A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2

One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 368; no. 6496; pp. 1274 - 1278
Main Authors Wu, Yan, Wang, Feiran, Shen, Chenguang, Peng, Weiyu, Li, Delin, Zhao, Cheng, Li, Zhaohui, Li, Shihua, Bi, Yuhai, Yang, Yang, Gong, Yuhuan, Xiao, Haixia, Fan, Zheng, Tan, Shuguang, Wu, Guizhen, Tan, Wenjie, Lu, Xuancheng, Fan, Changfa, Wang, Qihui, Liu, Yingxia, Zhang, Chen, Qi, Jianxun, Gao, George Fu, Gao, Feng, Liu, Lei
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 12.06.2020
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications. Science , this issue p. 1274 A pair of neutralizing antibodies against COVID-19 bind to different epitopes to compete with cellular receptor binding. Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.
AbstractList Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.
One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications. Science , this issue p. 1274 A pair of neutralizing antibodies against COVID-19 bind to different epitopes to compete with cellular receptor binding. Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.
Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.
An antibody defense against COVID-19One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications.Science, this issue p. 1274Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.
One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications. Science , this issue p. 1274 A pair of neutralizing antibodies against COVID-19 bind to different epitopes to compete with cellular receptor binding. Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.
Author Wang, Feiran
Tan, Wenjie
Lu, Xuancheng
Peng, Weiyu
Zhao, Cheng
Bi, Yuhai
Tan, Shuguang
Gao, George Fu
Li, Shihua
Li, Delin
Gao, Feng
Fan, Zheng
Fan, Changfa
Liu, Yingxia
Zhang, Chen
Gong, Yuhuan
Wang, Qihui
Yang, Yang
Xiao, Haixia
Liu, Lei
Li, Zhaohui
Qi, Jianxun
Wu, Guizhen
Wu, Yan
Shen, Chenguang
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-2734-0673
  surname: Wu
  fullname: Wu, Yan
  organization: Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China., Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Feiran
  orcidid: 0000-0003-4568-9158
  surname: Wang
  fullname: Wang, Feiran
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 3
  givenname: Chenguang
  orcidid: 0000-0001-8607-3750
  surname: Shen
  fullname: Shen, Chenguang
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
– sequence: 4
  givenname: Weiyu
  orcidid: 0000-0001-7069-9556
  surname: Peng
  fullname: Peng, Weiyu
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., College of Veterinary Medicine, China Agricultural University, Beijing, China
– sequence: 5
  givenname: Delin
  orcidid: 0000-0002-7967-1581
  surname: Li
  fullname: Li, Delin
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China., Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
– sequence: 6
  givenname: Cheng
  orcidid: 0000-0001-9800-9107
  surname: Zhao
  fullname: Zhao, Cheng
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
– sequence: 7
  givenname: Zhaohui
  orcidid: 0000-0003-4286-7772
  surname: Li
  fullname: Li, Zhaohui
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., University of Chinese Academy of Sciences, Beijing, China
– sequence: 8
  givenname: Shihua
  orcidid: 0000-0003-3608-4106
  surname: Li
  fullname: Li, Shihua
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 9
  givenname: Yuhai
  orcidid: 0000-0002-5595-363X
  surname: Bi
  fullname: Bi, Yuhai
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Center for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Beijing, China
– sequence: 10
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
– sequence: 11
  givenname: Yuhuan
  surname: Gong
  fullname: Gong, Yuhuan
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Center for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Beijing, China
– sequence: 12
  givenname: Haixia
  surname: Xiao
  fullname: Xiao, Haixia
  organization: Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
– sequence: 13
  givenname: Zheng
  surname: Fan
  fullname: Fan, Zheng
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 14
  givenname: Shuguang
  surname: Tan
  fullname: Tan, Shuguang
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 15
  givenname: Guizhen
  orcidid: 0000-0003-2778-4290
  surname: Wu
  fullname: Wu, Guizhen
  organization: NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
– sequence: 16
  givenname: Wenjie
  orcidid: 0000-0002-5963-1136
  surname: Tan
  fullname: Tan, Wenjie
  organization: NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
– sequence: 17
  givenname: Xuancheng
  surname: Lu
  fullname: Lu, Xuancheng
  organization: Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
– sequence: 18
  givenname: Changfa
  orcidid: 0000-0001-5556-2025
  surname: Fan
  fullname: Fan, Changfa
  organization: Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
– sequence: 19
  givenname: Qihui
  surname: Wang
  fullname: Wang, Qihui
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 20
  givenname: Yingxia
  surname: Liu
  fullname: Liu, Yingxia
  organization: Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
– sequence: 21
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
– sequence: 22
  givenname: Jianxun
  surname: Qi
  fullname: Qi, Jianxun
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 23
  givenname: George Fu
  orcidid: 0000-0002-3869-615X
  surname: Gao
  fullname: Gao, George Fu
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 24
  givenname: Feng
  orcidid: 0000-0002-0670-010X
  surname: Gao
  fullname: Gao, Feng
  organization: Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
– sequence: 25
  givenname: Lei
  orcidid: 0000-0001-9612-6844
  surname: Liu
  fullname: Liu, Lei
  organization: Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32404477$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1r3DAYhEVJaTbbnnsrgl5ycaIPy1pfCss2aQOBXJpchSy_SpTakivJgebXRyab0gaKZQSa5x1GmiN04IMHhD5SckIpa06TceANnOjOMFbTN2hFSSuqlhF-gFaE8KbaECkO0VFK94QUreXv0CFnNalrKVfIbnGxNGGcIDt_iyftIg4W382j9tjDnKMe3OMiaZ9dF3oHCXdDMD_x7urm4mtFW_zg4lwOne8XLgfscsIRDEw5RLzdnbH36K3VQ4IP-32Nrs_Pfuy-V5dX3y5228vKCCpyBVY0xIKgtrGtYVZLWtOmB0KbZfU1cKr7vmuga0xLGN2IVjC7kYYtCuVr9OXZd5q7EXoDfsmvpuhGHX-roJ36V_HuTt2GByUZ48u_Rsd7gxh-zZCyGl0yMAzaQ5iTKg_Hy8ekLOjnV-h9mKMv1ysUZbwWXLaF-vR3oj9RXioogHgGTAwpRbDKuKyzC0tANyhK1FK12let9lWXudNXcy_W_5t4AgNorqA
CitedBy_id crossref_primary_10_1038_s41598_020_74761_y
crossref_primary_10_1371_journal_ppat_1009352
crossref_primary_10_1186_s12934_021_01576_5
crossref_primary_10_1038_s41587_022_01280_8
crossref_primary_10_3389_fmolb_2023_1236617
crossref_primary_10_3390_v12091006
crossref_primary_10_1016_j_jcyt_2020_08_009
crossref_primary_10_1002_prot_26458
crossref_primary_10_1093_abt_tbab015
crossref_primary_10_1016_j_biopha_2020_110859
crossref_primary_10_1371_journal_ppat_1011554
crossref_primary_10_1016_j_immuni_2021_03_023
crossref_primary_10_1038_s41551_023_01094_2
crossref_primary_10_1093_bib_bbab375
crossref_primary_10_1007_s10096_020_04138_6
crossref_primary_10_1080_19420862_2023_2222874
crossref_primary_10_1038_s41579_020_00468_6
crossref_primary_10_1016_j_ejphar_2021_173897
crossref_primary_10_1074_jbc_RA120_016284
crossref_primary_10_1038_s44298_023_00007_z
crossref_primary_10_3390_toxins12090602
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_1016_j_xcrm_2020_100126
crossref_primary_10_1093_jalm_jfaa195
crossref_primary_10_1016_j_jbc_2021_101127
crossref_primary_10_1021_jacs_3c09497
crossref_primary_10_1080_17460441_2021_1909566
crossref_primary_10_1126_scitranslmed_abl6141
crossref_primary_10_1186_s12951_021_01148_0
crossref_primary_10_1093_bioinformatics_btaa645
crossref_primary_10_1021_acs_langmuir_0c02911
crossref_primary_10_3389_fcimb_2020_587269
crossref_primary_10_1016_j_jmb_2021_167332
crossref_primary_10_1073_pnas_2303455120
crossref_primary_10_3390_pathogens10081051
crossref_primary_10_1016_j_cell_2022_08_024
crossref_primary_10_1016_j_clinthera_2021_08_009
crossref_primary_10_1021_acs_jpclett_1c02788
crossref_primary_10_1111_irv_13119
crossref_primary_10_1038_s41598_021_85202_9
crossref_primary_10_1186_s12929_021_00777_9
crossref_primary_10_3390_ijms222111953
crossref_primary_10_1016_j_addr_2021_01_014
crossref_primary_10_1038_s41598_021_84840_3
crossref_primary_10_1038_s41598_022_14443_z
crossref_primary_10_3390_microorganisms9071415
crossref_primary_10_1155_2021_6803510
crossref_primary_10_1172_jci_insight_143129
crossref_primary_10_1172_jci_insight_145785
crossref_primary_10_3390_ijms232012374
crossref_primary_10_3389_fimmu_2021_693775
crossref_primary_10_1016_j_cell_2020_12_015
crossref_primary_10_1016_j_optlastec_2022_108763
crossref_primary_10_1016_j_stemcr_2020_12_010
crossref_primary_10_1093_abt_tbaa028
crossref_primary_10_1371_journal_pone_0292589
crossref_primary_10_1371_journal_ppat_1010686
crossref_primary_10_1371_journal_ppat_1011532
crossref_primary_10_1002_jssc_202100570
crossref_primary_10_1038_s41467_024_48312_2
crossref_primary_10_1007_s40011_024_01575_7
crossref_primary_10_1007_s00253_023_12490_8
crossref_primary_10_3389_fimmu_2024_1374913
crossref_primary_10_1038_s41598_023_42442_1
crossref_primary_10_1080_19420862_2024_2338301
crossref_primary_10_1016_j_chembiol_2023_09_004
crossref_primary_10_1007_s00253_022_12288_0
crossref_primary_10_1016_j_cell_2021_06_021
crossref_primary_10_3390_life13030617
crossref_primary_10_34133_2022_9769803
crossref_primary_10_1016_j_compbiomed_2021_104550
crossref_primary_10_1021_acsomega_1c03558
crossref_primary_10_1186_s40779_021_00342_3
crossref_primary_10_1146_annurev_biophys_062920_063711
crossref_primary_10_1038_s41467_021_27893_2
crossref_primary_10_1016_j_bios_2020_112572
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_1097_COH_0000000000000657
crossref_primary_10_1016_j_matt_2023_09_007
crossref_primary_10_1097_COH_0000000000000651
crossref_primary_10_1016_j_intimp_2020_107156
crossref_primary_10_1080_21645515_2020_1842683
crossref_primary_10_1038_s41598_021_97423_z
crossref_primary_10_1093_abt_tbab008
crossref_primary_10_3390_vaccines10111839
crossref_primary_10_1073_pnas_2111011118
crossref_primary_10_1097_SHK_0000000000001627
crossref_primary_10_1371_journal_ppat_1009328
crossref_primary_10_1038_s41467_022_30216_8
crossref_primary_10_1002_ardp_202200558
crossref_primary_10_1016_j_bioorg_2024_107977
crossref_primary_10_1016_j_lfs_2020_118889
crossref_primary_10_1038_s41541_024_00806_2
crossref_primary_10_1016_j_cll_2020_08_014
crossref_primary_10_1093_nsr_nwaa297
crossref_primary_10_3390_vaccines12050446
crossref_primary_10_3389_fimmu_2021_712274
crossref_primary_10_4103_jpcs_jpcs_79_20
crossref_primary_10_1039_D0CP03771K
crossref_primary_10_1080_14787210_2020_1863144
crossref_primary_10_1126_science_abe3354
crossref_primary_10_1124_pharmrev_120_000285
crossref_primary_10_1016_j_chom_2020_06_020
crossref_primary_10_1021_acscentsci_0c01056
crossref_primary_10_1038_s41586_021_04385_3
crossref_primary_10_3390_pharmaceutics14040856
crossref_primary_10_1016_j_celrep_2022_110561
crossref_primary_10_1016_j_celrep_2021_109173
crossref_primary_10_1093_jmcb_mjaa070
crossref_primary_10_1038_s41589_021_00965_6
crossref_primary_10_1073_pnas_2314193120
crossref_primary_10_1016_j_compbiomed_2022_105509
crossref_primary_10_3390_ijms23042188
crossref_primary_10_3390_diagnostics13040643
crossref_primary_10_1016_j_jbc_2021_101202
crossref_primary_10_3389_fimmu_2023_1055457
crossref_primary_10_1016_j_cellin_2024_100150
crossref_primary_10_1038_s41467_020_20789_7
crossref_primary_10_1172_jci_insight_142362
crossref_primary_10_1021_jacs_1c06600
crossref_primary_10_3390_biomedicines12030642
crossref_primary_10_7554_eLife_73027
crossref_primary_10_61186_vacres_10_1_1
crossref_primary_10_1016_j_immuni_2020_10_023
crossref_primary_10_1016_j_bcp_2021_114724
crossref_primary_10_1152_physiolgenomics_00087_2020
crossref_primary_10_1126_sciimmunol_adp9279
crossref_primary_10_1126_science_abd2321
crossref_primary_10_1038_s41422_021_00487_9
crossref_primary_10_3389_fmolb_2024_1390659
crossref_primary_10_1371_journal_pbio_3001209
crossref_primary_10_3390_ijms23042172
crossref_primary_10_1002_adfm_202008352
crossref_primary_10_1016_j_bj_2020_11_011
crossref_primary_10_1016_j_meegid_2021_104897
crossref_primary_10_1186_s12929_020_00703_5
crossref_primary_10_2174_0109298665320319240809095727
crossref_primary_10_1016_j_csbj_2021_05_002
crossref_primary_10_1038_s41467_021_21037_2
crossref_primary_10_1039_D1RA00426C
crossref_primary_10_1016_j_cocis_2021_101466
crossref_primary_10_1021_acs_jpclett_1c01415
crossref_primary_10_1073_pnas_2101918118
crossref_primary_10_1093_oxfimm_iqab003
crossref_primary_10_1016_j_xcrm_2022_100834
crossref_primary_10_1038_s41392_021_00810_1
crossref_primary_10_1038_s41467_020_20501_9
crossref_primary_10_3389_fimmu_2021_723585
crossref_primary_10_1038_s41586_020_2852_1
crossref_primary_10_1021_acs_biochem_4c00671
crossref_primary_10_1128_cmr_00188_21
crossref_primary_10_1002_jcla_23535
crossref_primary_10_1016_j_celrep_2021_110156
crossref_primary_10_62347_XJVE4569
crossref_primary_10_1093_immadv_ltaa007
crossref_primary_10_1016_j_heliyon_2023_e16750
crossref_primary_10_3389_fddsv_2022_898035
crossref_primary_10_3390_nano12152638
crossref_primary_10_3390_vaccines10111805
crossref_primary_10_1016_j_smim_2020_101427
crossref_primary_10_1155_2020_9465398
crossref_primary_10_2174_2666796701999201204123259
crossref_primary_10_1016_j_jgg_2021_02_006
crossref_primary_10_1002_smll_202007091
crossref_primary_10_1016_j_virol_2023_109925
crossref_primary_10_1186_s42649_021_00062_x
crossref_primary_10_3389_fmolb_2021_671263
crossref_primary_10_3389_fimmu_2021_637654
crossref_primary_10_3389_fimmu_2022_902260
crossref_primary_10_1038_s41598_021_89957_z
crossref_primary_10_1080_15321819_2020_1862866
crossref_primary_10_3389_fimmu_2021_637651
crossref_primary_10_1016_j_virs_2023_07_003
crossref_primary_10_2139_ssrn_4001946
crossref_primary_10_1021_acschembio_2c00411
crossref_primary_10_1016_j_bbapap_2024_141011
crossref_primary_10_1016_j_tips_2020_07_004
crossref_primary_10_1039_D2SC00534D
crossref_primary_10_1016_j_nbt_2023_12_004
crossref_primary_10_1038_s41586_020_2571_7
crossref_primary_10_1039_D0RA09555A
crossref_primary_10_3390_vaccines11101546
crossref_primary_10_1038_s41467_020_19204_y
crossref_primary_10_1177_26348535231202681
crossref_primary_10_3389_fimmu_2023_1219546
crossref_primary_10_1089_vim_2021_0023
crossref_primary_10_1038_s41579_020_00459_7
crossref_primary_10_1073_pnas_2107249118
crossref_primary_10_3390_vaccines9080928
crossref_primary_10_1080_19420862_2021_1953683
crossref_primary_10_1186_s12967_020_02673_6
crossref_primary_10_1016_j_xcrm_2023_100918
crossref_primary_10_1016_j_biotechadv_2022_107986
crossref_primary_10_1038_s41467_021_27040_x
crossref_primary_10_3390_v15040944
crossref_primary_10_1146_annurev_biophys_102620_080956
crossref_primary_10_1016_j_fmre_2021_02_001
crossref_primary_10_1016_j_str_2020_10_001
crossref_primary_10_1016_j_omtm_2022_10_001
crossref_primary_10_1038_s41392_020_00352_y
crossref_primary_10_1038_s41598_022_12032_8
crossref_primary_10_3390_toxins15020159
crossref_primary_10_1016_j_cell_2021_05_031
crossref_primary_10_1016_j_jbc_2021_100346
crossref_primary_10_1126_sciadv_abp9770
crossref_primary_10_1021_acs_jpcb_1c05997
crossref_primary_10_1038_s41594_020_0478_5
crossref_primary_10_1038_s41467_023_39267_x
crossref_primary_10_1093_nsr_nwad161
crossref_primary_10_1016_j_celrep_2020_108322
crossref_primary_10_1016_j_ijpharm_2020_120028
crossref_primary_10_1021_acsinfecdis_1c00070
crossref_primary_10_1016_j_isci_2022_103951
crossref_primary_10_1016_j_intimp_2020_106924
crossref_primary_10_15789_2220_7619_ASB_1699
crossref_primary_10_4110_in_2021_21_e7
crossref_primary_10_1016_j_tibs_2021_06_001
crossref_primary_10_2139_ssrn_3961037
crossref_primary_10_4110_in_2021_21_e8
crossref_primary_10_1038_s41422_020_0366_x
crossref_primary_10_1002_EXP_20230086
crossref_primary_10_1016_j_chom_2022_07_002
crossref_primary_10_1016_j_jfranklin_2022_09_022
crossref_primary_10_1016_j_molstruc_2022_133114
crossref_primary_10_1007_s11427_020_1859_y
crossref_primary_10_4049_jimmunol_2100155
crossref_primary_10_1371_journal_pone_0246731
crossref_primary_10_1016_j_chom_2020_11_001
crossref_primary_10_3390_jcm10081586
crossref_primary_10_4049_jimmunol_2100272
crossref_primary_10_1016_j_arabjc_2021_103631
crossref_primary_10_1016_j_celrep_2021_108950
crossref_primary_10_1038_s41467_021_26539_7
crossref_primary_10_1080_08927022_2022_2111421
crossref_primary_10_1038_s41598_021_84700_0
crossref_primary_10_31857_S0320972521070022
crossref_primary_10_1002_advs_202103240
crossref_primary_10_1016_j_bbrc_2021_06_001
crossref_primary_10_1038_s41401_021_00732_2
crossref_primary_10_1016_j_chom_2020_11_007
crossref_primary_10_1016_j_humimm_2021_10_007
crossref_primary_10_1126_science_abc0870
crossref_primary_10_1038_s41565_022_01177_2
crossref_primary_10_1016_j_isci_2022_103960
crossref_primary_10_3390_md18110543
crossref_primary_10_1016_j_celrep_2021_109928
crossref_primary_10_3389_fimmu_2023_1113175
crossref_primary_10_3390_vaccines10101612
crossref_primary_10_1002_anie_202100543
crossref_primary_10_1016_j_ebiom_2021_103230
crossref_primary_10_1186_s13104_023_06508_7
crossref_primary_10_1016_j_cell_2020_06_025
crossref_primary_10_3390_ijms23062928
crossref_primary_10_1111_imr_70000
crossref_primary_10_3390_vaccines10050643
crossref_primary_10_1038_s41590_022_01138_w
crossref_primary_10_1016_j_isci_2022_103939
crossref_primary_10_3390_cells9071704
crossref_primary_10_1093_nsr_nwae030
crossref_primary_10_1016_j_phymed_2020_153333
crossref_primary_10_1007_s11030_022_10449_x
crossref_primary_10_1080_22221751_2023_2223669
crossref_primary_10_1021_acsomega_1c02984
crossref_primary_10_1016_j_jmb_2022_167928
crossref_primary_10_1063_5_0237319
crossref_primary_10_1038_s41467_021_27799_z
crossref_primary_10_1186_s12929_021_00784_w
crossref_primary_10_1016_j_tibs_2021_10_005
crossref_primary_10_3390_ijms222212114
crossref_primary_10_1038_s41577_021_00542_x
crossref_primary_10_2174_0118750362284177240304055831
crossref_primary_10_3390_molecules26010039
crossref_primary_10_1016_j_medj_2022_01_004
crossref_primary_10_1038_s41392_021_00740_y
crossref_primary_10_3390_molecules29143405
crossref_primary_10_1039_D0SC03920A
crossref_primary_10_3390_pharmaceutics14051101
crossref_primary_10_1093_pcmedi_pbaa017
crossref_primary_10_1021_acschembio_1c00906
crossref_primary_10_1111_pbi_13970
crossref_primary_10_3389_fimmu_2021_647934
crossref_primary_10_3390_v14040803
crossref_primary_10_1371_journal_pbio_3001265
crossref_primary_10_1038_s41598_022_23482_5
crossref_primary_10_1016_j_clinbiochem_2020_09_005
crossref_primary_10_1038_s41467_023_36761_0
crossref_primary_10_3389_fmed_2022_973036
crossref_primary_10_1016_j_fmre_2021_01_009
crossref_primary_10_1371_journal_pone_0258645
crossref_primary_10_1142_S1793545821300020
crossref_primary_10_1038_s41564_022_01155_3
crossref_primary_10_1002_mco2_60
crossref_primary_10_1126_scitranslmed_abd6990
crossref_primary_10_1021_acsinfecdis_3c00483
crossref_primary_10_1038_s41467_021_26350_4
crossref_primary_10_1016_j_bbrc_2021_07_062
crossref_primary_10_1038_s41421_020_00224_3
crossref_primary_10_1371_journal_pone_0244126
crossref_primary_10_1016_j_ajhg_2023_12_005
crossref_primary_10_1038_s41467_021_21155_x
crossref_primary_10_1002_rmv_2347
crossref_primary_10_3390_v13010134
crossref_primary_10_5802_crbiol_38
crossref_primary_10_1016_j_fmre_2021_01_013
crossref_primary_10_1073_pnas_2400163121
crossref_primary_10_3390_vaccines10010096
crossref_primary_10_1109_TCBB_2021_3076259
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_1007_s11596_021_2453_8
crossref_primary_10_1038_s41392_021_00610_7
crossref_primary_10_1016_j_heliyon_2021_e06564
crossref_primary_10_1016_j_cell_2020_06_044
crossref_primary_10_1016_j_cellin_2023_100144
crossref_primary_10_3390_vaccines9020076
crossref_primary_10_1002_adma_202207875
crossref_primary_10_1016_j_jcis_2024_06_175
crossref_primary_10_1021_acs_jcim_2c00124
crossref_primary_10_3390_vaccines9020073
crossref_primary_10_1016_j_biopha_2020_111193
crossref_primary_10_1021_acsinfecdis_1c00276
crossref_primary_10_1080_22221751_2021_1921621
crossref_primary_10_1371_journal_pone_0253487
crossref_primary_10_4103_mjdrdypu_mjdrdypu_819_22
crossref_primary_10_1016_j_cell_2020_06_035
crossref_primary_10_1097_INF_0000000000004301
crossref_primary_10_1038_s41467_022_28528_w
crossref_primary_10_15252_embj_2021107786
crossref_primary_10_3390_vaccines10050772
crossref_primary_10_1155_2022_8635054
crossref_primary_10_1371_journal_ppat_1009704
crossref_primary_10_3389_fphys_2021_624675
crossref_primary_10_1002_jmv_29488
crossref_primary_10_1016_j_celrep_2021_108915
crossref_primary_10_1016_j_coph_2021_11_006
crossref_primary_10_1016_j_isci_2021_103467
crossref_primary_10_1002_med_21919
crossref_primary_10_1126_science_abl6251
crossref_primary_10_3390_biom12111658
crossref_primary_10_1007_s12016_021_08912_y
crossref_primary_10_1021_acsinfecdis_1c00047
crossref_primary_10_1021_acs_jpcb_3c04366
crossref_primary_10_1186_s13073_021_00985_w
crossref_primary_10_1038_s41586_020_2548_6
crossref_primary_10_1146_annurev_med_042420_113838
crossref_primary_10_1038_s41392_020_00318_0
crossref_primary_10_1021_acs_biomac_1c01435
crossref_primary_10_1016_j_cll_2021_10_003
crossref_primary_10_1016_j_str_2024_08_005
crossref_primary_10_1016_j_chom_2020_11_012
crossref_primary_10_1016_j_bpc_2024_107253
crossref_primary_10_3389_fmicb_2020_01576
crossref_primary_10_1016_j_tracli_2022_02_004
crossref_primary_10_1038_s41541_023_00755_2
crossref_primary_10_1038_s43856_022_00151_2
crossref_primary_10_3390_v14020295
crossref_primary_10_1134_S0006297921070026
crossref_primary_10_1038_s41541_022_00481_1
crossref_primary_10_3389_fphar_2022_987816
crossref_primary_10_1084_jem_20201181
crossref_primary_10_1073_pnas_2010197117
crossref_primary_10_3390_cells11030487
crossref_primary_10_3390_v13050932
crossref_primary_10_1016_j_abst_2020_08_001
crossref_primary_10_1126_scitranslmed_adh7668
crossref_primary_10_1038_s41591_020_0995_0
crossref_primary_10_1016_j_jviromet_2020_114031
crossref_primary_10_1002_jmv_28049
crossref_primary_10_1021_acs_jpclett_0c02706
crossref_primary_10_3389_fimmu_2022_1010105
crossref_primary_10_3389_fimmu_2021_653189
crossref_primary_10_1016_j_ijbiomac_2025_140046
crossref_primary_10_1038_s41421_021_00256_3
crossref_primary_10_1038_s41598_021_00684_x
crossref_primary_10_1016_j_celrep_2023_113653
crossref_primary_10_1002_ddr_21815
crossref_primary_10_1016_j_chembiol_2021_05_019
crossref_primary_10_1016_j_coviro_2021_12_015
crossref_primary_10_1016_j_gene_2024_148427
crossref_primary_10_1371_journal_pone_0268767
crossref_primary_10_1038_s41467_020_18058_8
crossref_primary_10_1371_journal_pone_0267796
crossref_primary_10_1016_j_lfs_2020_118056
crossref_primary_10_1002_JLB_4COVA0121_084RR
crossref_primary_10_1016_j_slasd_2023_07_002
crossref_primary_10_1016_j_isci_2022_104719
crossref_primary_10_1093_cid_ciaa1143
crossref_primary_10_1107_S2059798323005041
crossref_primary_10_3390_vaccines10040516
crossref_primary_10_1016_j_sbi_2022_102379
crossref_primary_10_3389_fimmu_2021_678570
crossref_primary_10_3390_covid1010023
crossref_primary_10_3389_fimmu_2023_1118523
crossref_primary_10_1016_j_chom_2021_06_001
crossref_primary_10_1038_s41598_023_31369_2
crossref_primary_10_1016_j_btre_2023_e00796
crossref_primary_10_1016_j_celrep_2021_109771
crossref_primary_10_1515_cclm_2020_1413
crossref_primary_10_7189_jogh_11_10003
crossref_primary_10_3390_antiox10060881
crossref_primary_10_1002_jcb_30538
crossref_primary_10_1016_j_cell_2020_08_012
crossref_primary_10_1038_s41421_024_00648_1
crossref_primary_10_1007_s00347_020_01155_w
crossref_primary_10_1016_j_fct_2021_112009
crossref_primary_10_1126_science_abe8499
crossref_primary_10_3390_ijms23084341
crossref_primary_10_1126_scitranslmed_abi9215
crossref_primary_10_1371_journal_pcbi_1009675
crossref_primary_10_1371_journal_pone_0311777
crossref_primary_10_3390_ijms231810904
crossref_primary_10_1016_j_matt_2021_09_022
crossref_primary_10_1021_acs_analchem_1c01657
crossref_primary_10_1016_j_celrep_2021_109881
crossref_primary_10_1016_j_chom_2021_03_008
crossref_primary_10_1016_j_chom_2021_03_005
crossref_primary_10_3390_v14122823
crossref_primary_10_1016_j_cell_2021_03_027
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1073_pnas_2204256119
crossref_primary_10_1016_j_chom_2021_03_002
crossref_primary_10_1038_s41598_021_01081_0
crossref_primary_10_1038_s41467_021_27350_0
crossref_primary_10_1021_acs_biomac_2c01018
crossref_primary_10_1073_pnas_2310421121
crossref_primary_10_1371_journal_pone_0257930
crossref_primary_10_1016_j_virs_2022_01_029
crossref_primary_10_1371_journal_pone_0253574
crossref_primary_10_3390_ijms21155559
crossref_primary_10_1021_acscentsci_0c00742
crossref_primary_10_1007_s12041_021_01262_w
crossref_primary_10_1038_s41467_021_24514_w
crossref_primary_10_1111_imr_13383
crossref_primary_10_3389_fphar_2020_589438
crossref_primary_10_1016_j_crmeth_2023_100421
crossref_primary_10_17116_labs20221103117
crossref_primary_10_3390_biomedicines10071676
crossref_primary_10_1016_j_hlife_2023_07_001
crossref_primary_10_1038_s41591_020_0998_x
crossref_primary_10_1002_jmv_27428
crossref_primary_10_1007_s12250_020_00327_x
crossref_primary_10_1016_j_celrep_2021_109433
crossref_primary_10_3390_cells11071235
crossref_primary_10_1016_j_jmb_2021_166956
crossref_primary_10_3389_fimmu_2022_912898
crossref_primary_10_1126_science_abh1139
crossref_primary_10_1021_acsmedchemlett_0c00409
crossref_primary_10_3389_fphar_2020_609212
crossref_primary_10_1186_s41232_022_00233_7
crossref_primary_10_1002_1873_3468_14076
crossref_primary_10_1038_s41467_021_23036_9
crossref_primary_10_1016_j_cell_2020_09_049
crossref_primary_10_1177_2472555220979579
crossref_primary_10_2174_1566524021666211013121831
crossref_primary_10_1111_sji_13088
crossref_primary_10_1002_adma_202103471
crossref_primary_10_1016_j_celrep_2020_108274
crossref_primary_10_2174_2666958702101010216
crossref_primary_10_1016_j_celrep_2021_108699
crossref_primary_10_1016_j_jpha_2023_05_011
crossref_primary_10_1016_j_micpath_2022_105619
crossref_primary_10_1038_s41598_021_89887_w
crossref_primary_10_1093_function_zqaa012
crossref_primary_10_1126_science_abg9175
crossref_primary_10_3390_diagnostics11081332
crossref_primary_10_1038_s41467_020_19231_9
crossref_primary_10_1038_s41577_022_00784_3
crossref_primary_10_1016_j_bbrc_2020_10_012
crossref_primary_10_1002_smll_202004237
crossref_primary_10_1128_JVI_01083_20
crossref_primary_10_1016_j_immuni_2021_07_008
crossref_primary_10_1016_j_cell_2020_09_035
crossref_primary_10_1128_JCM_02489_20
crossref_primary_10_3389_fmolb_2022_871499
crossref_primary_10_1097_MD_0000000000040425
crossref_primary_10_1016_j_cell_2020_09_037
crossref_primary_10_1038_s41586_021_03275_y
crossref_primary_10_1186_s12866_022_02450_z
crossref_primary_10_1016_j_virol_2021_02_003
crossref_primary_10_1038_s41598_021_94873_3
crossref_primary_10_1038_s41598_022_18302_9
crossref_primary_10_1038_s42003_021_02036_x
crossref_primary_10_1016_j_csbj_2022_04_038
crossref_primary_10_3390_biom12121742
crossref_primary_10_1038_s41392_021_00653_w
crossref_primary_10_1016_j_cell_2021_04_032
crossref_primary_10_1038_s41579_021_00630_8
crossref_primary_10_1016_j_cell_2021_04_033
crossref_primary_10_18632_aging_104019
crossref_primary_10_1097_ID9_0000000000000053
crossref_primary_10_3390_pathogens13121081
crossref_primary_10_3390_v13020332
crossref_primary_10_1038_s41421_021_00340_8
crossref_primary_10_1080_22221751_2021_1959270
crossref_primary_10_1038_s41467_020_18159_4
crossref_primary_10_1038_s41467_024_44869_0
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_3390_plants11050663
crossref_primary_10_1016_j_str_2021_05_014
crossref_primary_10_1016_j_cell_2020_07_012
crossref_primary_10_1016_j_ebiom_2022_104025
crossref_primary_10_3389_fmed_2021_672629
crossref_primary_10_1021_acs_jpcb_2c02365
crossref_primary_10_1038_s41392_022_01087_8
crossref_primary_10_1016_j_intimp_2022_108570
crossref_primary_10_1021_acs_jpcb_1c00395
crossref_primary_10_1016_j_immuni_2021_05_006
crossref_primary_10_1128_jvi_01600_21
crossref_primary_10_1016_j_talanta_2020_121883
crossref_primary_10_1039_D0TB01668C
crossref_primary_10_3389_fmicb_2020_01723
crossref_primary_10_1016_j_bbrc_2022_08_050
crossref_primary_10_1128_spectrum_01814_21
crossref_primary_10_3390_covid2050045
crossref_primary_10_1016_j_jpba_2025_116770
crossref_primary_10_1177_09636897221090259
crossref_primary_10_1016_j_antiviral_2024_105843
crossref_primary_10_1038_s42003_023_04955_3
crossref_primary_10_3389_fmolb_2021_670815
crossref_primary_10_1126_science_abd0827
crossref_primary_10_1093_gigascience_giac041
crossref_primary_10_1038_s41467_020_20465_w
crossref_primary_10_2139_ssrn_3912219
crossref_primary_10_3389_fimmu_2021_691715
crossref_primary_10_3390_jcm12082893
crossref_primary_10_1007_s00894_022_05117_8
crossref_primary_10_1080_03091902_2021_1921067
crossref_primary_10_3390_v13102009
crossref_primary_10_2139_ssrn_3754549
crossref_primary_10_3390_vaccines9060557
crossref_primary_10_1097_MD_0000000000035029
crossref_primary_10_3389_fpls_2022_956741
crossref_primary_10_3390_medicina59030507
crossref_primary_10_1080_14789450_2020_1833721
crossref_primary_10_1080_22221751_2022_2140611
crossref_primary_10_1016_j_immuni_2023_11_004
crossref_primary_10_1002_cti2_1269
crossref_primary_10_1021_acsami_2c18305
crossref_primary_10_3390_v15020426
crossref_primary_10_1016_j_cell_2020_10_043
crossref_primary_10_1016_j_humimm_2021_06_011
crossref_primary_10_1016_j_addr_2020_12_011
crossref_primary_10_1038_s41467_023_43798_8
crossref_primary_10_1080_07391102_2022_2116601
crossref_primary_10_1093_clinchem_hvaa211
crossref_primary_10_1016_j_antiviral_2025_106082
crossref_primary_10_1016_j_bpj_2021_02_047
crossref_primary_10_1186_s43556_020_00015_y
crossref_primary_10_1016_j_scr_2020_102125
crossref_primary_10_1111_trf_16323
crossref_primary_10_1002_rmv_2196
crossref_primary_10_35848_1347_4065_ac1857
crossref_primary_10_1038_s41467_021_22926_2
crossref_primary_10_1074_jbc_REV120_013930
crossref_primary_10_3389_fmolb_2025_1512788
crossref_primary_10_3390_vaccines10122119
crossref_primary_10_3389_fmolb_2021_671923
crossref_primary_10_1016_j_celrep_2021_109627
crossref_primary_10_15252_emmm_202114544
crossref_primary_10_1111_bph_15359
crossref_primary_10_1371_journal_pcbi_1008790
crossref_primary_10_1007_s12250_021_00409_4
crossref_primary_10_4103_GJTM_GJTM_66_20
crossref_primary_10_1016_j_colsurfb_2020_111436
crossref_primary_10_3389_fmolb_2022_1080964
crossref_primary_10_1093_cid_ciab884
crossref_primary_10_3389_fimmu_2020_570018
crossref_primary_10_1007_s00705_021_05008_y
crossref_primary_10_1080_02603594_2022_2083608
crossref_primary_10_1038_s41422_021_00497_7
crossref_primary_10_1371_journal_ppat_1012246
crossref_primary_10_1016_j_biopha_2020_110337
crossref_primary_10_1007_s41365_023_01348_3
crossref_primary_10_1073_pnas_2016093117
crossref_primary_10_1002_jmv_27801
crossref_primary_10_1515_cclm_2020_1378
crossref_primary_10_1016_j_ijbiomac_2021_07_170
crossref_primary_10_1016_j_immuni_2022_06_005
crossref_primary_10_1016_j_bbadis_2022_166527
crossref_primary_10_34172_bi_2024_30150
crossref_primary_10_1016_j_xcrm_2022_100528
crossref_primary_10_3390_vaccines10030347
crossref_primary_10_1016_j_celrep_2020_107918
crossref_primary_10_1016_j_apmt_2023_101952
crossref_primary_10_1021_acs_jctc_1c00372
crossref_primary_10_34133_2021_2813643
crossref_primary_10_1038_s41467_021_24905_z
crossref_primary_10_1080_22221751_2021_1925594
crossref_primary_10_1016_j_celrep_2024_114338
crossref_primary_10_1016_j_csbj_2021_04_003
crossref_primary_10_3389_fphar_2020_588508
crossref_primary_10_1039_D1SC01203G
crossref_primary_10_1093_bioadv_vbae137
crossref_primary_10_1093_ofid_ofac053
crossref_primary_10_1080_19420862_2022_2057832
crossref_primary_10_1021_acscentsci_1c00216
crossref_primary_10_1038_s41578_020_00247_y
crossref_primary_10_3390_membranes11010064
crossref_primary_10_1080_07391102_2023_2187634
crossref_primary_10_3389_fimmu_2021_612807
crossref_primary_10_1073_pnas_2020216118
crossref_primary_10_1080_07391102_2022_2046641
crossref_primary_10_1126_sciadv_abf5632
crossref_primary_10_1007_s00347_020_01158_7
crossref_primary_10_1038_s41467_021_24013_y
crossref_primary_10_1128_Spectrum_01352_21
crossref_primary_10_3389_fbioe_2022_839374
crossref_primary_10_1016_j_xcrm_2021_100253
crossref_primary_10_1080_22221751_2024_2401931
crossref_primary_10_1016_j_xinn_2022_100323
crossref_primary_10_1038_s41598_021_97330_3
crossref_primary_10_1007_s00216_021_03806_6
crossref_primary_10_1038_s41598_021_89605_6
crossref_primary_10_1016_j_aca_2022_339830
crossref_primary_10_1128_JCM_01533_20
crossref_primary_10_1038_s41467_020_20602_5
crossref_primary_10_3390_ani11030797
crossref_primary_10_1016_j_xinn_2021_100080
crossref_primary_10_1016_j_coviro_2021_09_005
crossref_primary_10_1002_VIW_20200181
crossref_primary_10_1021_acsnano_4c00155
crossref_primary_10_2139_ssrn_3907841
crossref_primary_10_1038_s43588_022_00232_1
crossref_primary_10_3390_vaccines9050431
crossref_primary_10_4049_jimmunol_2100606
crossref_primary_10_1016_j_chom_2021_01_014
crossref_primary_10_1016_j_jbc_2021_101507
crossref_primary_10_3390_cells9112343
crossref_primary_10_1007_s12033_021_00373_0
crossref_primary_10_1172_JCI144930
crossref_primary_10_1007_s10544_023_00649_z
crossref_primary_10_1038_s41467_021_21609_2
crossref_primary_10_3390_ijms24032974
crossref_primary_10_1038_s41467_021_25153_x
crossref_primary_10_1016_j_cell_2021_02_042
crossref_primary_10_3390_vaccines9111347
crossref_primary_10_1016_j_it_2020_09_004
crossref_primary_10_3390_vaccines9111223
crossref_primary_10_1007_s00604_021_04896_w
crossref_primary_10_1002_jcb_30017
crossref_primary_10_3389_fcimb_2022_802147
crossref_primary_10_1016_j_jaci_2020_05_033
crossref_primary_10_1016_j_celrep_2022_110318
crossref_primary_10_1039_D0SC06528E
crossref_primary_10_1093_nar_gkab1297
crossref_primary_10_1007_s10989_020_10149_w
crossref_primary_10_1021_acsomega_1c03384
crossref_primary_10_1371_journal_ppat_1011119
crossref_primary_10_1080_10717544_2021_1879313
crossref_primary_10_1002_advs_202100985
crossref_primary_10_1111_imr_13084
crossref_primary_10_1111_jam_15340
crossref_primary_10_3389_fmolb_2022_797132
crossref_primary_10_1038_s41423_021_00684_x
crossref_primary_10_1038_s41467_021_25997_3
crossref_primary_10_1016_j_bios_2022_113971
crossref_primary_10_1002_adts_202100012
crossref_primary_10_15252_embj_2020105938
crossref_primary_10_3389_fimmu_2023_1147960
crossref_primary_10_3389_fmedt_2022_1009451
crossref_primary_10_1126_science_abd9909
crossref_primary_10_1371_journal_ppat_1010260
crossref_primary_10_1016_j_ijbiomac_2024_130660
crossref_primary_10_1093_cvr_cvaa230
crossref_primary_10_1038_s41564_021_01051_2
crossref_primary_10_1172_JCI154987
crossref_primary_10_3390_cells10112949
crossref_primary_10_1016_j_cell_2021_02_032
crossref_primary_10_1021_acs_biochem_1c00139
crossref_primary_10_1038_s41392_021_00573_9
crossref_primary_10_4155_fdd_2020_0027
crossref_primary_10_1038_s41422_022_00746_3
crossref_primary_10_1038_s41564_022_01235_4
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1128_spectrum_02676_21
crossref_primary_10_1038_s41467_021_24123_7
crossref_primary_10_3390_v14122694
crossref_primary_10_1002_prot_26140
crossref_primary_10_1172_JCI166844
crossref_primary_10_1016_j_cell_2020_09_007
crossref_primary_10_1172_JCI141206
crossref_primary_10_1134_S1990793121010267
crossref_primary_10_1038_s42003_021_01649_6
crossref_primary_10_1039_D3RA06479D
crossref_primary_10_1126_sciadv_abf1591
crossref_primary_10_1038_s41577_020_00480_0
crossref_primary_10_1093_abt_tbad002
crossref_primary_10_3389_fimmu_2020_618685
crossref_primary_10_1073_pnas_2107148118
crossref_primary_10_1126_scitranslmed_abl9605
crossref_primary_10_1007_s10930_020_09933_w
crossref_primary_10_3389_fimmu_2021_808932
crossref_primary_10_1126_scitranslmed_abf1555
crossref_primary_10_3390_vaccines9050449
crossref_primary_10_3389_fmicb_2023_1117494
crossref_primary_10_1093_bib_bbab192
crossref_primary_10_1016_j_cell_2021_03_055
crossref_primary_10_3390_antib13030072
crossref_primary_10_1016_j_celrep_2021_109353
crossref_primary_10_3390_cells10061412
crossref_primary_10_1080_26895293_2021_1977186
crossref_primary_10_1016_j_chom_2021_02_019
crossref_primary_10_3389_fimmu_2024_1342285
crossref_primary_10_3389_fbioe_2023_1320586
crossref_primary_10_1002_gch2_202000067
crossref_primary_10_1016_j_biopha_2024_116900
crossref_primary_10_1016_j_chom_2020_09_002
crossref_primary_10_2174_1389450124666221014102927
crossref_primary_10_5858_arpa_2022_0041_SA
crossref_primary_10_3389_fimmu_2021_659041
crossref_primary_10_1038_s41421_021_00295_w
crossref_primary_10_1016_j_antiviral_2022_105290
crossref_primary_10_1002_ange_202100543
crossref_primary_10_1038_s41392_020_00320_6
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_1016_j_jchromb_2020_122469
crossref_primary_10_1021_acsinfecdis_0c00646
crossref_primary_10_1016_j_heliyon_2023_e15032
crossref_primary_10_1080_19420862_2022_2031483
crossref_primary_10_3389_fmicb_2020_587944
crossref_primary_10_3390_ddc2020022
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1007_s40291_022_00634_x
crossref_primary_10_1016_j_trim_2022_101732
crossref_primary_10_1080_25785826_2022_2066251
crossref_primary_10_1016_j_ijmmb_2022_03_009
crossref_primary_10_1172_jci_insight_167140
crossref_primary_10_1016_j_celrep_2021_109109
crossref_primary_10_2174_1872208316666220106110014
crossref_primary_10_1039_D1CB00169H
crossref_primary_10_3389_fcell_2021_713188
crossref_primary_10_1038_s41467_023_39942_z
crossref_primary_10_3390_ijms21218118
crossref_primary_10_1002_ctm2_158
crossref_primary_10_1093_oxfimm_iqad001
crossref_primary_10_1126_sciadv_abd3803
crossref_primary_10_3389_fpls_2020_589995
crossref_primary_10_1038_s41577_020_00428_4
crossref_primary_10_1016_j_ejmcr_2021_100003
crossref_primary_10_1016_j_compbiolchem_2023_107810
crossref_primary_10_1016_j_jbc_2021_100745
crossref_primary_10_2147_IJGM_S263666
crossref_primary_10_1126_science_abc6952
crossref_primary_10_1038_s41594_020_00549_3
crossref_primary_10_1016_j_scib_2020_12_025
crossref_primary_10_1016_j_jddst_2023_104567
Cites_doi 10.1073/pnas.1705176114
10.1038/s41586-020-2012-7
10.1016/S0140-6736(20)30251-8
10.1016/S0140-6736(20)30154-9
10.1016/j.cell.2020.02.058
10.1126/science.abb2507
10.1002/pro.3330
10.1038/s41586-020-2008-3
10.1080/14728222.2017.1271415
10.1016/S0140-6736(20)30185-9
10.1016/j.cell.2020.02.052
10.1038/s41564-019-0411-z
10.3390/v11010060
10.1107/S0907444902016657
10.1107/S0907444904019158
10.46234/ccdcw2020.017
10.1038/nrmicro2090
10.1056/NEJMoa2001017
10.1016/j.tim.2015.06.003
10.1016/j.cell.2020.03.045
10.1016/S0076-6879(97)76066-X
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2020 The Authors
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2020 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abc2241
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1278
ExternalDocumentID PMC7223722
32404477
10_1126_science_abc2241
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 81902058
– fundername: ;
  grantid: 2018ZX10733403
– fundername: ;
  grantid: 2018YFC1200603
– fundername: ;
  grantid: 2017ZX10304402
– fundername: ;
  grantid: 2020XGZX019
– fundername: ;
  grantid: 2016YFD0500304
– fundername: ;
  grantid: 31872745
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
CGR
CUY
CVF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c515t-ef560fe51f6f9c2fa71416de0160160d4e31addb6eb6c902185952f87c2e31a13
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:11:05 EDT 2025
Fri Jul 11 10:45:53 EDT 2025
Fri Jul 25 19:32:42 EDT 2025
Wed Feb 19 02:12:01 EST 2025
Tue Jul 01 01:35:12 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6496
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-ef560fe51f6f9c2fa71416de0160160d4e31addb6eb6c902185952f87c2e31a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3869-615X
0000-0002-0670-010X
0000-0003-2734-0673
0000-0002-5963-1136
0000-0002-7967-1581
0000-0003-4568-9158
0000-0001-5556-2025
0000-0002-5595-363X
0000-0003-2778-4290
0000-0001-7069-9556
0000-0001-8607-3750
0000-0001-9800-9107
0000-0003-3608-4106
0000-0003-4286-7772
0000-0001-9612-6844
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7223722
PMID 32404477
PQID 2412345379
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7223722
proquest_miscellaneous_2403030277
proquest_journals_2412345379
pubmed_primary_32404477
crossref_citationtrail_10_1126_science_abc2241
crossref_primary_10_1126_science_abc2241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-12
PublicationDateYYYYMMDD 2020-06-12
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science
References e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_19_2
  doi: 10.1073/pnas.1705176114
– ident: e_1_3_2_4_2
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_3_2_6_2
  doi: 10.1016/S0140-6736(20)30251-8
– ident: e_1_3_2_7_2
  doi: 10.1016/S0140-6736(20)30154-9
– ident: e_1_3_2_11_2
  doi: 10.1016/j.cell.2020.02.058
– ident: e_1_3_2_14_2
  doi: 10.1126/science.abb2507
– ident: e_1_3_2_23_2
  doi: 10.1002/pro.3330
– ident: e_1_3_2_8_2
  doi: 10.1038/s41586-020-2008-3
– ident: e_1_3_2_16_2
  doi: 10.1080/14728222.2017.1271415
– ident: e_1_3_2_3_2
  doi: 10.1016/S0140-6736(20)30185-9
– ident: e_1_3_2_12_2
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_3_2_18_2
  doi: 10.1038/s41564-019-0411-z
– ident: e_1_3_2_15_2
  doi: 10.3390/v11010060
– ident: e_1_3_2_10_2
– ident: e_1_3_2_22_2
  doi: 10.1107/S0907444902016657
– ident: e_1_3_2_21_2
  doi: 10.1107/S0907444904019158
– ident: e_1_3_2_5_2
  doi: 10.46234/ccdcw2020.017
– ident: e_1_3_2_17_2
  doi: 10.1038/nrmicro2090
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJMoa2001017
– ident: e_1_3_2_9_2
  doi: 10.1016/j.tim.2015.06.003
– ident: e_1_3_2_13_2
  doi: 10.1016/j.cell.2020.03.045
– ident: e_1_3_2_20_2
  doi: 10.1016/S0076-6879(97)76066-X
SSID ssj0009593
Score 2.7224412
Snippet One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the...
Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four...
An antibody defense against COVID-19One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1274
SubjectTerms ACE2
Angiotensin
Angiotensin-Converting Enzyme 2
Animals
Antibodies
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - isolation & purification
Antibodies, Monoclonal - therapeutic use
Antibodies, Neutralizing - immunology
Antibodies, Neutralizing - isolation & purification
Antibodies, Neutralizing - therapeutic use
Antibodies, Viral - immunology
Antibodies, Viral - isolation & purification
Antibodies, Viral - therapeutic use
Antiviral agents
Antiviral drugs
Binding sites
Biochem
Blocking
Cellular structure
Coronaviridae
Coronavirus Infections - therapy
Coronaviruses
COVID-19
Disease Models, Animal
Domains
Enzymes
Epitopes
Glycoproteins
Humans
Immune system
Immunodominant Epitopes - chemistry
Immunodominant Epitopes - immunology
Lung - immunology
Lung - virology
Mice
Microbio
Monoclonal antibodies
Neutralization
Neutralization Tests
Neutralizing
Pandemics
Peptidyl-dipeptidase A
Peptidyl-Dipeptidase A - immunology
Pneumonia, Viral - therapy
Protein Domains
Receptors
Receptors, Virus - immunology
Spike glycoprotein
Spike Glycoprotein, Coronavirus - immunology
Spike protein
Therapeutic applications
Viral diseases
Viral Load - immunology
Viruses
Title A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2
URI https://www.ncbi.nlm.nih.gov/pubmed/32404477
https://www.proquest.com/docview/2412345379
https://www.proquest.com/docview/2403030277
https://pubmed.ncbi.nlm.nih.gov/PMC7223722
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEBu3wkBG4mGoSlU7iZM8Zl2rgcb2QEv7FsWOMyJQi7oEafsD_G2OYydxtyENpDatbKeJ-n05Pj4-F4TekyCXbhBIhzPKHc_lkcNdKR1KRB4Sl6SRVKaBz2fsZO59WvrLXu-35bVUlXworu-MK_kfVKENcFVRsv-AbPuj0ADfAV84AsJwvBfG8QAW76LWfOug8lTb_HXdvZWsaivGtQ5DLAu-Vh6DylVdfB-Mz79-PHZINPhVbCpoLHR0C2iieidBebusN4N4PKG2_tqIAtBL270eC-HWaTHWrgWNp4E5zTI7LKpa-HfcXBjD9VQWm671iwkeGcPnRZWaabYW5Xr4QhZXlW26oKrCjUMsayYZqUKRdKQlnLyjzYhol4UWF5kX2TKXUF3n5_ZkYJWvlMOUC6WudPNes9d_dp5M56enyWyynD1AuxTWGyAwd-Oj46PpzfzN7d2ZLFFW_FVzgW0F59aq5abzraXNzJ6gx2YZgmPNqT3Uk6t99FAXJr3aR3sGsEt8aPKSf3iK8hjbdMOKbnid45pu2KYb7uiGa7rhhm64phs2dMPlGgPdcEM3rOj2DM2nk9n4xDFlOhwBynDpyBy05lz6JGd5JGieBgS0_Eyq3IXwyjwJj3yWcSY5E5HSKf3Ip3kYCKp6iPsc7cDty5cIE8Yi7hOR-iHzwozxNHWlR4gy1gcjmvXRsPlvE2Fy2KtSKj-Sei1LWWLASAwYfXTYnvBTp2_5-9CDBqzEPOOXCbRT1_PdIOqjd203SGC1rZau5LpSY2CiVNv_QR-90Ni211LpLj1P9QRbqLcDVHb37Z5V8a3O8h6A4g7vV_e47mv0qHu8DtBOuankG9CVS_7W8PgPxg3Dxw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+noncompeting+pair+of+human+neutralizing+antibodies+block+COVID-19+virus+binding+to+its+receptor+ACE2&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wu%2C+Yan&rft.au=Wang%2C+Feiran&rft.au=Shen%2C+Chenguang&rft.au=Peng%2C+Weiyu&rft.date=2020-06-12&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=368&rft.issue=6496&rft.spage=1274&rft_id=info:doi/10.1126%2Fscience.abc2241&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon