiec_2024_08_002 crossref_primary_10_1016_j_jssc_2023_124352 crossref_primary_10_1039_D3LP00162H crossref_primary_10_1016_j_mssp_2025_109379 crossref_primary_10_1021_jacs_3c10090 crossref_primary_10_1016_j_jallcom_2020_157944 crossref_primary_10_1039_D2CE00605G crossref_primary_10_1021_acsnano_2c09838 crossref_primary_10_1002_marc_202200787 crossref_primary_10_1016_j_mtchem_2021_100632 crossref_primary_10_1007_s40242_022_2010_4 crossref_primary_10_1002_cplu_202200281 crossref_primary_10_1002_slct_202303943 crossref_primary_10_1016_j_ccr_2023_215349 crossref_primary_10_1016_j_progpolymsci_2023_101691 crossref_primary_10_1002_cssc_202101625 crossref_primary_10_1002_tcr_202000074 crossref_primary_10_1002_smll_202408395 crossref_primary_10_1007_s40242_022_1448_8 crossref_primary_10_1038_s44160_024_00528_2 crossref_primary_10_1002_adom_202203054 crossref_primary_10_1016_j_jssc_2022_123614 crossref_primary_10_1007_s12598_021_01884_0 crossref_primary_10_1021_acs_inorgchem_3c04158 crossref_primary_10_1016_j_micromeso_2022_112419 crossref_primary_10_1039_D1DT03143K crossref_primary_10_1360_SSC_2024_0258 crossref_primary_10_1002_slct_202302060 crossref_primary_10_1007_s11356_023_27234_4 crossref_primary_10_1039_D2TC02170F crossref_primary_10_1039_D3DT02345A crossref_primary_10_1016_j_jcis_2023_03_195 crossref_primary_10_1002_cjoc_202300244 crossref_primary_10_1039_D2CE01324J crossref_primary_10_1002_asia_202100815 crossref_primary_10_1007_s11426_023_1644_x crossref_primary_10_3390_molecules27228002 crossref_primary_10_1016_j_apcatb_2021_120846 crossref_primary_10_1039_D4PY01057D crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1039_D4NR03796K crossref_primary_10_1016_j_jtice_2024_105680 crossref_primary_10_1002_smll_202502867 crossref_primary_10_1002_anie_202314763 crossref_primary_10_1016_j_ica_2023_121494 crossref_primary_10_1016_j_mcat_2023_113716 crossref_primary_10_1016_S1872_2067_21_63812_3 crossref_primary_10_1002_slct_202202059 crossref_primary_10_1007_s11164_023_05093_5 crossref_primary_10_1002_marc_202100032 crossref_primary_10_1007_s40843_023_2625_7 crossref_primary_10_1016_j_apcatb_2022_121487 crossref_primary_10_1016_j_ijhydene_2024_12_300 crossref_primary_10_1007_s12274_021_3980_0 crossref_primary_10_1021_jacs_3c06764 crossref_primary_10_1002_cnl2_100 crossref_primary_10_1021_jacs_2c01186 crossref_primary_10_3390_molecules30020336 crossref_primary_10_3390_molecules26144181 crossref_primary_10_1002_asia_202401423 crossref_primary_10_1039_D1NR07614K crossref_primary_10_1002_adma_202209475 crossref_primary_10_1016_j_cclet_2023_108148 crossref_primary_10_1002_smll_202303757 crossref_primary_10_3390_su16062334 crossref_primary_10_1002_sstr_202200233 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_3390_w16111588 crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_1039_D1QM00416F crossref_primary_10_1039_D2TA09375H crossref_primary_10_1021_acssuschemeng_3c06108 crossref_primary_10_1002_ange_202316858 crossref_primary_10_1002_adma_202413118 crossref_primary_10_1002_smll_202409495 crossref_primary_10_1016_j_ccr_2025_216465 crossref_primary_10_1002_solr_202100848 crossref_primary_10_1039_D2NJ00641C crossref_primary_10_1002_cctc_202400100 crossref_primary_10_1039_D1NJ02152D crossref_primary_10_1039_D3QM00188A crossref_primary_10_1016_j_colsurfa_2024_135100 crossref_primary_10_1021_acs_langmuir_2c00203 crossref_primary_10_1039_D2TA09582C crossref_primary_10_1039_D4CY00575A crossref_primary_10_1039_D1TC01938D crossref_primary_10_1002_slct_202200576 |
Cites_doi | 10.1021/ma951431i 10.1039/c4nj00053f 10.1039/C4CS00103F 10.1039/C9CC06479F 10.1038/s41557-018-0141-5 10.1016/j.chempr.2019.04.015 10.1002/smll.201602996 10.1039/C7CS00033B 10.1021/jacs.9b01226 10.1039/C4CC07104B 10.1002/chem.201903523 10.1007/s11244-009-9226-0 10.1016/S1872-2067(18)63057-8 10.1002/anie.201310500 10.1038/238037a0 10.1039/C7TA02105D 10.1021/jacs.5b04147 10.1021/jacs.5b03553 10.1126/science.1120411 10.1002/anie.201801998 10.1016/j.molcata.2006.01.008 10.1038/s41467-018-08208-4 10.1021/jacs.8b10334 10.1002/adfm.201705553 10.1021/cr300503r 10.1039/C6CS00528D 10.1039/C8TA10046B 10.1126/science.aan0202 10.1002/ange.201900029 10.1002/cctc.201901061 10.1039/C9GC02126D 10.1039/C3CC48813F 10.1021/jacs.8b01320 10.1002/asia.201901527 10.1038/nchem.2352 10.1021/acsami.9b10958 10.1021/ja5100417 10.1021/jacs.6b09563 10.1126/science.1139915 10.1021/acsenergylett.7b00494 10.1002/anie.201902543 10.1038/ncomms9508 10.1038/natrevmats.2017.45 10.1021/jacs.8b08380 10.1021/jacs.8b08374 10.1021/ja4103293 10.1021/jacs.7b11255 10.1021/jacs.8b00571 10.1039/C5CS00859J 10.1039/B715660J 10.1039/C9CC07500C 10.1002/adma.200801971 10.1021/acs.cgd.6b00093 10.1002/adma.201606635 10.1002/anie.201507145 10.1021/jacs.9b01891 10.1039/C2CS35072F 10.1002/adma.201400087 10.1002/anie.201106203 10.1038/s41467-019-10504-6 10.1038/s41557-019-0238-5 10.1038/srep08225 10.1039/C5CS00023H 10.1016/j.apcatb.2018.08.004 10.1021/ja803247y 10.1126/science.aac8343 10.1002/anie.201903534 10.1039/C5CS00109A 10.1039/C9SC02601K 10.1039/C9CS00258H 10.1039/C9CC01317B 10.1038/natrevmats.2016.68 10.1038/nchem.548 10.1039/C6CC03058K 10.1039/C7TA08629F 10.1002/chem.201702418 10.1038/nmat4611 10.1002/chem.201601199 10.1021/jacs.9b02448 10.1039/c2cs35157a 10.1021/ja308278w 10.1007/s11426-017-9070-1 10.1021/acscatal.5b01274 10.1021/cm061177g 10.1126/science.aat7679 10.1002/cssc.201200255 10.1002/cptc.201900089 10.1039/C4SC00016A 10.1039/C5CS00878F 10.1002/aenm.201703278 10.1021/acscatal.5b02490 10.1002/adma.201505004 10.1021/jacs.6b07516 10.1021/acs.accounts.6b00251 10.1039/C4CC05665E 10.1002/anie.201901194 10.1039/C5CS00626K 10.1039/c3cs60160a 10.1039/C7QI00651A 10.1021/ja206846p 10.1002/anie.201005919 10.1039/C8NR05756G 10.1021/acs.chemmater.6b01370 10.1038/s41570-017-0056 10.1126/science.aal1585 10.1016/j.apcatb.2020.118799 10.1016/j.apcatb.2018.12.065 10.1038/s41467-018-02889-7 10.1039/b802430h 10.1021/jacs.9b06219 10.1002/adma.201707582 10.1002/smll.201906005 10.1021/cm201140r 10.1002/aenm.201904199 10.1021/ja409421d 10.1002/anie.201909613 10.1021/jacs.7b03352 10.1021/acsenergylett.9b01691 10.1021/acs.accounts.5b00369 10.1021/acs.accounts.6b00270 10.1039/C8QI00543E 10.1016/j.ccr.2015.12.010 10.1039/C8CS00376A 10.1021/jacs.9b09956 10.1039/C9GC00022D 10.1021/jacs.8b06291 10.1002/advs.201801410 10.1021/acscatal.6b01422 10.1039/b600349d 10.1039/C6CY00362A 10.1021/ja502212v 10.1021/ja204728y 10.1126/science.aar7883 10.1016/j.apcatb.2018.08.005 10.1021/cs200131g 10.1021/jacs.7b07918 10.1039/C7TA07290B 10.1002/cssc.201500755 10.1002/adma.201900008 10.1016/j.ccr.2019.04.002 10.1002/adma.201200804 10.1002/asia.201301023 10.1021/acscatal.8b00407 10.1021/acs.chemrev.6b00439 10.1039/C6PY00561F 10.1002/chem.201501206 10.1021/acs.chemmater.9b02718 10.1002/cssc.201601702 10.1039/C7TA07691F 10.1002/anie.200803826 10.1021/acs.chemrev.5b00125 10.1021/jacs.9b03463 10.1039/C9CS00299E 10.1002/adma.201706330 10.1021/jacs.5b13490 10.1002/cssc.201900570 10.1021/jacs.7b02648 10.1002/anie.201501706 10.1016/j.jssc.2010.09.013 10.1016/j.nanoen.2017.08.038 10.1002/anie.201813331 10.1021/acsami.8b14671 10.1016/j.apcatb.2018.11.032 10.1039/C6CC00853D 10.1002/chem.201601151 10.1021/jacs.5b10754 10.1016/j.jhazmat.2019.02.046 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202001070 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 32419332 10_1002_smll_202001070 SMLL202001070 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: AcRF Tier 1 funderid: RG 111/17; RG 2/17; RG 114/16; RG 113/18 – fundername: NSFC funderid: 51733004; 51525303 – fundername: National Key Research and Development Program of China funderid: 2017YFA0204903 – fundername: National Natural Science Foundation of China – fundername: Tier 2 funderid: MOE 2017‐T2‐1‐021; MOE 2018‐T2‐1‐070 – fundername: 111 Project – fundername: AcRF Tier 1 grantid: RG 113/18 – fundername: NSFC grantid: 51733004 – fundername: Tier 2 grantid: MOE 2018-T2-1-070 – fundername: AcRF Tier 1 grantid: RG 2/17 – fundername: AcRF Tier 1 grantid: RG 114/16 – fundername: NSFC grantid: 51525303 – fundername: Tier 2 grantid: MOE 2017-T2-1-021 – fundername: AcRF Tier 1 grantid: RG 111/17 – fundername: National Key Research and Development Program of China grantid: 2017YFA0204903 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c5160-31adec018b8bc049d2a1999d362bd3c1a5a5870ab81086efd9139ba06ac092743 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 17:02:58 EDT 2025 Fri Jul 25 12:16:50 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Tue Jul 01 02:10:53 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:33:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | covalent organic frameworks photocatalytic reactions heterogeneous catalysis organic conversion |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5160-31adec018b8bc049d2a1999d362bd3c1a5a5870ab81086efd9139ba06ac092743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1854-8659 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/406097 |
PMID | 32419332 |
PQID | 2414213683 |
PQPubID | 1046358 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2404378841 proquest_journals_2414213683 pubmed_primary_32419332 crossref_primary_10_1002_smll_202001070 crossref_citationtrail_10_1002_smll_202001070 wiley_primary_10_1002_smll_202001070_SMLL202001070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006; 35 2019; 11 2019; 10 2019; 12 2020; 16 2014; 26 2020; 15 2020 2017 2020 2017 2016; 10 5 41 7 2014; 136 2018; 6 2018; 9 2018; 8 2018; 39 2012; 134 2015; 137 2019; 21 2016; 311 2013; 113 2018; 30 2012; 24 2010; 2 2016; 49 2016; 45 2019; 7 2018; 28 2019; 4 2019; 3 2017; 60 2019; 6 2011; 1 2019; 5 2019; 31 2015; 51 2015; 54 2020; 269 2016; 15 2011; 133 2017; 139 2014; 43 2016; 6 2007; 316 2016; 1 2018; 239 2019; 48 2014; 38 2008; 47 2020; 26 2016; 28 2018; 10 2008; 130 2012; 41 2016; 22 2017; 5 2018; 361 2017; 1 2017; 2 2019; 55 2016 2015 2015; 45 44 44 2017; 46 2019; 58 2019; 369 2019; 245 2020; 56 2015; 349 2017; 355 2017; 357 2019; 244 2017; 117 2012; 51 2015 2019 2018 2017 2016; 115 391 5 13 16 2015; 48 1996; 29 2014; 5 2017 2019 2014 2017 2010; 4 10 9 23 183 2011; 23 2014; 50 2006; 249 2014; 53 2015; 6 2015; 5 2009; 21 2018; 140 2005; 310 2008; 18 2013; 42 2015 2009 2016; 44 52 45 2006; 18 2016; 52 2017; 29 2019; 141 2015; 8 2015; 7 1972; 238 2016; 55 2020 2017; 10 2015; 21 2011; 50 2013; 135 2016; 138 2012; 5 2009; 38 2019; 131 2018; 57 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_2_3 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_2_2 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 Lei K. (e_1_2_10_151_1) 2020 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 Geng K. (e_1_2_10_28_1) 2020 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_3_2 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_3_4 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_3_3 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_3_5 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 Yao C. (e_1_2_10_31_3) 2020 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_1_2 e_1_2_10_73_1 Wang L. (e_1_2_10_152_1) 2020 e_1_2_10_1_3 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_5_2 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_5_4 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_5_3 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_31_5 e_1_2_10_35_1 e_1_2_10_5_5 e_1_2_10_9_1 e_1_2_10_31_4 e_1_2_10_59_1 e_1_2_10_31_2 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 136 start-page: 6570 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 664 year: 2017 publication-title: ChemSusChem – volume: 51 start-page: 2618 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 4735 year: 2018 publication-title: ACS Catal. – volume: 52 start-page: 7082 year: 2016 publication-title: Chem. Commun. – volume: 311 start-page: 85 year: 2016 publication-title: Coord. Chem. Rev. – volume: 369 start-page: 494 year: 2019 publication-title: J. Hazard. Mater. – volume: 1 start-page: 819 year: 2011 publication-title: ACS Catal. – volume: 131 start-page: 8762 year: 2019 publication-title: Angew. Chem. – volume: 45 start-page: 5635 year: 2016 publication-title: Chem. Soc. Rev. – volume: 361 start-page: 48 year: 2018 publication-title: Science – volume: 58 start-page: 5376 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 244 start-page: 36 year: 2019 publication-title: Appl. Catal., B – volume: 22 start-page: 6768 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 137 start-page: 8352 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 1292 year: 2014 publication-title: Chem. Commun. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 338 year: 2020 publication-title: Chem. Asian J. – volume: 5 start-page: 2789 year: 2014 publication-title: Chem. Sci. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 3390 year: 2012 publication-title: Adv. Mater. – volume: 48 start-page: 5266 year: 2019 publication-title: Chem. Soc. Rev. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 22 start-page: 9919 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 38 start-page: 1460 year: 2009 publication-title: Chem. Soc. Rev. – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 355 year: 2017 publication-title: Science – volume: 140 start-page: 1423 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2251 year: 2019 publication-title: ACS Energy Lett. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 23 start-page: 4094 year: 2011 publication-title: Chem. Mater. – volume: 45 44 44 start-page: 584 8877 7406 year: 2016 2015 2015 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 10 start-page: 1180 year: 2018 publication-title: Nat. Chem. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 141 start-page: 6152 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3134 year: 2017 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 1515 year: 2017 publication-title: Chem. Rev. – volume: 5 start-page: 4989 year: 2015 publication-title: ACS Catal. – volume: 48 start-page: 3053 year: 2015 publication-title: Acc. Chem. Res. – volume: 58 start-page: 6430 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1946 year: 2016 publication-title: Acc. Chem. Res. – volume: 58 start-page: 2 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 998 year: 2019 publication-title: J. Mater. Chem. A – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 141 start-page: 6623 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6152 year: 2016 publication-title: Catal. Sci. Technol. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 357 start-page: 673 year: 2017 publication-title: Science – volume: 49 start-page: 2295 year: 2016 publication-title: Acc. Chem. Res. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 6010 year: 2012 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 4607 year: 2014 publication-title: Adv. Mater. – volume: 115 391 5 13 16 start-page: 30 2693 2309 year: 2015 2019 2018 2017 2016 publication-title: Chem. Rev. Coord. Chem. Rev. Inorg. Chem. Front. Small Cryst. Growth Des. – volume: 6 start-page: 4871 year: 2016 publication-title: ACS Catal. – volume: 113 start-page: 5322 year: 2013 publication-title: Chem. Rev. – volume: 269 year: 2020 publication-title: Appl. Catal., B – volume: 361 start-page: 52 year: 2018 publication-title: Science – volume: 51 start-page: 310 year: 2015 publication-title: Chem. Commun. – volume: 137 start-page: 7817 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 4375 year: 2016 publication-title: Chem. Mater. – volume: 3 start-page: 973 year: 2019 publication-title: ChemPhotoChem – volume: 349 start-page: 1208 year: 2015 publication-title: Science – volume: 5 start-page: 8225 year: 2015 publication-title: Sci. Rep. – volume: 140 start-page: 4494 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5897 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8277 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 249 start-page: 143 year: 2006 publication-title: J. Mol. Catal. A: Chem. – volume: 48 start-page: 4375 year: 2019 publication-title: Chem. Soc. Rev. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2905 year: 2019 publication-title: Green Chem. – volume: 6 start-page: 8508 year: 2015 publication-title: Nat. Commun. – volume: 50 start-page: 1289 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 8007 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 4258 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 8100 year: 2019 publication-title: Chem. Mater. – volume: 138 start-page: 3031 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 464 year: 2017 publication-title: Chem. Soc. Rev. – year: 2020 publication-title: ChemSusChem – volume: 11 start-page: 4916 year: 2019 publication-title: ChemCatChem – volume: 239 start-page: 147 year: 2018 publication-title: Appl. Catal., B – volume: 141 start-page: 1807 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 2308 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 21 start-page: 1291 year: 2009 publication-title: Adv. Mater. – volume: 54 start-page: 6814 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1985 year: 2017 publication-title: ACS Energy Lett. – year: 2020 publication-title: Chem. Rev. – volume: 16 year: 2020 publication-title: Small – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 53 start-page: 2878 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 0056 year: 2017 publication-title: Nat. Rev. Chem. – volume: 5 start-page: 1632 year: 2019 publication-title: Chem – volume: 7 start-page: 905 year: 2015 publication-title: Nat. Chem. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 26 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 675 year: 2006 publication-title: Chem. Soc. Rev. – volume: 10 5 41 7 start-page: 117 4176 year: 2020 2017 2020 2017 2016 publication-title: Adv. Energy Mater. J. Mater. Chem. A ChemSusChem Nano Energy Polym. Chem. – volume: 55 start-page: 5423 year: 2019 publication-title: Chem. Commun. – volume: 10 start-page: 2467 year: 2019 publication-title: Nat. Commun. – volume: 141 start-page: 7518 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1113 year: 2016 publication-title: ACS Catal. – volume: 38 start-page: 2292 year: 2014 publication-title: New J. Chem. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 12 start-page: 2421 year: 2019 publication-title: ChemSusChem – volume: 56 start-page: 1267 year: 2020 publication-title: Chem. Commun. – volume: 2 start-page: 235 year: 2010 publication-title: Nat. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 369 year: 2020 publication-title: Chem‐ Eur. J. – volume: 42 start-page: 8012 year: 2013 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 587 year: 2019 publication-title: Nat. Chem. – volume: 58 start-page: 9443 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 3208 year: 2015 publication-title: ChemSusChem – volume: 52 start-page: 4128 year: 2016 publication-title: Chem. Commun. – volume: 10 start-page: 8316 year: 2019 publication-title: Chem. Sci. – volume: 21 start-page: 4792 year: 2019 publication-title: Green Chem. – volume: 18 start-page: 5296 year: 2006 publication-title: Chem. Mater. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 6 start-page: 374 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 start-page: 2783 year: 1996 publication-title: Macromolecules – volume: 4 10 9 23 183 start-page: 1953 370 131 2644 year: 2017 2019 2014 2017 2010 publication-title: Inorg. Chem. Front. Nat. Commun. Chem. ‐ Asian J. Chem. ‐ Eur. J. J. Solid State Chem. – volume: 140 start-page: 4623 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 316 start-page: 268 year: 2007 publication-title: Science – volume: 15 start-page: 722 year: 2016 publication-title: Nat. Mater. – volume: 9 start-page: 576 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 48 start-page: 488 year: 2019 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 2855 year: 2016 publication-title: Adv. Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 245 start-page: 334 year: 2019 publication-title: Appl. Catal., B – volume: 47 start-page: 8826 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 44 52 45 start-page: 7112 888 584 year: 2015 2009 2016 publication-title: Chem. Soc. Rev. Top. Catal. Chem. Soc. Rev. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 573 year: 2008 publication-title: J. Mater. Chem. – volume: 5 start-page: 2032 year: 2012 publication-title: ChemSusChem – volume: 39 start-page: 1167 year: 2018 publication-title: Chin. J. Catal. – volume: 60 start-page: 1015 year: 2017 publication-title: Sci. China: Chem. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 239 start-page: 46 year: 2018 publication-title: Appl. Catal., B – volume: 43 start-page: 5982 year: 2014 publication-title: Chem. Soc. Rev. – ident: e_1_2_10_133_1 doi: 10.1021/ma951431i – ident: e_1_2_10_12_1 doi: 10.1039/c4nj00053f – ident: e_1_2_10_119_1 doi: 10.1039/C4CS00103F – ident: e_1_2_10_88_1 doi: 10.1039/C9CC06479F – ident: e_1_2_10_141_1 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_10_143_1 doi: 10.1016/j.chempr.2019.04.015 – ident: e_1_2_10_5_4 doi: 10.1002/smll.201602996 – ident: e_1_2_10_20_1 doi: 10.1039/C7CS00033B – ident: e_1_2_10_85_1 doi: 10.1021/jacs.9b01226 – ident: e_1_2_10_92_1 doi: 10.1039/C4CC07104B – ident: e_1_2_10_136_1 doi: 10.1002/chem.201903523 – ident: e_1_2_10_1_2 doi: 10.1007/s11244-009-9226-0 – ident: e_1_2_10_77_1 doi: 10.1016/S1872-2067(18)63057-8 – ident: e_1_2_10_96_1 doi: 10.1002/anie.201310500 – ident: e_1_2_10_137_1 doi: 10.1038/238037a0 – ident: e_1_2_10_31_2 doi: 10.1039/C7TA02105D – ident: e_1_2_10_74_1 doi: 10.1021/jacs.5b04147 – ident: e_1_2_10_123_1 doi: 10.1021/jacs.5b03553 – ident: e_1_2_10_29_1 doi: 10.1126/science.1120411 – ident: e_1_2_10_72_1 doi: 10.1002/anie.201801998 – ident: e_1_2_10_4_1 doi: 10.1016/j.molcata.2006.01.008 – ident: e_1_2_10_3_2 doi: 10.1038/s41467-018-08208-4 – ident: e_1_2_10_43_1 doi: 10.1021/jacs.8b10334 – ident: e_1_2_10_40_1 doi: 10.1002/adfm.201705553 – ident: e_1_2_10_116_1 doi: 10.1021/cr300503r – ident: e_1_2_10_63_1 doi: 10.1039/C6CS00528D – ident: e_1_2_10_156_1 doi: 10.1039/C8TA10046B – ident: e_1_2_10_32_1 doi: 10.1126/science.aan0202 – ident: e_1_2_10_108_1 doi: 10.1002/ange.201900029 – ident: e_1_2_10_131_1 doi: 10.1002/cctc.201901061 – ident: e_1_2_10_105_1 doi: 10.1039/C9GC02126D – ident: e_1_2_10_112_1 doi: 10.1039/C3CC48813F – ident: e_1_2_10_107_1 doi: 10.1021/jacs.8b01320 – ident: e_1_2_10_81_1 doi: 10.1002/asia.201901527 – ident: e_1_2_10_106_1 doi: 10.1038/nchem.2352 – ident: e_1_2_10_17_1 doi: 10.1021/acsami.9b10958 – ident: e_1_2_10_73_1 doi: 10.1021/ja5100417 – ident: e_1_2_10_97_1 doi: 10.1021/jacs.6b09563 – ident: e_1_2_10_36_1 doi: 10.1126/science.1139915 – ident: e_1_2_10_67_1 doi: 10.1021/acsenergylett.7b00494 – ident: e_1_2_10_129_1 doi: 10.1002/anie.201902543 – ident: e_1_2_10_139_1 doi: 10.1038/ncomms9508 – ident: e_1_2_10_148_1 doi: 10.1038/natrevmats.2017.45 – ident: e_1_2_10_56_1 doi: 10.1021/jacs.8b08380 – ident: e_1_2_10_33_1 doi: 10.1021/jacs.8b08374 – ident: e_1_2_10_47_1 doi: 10.1021/ja4103293 – ident: e_1_2_10_142_1 doi: 10.1021/jacs.7b11255 – ident: e_1_2_10_127_1 doi: 10.1021/jacs.8b00571 – ident: e_1_2_10_1_3 doi: 10.1039/C5CS00859J – ident: e_1_2_10_10_1 doi: 10.1039/B715660J – ident: e_1_2_10_111_1 doi: 10.1039/C9CC07500C – ident: e_1_2_10_13_1 doi: 10.1002/adma.200801971 – ident: e_1_2_10_5_5 doi: 10.1021/acs.cgd.6b00093 – ident: e_1_2_10_84_1 doi: 10.1002/adma.201606635 – ident: e_1_2_10_104_1 doi: 10.1002/anie.201507145 – ident: e_1_2_10_130_1 doi: 10.1021/jacs.9b01891 – ident: e_1_2_10_22_1 doi: 10.1039/C2CS35072F – ident: e_1_2_10_146_1 doi: 10.1002/adma.201400087 – ident: e_1_2_10_122_1 doi: 10.1002/anie.201106203 – ident: e_1_2_10_144_1 doi: 10.1038/s41467-019-10504-6 – ident: e_1_2_10_35_1 doi: 10.1038/s41557-019-0238-5 – ident: e_1_2_10_64_1 doi: 10.1038/srep08225 – ident: e_1_2_10_1_1 doi: 10.1039/C5CS00023H – ident: e_1_2_10_150_1 doi: 10.1016/j.apcatb.2018.08.004 – year: 2020 ident: e_1_2_10_31_3 publication-title: ChemSusChem – ident: e_1_2_10_50_1 doi: 10.1021/ja803247y – ident: e_1_2_10_82_1 doi: 10.1126/science.aac8343 – ident: e_1_2_10_115_1 doi: 10.1002/anie.201903534 – ident: e_1_2_10_2_3 doi: 10.1039/C5CS00109A – ident: e_1_2_10_134_1 doi: 10.1039/C9SC02601K – ident: e_1_2_10_34_1 doi: 10.1039/C9CS00258H – ident: e_1_2_10_110_1 doi: 10.1039/C9CC01317B – ident: e_1_2_10_24_1 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_10_52_1 doi: 10.1038/nchem.548 – ident: e_1_2_10_100_1 doi: 10.1039/C6CC03058K – ident: e_1_2_10_98_1 doi: 10.1039/C7TA08629F – ident: e_1_2_10_3_4 doi: 10.1002/chem.201702418 – ident: e_1_2_10_61_1 doi: 10.1038/nmat4611 – ident: e_1_2_10_75_1 doi: 10.1002/chem.201601199 – ident: e_1_2_10_69_1 doi: 10.1021/jacs.9b02448 – ident: e_1_2_10_21_1 doi: 10.1039/c2cs35157a – ident: e_1_2_10_46_1 doi: 10.1021/ja308278w – ident: e_1_2_10_79_1 doi: 10.1007/s11426-017-9070-1 – ident: e_1_2_10_103_1 doi: 10.1021/acscatal.5b01274 – ident: e_1_2_10_44_1 doi: 10.1021/cm061177g – ident: e_1_2_10_48_1 doi: 10.1126/science.aat7679 – ident: e_1_2_10_94_1 doi: 10.1002/cssc.201200255 – ident: e_1_2_10_78_1 doi: 10.1002/cptc.201900089 – ident: e_1_2_10_138_1 doi: 10.1039/C4SC00016A – ident: e_1_2_10_25_1 doi: 10.1039/C5CS00878F – ident: e_1_2_10_140_1 doi: 10.1002/aenm.201703278 – ident: e_1_2_10_8_1 doi: 10.1021/acscatal.5b02490 – ident: e_1_2_10_53_1 doi: 10.1002/adma.201505004 – ident: e_1_2_10_113_1 doi: 10.1021/jacs.6b07516 – ident: e_1_2_10_118_1 doi: 10.1021/acs.accounts.6b00251 – ident: e_1_2_10_149_1 doi: 10.1039/C4CC05665E – ident: e_1_2_10_128_1 doi: 10.1002/anie.201901194 – ident: e_1_2_10_2_2 doi: 10.1039/C5CS00626K – ident: e_1_2_10_14_1 doi: 10.1039/c3cs60160a – ident: e_1_2_10_3_1 doi: 10.1039/C7QI00651A – ident: e_1_2_10_19_1 doi: 10.1021/ja206846p – ident: e_1_2_10_121_1 doi: 10.1002/anie.201005919 – ident: e_1_2_10_90_1 doi: 10.1039/C8NR05756G – ident: e_1_2_10_83_1 doi: 10.1021/acs.chemmater.6b01370 – ident: e_1_2_10_39_1 doi: 10.1038/s41570-017-0056 – ident: e_1_2_10_37_1 doi: 10.1126/science.aal1585 – ident: e_1_2_10_154_1 doi: 10.1016/j.apcatb.2020.118799 – ident: e_1_2_10_126_1 doi: 10.1016/j.apcatb.2018.12.065 – ident: e_1_2_10_68_1 doi: 10.1038/s41467-018-02889-7 – ident: e_1_2_10_51_1 doi: 10.1039/b802430h – ident: e_1_2_10_145_1 doi: 10.1021/jacs.9b06219 – ident: e_1_2_10_6_1 doi: 10.1002/adma.201707582 – year: 2020 ident: e_1_2_10_28_1 publication-title: Chem. Rev. – ident: e_1_2_10_91_1 doi: 10.1002/smll.201906005 – ident: e_1_2_10_120_1 doi: 10.1021/cm201140r – ident: e_1_2_10_31_1 doi: 10.1002/aenm.201904199 – ident: e_1_2_10_70_1 doi: 10.1021/ja409421d – ident: e_1_2_10_57_1 doi: 10.1002/anie.201909613 – ident: e_1_2_10_114_1 doi: 10.1021/jacs.7b03352 – ident: e_1_2_10_87_1 doi: 10.1021/acsenergylett.9b01691 – ident: e_1_2_10_23_1 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_10_117_1 doi: 10.1021/acs.accounts.6b00270 – ident: e_1_2_10_5_3 doi: 10.1039/C8QI00543E – ident: e_1_2_10_26_1 doi: 10.1016/j.ccr.2015.12.010 – ident: e_1_2_10_27_1 doi: 10.1039/C8CS00376A – ident: e_1_2_10_59_1 doi: 10.1021/jacs.9b09956 – ident: e_1_2_10_135_1 doi: 10.1039/C9GC00022D – ident: e_1_2_10_65_1 doi: 10.1021/jacs.8b06291 – ident: e_1_2_10_80_1 doi: 10.1002/advs.201801410 – ident: e_1_2_10_93_1 doi: 10.1021/acscatal.6b01422 – ident: e_1_2_10_11_1 doi: 10.1039/b600349d – ident: e_1_2_10_2_1 doi: 10.1039/C5CS00859J – ident: e_1_2_10_95_1 doi: 10.1039/C6CY00362A – ident: e_1_2_10_60_1 doi: 10.1021/ja502212v – ident: e_1_2_10_45_1 doi: 10.1021/ja204728y – ident: e_1_2_10_49_1 doi: 10.1126/science.aar7883 – ident: e_1_2_10_153_1 doi: 10.1016/j.apcatb.2018.08.005 – ident: e_1_2_10_18_1 doi: 10.1021/cs200131g – ident: e_1_2_10_89_1 doi: 10.1021/jacs.7b07918 – ident: e_1_2_10_147_1 doi: 10.1039/C7TA07290B – ident: e_1_2_10_99_1 doi: 10.1002/cssc.201500755 – ident: e_1_2_10_109_1 doi: 10.1002/adma.201900008 – ident: e_1_2_10_5_2 doi: 10.1016/j.ccr.2019.04.002 – ident: e_1_2_10_7_1 doi: 10.1002/adma.201200804 – year: 2020 ident: e_1_2_10_151_1 publication-title: ChemSusChem – ident: e_1_2_10_3_3 doi: 10.1002/asia.201301023 – ident: e_1_2_10_15_1 doi: 10.1021/acscatal.8b00407 – ident: e_1_2_10_38_1 doi: 10.1021/acs.chemrev.6b00439 – ident: e_1_2_10_31_5 doi: 10.1039/C6PY00561F – ident: e_1_2_10_54_1 doi: 10.1002/chem.201501206 – ident: e_1_2_10_132_1 doi: 10.1021/acs.chemmater.9b02718 – ident: e_1_2_10_125_1 doi: 10.1002/cssc.201601702 – ident: e_1_2_10_124_1 doi: 10.1039/C7TA07691F – ident: e_1_2_10_30_1 doi: 10.1002/anie.200803826 – ident: e_1_2_10_5_1 doi: 10.1021/acs.chemrev.5b00125 – ident: e_1_2_10_41_1 doi: 10.1021/jacs.9b03463 – ident: e_1_2_10_58_1 doi: 10.1039/C9CS00299E – ident: e_1_2_10_86_1 doi: 10.1002/adma.201706330 – ident: e_1_2_10_62_1 doi: 10.1021/jacs.5b13490 – ident: e_1_2_10_102_1 doi: 10.1002/cssc.201900570 – year: 2020 ident: e_1_2_10_152_1 publication-title: ChemSusChem – ident: e_1_2_10_66_1 doi: 10.1021/jacs.7b02648 – ident: e_1_2_10_71_1 doi: 10.1002/anie.201501706 – ident: e_1_2_10_3_5 doi: 10.1016/j.jssc.2010.09.013 – ident: e_1_2_10_31_4 doi: 10.1016/j.nanoen.2017.08.038 – ident: e_1_2_10_42_1 doi: 10.1002/anie.201813331 – ident: e_1_2_10_101_1 doi: 10.1021/acsami.8b14671 – ident: e_1_2_10_16_1 doi: 10.1016/j.apcatb.2018.11.032 – ident: e_1_2_10_76_1 doi: 10.1039/C6CC00853D – ident: e_1_2_10_9_1 doi: 10.1002/chem.201601151 – ident: e_1_2_10_55_1 doi: 10.1021/jacs.5b10754 – ident: e_1_2_10_155_1 doi: 10.1016/j.jhazmat.2019.02.046 |
SSID | ssj0031247 |
Score | 2.681557 |
SecondaryResourceType | review_article |
Snippet | Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2001070 |
SubjectTerms | Activated carbon Carbon dioxide Catalysis Catalysts Chemical reactions Covalence Covalent bonds covalent organic frameworks Drug delivery systems Energy conversion Energy storage Gas separation heterogeneous catalysis Magnetic properties Nanotechnology organic conversion Photocatalysis photocatalytic reactions Photodegradation Photoluminescence Pollutants Porosity Porous materials Proton conduction Surface stability Water splitting Zeolites |
Title | Recent Progress in Metal‐Free Covalent Organic Frameworks as Heterogeneous Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202001070 https://www.ncbi.nlm.nih.gov/pubmed/32419332 https://www.proquest.com/docview/2414213683 https://www.proquest.com/docview/2404378841 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kJz34fkSrrCB4Sk0276MUSxErolZ6C7ubDYi1laY96Mmf4G_0lziTNLFVRNBbQmZJsjuPb3dnvwE4sgM7xUCgzdSXgelKPzIj6WmTIzoPuJIBNqNsi0u_3XXPe15v5hR_wQ9RLbiRZeT-mgxcyOzkkzQ0e-zT1gHlBKHaohOmhC1CRdcVf5SDwSuvroIxyyTirZK10eIn883no9I3qDmPXPPQ01oBUX50kXHy0JiMZUO9fOFz_M9frcLyFJey00KR1mBBD9ZhaYatcAPuEGJiiGJXlNKFDpLdD1hHI3h_f31rjbRmzSGqLUkUBzwVa5WZXxkTGWtT5s0QFVYPJxlr0rrRczbONqHbOrttts1pWQZTebZPXlskWll2KEOpcIKRcEFcBgmGQpk4yhae8NALCBlSFSedJsQ8KoXlC2VFOAl2tqA2GA70DjBtp4lOA2zmSleGHs6WueNI1w2kFYWRZ4BZDkusppzlVDqjHxdsyzym_oqr_jLguJJ_Ktg6fpSsl6McT602ixHNuBzVKHQMOKweo73RJorIewdliA0qDF3bgO1CO6pXIThFPOxwA3g-xr98Q3zTubio7nb_0mgPFum6yF2rQ208muh9REljeZBbwgf6rwjh |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2isGi7KPRJeLSu1KqrQGLn4SxYVAOjocygqoWKXbAdR6qAGURmVMGKT-BX-BU-gS_pvXm106qqVIlFl0nsxLHv49i-PhfgjR_7OToC6-aRjt1AR4mb6NC6HNF5zI2OsRpFW-xGvf3gw0F4MAPXzVmYih-iXXAjzSjtNSk4LUiv_2ANLU6Oae-AgoJQbuu4yh17_g1nbcXG9iYO8VvOu1t7nZ5bJxZwTehHZHdUZo3nSy21QYiccUWn8TM05joTxlehClGOlZaUh8jmGXFnauVFyngJTuMEvvcezFEacaLr3_zUMlYJdJdlPhf0ki5RfTU8kR5fn27vtB_8DdxOY-XS2XXn4abppirG5WhtMtZr5uIXBsn_qh8X4FENvdn7Slcew4wdPoGHPxEyPoUviKLRC7OPFLWGPoB9HbKBxfnJ7eVV98xa1hmhZlKJ6gyrYd0muK1gqmA9Ci4aoU7a0aRgHVoaOy_GxTPYv5Mfew6zw9HQLgKzfp7ZPMZqgQ60DKWIuRA6CGLtJTIJHXAbOUhNTctO2UGO04pQmqc0Pmk7Pg68a8ufVoQkfyy50ohVWhumIkXAFnBfRFI48Lp9jCaF9olU2TtYhgivpAx8B15U4th-CvE3Qn7BHeClUP2lDennQb_fXi39S6VXcL-3N-in_e3dnWV4QPerUL0VmB2fTewqgsKxflmqIYPDu5bX79egZdk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4lH8IFDASiFPaxHYS59AD2iXa0m1VAUW9BdtxpKplt2p2VZUTj8Cj8Cq8Qp-EmfzBghASUg8ck9iJY8_PZ3v8DcCzMAlLdATOL2OT-NLEqZ-ayPkc0XnCrUmwGkVb7MSjPfl6P9pfgq_dWZiGH6JfcCPNqO01KfhxUa7_IA2tPh7R1gHFBKHYtmGVW-7sFCdt1cbmEEf4OefZq3eDkd_mFfBtFMZkdnThbBAqo4xFhFxwTYfxC7TlphA21JGOUIy1UZSGyJUFUWcaHcTaBinO4gS-9xJclnGQUrKI4ZuesEqgt6zTuaCT9Inpq6OJDPj6YnsX3eBv2HYRKte-LrsO37peakJcDtfmM7NmP_1CIPk_deMNWGmBN3vZaMpNWHKTW3DtJzrG2_AeMTT6YLZLMWvoAdjBhG07nJ2cf_6SnTjHBlPUSyrRnGC1LOtC2yqmKzai0KIpaqSbzis2oIWxs2pW3YG9C_mxu7A8mU7cfWAuLAtXJlhNGmlUpETChTBSJiZIVRp54HdikNuWlJ1ygxzlDZ00z2l88n58PHjRlz9u6Ej-WHK1k6q8NUtVjnBN8lDESnjwtH-MBoV2iXTdO1iG6K6UkqEH9xpp7D-F6BsBv-Ae8Fqm_tKG_O32eNxfPfiXSk_gyu4wy8ebO1sP4SrdbuL0VmF5djJ3jxARzszjWgkZfLhocf0OHTRkiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Metal%E2%80%90Free+Covalent+Organic+Frameworks+as+Heterogeneous+Catalysts&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhi%2C+Yongfeng&rft.au=Wang%2C+Zongrui&rft.au=Zhang%2C+Hao%E2%80%90Li&rft.au=Zhang%2C+Qichun&rft.date=2020-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202001070&rft.externalDBID=10.1002%252Fsmll.202001070&rft.externalDocID=SMLL202001070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |