Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations

Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 21; no. 2; pp. 1267 - 1285
Main Authors von Hobe, Marc, Ploeger, Felix, Konopka, Paul, Kloss, Corinna, Ulanowski, Alexey, Yushkov, Vladimir, Ravegnani, Fabrizio, Volk, C. Michael, Pan, Laura L., Honomichl, Shawn B., Tilmes, Simone, Kinnison, Douglas E., Garcia, Rolando R., Wright, Jonathon S.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 29.01.2021
European Geosciences Union
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1680-7324
1680-7316
1680-7324
DOI10.5194/acp-21-1267-2021

Cover

Loading…
Abstract Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of around 100 ppb CO and 30–50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7–1.5 K d−1. For the key tracers (CO, O3, and N2O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
AbstractList Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of around 100 ppb CO and 30–50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7–1.5 K d−1. For the key tracers (CO, O3, and N2O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O.sub.3) with height starting from tropospheric values of around 100 ppb CO and 30-50 ppb O.sub.3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below â¼25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N.sub.2 O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N.sub.2 O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7-1.5 K d.sup.-1 . For the key tracers (CO, O.sub.3, and N.sub.2 O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O.sub.3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of around 100 ppb CO and 30 50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼ 25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7 1.5 K d-1. For the key tracers (CO, O3, and N2O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of around 100 ppb CO and 30–50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7–1.5 K d-1. For the key tracers (CO, O3, and N2O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O 3 ) with height starting from tropospheric values of around 100 ppb CO and 30–50 ppb O 3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼25  ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N 2 O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N 2 O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7–1.5 K d −1 . For the key tracers (CO, O 3 , and N 2 O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O 3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
Audience Academic
Author Ulanowski, Alexey
Kinnison, Douglas E.
von Hobe, Marc
Tilmes, Simone
Ploeger, Felix
Pan, Laura L.
Wright, Jonathon S.
Volk, C. Michael
Kloss, Corinna
Konopka, Paul
Ravegnani, Fabrizio
Garcia, Rolando R.
Honomichl, Shawn B.
Yushkov, Vladimir
Author_xml – sequence: 1
  givenname: Marc
  orcidid: 0000-0001-6034-6562
  surname: von Hobe
  fullname: von Hobe, Marc
– sequence: 2
  givenname: Felix
  surname: Ploeger
  fullname: Ploeger, Felix
– sequence: 3
  givenname: Paul
  orcidid: 0000-0002-5915-830X
  surname: Konopka
  fullname: Konopka, Paul
– sequence: 4
  givenname: Corinna
  orcidid: 0000-0001-9740-9344
  surname: Kloss
  fullname: Kloss, Corinna
– sequence: 5
  givenname: Alexey
  surname: Ulanowski
  fullname: Ulanowski, Alexey
– sequence: 6
  givenname: Vladimir
  surname: Yushkov
  fullname: Yushkov, Vladimir
– sequence: 7
  givenname: Fabrizio
  orcidid: 0000-0003-0735-9297
  surname: Ravegnani
  fullname: Ravegnani, Fabrizio
– sequence: 8
  givenname: C. Michael
  surname: Volk
  fullname: Volk, C. Michael
– sequence: 9
  givenname: Laura L.
  orcidid: 0000-0001-7377-2114
  surname: Pan
  fullname: Pan, Laura L.
– sequence: 10
  givenname: Shawn B.
  surname: Honomichl
  fullname: Honomichl, Shawn B.
– sequence: 11
  givenname: Simone
  orcidid: 0000-0002-6557-3569
  surname: Tilmes
  fullname: Tilmes, Simone
– sequence: 12
  givenname: Douglas E.
  orcidid: 0000-0002-3418-0834
  surname: Kinnison
  fullname: Kinnison, Douglas E.
– sequence: 13
  givenname: Rolando R.
  orcidid: 0000-0002-6963-4592
  surname: Garcia
  fullname: Garcia, Rolando R.
– sequence: 14
  givenname: Jonathon S.
  orcidid: 0000-0001-6551-7017
  surname: Wright
  fullname: Wright, Jonathon S.
BackLink https://insu.hal.science/insu-03134025$$DView record in HAL
BookMark eNp1ktuLEzEUxgdZwd3Vdx8DPinMmmQyyfSxFHULBcF1n8NpLm3KzGQ2Sffy33u6VbSi5CEh-X1fzu2iOhvj6KrqLaNXLZuJj2CmmrOacalqTjl7UZ0z2dFaNVyc_XF-VV3kvKOUt5SJ8-rudnqAZElJMOYppkLCWCKB0ZKHULZhJGXryDwHGMkQxxzjiI8lmCfTYwAEMgq8S8lZ4lMcyA06lbjow3DwNI5sEInr7NI9lIAOr6uXHvrs3vzcL6vbz5--L67r1dcvy8V8VZuWtaW2lBvZGd56jNwa5RllmGjXuca3M5DKdDOmqFIth3UjJJ9JxjorqfBgLDPNZbU8-toIOz2lMEB60hGCfr6IaaMhYSK90x2DFgRXTvqZWFsKwlMlGmoEfgp2jV4fjl5b6E-srucrHca817RhjcCi3jOE3x3hKcW7vctF7-I-jZir5qLjrVKCyt_UBjACrGE8lGsI2ei5xN5QqhhF6uofFC7rhmCwAT7g_Yng_YkAmeIeywb2OevlzbdTVh5Zk2LOyXltQnluEn4Ses2oPoyWxtHSnOnDaOnDaKGQ_iX8VZP_Sn4AhF3QFw
CitedBy_id crossref_primary_10_5194_acp_21_15259_2021
crossref_primary_10_5194_acp_21_15375_2021
crossref_primary_10_5194_acp_23_12935_2023
crossref_primary_10_5194_acp_22_13607_2022
crossref_primary_10_1029_2021GL094058
crossref_primary_10_5194_acp_23_3279_2023
crossref_primary_10_5194_acp_24_4771_2024
crossref_primary_10_5194_acp_22_2049_2022
crossref_primary_10_5194_acp_24_2033_2024
crossref_primary_10_2139_ssrn_4003820
crossref_primary_10_5194_gmd_15_7471_2022
crossref_primary_10_1029_2022GL099848
crossref_primary_10_5194_acp_22_6539_2022
crossref_primary_10_1007_s00382_023_07004_1
crossref_primary_10_5194_amt_14_5271_2021
crossref_primary_10_1029_2022JD037511
crossref_primary_10_1007_s00382_022_06238_9
crossref_primary_10_5194_acp_22_15659_2022
crossref_primary_10_1016_j_atmosres_2022_106093
crossref_primary_10_5194_acp_22_3841_2022
crossref_primary_10_1073_pnas_2318716121
crossref_primary_10_1007_s00382_024_07371_3
crossref_primary_10_1016_j_apr_2023_101764
crossref_primary_10_5194_acp_21_11689_2021
crossref_primary_10_5194_acp_22_15135_2022
crossref_primary_10_5194_acp_24_317_2024
crossref_primary_10_5194_acp_22_3169_2022
Cites_doi 10.1002/qj.828
10.5194/acp-10-3615-2010
10.5194/acp-19-1901-2019
10.1029/96JD00066
10.1002/2016JD026408
10.5194/acp-18-15937-2018
10.1029/2010JD014876
10.5194/acp-12-6475-2012
10.1073/pnas.1701170114
10.1016/j.jqsrt.2013.07.002
10.5194/acp-20-11045-2020
10.1029/2005GL022765
10.1175/JAS-D-18-0088.1
10.1029/2019MS001882
10.1029/2012GL052996
10.1029/2011JD017267
10.1002/2013JD020908
10.5194/acp-4-1427-2004
10.5194/acp-17-4657-2017
10.5194/acp-20-4133-2020
10.1029/1999GL010879
10.5194/amt-2021-28
10.1002/jgrd.50142
10.1029/2018GL079573
10.5194/acp-19-11803-2019
10.5194/acp-2020-581
10.1023/A:1017535608026
10.1029/2006JD008294
10.5194/acp-13-4605-2013
10.1029/2008JD010621
10.5194/acp-17-6091-2017
10.1029/2007JD008459
10.1029/2011RG000355
10.1002/2013JD021189
10.1256/smsqj.44904
10.5194/acp-8-757-2008
10.5194/acp-15-13699-2015
10.1126/science.1182274
10.5194/acp-15-13145-2015
10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2
10.1029/2019MS001916
10.1175/2018BAMSStateoftheClimate.1
10.1126/science.1093418
10.1002/2016JD025616
10.1029/2012JD017876
10.5194/acp-19-6509-2019
10.5194/acp-16-2703-2016
10.1029/1999JD901173
10.1029/2018JD028674
10.1029/2007JD008645
10.5194/acp-19-15629-2019
10.1029/2005GL022762
10.1073/pnas.0601584103
10.1029/2019JD030943
10.1038/s41598-018-22267-z
10.5194/acp-19-6007-2019
10.5194/acp-20-12193-2020
10.1029/2005JD006490
10.5194/acp-19-8947-2019
10.1029/2006JD008268
10.1175/1520-0426(1999)016<1345:ACAFSM>2.0.CO;2
10.1016/S0009-2614(99)00547-3
10.5194/gmd-4-625-2011
10.1175/2009BAMS2865.1
10.1029/98GL01797
10.5194/acp-17-7055-2017
10.1029/2019GL083647
10.1029/2000JD000289
10.1029/2010GL046614
10.5194/acp-13-9565-2013
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
1XC
VOOES
DOA
DOI 10.5194/acp-21-1267-2021
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 1285
ExternalDocumentID oai_doaj_org_article_81a5a427e6f94bd0a4f07430c4101adb
oai_HAL_insu_03134025v1
A650100710
10_5194_acp_21_1267_2021
GeographicLocations Nepal
GeographicLocations_xml – name: Nepal
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
1XC
C1A
IPNFZ
RIG
VOOES
PUEGO
ID FETCH-LOGICAL-c515t-d02c68c25f680dc7f10151988e3f59a67c891707752ab346296118d604facd1c3
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:21:24 EDT 2025
Fri Jun 27 06:31:14 EDT 2025
Fri Jul 25 04:56:01 EDT 2025
Tue Jun 17 21:23:06 EDT 2025
Tue Jun 10 20:35:59 EDT 2025
Fri Jun 27 05:11:40 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
Tue Jul 01 02:01:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-d02c68c25f680dc7f10151988e3f59a67c891707752ab346296118d604facd1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6034-6562
0000-0002-3418-0834
0000-0001-7377-2114
0000-0003-0735-9297
0000-0002-6557-3569
0000-0002-6963-4592
0000-0002-5915-830X
0000-0001-9740-9344
0000-0001-6551-7017
OpenAccessLink https://www.proquest.com/docview/2482577406?pq-origsite=%requestingapplication%
PQID 2482577406
PQPubID 105744
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_81a5a427e6f94bd0a4f07430c4101adb
hal_primary_oai_HAL_insu_03134025v1
proquest_journals_2482577406
gale_infotracmisc_A650100710
gale_infotracacademiconefile_A650100710
gale_incontextgauss_ISR_A650100710
crossref_citationtrail_10_5194_acp_21_1267_2021
crossref_primary_10_5194_acp_21_1267_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-29
PublicationDateYYYYMMDD 2021-01-29
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-29
  day: 29
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2021
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref6
  doi: 10.1002/qj.828
– ident: ref23
  doi: 10.5194/acp-10-3615-2010
– ident: ref75
  doi: 10.5194/acp-19-1901-2019
– ident: ref39
  doi: 10.1029/96JD00066
– ident: ref56
  doi: 10.1002/2016JD026408
– ident: ref3
  doi: 10.5194/acp-18-15937-2018
– ident: ref24
– ident: ref66
  doi: 10.1029/2010JD014876
– ident: ref57
  doi: 10.5194/acp-12-6475-2012
– ident: ref74
  doi: 10.1073/pnas.1701170114
– ident: ref55
  doi: 10.1016/j.jqsrt.2013.07.002
– ident: ref33
  doi: 10.5194/acp-20-11045-2020
– ident: ref10
  doi: 10.1029/2005GL022765
– ident: ref13
  doi: 10.1175/JAS-D-18-0088.1
– ident: ref9
  doi: 10.1029/2019MS001882
– ident: ref2
  doi: 10.1029/2012GL052996
– ident: ref50
  doi: 10.1029/2011JD017267
– ident: ref14
  doi: 10.1002/2013JD020908
– ident: ref26
  doi: 10.5194/acp-4-1427-2004
– ident: ref34
  doi: 10.5194/acp-17-4657-2017
– ident: ref35
  doi: 10.5194/acp-20-4133-2020
– ident: ref11
  doi: 10.1029/1999GL010879
– ident: ref28
  doi: 10.5194/amt-2021-28
– ident: ref1
  doi: 10.1002/jgrd.50142
– ident: ref45
  doi: 10.1029/2018GL079573
– ident: ref31
  doi: 10.5194/acp-19-11803-2019
– ident: ref32
  doi: 10.5194/acp-2020-581
– ident: ref63
  doi: 10.1023/A:1017535608026
– ident: ref16
– ident: ref47
  doi: 10.1029/2006JD008294
– ident: ref61
  doi: 10.5194/acp-13-4605-2013
– ident: ref49
  doi: 10.1029/2008JD010621
– ident: ref20
  doi: 10.5194/acp-17-6091-2017
– ident: ref64
– ident: ref8
  doi: 10.1029/2007JD008459
– ident: ref17
  doi: 10.1029/2011RG000355
– ident: ref38
  doi: 10.1002/2013JD021189
– ident: ref58
– ident: ref19
  doi: 10.1256/smsqj.44904
– ident: ref48
  doi: 10.5194/acp-8-757-2008
– ident: ref67
  doi: 10.5194/acp-15-13699-2015
– ident: ref54
  doi: 10.1126/science.1182274
– ident: ref51
  doi: 10.5194/acp-15-13145-2015
– ident: ref27
  doi: 10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2
– ident: ref5
  doi: 10.1029/2019MS001916
– ident: ref7
  doi: 10.1175/2018BAMSStateoftheClimate.1
– ident: ref37
  doi: 10.1126/science.1093418
– ident: ref44
  doi: 10.1002/2016JD025616
– ident: ref29
  doi: 10.1029/2012JD017876
– ident: ref70
– ident: ref60
  doi: 10.5194/acp-19-6509-2019
– ident: ref15
  doi: 10.5194/acp-16-2703-2016
– ident: ref22
  doi: 10.1029/1999JD901173
– ident: ref62
  doi: 10.1029/2018JD028674
– ident: ref42
  doi: 10.1029/2007JD008645
– ident: ref73
  doi: 10.5194/acp-19-15629-2019
– ident: ref36
  doi: 10.1029/2005GL022762
– ident: ref59
– ident: ref12
  doi: 10.1073/pnas.0601584103
– ident: ref18
  doi: 10.1029/2019JD030943
– ident: ref30
  doi: 10.1038/s41598-018-22267-z
– ident: ref68
  doi: 10.5194/acp-19-6007-2019
– ident: ref4
  doi: 10.5194/acp-20-12193-2020
– ident: ref53
  doi: 10.1029/2005JD006490
– ident: ref40
  doi: 10.5194/acp-19-8947-2019
– ident: ref72
  doi: 10.1029/2006JD008268
– ident: ref76
  doi: 10.1175/1520-0426(1999)016<1345:ACAFSM>2.0.CO;2
– ident: ref41
  doi: 10.1016/S0009-2614(99)00547-3
– ident: ref69
  doi: 10.5194/gmd-4-625-2011
– ident: ref43
  doi: 10.1175/2009BAMS2865.1
– ident: ref21
  doi: 10.1029/98GL01797
– ident: ref52
  doi: 10.5194/acp-17-7055-2017
– ident: ref46
  doi: 10.1029/2019GL083647
– ident: ref25
  doi: 10.1029/2000JD000289
– ident: ref65
  doi: 10.1029/2010GL046614
– ident: ref71
  doi: 10.5194/acp-13-9565-2013
SSID ssj0025014
Score 2.4877455
Snippet Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas....
Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas....
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1267
SubjectTerms Aerosols
Air
Airborne observation
Aircraft
Altitude
Anthropogenic factors
Anticyclones
Anticyclonic circulation
Ascent
Asian monsoons
Carbon monoxide
Convection
Fourier transforms
Heat exchange
Lapse rate
Mixing
Mixing processes
Mixing ratio
Monsoons
Nitrous oxide
Outflow
Ozone
Pollutants
Pollution dispersion
Potential temperature
Radiative heating
Sciences of the Universe
Stratosphere
Summer
Summer monsoon
Trace gases
Tracers
Tropopause
Troposphere
Tropospheric ozone
Uplift
Vertical advection
Vertical velocities
Wind
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgT1wQy0MEusgCBOJgNXEcxzl2V6wKYjkAlfZm-blUqpLSZFfaf78zSVoRDnDhmHqaODPj8cxk5jMhb2WR5aXxFbMQADFYiYpZJQPL01DGogiVLLHB-eKrXK7E58vi8rejvrAmbIAHHhg3V5kpjOBlkLES1qdGRNz1UidAmYy3aH1hz9sHU2OohV_LMNSSKmV4NtPwgRK8FTE3bst4xjIOFgIi_2yyIfW4_QfrfP8nFkf-YaP7jef8EXk4eox0Mcz0mNwL9WOSXICz2-z6nDh9R882a_A8-6sn5Ndqi6WwtNvjltN13TXU1J5i1nVdU3D66AK7JykoYds0NQzC3W_dpqkDNS3FEq3dLniK3Se0R7Bt8Bl4TxfoFZA09pDPbZ-S1fnHH2dLNp6swBz4Lx3zKXdSOV5EYJB3ZQReAnOUCnksKiNLpyCMQ3Q8bmwuJK8kBCJepiIa5zOXPyNHNczoOaG5jJg68tLCqAOGG-uFyyufllaZKBIy37NXuxF2HE-_2GgIP1AgGgSieaZRIBoFkpAPh39sB8iNv9CeosQOdAiW3f8AKqRHFdL_UqGEvEZ5a4TDqLHe5spct63-9P2bXoADm_VuWELej0SxQV6bsX0BuIAIWhPK2YQS1qubDL8BtZrMeLn4orH1QCOQJgT0xQ282Gyvdnq0Kq3mAuJ58NdT-eJ_vPdL8gB5iAklXs3IUbe7DifgYnX2Vb-a7gBxMB7x
  priority: 102
  providerName: Directory of Open Access Journals
Title Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
URI https://www.proquest.com/docview/2482577406
https://insu.hal.science/insu-03134025
https://doaj.org/article/81a5a427e6f94bd0a4f07430c4101adb
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfo9sILYnyIjlJZgEA8WE0cx3GeUDetFEQnGFTszXLspFSqki7JJvHfc5e6QeVhT1Xqy4fvcpffne_OhLyVcRglxqUsAweIgSYqlimZsyjIkyKO81QmWOC8uJTzpfhyHV_7gFvj0yr3NrEz1K6yGCOfcAG-DGCVQH7c3jDcNQpXV_0WGgNyDCZYgfN1fHZx-e2qd7lw1QxdLqkChns07RYqAbWIibFbxkMWcrAUPODhwYep69_fW-nBb0yS_M9Wdx-g2WPyyCNHOt2J-oQ8yMsnZLgA0FvVXWycvqPnmzUg0O7oKblZbjEllrb7_uV0XbYVNaWjGH1dlxTAH51iFSWF2TVVVcIgXP2P3VRlTk1DMVWrrnNHsQqFdp1sK7wHXtPmdAUkVdbHdZtnZDm7-Hk-Z36HBWYBx7TMBdxKZXlcAIOcTQpQUGCOUnlUxKmRiVXgzmGXPG6ySEieSnBInAxEYawLbfScHJXwRC8IjWSBISQnMxi1wHCTOWGj1AVJpkwhhmSyZ6-2vv047oKx0eCGoEA0CETzUKNANApkSD70Z2x3rTfuoT1DifV02DS7-6OqV9rroFahiY3gSS6LVGQuMKJAABVYAdM2LhuS1yhvjW0xSsy7WZnbptGff1zpKQDZsINjQ_LeExUV8tr4MgbgAnbSOqAcHVCC3tqD4TfwWh088Xz6VWMJgsaGmuDYx3cwsdH-tdPeujT6ny6c3j_8kjxE7mDIiKcjctTWt_krAFFtNiYDNfs09vqCv7PF91_jLiTxF1cIG28
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZ2lwNc0PISZQtYPMXBauI4TnJAqCyUlm33AFtpb8axnVKpSrpJF7R_it_ITJoElcPe9th66ibzsL8Ze2YIeSVDP4i0TVgKDhADS4xZGkvHAs9FWRi6REaY4Dw7leO5-Hoenu-RP20uDF6rbNfEeqG2hcEY-YAL8GUAq3jyw_qCYdcoPF1tW2hs1eLEXf0Gl616P_kE8n3N-ejz2fGYNV0FmIG9e8Osx42MDQ8zGXvWRBkoJcCYOHZBFiZaRiYGFwYrw3GdBkLyRAIIt9ITmTbWNwHMu09uiSBI0KLi0ZfOwcMzOnTwYGKGHaG2x6IwuRhos2bcZz6HdYl73N_ZButuAd2esP8Tr2T-tzPU293okNxtcCodbhXrHtlz-X3SmwHELso6Ek_f0OPVEvBu_ekBuZiv8QIu3bTV0uky3xRU55ZirHeZU4CadIg5mxR4WRVFDoMw-5VZFbmjuqJ4MawsnaWY80LrurkF_gfOaRxdAEmRdlHk6iGZ3wjnH5GDHJ7oMaGBzDBgZWUKowYYrlMrTJBYL0pjnYkeGbTsVaYpdo49N1YKnB4UiAKBKO4rFIhCgfTIu-4X622hj2toP6LEOjos0V1_UZQL1Vi8in0dasEjJ7NEpNbTIkO45hkBr61t2iMvUN4Ki3DkeMtnoS-rSk2-f1NDgM1-Df565G1DlBXIa90kTQAXsG7XDmV_hxJWCbMz_BLUaueJx8OpwoQHheU7BWjvL3ixfqt2qlnLKvXP8p5cP_yc3B6fzaZqOjk9OSJ3kFMYrOJJnxxsykv3FODbJn1W2wwlP27aSP8CQ5lRbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZ2uxLiwhtRKGDxFAdvE8dxkgNC3V2qlt2ueFXszTh2UiqqpNukoOWn8Vf4M8ykSVH3sLc9cGw9dePJN-MZex6EPJO-6wXaRiwGB4iBJIYsDmXCPCcJUt9PIhlggvPoWA7G4t2Jf7JFfje5MBhW2ejESlHb3OAZeZcL8GXAVnFkN63DIt4f9N_MTxl2kMKb1qadxgoih8nZT3DfitfDA3jXzznvv_28P2B1hwFmYB8vmXW4kaHhfipDx5ogBYCCSROGiZf6kZaBCcGdwSpxXMeekDySYJBb6YhUG-saD-bdJjuhDH3eIjt7_dGHL2t3D2_s0N2DqRn2h1pdksL0oqvNnHGXuRy0FHe4u7EpVr0D1jvE9jcM0Dy3T1SbX_86-dOwbRXz8n13Wca75te5ipL_J19vkGu1TU57KyG6SbaS7BZpj8CdyBfVrQN9QfdnU7Dtq0-3yel4jsHGtGwqw9NpVuZUZ5biufY0o2BW0x7mp1JYU5HnGQzC7GdmlmcJ1QXFILjFIrEU83toVSM4x__AOU1CJ0CSx-sT8-IOGV8KB-6SVgZPdI9QT6Z4OGdlDKMG4KRjK4wXWSeIQ52KNuk24FGmLuyO_UVmChw8hJsCuCnuKoSbQri1yav1L-aroiYX0O4hHtd0WI68-iJfTFSt3VToal8LHiQyjURsHS1SNE0dI2DZ2sZt8gTRrLDgSIYQm-hlUajhp4-qBy6CWxm6bfKyJkpz5LWuE0SAC1ijbIOys0EJGtFsDD8Fodl44kHvSGFyh8JSpQJk8wcsrNMIhKr1dqH-ScP9i4cfkysgJupoeHz4gFxFRuG5HI86pFUulslDsFTL-FGtEij5etnS8hcrD52X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upward+transport+into+and+within+the+Asian+monsoon+anticyclone+as+inferred+from+StratoClim+trace+gas+observations&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=von+Hobe%2C+Marc&rft.au=Ploeger%2C+Felix&rft.au=Konopka%2C+Paul&rft.au=Kloss%2C+Corinna&rft.date=2021-01-29&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=21&rft.issue=2&rft.spage=1267&rft.epage=1285&rft_id=info:doi/10.5194%2Facp-21-1267-2021&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_21_1267_2021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon