A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2
One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 368; no. 6496; pp. 1274 - 1278 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
12.06.2020
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu
et al.
isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications.
Science
, this issue p.
1274
A pair of neutralizing antibodies against COVID-19 bind to different epitopes to compete with cellular receptor binding.
Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design. |
---|---|
AbstractList | Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design. One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications. Science , this issue p. 1274 A pair of neutralizing antibodies against COVID-19 bind to different epitopes to compete with cellular receptor binding. Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design. Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design. An antibody defense against COVID-19One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications.Science, this issue p. 1274Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design. One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the virus from being infectious, and can thus be used to treat viral diseases. Wu et al. isolated four neutralizing antibodies from a convalescent coronavirus disease 2019 (COVID-19) patient. Two of the antibodies, B38 and H4, blocked the receptor binding domain (RBD) of the viral spike protein from binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The structure of the RBD bound to B38 shows that the B38-binding site overlaps with the binding site for ACE2. Although H4 also blocks RBD binding to ACE2, it binds at a different site, and thus the two antibodies can bind simultaneously. This pair of antibodies could potentially be used together in clinical applications. Science , this issue p. 1274 A pair of neutralizing antibodies against COVID-19 bind to different epitopes to compete with cellular receptor binding. Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design. |
Author | Wang, Feiran Tan, Wenjie Lu, Xuancheng Peng, Weiyu Zhao, Cheng Bi, Yuhai Tan, Shuguang Gao, George Fu Li, Shihua Li, Delin Gao, Feng Fan, Zheng Fan, Changfa Liu, Yingxia Zhang, Chen Gong, Yuhuan Wang, Qihui Yang, Yang Xiao, Haixia Liu, Lei Li, Zhaohui Qi, Jianxun Wu, Guizhen Wu, Yan Shen, Chenguang |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-2734-0673 surname: Wu fullname: Wu, Yan organization: Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China., Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Feiran orcidid: 0000-0003-4568-9158 surname: Wang fullname: Wang, Feiran organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China – sequence: 3 givenname: Chenguang orcidid: 0000-0001-8607-3750 surname: Shen fullname: Shen, Chenguang organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China – sequence: 4 givenname: Weiyu orcidid: 0000-0001-7069-9556 surname: Peng fullname: Peng, Weiyu organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., College of Veterinary Medicine, China Agricultural University, Beijing, China – sequence: 5 givenname: Delin orcidid: 0000-0002-7967-1581 surname: Li fullname: Li, Delin organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China., Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China – sequence: 6 givenname: Cheng orcidid: 0000-0001-9800-9107 surname: Zhao fullname: Zhao, Cheng organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Shanxi Academy of Advanced Research and Innovation, Taiyuan, China – sequence: 7 givenname: Zhaohui orcidid: 0000-0003-4286-7772 surname: Li fullname: Li, Zhaohui organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., University of Chinese Academy of Sciences, Beijing, China – sequence: 8 givenname: Shihua orcidid: 0000-0003-3608-4106 surname: Li fullname: Li, Shihua organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China – sequence: 9 givenname: Yuhai orcidid: 0000-0002-5595-363X surname: Bi fullname: Bi, Yuhai organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Center for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Beijing, China – sequence: 10 givenname: Yang surname: Yang fullname: Yang, Yang organization: Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China – sequence: 11 givenname: Yuhuan surname: Gong fullname: Gong, Yuhuan organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China., Center for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Beijing, China – sequence: 12 givenname: Haixia surname: Xiao fullname: Xiao, Haixia organization: Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China – sequence: 13 givenname: Zheng surname: Fan fullname: Fan, Zheng organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China – sequence: 14 givenname: Shuguang surname: Tan fullname: Tan, Shuguang organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China – sequence: 15 givenname: Guizhen orcidid: 0000-0003-2778-4290 surname: Wu fullname: Wu, Guizhen organization: NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China – sequence: 16 givenname: Wenjie orcidid: 0000-0002-5963-1136 surname: Tan fullname: Tan, Wenjie organization: NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China – sequence: 17 givenname: Xuancheng surname: Lu fullname: Lu, Xuancheng organization: Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China – sequence: 18 givenname: Changfa orcidid: 0000-0001-5556-2025 surname: Fan fullname: Fan, Changfa organization: Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China – sequence: 19 givenname: Qihui surname: Wang fullname: Wang, Qihui organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China – sequence: 20 givenname: Yingxia surname: Liu fullname: Liu, Yingxia organization: Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China – sequence: 21 givenname: Chen surname: Zhang fullname: Zhang, Chen organization: Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China – sequence: 22 givenname: Jianxun surname: Qi fullname: Qi, Jianxun organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China – sequence: 23 givenname: George Fu orcidid: 0000-0002-3869-615X surname: Gao fullname: Gao, George Fu organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China – sequence: 24 givenname: Feng orcidid: 0000-0002-0670-010X surname: Gao fullname: Gao, Feng organization: Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China – sequence: 25 givenname: Lei orcidid: 0000-0001-9612-6844 surname: Liu fullname: Liu, Lei organization: Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32404477$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1r3DAYhEVJaTbbnnsrgl5ycaIPy1pfCss2aQOBXJpchSy_SpTakivJgebXRyab0gaKZQSa5x1GmiN04IMHhD5SckIpa06TceANnOjOMFbTN2hFSSuqlhF-gFaE8KbaECkO0VFK94QUreXv0CFnNalrKVfIbnGxNGGcIDt_iyftIg4W382j9tjDnKMe3OMiaZ9dF3oHCXdDMD_x7urm4mtFW_zg4lwOne8XLgfscsIRDEw5RLzdnbH36K3VQ4IP-32Nrs_Pfuy-V5dX3y5228vKCCpyBVY0xIKgtrGtYVZLWtOmB0KbZfU1cKr7vmuga0xLGN2IVjC7kYYtCuVr9OXZd5q7EXoDfsmvpuhGHX-roJ36V_HuTt2GByUZ48u_Rsd7gxh-zZCyGl0yMAzaQ5iTKg_Hy8ekLOjnV-h9mKMv1ysUZbwWXLaF-vR3oj9RXioogHgGTAwpRbDKuKyzC0tANyhK1FK12let9lWXudNXcy_W_5t4AgNorqA |
CitedBy_id | crossref_primary_10_1038_s41598_020_74761_y crossref_primary_10_1371_journal_ppat_1009352 crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_1038_s41587_022_01280_8 crossref_primary_10_3389_fmolb_2023_1236617 crossref_primary_10_3390_v12091006 crossref_primary_10_1016_j_jcyt_2020_08_009 crossref_primary_10_1002_prot_26458 crossref_primary_10_1093_abt_tbab015 crossref_primary_10_1016_j_biopha_2020_110859 crossref_primary_10_1371_journal_ppat_1011554 crossref_primary_10_1016_j_immuni_2021_03_023 crossref_primary_10_1038_s41551_023_01094_2 crossref_primary_10_1093_bib_bbab375 crossref_primary_10_1007_s10096_020_04138_6 crossref_primary_10_1080_19420862_2023_2222874 crossref_primary_10_1038_s41579_020_00468_6 crossref_primary_10_1016_j_ejphar_2021_173897 crossref_primary_10_1074_jbc_RA120_016284 crossref_primary_10_1038_s44298_023_00007_z crossref_primary_10_3390_toxins12090602 crossref_primary_10_1016_j_celrep_2022_110368 crossref_primary_10_1016_j_xcrm_2020_100126 crossref_primary_10_1093_jalm_jfaa195 crossref_primary_10_1016_j_jbc_2021_101127 crossref_primary_10_1021_jacs_3c09497 crossref_primary_10_1080_17460441_2021_1909566 crossref_primary_10_1126_scitranslmed_abl6141 crossref_primary_10_1186_s12951_021_01148_0 crossref_primary_10_1093_bioinformatics_btaa645 crossref_primary_10_1021_acs_langmuir_0c02911 crossref_primary_10_3389_fcimb_2020_587269 crossref_primary_10_1016_j_jmb_2021_167332 crossref_primary_10_1073_pnas_2303455120 crossref_primary_10_3390_pathogens10081051 crossref_primary_10_1016_j_cell_2022_08_024 crossref_primary_10_1016_j_clinthera_2021_08_009 crossref_primary_10_1021_acs_jpclett_1c02788 crossref_primary_10_1111_irv_13119 crossref_primary_10_1038_s41598_021_85202_9 crossref_primary_10_1186_s12929_021_00777_9 crossref_primary_10_3390_ijms222111953 crossref_primary_10_1016_j_addr_2021_01_014 crossref_primary_10_1038_s41598_021_84840_3 crossref_primary_10_1038_s41598_022_14443_z crossref_primary_10_3390_microorganisms9071415 crossref_primary_10_1155_2021_6803510 crossref_primary_10_1172_jci_insight_143129 crossref_primary_10_1172_jci_insight_145785 crossref_primary_10_3390_ijms232012374 crossref_primary_10_3389_fimmu_2021_693775 crossref_primary_10_1016_j_cell_2020_12_015 crossref_primary_10_1016_j_optlastec_2022_108763 crossref_primary_10_1016_j_stemcr_2020_12_010 crossref_primary_10_1093_abt_tbaa028 crossref_primary_10_1371_journal_pone_0292589 crossref_primary_10_1371_journal_ppat_1010686 crossref_primary_10_1371_journal_ppat_1011532 crossref_primary_10_1002_jssc_202100570 crossref_primary_10_1038_s41467_024_48312_2 crossref_primary_10_1007_s40011_024_01575_7 crossref_primary_10_1007_s00253_023_12490_8 crossref_primary_10_3389_fimmu_2024_1374913 crossref_primary_10_1038_s41598_023_42442_1 crossref_primary_10_1080_19420862_2024_2338301 crossref_primary_10_1016_j_chembiol_2023_09_004 crossref_primary_10_1007_s00253_022_12288_0 crossref_primary_10_1016_j_cell_2021_06_021 crossref_primary_10_3390_life13030617 crossref_primary_10_34133_2022_9769803 crossref_primary_10_1016_j_compbiomed_2021_104550 crossref_primary_10_1021_acsomega_1c03558 crossref_primary_10_1186_s40779_021_00342_3 crossref_primary_10_1146_annurev_biophys_062920_063711 crossref_primary_10_1038_s41467_021_27893_2 crossref_primary_10_1016_j_bios_2020_112572 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1097_COH_0000000000000657 crossref_primary_10_1016_j_matt_2023_09_007 crossref_primary_10_1097_COH_0000000000000651 crossref_primary_10_1016_j_intimp_2020_107156 crossref_primary_10_1080_21645515_2020_1842683 crossref_primary_10_1038_s41598_021_97423_z crossref_primary_10_1093_abt_tbab008 crossref_primary_10_3390_vaccines10111839 crossref_primary_10_1073_pnas_2111011118 crossref_primary_10_1097_SHK_0000000000001627 crossref_primary_10_1371_journal_ppat_1009328 crossref_primary_10_1038_s41467_022_30216_8 crossref_primary_10_1002_ardp_202200558 crossref_primary_10_1016_j_bioorg_2024_107977 crossref_primary_10_1016_j_lfs_2020_118889 crossref_primary_10_1038_s41541_024_00806_2 crossref_primary_10_1016_j_cll_2020_08_014 crossref_primary_10_1093_nsr_nwaa297 crossref_primary_10_3390_vaccines12050446 crossref_primary_10_3389_fimmu_2021_712274 crossref_primary_10_4103_jpcs_jpcs_79_20 crossref_primary_10_1039_D0CP03771K crossref_primary_10_1080_14787210_2020_1863144 crossref_primary_10_1126_science_abe3354 crossref_primary_10_1124_pharmrev_120_000285 crossref_primary_10_1016_j_chom_2020_06_020 crossref_primary_10_1021_acscentsci_0c01056 crossref_primary_10_1038_s41586_021_04385_3 crossref_primary_10_3390_pharmaceutics14040856 crossref_primary_10_1016_j_celrep_2022_110561 crossref_primary_10_1016_j_celrep_2021_109173 crossref_primary_10_1093_jmcb_mjaa070 crossref_primary_10_1038_s41589_021_00965_6 crossref_primary_10_1073_pnas_2314193120 crossref_primary_10_1016_j_compbiomed_2022_105509 crossref_primary_10_3390_ijms23042188 crossref_primary_10_3390_diagnostics13040643 crossref_primary_10_1016_j_jbc_2021_101202 crossref_primary_10_3389_fimmu_2023_1055457 crossref_primary_10_1016_j_cellin_2024_100150 crossref_primary_10_1038_s41467_020_20789_7 crossref_primary_10_1172_jci_insight_142362 crossref_primary_10_1021_jacs_1c06600 crossref_primary_10_3390_biomedicines12030642 crossref_primary_10_7554_eLife_73027 crossref_primary_10_61186_vacres_10_1_1 crossref_primary_10_1016_j_immuni_2020_10_023 crossref_primary_10_1016_j_bcp_2021_114724 crossref_primary_10_1152_physiolgenomics_00087_2020 crossref_primary_10_1126_sciimmunol_adp9279 crossref_primary_10_1126_science_abd2321 crossref_primary_10_1038_s41422_021_00487_9 crossref_primary_10_3389_fmolb_2024_1390659 crossref_primary_10_1371_journal_pbio_3001209 crossref_primary_10_3390_ijms23042172 crossref_primary_10_1002_adfm_202008352 crossref_primary_10_1016_j_bj_2020_11_011 crossref_primary_10_1016_j_meegid_2021_104897 crossref_primary_10_1186_s12929_020_00703_5 crossref_primary_10_2174_0109298665320319240809095727 crossref_primary_10_1016_j_csbj_2021_05_002 crossref_primary_10_1038_s41467_021_21037_2 crossref_primary_10_1039_D1RA00426C crossref_primary_10_1016_j_cocis_2021_101466 crossref_primary_10_1021_acs_jpclett_1c01415 crossref_primary_10_1073_pnas_2101918118 crossref_primary_10_1093_oxfimm_iqab003 crossref_primary_10_1016_j_xcrm_2022_100834 crossref_primary_10_1038_s41392_021_00810_1 crossref_primary_10_1038_s41467_020_20501_9 crossref_primary_10_3389_fimmu_2021_723585 crossref_primary_10_1038_s41586_020_2852_1 crossref_primary_10_1021_acs_biochem_4c00671 crossref_primary_10_1128_cmr_00188_21 crossref_primary_10_1002_jcla_23535 crossref_primary_10_1016_j_celrep_2021_110156 crossref_primary_10_62347_XJVE4569 crossref_primary_10_1093_immadv_ltaa007 crossref_primary_10_1016_j_heliyon_2023_e16750 crossref_primary_10_3389_fddsv_2022_898035 crossref_primary_10_3390_nano12152638 crossref_primary_10_3390_vaccines10111805 crossref_primary_10_1016_j_smim_2020_101427 crossref_primary_10_1155_2020_9465398 crossref_primary_10_2174_2666796701999201204123259 crossref_primary_10_1016_j_jgg_2021_02_006 crossref_primary_10_1002_smll_202007091 crossref_primary_10_1016_j_virol_2023_109925 crossref_primary_10_1186_s42649_021_00062_x crossref_primary_10_3389_fmolb_2021_671263 crossref_primary_10_3389_fimmu_2021_637654 crossref_primary_10_3389_fimmu_2022_902260 crossref_primary_10_1038_s41598_021_89957_z crossref_primary_10_1080_15321819_2020_1862866 crossref_primary_10_3389_fimmu_2021_637651 crossref_primary_10_1016_j_virs_2023_07_003 crossref_primary_10_2139_ssrn_4001946 crossref_primary_10_1021_acschembio_2c00411 crossref_primary_10_1016_j_bbapap_2024_141011 crossref_primary_10_1016_j_tips_2020_07_004 crossref_primary_10_1039_D2SC00534D crossref_primary_10_1016_j_nbt_2023_12_004 crossref_primary_10_1038_s41586_020_2571_7 crossref_primary_10_1039_D0RA09555A crossref_primary_10_3390_vaccines11101546 crossref_primary_10_1038_s41467_020_19204_y crossref_primary_10_1177_26348535231202681 crossref_primary_10_3389_fimmu_2023_1219546 crossref_primary_10_1089_vim_2021_0023 crossref_primary_10_1038_s41579_020_00459_7 crossref_primary_10_1073_pnas_2107249118 crossref_primary_10_3390_vaccines9080928 crossref_primary_10_1080_19420862_2021_1953683 crossref_primary_10_1186_s12967_020_02673_6 crossref_primary_10_1016_j_xcrm_2023_100918 crossref_primary_10_1016_j_biotechadv_2022_107986 crossref_primary_10_1038_s41467_021_27040_x crossref_primary_10_3390_v15040944 crossref_primary_10_1146_annurev_biophys_102620_080956 crossref_primary_10_1016_j_fmre_2021_02_001 crossref_primary_10_1016_j_str_2020_10_001 crossref_primary_10_1016_j_omtm_2022_10_001 crossref_primary_10_1038_s41392_020_00352_y crossref_primary_10_1038_s41598_022_12032_8 crossref_primary_10_3390_toxins15020159 crossref_primary_10_1016_j_cell_2021_05_031 crossref_primary_10_1016_j_jbc_2021_100346 crossref_primary_10_1126_sciadv_abp9770 crossref_primary_10_1021_acs_jpcb_1c05997 crossref_primary_10_1038_s41594_020_0478_5 crossref_primary_10_1038_s41467_023_39267_x crossref_primary_10_1093_nsr_nwad161 crossref_primary_10_1016_j_celrep_2020_108322 crossref_primary_10_1016_j_ijpharm_2020_120028 crossref_primary_10_1021_acsinfecdis_1c00070 crossref_primary_10_1016_j_isci_2022_103951 crossref_primary_10_1016_j_intimp_2020_106924 crossref_primary_10_15789_2220_7619_ASB_1699 crossref_primary_10_4110_in_2021_21_e7 crossref_primary_10_1016_j_tibs_2021_06_001 crossref_primary_10_2139_ssrn_3961037 crossref_primary_10_4110_in_2021_21_e8 crossref_primary_10_1038_s41422_020_0366_x crossref_primary_10_1002_EXP_20230086 crossref_primary_10_1016_j_chom_2022_07_002 crossref_primary_10_1016_j_jfranklin_2022_09_022 crossref_primary_10_1016_j_molstruc_2022_133114 crossref_primary_10_1007_s11427_020_1859_y crossref_primary_10_4049_jimmunol_2100155 crossref_primary_10_1371_journal_pone_0246731 crossref_primary_10_1016_j_chom_2020_11_001 crossref_primary_10_3390_jcm10081586 crossref_primary_10_4049_jimmunol_2100272 crossref_primary_10_1016_j_arabjc_2021_103631 crossref_primary_10_1016_j_celrep_2021_108950 crossref_primary_10_1038_s41467_021_26539_7 crossref_primary_10_1080_08927022_2022_2111421 crossref_primary_10_1038_s41598_021_84700_0 crossref_primary_10_31857_S0320972521070022 crossref_primary_10_1002_advs_202103240 crossref_primary_10_1016_j_bbrc_2021_06_001 crossref_primary_10_1038_s41401_021_00732_2 crossref_primary_10_1016_j_chom_2020_11_007 crossref_primary_10_1016_j_humimm_2021_10_007 crossref_primary_10_1126_science_abc0870 crossref_primary_10_1038_s41565_022_01177_2 crossref_primary_10_1016_j_isci_2022_103960 crossref_primary_10_3390_md18110543 crossref_primary_10_1016_j_celrep_2021_109928 crossref_primary_10_3389_fimmu_2023_1113175 crossref_primary_10_3390_vaccines10101612 crossref_primary_10_1002_anie_202100543 crossref_primary_10_1016_j_ebiom_2021_103230 crossref_primary_10_1186_s13104_023_06508_7 crossref_primary_10_1016_j_cell_2020_06_025 crossref_primary_10_3390_ijms23062928 crossref_primary_10_1111_imr_70000 crossref_primary_10_3390_vaccines10050643 crossref_primary_10_1038_s41590_022_01138_w crossref_primary_10_1016_j_isci_2022_103939 crossref_primary_10_3390_cells9071704 crossref_primary_10_1093_nsr_nwae030 crossref_primary_10_1016_j_phymed_2020_153333 crossref_primary_10_1007_s11030_022_10449_x crossref_primary_10_1080_22221751_2023_2223669 crossref_primary_10_1021_acsomega_1c02984 crossref_primary_10_1016_j_jmb_2022_167928 crossref_primary_10_1063_5_0237319 crossref_primary_10_1038_s41467_021_27799_z crossref_primary_10_1186_s12929_021_00784_w crossref_primary_10_1016_j_tibs_2021_10_005 crossref_primary_10_3390_ijms222212114 crossref_primary_10_1038_s41577_021_00542_x crossref_primary_10_2174_0118750362284177240304055831 crossref_primary_10_3390_molecules26010039 crossref_primary_10_1016_j_medj_2022_01_004 crossref_primary_10_1038_s41392_021_00740_y crossref_primary_10_3390_molecules29143405 crossref_primary_10_1039_D0SC03920A crossref_primary_10_3390_pharmaceutics14051101 crossref_primary_10_1093_pcmedi_pbaa017 crossref_primary_10_1021_acschembio_1c00906 crossref_primary_10_1111_pbi_13970 crossref_primary_10_3389_fimmu_2021_647934 crossref_primary_10_3390_v14040803 crossref_primary_10_1371_journal_pbio_3001265 crossref_primary_10_1038_s41598_022_23482_5 crossref_primary_10_1016_j_clinbiochem_2020_09_005 crossref_primary_10_1038_s41467_023_36761_0 crossref_primary_10_3389_fmed_2022_973036 crossref_primary_10_1016_j_fmre_2021_01_009 crossref_primary_10_1371_journal_pone_0258645 crossref_primary_10_1142_S1793545821300020 crossref_primary_10_1038_s41564_022_01155_3 crossref_primary_10_1002_mco2_60 crossref_primary_10_1126_scitranslmed_abd6990 crossref_primary_10_1021_acsinfecdis_3c00483 crossref_primary_10_1038_s41467_021_26350_4 crossref_primary_10_1016_j_bbrc_2021_07_062 crossref_primary_10_1038_s41421_020_00224_3 crossref_primary_10_1371_journal_pone_0244126 crossref_primary_10_1016_j_ajhg_2023_12_005 crossref_primary_10_1038_s41467_021_21155_x crossref_primary_10_1002_rmv_2347 crossref_primary_10_3390_v13010134 crossref_primary_10_5802_crbiol_38 crossref_primary_10_1016_j_fmre_2021_01_013 crossref_primary_10_1073_pnas_2400163121 crossref_primary_10_3390_vaccines10010096 crossref_primary_10_1109_TCBB_2021_3076259 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1007_s11596_021_2453_8 crossref_primary_10_1038_s41392_021_00610_7 crossref_primary_10_1016_j_heliyon_2021_e06564 crossref_primary_10_1016_j_cell_2020_06_044 crossref_primary_10_1016_j_cellin_2023_100144 crossref_primary_10_3390_vaccines9020076 crossref_primary_10_1002_adma_202207875 crossref_primary_10_1016_j_jcis_2024_06_175 crossref_primary_10_1021_acs_jcim_2c00124 crossref_primary_10_3390_vaccines9020073 crossref_primary_10_1016_j_biopha_2020_111193 crossref_primary_10_1021_acsinfecdis_1c00276 crossref_primary_10_1080_22221751_2021_1921621 crossref_primary_10_1371_journal_pone_0253487 crossref_primary_10_4103_mjdrdypu_mjdrdypu_819_22 crossref_primary_10_1016_j_cell_2020_06_035 crossref_primary_10_1097_INF_0000000000004301 crossref_primary_10_1038_s41467_022_28528_w crossref_primary_10_15252_embj_2021107786 crossref_primary_10_3390_vaccines10050772 crossref_primary_10_1155_2022_8635054 crossref_primary_10_1371_journal_ppat_1009704 crossref_primary_10_3389_fphys_2021_624675 crossref_primary_10_1002_jmv_29488 crossref_primary_10_1016_j_celrep_2021_108915 crossref_primary_10_1016_j_coph_2021_11_006 crossref_primary_10_1016_j_isci_2021_103467 crossref_primary_10_1002_med_21919 crossref_primary_10_1126_science_abl6251 crossref_primary_10_3390_biom12111658 crossref_primary_10_1007_s12016_021_08912_y crossref_primary_10_1021_acsinfecdis_1c00047 crossref_primary_10_1021_acs_jpcb_3c04366 crossref_primary_10_1186_s13073_021_00985_w crossref_primary_10_1038_s41586_020_2548_6 crossref_primary_10_1146_annurev_med_042420_113838 crossref_primary_10_1038_s41392_020_00318_0 crossref_primary_10_1021_acs_biomac_1c01435 crossref_primary_10_1016_j_cll_2021_10_003 crossref_primary_10_1016_j_str_2024_08_005 crossref_primary_10_1016_j_chom_2020_11_012 crossref_primary_10_1016_j_bpc_2024_107253 crossref_primary_10_3389_fmicb_2020_01576 crossref_primary_10_1016_j_tracli_2022_02_004 crossref_primary_10_1038_s41541_023_00755_2 crossref_primary_10_1038_s43856_022_00151_2 crossref_primary_10_3390_v14020295 crossref_primary_10_1134_S0006297921070026 crossref_primary_10_1038_s41541_022_00481_1 crossref_primary_10_3389_fphar_2022_987816 crossref_primary_10_1084_jem_20201181 crossref_primary_10_1073_pnas_2010197117 crossref_primary_10_3390_cells11030487 crossref_primary_10_3390_v13050932 crossref_primary_10_1016_j_abst_2020_08_001 crossref_primary_10_1126_scitranslmed_adh7668 crossref_primary_10_1038_s41591_020_0995_0 crossref_primary_10_1016_j_jviromet_2020_114031 crossref_primary_10_1002_jmv_28049 crossref_primary_10_1021_acs_jpclett_0c02706 crossref_primary_10_3389_fimmu_2022_1010105 crossref_primary_10_3389_fimmu_2021_653189 crossref_primary_10_1016_j_ijbiomac_2025_140046 crossref_primary_10_1038_s41421_021_00256_3 crossref_primary_10_1038_s41598_021_00684_x crossref_primary_10_1016_j_celrep_2023_113653 crossref_primary_10_1002_ddr_21815 crossref_primary_10_1016_j_chembiol_2021_05_019 crossref_primary_10_1016_j_coviro_2021_12_015 crossref_primary_10_1016_j_gene_2024_148427 crossref_primary_10_1371_journal_pone_0268767 crossref_primary_10_1038_s41467_020_18058_8 crossref_primary_10_1371_journal_pone_0267796 crossref_primary_10_1016_j_lfs_2020_118056 crossref_primary_10_1002_JLB_4COVA0121_084RR crossref_primary_10_1016_j_slasd_2023_07_002 crossref_primary_10_1016_j_isci_2022_104719 crossref_primary_10_1093_cid_ciaa1143 crossref_primary_10_1107_S2059798323005041 crossref_primary_10_3390_vaccines10040516 crossref_primary_10_1016_j_sbi_2022_102379 crossref_primary_10_3389_fimmu_2021_678570 crossref_primary_10_3390_covid1010023 crossref_primary_10_3389_fimmu_2023_1118523 crossref_primary_10_1016_j_chom_2021_06_001 crossref_primary_10_1038_s41598_023_31369_2 crossref_primary_10_1016_j_btre_2023_e00796 crossref_primary_10_1016_j_celrep_2021_109771 crossref_primary_10_1515_cclm_2020_1413 crossref_primary_10_7189_jogh_11_10003 crossref_primary_10_3390_antiox10060881 crossref_primary_10_1002_jcb_30538 crossref_primary_10_1016_j_cell_2020_08_012 crossref_primary_10_1038_s41421_024_00648_1 crossref_primary_10_1007_s00347_020_01155_w crossref_primary_10_1016_j_fct_2021_112009 crossref_primary_10_1126_science_abe8499 crossref_primary_10_3390_ijms23084341 crossref_primary_10_1126_scitranslmed_abi9215 crossref_primary_10_1371_journal_pcbi_1009675 crossref_primary_10_1371_journal_pone_0311777 crossref_primary_10_3390_ijms231810904 crossref_primary_10_1016_j_matt_2021_09_022 crossref_primary_10_1021_acs_analchem_1c01657 crossref_primary_10_1016_j_celrep_2021_109881 crossref_primary_10_1016_j_chom_2021_03_008 crossref_primary_10_1016_j_chom_2021_03_005 crossref_primary_10_3390_v14122823 crossref_primary_10_1016_j_cell_2021_03_027 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1073_pnas_2204256119 crossref_primary_10_1016_j_chom_2021_03_002 crossref_primary_10_1038_s41598_021_01081_0 crossref_primary_10_1038_s41467_021_27350_0 crossref_primary_10_1021_acs_biomac_2c01018 crossref_primary_10_1073_pnas_2310421121 crossref_primary_10_1371_journal_pone_0257930 crossref_primary_10_1016_j_virs_2022_01_029 crossref_primary_10_1371_journal_pone_0253574 crossref_primary_10_3390_ijms21155559 crossref_primary_10_1021_acscentsci_0c00742 crossref_primary_10_1007_s12041_021_01262_w crossref_primary_10_1038_s41467_021_24514_w crossref_primary_10_1111_imr_13383 crossref_primary_10_3389_fphar_2020_589438 crossref_primary_10_1016_j_crmeth_2023_100421 crossref_primary_10_17116_labs20221103117 crossref_primary_10_3390_biomedicines10071676 crossref_primary_10_1016_j_hlife_2023_07_001 crossref_primary_10_1038_s41591_020_0998_x crossref_primary_10_1002_jmv_27428 crossref_primary_10_1007_s12250_020_00327_x crossref_primary_10_1016_j_celrep_2021_109433 crossref_primary_10_3390_cells11071235 crossref_primary_10_1016_j_jmb_2021_166956 crossref_primary_10_3389_fimmu_2022_912898 crossref_primary_10_1126_science_abh1139 crossref_primary_10_1021_acsmedchemlett_0c00409 crossref_primary_10_3389_fphar_2020_609212 crossref_primary_10_1186_s41232_022_00233_7 crossref_primary_10_1002_1873_3468_14076 crossref_primary_10_1038_s41467_021_23036_9 crossref_primary_10_1016_j_cell_2020_09_049 crossref_primary_10_1177_2472555220979579 crossref_primary_10_2174_1566524021666211013121831 crossref_primary_10_1111_sji_13088 crossref_primary_10_1002_adma_202103471 crossref_primary_10_1016_j_celrep_2020_108274 crossref_primary_10_2174_2666958702101010216 crossref_primary_10_1016_j_celrep_2021_108699 crossref_primary_10_1016_j_jpha_2023_05_011 crossref_primary_10_1016_j_micpath_2022_105619 crossref_primary_10_1038_s41598_021_89887_w crossref_primary_10_1093_function_zqaa012 crossref_primary_10_1126_science_abg9175 crossref_primary_10_3390_diagnostics11081332 crossref_primary_10_1038_s41467_020_19231_9 crossref_primary_10_1038_s41577_022_00784_3 crossref_primary_10_1016_j_bbrc_2020_10_012 crossref_primary_10_1002_smll_202004237 crossref_primary_10_1128_JVI_01083_20 crossref_primary_10_1016_j_immuni_2021_07_008 crossref_primary_10_1016_j_cell_2020_09_035 crossref_primary_10_1128_JCM_02489_20 crossref_primary_10_3389_fmolb_2022_871499 crossref_primary_10_1097_MD_0000000000040425 crossref_primary_10_1016_j_cell_2020_09_037 crossref_primary_10_1038_s41586_021_03275_y crossref_primary_10_1186_s12866_022_02450_z crossref_primary_10_1016_j_virol_2021_02_003 crossref_primary_10_1038_s41598_021_94873_3 crossref_primary_10_1038_s41598_022_18302_9 crossref_primary_10_1038_s42003_021_02036_x crossref_primary_10_1016_j_csbj_2022_04_038 crossref_primary_10_3390_biom12121742 crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_1016_j_cell_2021_04_032 crossref_primary_10_1038_s41579_021_00630_8 crossref_primary_10_1016_j_cell_2021_04_033 crossref_primary_10_18632_aging_104019 crossref_primary_10_1097_ID9_0000000000000053 crossref_primary_10_3390_pathogens13121081 crossref_primary_10_3390_v13020332 crossref_primary_10_1038_s41421_021_00340_8 crossref_primary_10_1080_22221751_2021_1959270 crossref_primary_10_1038_s41467_020_18159_4 crossref_primary_10_1038_s41467_024_44869_0 crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_3390_plants11050663 crossref_primary_10_1016_j_str_2021_05_014 crossref_primary_10_1016_j_cell_2020_07_012 crossref_primary_10_1016_j_ebiom_2022_104025 crossref_primary_10_3389_fmed_2021_672629 crossref_primary_10_1021_acs_jpcb_2c02365 crossref_primary_10_1038_s41392_022_01087_8 crossref_primary_10_1016_j_intimp_2022_108570 crossref_primary_10_1021_acs_jpcb_1c00395 crossref_primary_10_1016_j_immuni_2021_05_006 crossref_primary_10_1128_jvi_01600_21 crossref_primary_10_1016_j_talanta_2020_121883 crossref_primary_10_1039_D0TB01668C crossref_primary_10_3389_fmicb_2020_01723 crossref_primary_10_1016_j_bbrc_2022_08_050 crossref_primary_10_1128_spectrum_01814_21 crossref_primary_10_3390_covid2050045 crossref_primary_10_1016_j_jpba_2025_116770 crossref_primary_10_1177_09636897221090259 crossref_primary_10_1016_j_antiviral_2024_105843 crossref_primary_10_1038_s42003_023_04955_3 crossref_primary_10_3389_fmolb_2021_670815 crossref_primary_10_1126_science_abd0827 crossref_primary_10_1093_gigascience_giac041 crossref_primary_10_1038_s41467_020_20465_w crossref_primary_10_2139_ssrn_3912219 crossref_primary_10_3389_fimmu_2021_691715 crossref_primary_10_3390_jcm12082893 crossref_primary_10_1007_s00894_022_05117_8 crossref_primary_10_1080_03091902_2021_1921067 crossref_primary_10_3390_v13102009 crossref_primary_10_2139_ssrn_3754549 crossref_primary_10_3390_vaccines9060557 crossref_primary_10_1097_MD_0000000000035029 crossref_primary_10_3389_fpls_2022_956741 crossref_primary_10_3390_medicina59030507 crossref_primary_10_1080_14789450_2020_1833721 crossref_primary_10_1080_22221751_2022_2140611 crossref_primary_10_1016_j_immuni_2023_11_004 crossref_primary_10_1002_cti2_1269 crossref_primary_10_1021_acsami_2c18305 crossref_primary_10_3390_v15020426 crossref_primary_10_1016_j_cell_2020_10_043 crossref_primary_10_1016_j_humimm_2021_06_011 crossref_primary_10_1016_j_addr_2020_12_011 crossref_primary_10_1038_s41467_023_43798_8 crossref_primary_10_1080_07391102_2022_2116601 crossref_primary_10_1093_clinchem_hvaa211 crossref_primary_10_1016_j_antiviral_2025_106082 crossref_primary_10_1016_j_bpj_2021_02_047 crossref_primary_10_1186_s43556_020_00015_y crossref_primary_10_1016_j_scr_2020_102125 crossref_primary_10_1111_trf_16323 crossref_primary_10_1002_rmv_2196 crossref_primary_10_35848_1347_4065_ac1857 crossref_primary_10_1038_s41467_021_22926_2 crossref_primary_10_1074_jbc_REV120_013930 crossref_primary_10_3389_fmolb_2025_1512788 crossref_primary_10_3390_vaccines10122119 crossref_primary_10_3389_fmolb_2021_671923 crossref_primary_10_1016_j_celrep_2021_109627 crossref_primary_10_15252_emmm_202114544 crossref_primary_10_1111_bph_15359 crossref_primary_10_1371_journal_pcbi_1008790 crossref_primary_10_1007_s12250_021_00409_4 crossref_primary_10_4103_GJTM_GJTM_66_20 crossref_primary_10_1016_j_colsurfb_2020_111436 crossref_primary_10_3389_fmolb_2022_1080964 crossref_primary_10_1093_cid_ciab884 crossref_primary_10_3389_fimmu_2020_570018 crossref_primary_10_1007_s00705_021_05008_y crossref_primary_10_1080_02603594_2022_2083608 crossref_primary_10_1038_s41422_021_00497_7 crossref_primary_10_1371_journal_ppat_1012246 crossref_primary_10_1016_j_biopha_2020_110337 crossref_primary_10_1007_s41365_023_01348_3 crossref_primary_10_1073_pnas_2016093117 crossref_primary_10_1002_jmv_27801 crossref_primary_10_1515_cclm_2020_1378 crossref_primary_10_1016_j_ijbiomac_2021_07_170 crossref_primary_10_1016_j_immuni_2022_06_005 crossref_primary_10_1016_j_bbadis_2022_166527 crossref_primary_10_34172_bi_2024_30150 crossref_primary_10_1016_j_xcrm_2022_100528 crossref_primary_10_3390_vaccines10030347 crossref_primary_10_1016_j_celrep_2020_107918 crossref_primary_10_1016_j_apmt_2023_101952 crossref_primary_10_1021_acs_jctc_1c00372 crossref_primary_10_34133_2021_2813643 crossref_primary_10_1038_s41467_021_24905_z crossref_primary_10_1080_22221751_2021_1925594 crossref_primary_10_1016_j_celrep_2024_114338 crossref_primary_10_1016_j_csbj_2021_04_003 crossref_primary_10_3389_fphar_2020_588508 crossref_primary_10_1039_D1SC01203G crossref_primary_10_1093_bioadv_vbae137 crossref_primary_10_1093_ofid_ofac053 crossref_primary_10_1080_19420862_2022_2057832 crossref_primary_10_1021_acscentsci_1c00216 crossref_primary_10_1038_s41578_020_00247_y crossref_primary_10_3390_membranes11010064 crossref_primary_10_1080_07391102_2023_2187634 crossref_primary_10_3389_fimmu_2021_612807 crossref_primary_10_1073_pnas_2020216118 crossref_primary_10_1080_07391102_2022_2046641 crossref_primary_10_1126_sciadv_abf5632 crossref_primary_10_1007_s00347_020_01158_7 crossref_primary_10_1038_s41467_021_24013_y crossref_primary_10_1128_Spectrum_01352_21 crossref_primary_10_3389_fbioe_2022_839374 crossref_primary_10_1016_j_xcrm_2021_100253 crossref_primary_10_1080_22221751_2024_2401931 crossref_primary_10_1016_j_xinn_2022_100323 crossref_primary_10_1038_s41598_021_97330_3 crossref_primary_10_1007_s00216_021_03806_6 crossref_primary_10_1038_s41598_021_89605_6 crossref_primary_10_1016_j_aca_2022_339830 crossref_primary_10_1128_JCM_01533_20 crossref_primary_10_1038_s41467_020_20602_5 crossref_primary_10_3390_ani11030797 crossref_primary_10_1016_j_xinn_2021_100080 crossref_primary_10_1016_j_coviro_2021_09_005 crossref_primary_10_1002_VIW_20200181 crossref_primary_10_1021_acsnano_4c00155 crossref_primary_10_2139_ssrn_3907841 crossref_primary_10_1038_s43588_022_00232_1 crossref_primary_10_3390_vaccines9050431 crossref_primary_10_4049_jimmunol_2100606 crossref_primary_10_1016_j_chom_2021_01_014 crossref_primary_10_1016_j_jbc_2021_101507 crossref_primary_10_3390_cells9112343 crossref_primary_10_1007_s12033_021_00373_0 crossref_primary_10_1172_JCI144930 crossref_primary_10_1007_s10544_023_00649_z crossref_primary_10_1038_s41467_021_21609_2 crossref_primary_10_3390_ijms24032974 crossref_primary_10_1038_s41467_021_25153_x crossref_primary_10_1016_j_cell_2021_02_042 crossref_primary_10_3390_vaccines9111347 crossref_primary_10_1016_j_it_2020_09_004 crossref_primary_10_3390_vaccines9111223 crossref_primary_10_1007_s00604_021_04896_w crossref_primary_10_1002_jcb_30017 crossref_primary_10_3389_fcimb_2022_802147 crossref_primary_10_1016_j_jaci_2020_05_033 crossref_primary_10_1016_j_celrep_2022_110318 crossref_primary_10_1039_D0SC06528E crossref_primary_10_1093_nar_gkab1297 crossref_primary_10_1007_s10989_020_10149_w crossref_primary_10_1021_acsomega_1c03384 crossref_primary_10_1371_journal_ppat_1011119 crossref_primary_10_1080_10717544_2021_1879313 crossref_primary_10_1002_advs_202100985 crossref_primary_10_1111_imr_13084 crossref_primary_10_1111_jam_15340 crossref_primary_10_3389_fmolb_2022_797132 crossref_primary_10_1038_s41423_021_00684_x crossref_primary_10_1038_s41467_021_25997_3 crossref_primary_10_1016_j_bios_2022_113971 crossref_primary_10_1002_adts_202100012 crossref_primary_10_15252_embj_2020105938 crossref_primary_10_3389_fimmu_2023_1147960 crossref_primary_10_3389_fmedt_2022_1009451 crossref_primary_10_1126_science_abd9909 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_1016_j_ijbiomac_2024_130660 crossref_primary_10_1093_cvr_cvaa230 crossref_primary_10_1038_s41564_021_01051_2 crossref_primary_10_1172_JCI154987 crossref_primary_10_3390_cells10112949 crossref_primary_10_1016_j_cell_2021_02_032 crossref_primary_10_1021_acs_biochem_1c00139 crossref_primary_10_1038_s41392_021_00573_9 crossref_primary_10_4155_fdd_2020_0027 crossref_primary_10_1038_s41422_022_00746_3 crossref_primary_10_1038_s41564_022_01235_4 crossref_primary_10_1128_CMR_00228_20 crossref_primary_10_1128_spectrum_02676_21 crossref_primary_10_1038_s41467_021_24123_7 crossref_primary_10_3390_v14122694 crossref_primary_10_1002_prot_26140 crossref_primary_10_1172_JCI166844 crossref_primary_10_1016_j_cell_2020_09_007 crossref_primary_10_1172_JCI141206 crossref_primary_10_1134_S1990793121010267 crossref_primary_10_1038_s42003_021_01649_6 crossref_primary_10_1039_D3RA06479D crossref_primary_10_1126_sciadv_abf1591 crossref_primary_10_1038_s41577_020_00480_0 crossref_primary_10_1093_abt_tbad002 crossref_primary_10_3389_fimmu_2020_618685 crossref_primary_10_1073_pnas_2107148118 crossref_primary_10_1126_scitranslmed_abl9605 crossref_primary_10_1007_s10930_020_09933_w crossref_primary_10_3389_fimmu_2021_808932 crossref_primary_10_1126_scitranslmed_abf1555 crossref_primary_10_3390_vaccines9050449 crossref_primary_10_3389_fmicb_2023_1117494 crossref_primary_10_1093_bib_bbab192 crossref_primary_10_1016_j_cell_2021_03_055 crossref_primary_10_3390_antib13030072 crossref_primary_10_1016_j_celrep_2021_109353 crossref_primary_10_3390_cells10061412 crossref_primary_10_1080_26895293_2021_1977186 crossref_primary_10_1016_j_chom_2021_02_019 crossref_primary_10_3389_fimmu_2024_1342285 crossref_primary_10_3389_fbioe_2023_1320586 crossref_primary_10_1002_gch2_202000067 crossref_primary_10_1016_j_biopha_2024_116900 crossref_primary_10_1016_j_chom_2020_09_002 crossref_primary_10_2174_1389450124666221014102927 crossref_primary_10_5858_arpa_2022_0041_SA crossref_primary_10_3389_fimmu_2021_659041 crossref_primary_10_1038_s41421_021_00295_w crossref_primary_10_1016_j_antiviral_2022_105290 crossref_primary_10_1002_ange_202100543 crossref_primary_10_1038_s41392_020_00320_6 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1016_j_jchromb_2020_122469 crossref_primary_10_1021_acsinfecdis_0c00646 crossref_primary_10_1016_j_heliyon_2023_e15032 crossref_primary_10_1080_19420862_2022_2031483 crossref_primary_10_3389_fmicb_2020_587944 crossref_primary_10_3390_ddc2020022 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_1007_s40291_022_00634_x crossref_primary_10_1016_j_trim_2022_101732 crossref_primary_10_1080_25785826_2022_2066251 crossref_primary_10_1016_j_ijmmb_2022_03_009 crossref_primary_10_1172_jci_insight_167140 crossref_primary_10_1016_j_celrep_2021_109109 crossref_primary_10_2174_1872208316666220106110014 crossref_primary_10_1039_D1CB00169H crossref_primary_10_3389_fcell_2021_713188 crossref_primary_10_1038_s41467_023_39942_z crossref_primary_10_3390_ijms21218118 crossref_primary_10_1002_ctm2_158 crossref_primary_10_1093_oxfimm_iqad001 crossref_primary_10_1126_sciadv_abd3803 crossref_primary_10_3389_fpls_2020_589995 crossref_primary_10_1038_s41577_020_00428_4 crossref_primary_10_1016_j_ejmcr_2021_100003 crossref_primary_10_1016_j_compbiolchem_2023_107810 crossref_primary_10_1016_j_jbc_2021_100745 crossref_primary_10_2147_IJGM_S263666 crossref_primary_10_1126_science_abc6952 crossref_primary_10_1038_s41594_020_00549_3 crossref_primary_10_1016_j_scib_2020_12_025 crossref_primary_10_1016_j_jddst_2023_104567 |
Cites_doi | 10.1073/pnas.1705176114 10.1038/s41586-020-2012-7 10.1016/S0140-6736(20)30251-8 10.1016/S0140-6736(20)30154-9 10.1016/j.cell.2020.02.058 10.1126/science.abb2507 10.1002/pro.3330 10.1038/s41586-020-2008-3 10.1080/14728222.2017.1271415 10.1016/S0140-6736(20)30185-9 10.1016/j.cell.2020.02.052 10.1038/s41564-019-0411-z 10.3390/v11010060 10.1107/S0907444902016657 10.1107/S0907444904019158 10.46234/ccdcw2020.017 10.1038/nrmicro2090 10.1056/NEJMoa2001017 10.1016/j.tim.2015.06.003 10.1016/j.cell.2020.03.045 10.1016/S0076-6879(97)76066-X |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2020 The Authors |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2020 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abc2241 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1278 |
ExternalDocumentID | PMC7223722 32404477 10_1126_science_abc2241 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 81902058 – fundername: ; grantid: 2018ZX10733403 – fundername: ; grantid: 2018YFC1200603 – fundername: ; grantid: 2017ZX10304402 – fundername: ; grantid: 2020XGZX019 – fundername: ; grantid: 2016YFD0500304 – fundername: ; grantid: 31872745 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 CGR CUY CVF ECM EIF ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c515t-ef560fe51f6f9c2fa71416de0160160d4e31addb6eb6c902185952f87c2e31a13 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:11:05 EDT 2025 Fri Jul 11 10:45:53 EDT 2025 Fri Jul 25 19:32:42 EDT 2025 Wed Feb 19 02:12:01 EST 2025 Tue Jul 01 01:35:12 EDT 2025 Thu Apr 24 23:09:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6496 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c515t-ef560fe51f6f9c2fa71416de0160160d4e31addb6eb6c902185952f87c2e31a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-3869-615X 0000-0002-0670-010X 0000-0003-2734-0673 0000-0002-5963-1136 0000-0002-7967-1581 0000-0003-4568-9158 0000-0001-5556-2025 0000-0002-5595-363X 0000-0003-2778-4290 0000-0001-7069-9556 0000-0001-8607-3750 0000-0001-9800-9107 0000-0003-3608-4106 0000-0003-4286-7772 0000-0001-9612-6844 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7223722 |
PMID | 32404477 |
PQID | 2412345379 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7223722 proquest_miscellaneous_2403030277 proquest_journals_2412345379 pubmed_primary_32404477 crossref_citationtrail_10_1126_science_abc2241 crossref_primary_10_1126_science_abc2241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-12 |
PublicationDateYYYYMMDD | 2020-06-12 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science |
References | e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_20_2 e_1_3_2_10_2 e_1_3_2_21_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_22_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_23_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_19_2 doi: 10.1073/pnas.1705176114 – ident: e_1_3_2_4_2 doi: 10.1038/s41586-020-2012-7 – ident: e_1_3_2_6_2 doi: 10.1016/S0140-6736(20)30251-8 – ident: e_1_3_2_7_2 doi: 10.1016/S0140-6736(20)30154-9 – ident: e_1_3_2_11_2 doi: 10.1016/j.cell.2020.02.058 – ident: e_1_3_2_14_2 doi: 10.1126/science.abb2507 – ident: e_1_3_2_23_2 doi: 10.1002/pro.3330 – ident: e_1_3_2_8_2 doi: 10.1038/s41586-020-2008-3 – ident: e_1_3_2_16_2 doi: 10.1080/14728222.2017.1271415 – ident: e_1_3_2_3_2 doi: 10.1016/S0140-6736(20)30185-9 – ident: e_1_3_2_12_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_2_18_2 doi: 10.1038/s41564-019-0411-z – ident: e_1_3_2_15_2 doi: 10.3390/v11010060 – ident: e_1_3_2_10_2 – ident: e_1_3_2_22_2 doi: 10.1107/S0907444902016657 – ident: e_1_3_2_21_2 doi: 10.1107/S0907444904019158 – ident: e_1_3_2_5_2 doi: 10.46234/ccdcw2020.017 – ident: e_1_3_2_17_2 doi: 10.1038/nrmicro2090 – ident: e_1_3_2_2_2 doi: 10.1056/NEJMoa2001017 – ident: e_1_3_2_9_2 doi: 10.1016/j.tim.2015.06.003 – ident: e_1_3_2_13_2 doi: 10.1016/j.cell.2020.03.045 – ident: e_1_3_2_20_2 doi: 10.1016/S0076-6879(97)76066-X |
SSID | ssj0009593 |
Score | 2.7224412 |
Snippet | One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are neutralizing, meaning that they prevent the... Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four... An antibody defense against COVID-19One of the responses of the immune system to invading viruses is the production of antibodies. Some of these are... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1274 |
SubjectTerms | ACE2 Angiotensin Angiotensin-Converting Enzyme 2 Animals Antibodies Antibodies, Monoclonal - immunology Antibodies, Monoclonal - isolation & purification Antibodies, Monoclonal - therapeutic use Antibodies, Neutralizing - immunology Antibodies, Neutralizing - isolation & purification Antibodies, Neutralizing - therapeutic use Antibodies, Viral - immunology Antibodies, Viral - isolation & purification Antibodies, Viral - therapeutic use Antiviral agents Antiviral drugs Binding sites Biochem Blocking Cellular structure Coronaviridae Coronavirus Infections - therapy Coronaviruses COVID-19 Disease Models, Animal Domains Enzymes Epitopes Glycoproteins Humans Immune system Immunodominant Epitopes - chemistry Immunodominant Epitopes - immunology Lung - immunology Lung - virology Mice Microbio Monoclonal antibodies Neutralization Neutralization Tests Neutralizing Pandemics Peptidyl-dipeptidase A Peptidyl-Dipeptidase A - immunology Pneumonia, Viral - therapy Protein Domains Receptors Receptors, Virus - immunology Spike glycoprotein Spike Glycoprotein, Coronavirus - immunology Spike protein Therapeutic applications Viral diseases Viral Load - immunology Viruses |
Title | A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32404477 https://www.proquest.com/docview/2412345379 https://www.proquest.com/docview/2403030277 https://pubmed.ncbi.nlm.nih.gov/PMC7223722 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEBu3wkBG4mGoSlU7iZM8Zl2rgcb2QEv7FsWOMyJQi7oEafsD_G2OYydxtyENpDatbKeJ-n05Pj4-F4TekyCXbhBIhzPKHc_lkcNdKR1KRB4Sl6SRVKaBz2fsZO59WvrLXu-35bVUlXworu-MK_kfVKENcFVRsv-AbPuj0ADfAV84AsJwvBfG8QAW76LWfOug8lTb_HXdvZWsaivGtQ5DLAu-Vh6DylVdfB-Mz79-PHZINPhVbCpoLHR0C2iieidBebusN4N4PKG2_tqIAtBL270eC-HWaTHWrgWNp4E5zTI7LKpa-HfcXBjD9VQWm671iwkeGcPnRZWaabYW5Xr4QhZXlW26oKrCjUMsayYZqUKRdKQlnLyjzYhol4UWF5kX2TKXUF3n5_ZkYJWvlMOUC6WudPNes9d_dp5M56enyWyynD1AuxTWGyAwd-Oj46PpzfzN7d2ZLFFW_FVzgW0F59aq5abzraXNzJ6gx2YZgmPNqT3Uk6t99FAXJr3aR3sGsEt8aPKSf3iK8hjbdMOKbnid45pu2KYb7uiGa7rhhm64phs2dMPlGgPdcEM3rOj2DM2nk9n4xDFlOhwBynDpyBy05lz6JGd5JGieBgS0_Eyq3IXwyjwJj3yWcSY5E5HSKf3Ip3kYCKp6iPsc7cDty5cIE8Yi7hOR-iHzwozxNHWlR4gy1gcjmvXRsPlvE2Fy2KtSKj-Sei1LWWLASAwYfXTYnvBTp2_5-9CDBqzEPOOXCbRT1_PdIOqjd203SGC1rZau5LpSY2CiVNv_QR-90Ni211LpLj1P9QRbqLcDVHb37Z5V8a3O8h6A4g7vV_e47mv0qHu8DtBOuankG9CVS_7W8PgPxg3Dxw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+noncompeting+pair+of+human+neutralizing+antibodies+block+COVID-19+virus+binding+to+its+receptor+ACE2&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wu%2C+Yan&rft.au=Wang%2C+Feiran&rft.au=Shen%2C+Chenguang&rft.au=Peng%2C+Weiyu&rft.date=2020-06-12&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=368&rft.issue=6496&rft.spage=1274&rft_id=info:doi/10.1126%2Fscience.abc2241&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |